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Abstract

We denote by ¢(n) the minimal length of an addition chain leading to
n and we define the counting function

F(m,r):=#{ne [27, 2™ s d(n) < m + T},

where m is a positive integer and r» > 0 is a real number. We show that
for 0 < ¢ < log2 and for any € > 0, we have as m — oo,

F(m, cm < exp (em+ emloglogm
logm logm

F(m, cm > exp cmi(l—l—a)cmloglogm .
logm logm

This extends a result of Erdés which says that for almost all n, as n — oo,

and
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1 Introduction

We say that 1 = ag < a1 < -+ < ap = n is an addition chain of length k if
a;j = as+a; with 0 <i4,s < jforall j, 1 <j < k. In other words, a term in an
addition chain is obtained either by adding two distinct previous terms or by
doubling a previous term.

For example, the following is an addition chain:

ap = 1

ap = ay+a=14+1=2,
ay = a1+a;=24+2=4,
a3 = ay+ay=4+1=25,
ag = az+a;=5+2=7,
as = az3+ax=5+4=09.



A question of interest is: Given a positive integer n, what is the shortest
addition chain leading to n? For example, if n = 10, the following addition chain
leads to 10: ag = 1,a; = 14+1 =2,a5 =242 =4,a3 = 4+4 = 8,a4 = 8+2 = 10.
We can show that there exists no shorter addition chain leading to 10.

When n is a power of two, say n = 2", the shortest addition chain leading to
n is of length r and consists only of doubling steps, since we have the addition

chain ag = 1,a1 = 2a9 = 2,a9 = 2a1 =4,...,a, = 2a,_1 = 2".
Observe that the shortest addition chain leading to n is not necessarily
unique. For instance, we have ag = 1l,a1 = 2,a3 = 4,a4 = 5 as well as

by = 1,b; = 2,bs = 3,by = 5 both being chains of minimal length leading
to 5.

Definition 1.1. We denote by £(n) the length of a shortest addition chain
leading to n.

In this note, we investigate a question related to the distribution of ¢(n): For
a given positive integer k, how many integers n can be obtained by an addition
chain of length at most k? For example, if we take k = 3, the following integers
can be obtained by addition chains of length at most 3:

ag =1,

aozl,a1 :2,

(10:1,&1 :2,a2: 5
aozl,a1 :270,2:4,
a=1,a1 =2,a2 =3,a3 =5,
aozl,a1 :2,a2:3,a3:6,
aozl,a1 :2,a2:4,a3:8.

It follows that 7 different integers can be obtained by addition chains of length
at most 3.

Definition 1.2. We denote by H(k) the number of distinct integers that can be
obtained by an addition chain of length at most k. Explicitly,

H(k):=#{n:Ll(n) < k}.

Given that the largest integer that can be obtained by an addition chain of
length k is 2%, we trivially have

H(k) < 2~

It turns out that, in some sense, this simple upper bound is relatively close to
the truth. The sequence H (n) begins with

H()=2, H(2) =4, HB3) =7, H(4) =12,...

Doubling steps, that is steps given by a, = 2a,_1, play an important role in
addition chains since for addition chains of minimal length, most of the steps



must be doubling steps. It is therefore natural to work with intervals of the form
[2m,2m+1) Instead of working directly with the function H, we will investigate
a closely related function.

Definition 1.3. Let m be a positive integer and r a positive real number. We
define
F(m,r) = # {n € [Qm,2m+1) :4(n) <m+ r} )

We will investigate the asymptotic behaviour of the function F. A critical

region is given by
cm

~ logm’
where 0 < ¢ < log2 is a fixed constant and m — co. As we will discuss in the
next section, previous results imply that F(m,r) = 2™ when ¢ > log 2 and m is
large enough.
Relying on this notation, we will show

F(m,cm/>=emﬂﬂml+0ﬂ»%

logm

as well as more precise results.

2 Previous work

Lower and upper bounds for the function £(n) have been obtained.

Arnold Scholz [6] seems to have been the first (in 1937) to study the length
of an addition chain. In his paper, one can find what is now known as the Scholz
conjecture, namely that

02" —1) <n+Ll(n+1).

This conjecture has been shown to be true for all n < 5784688 by Clift [3].
This conjecture has also been shown to be true for infinite families of integers,
see [1] and [8].

Observe that it is easy to establish that

U(n) < logyn + v(n),

where log, m = logm/log 2 and v(n) is the number of digits equal to one in the
binary expansion of n. The best result in the direction of the Scholz conjecture
is the one obtained in 1939 by Arnold T. Brauer [2], namely the upper bound

(2" —1) <4 (n+1),

where £*(n) is the minimum length of only those addition chains in which every
ap, can be written as ap—1 + a,, r < p — 1. In fact, Brauer proved that

1
4(n) < min {(1+)log2n+2r—2},
r

T 1<r<m



log1
where 2™ < n < 2™*1 In Brauer’s upper bound, choosing r = (1 — s)w

)

log 2
it follows that for n sufficiently large,

logn

(n) <logon+ (1+¢) (2.1)

loglogn’

In 1960, Erdés [4] showed that (2.1) is best possible in the sense that for almost
all n (i.e., for all n except a sequence of density 0),

logn

In 1975, Arnold Schénhage [7] proved that
£(n) > logy n + log, v(n) — 2.13.
To summarize, what has been proved so far unconditionally is that
logy n + log, v(n) —2.13 < 4(n) < [logyn] + v(n) — 1.

Providing a more concrete bound, Thurber [10] showed that if v(n) > 9,
then
£(n) > |logyn| + 4.

The problem of numerically computing ¢(n) for a given n is also an important
challenge. Methods to effectively generate an addition chain of minimal length
leading to a given integer can be found in [9].

A broad view of the results regarding addition chains can be found in the
book of Richard Guy [5, p.169-171].

3 Result statement

Our main results consist in an upper bound and a lower bound for the function
F.

Theorem 3.1. For any € > 0 and for 0 < ¢ < log2, we have for m large
enough
log 1
Fm, ") <exp(em Z808MY
logm logm
Theorem 3.2. For any € > 0 and for 0 < ¢ < log2, we have for m large

enough oo
F|m, e > exp cm—C(1+€)m 0808 )
logm logm

These results partially answer a comment of Paul Erdés [4] who wrote that
it would be interesting to obtain an asymptotic value for the distribution of the
function 4(n).



4 Proof of the upper bound

The proof of the upper bound is the most complicated of the two and accord-
ingly, it is divided into several subsections.

4.1 Notation and definitions

We begin the proof of the upper bound by providing a few more definitions. We
denote by ~ the golden ratio

1+45
2

Definition 4.1. For a fized integer m > 2, we define

~ 1.618.

1
~logm’

0 =4(m):

We expand upon the ideas of Erdds as we will divide the addition steps into
several types.

Definition 4.2. Let m > 4 be a positive integer and r a positive real number.
Consider an addition chain consisting of 1 = ag < -+ < pqr| = n with
n € [2™,2™FY). Let the set A consist of the doubling steps of this chain. We
subdivide the nondoubling steps into three sets B, C and D according to their
associated relative growth rate:

A: = {1<j<m+r:a; =2a;_1}, the doubling steps,

B: {1<j<m+r:vyaj_1 <a; <2aj_1}, the large steps,

C: {I1<j<m+r:(1+9d)aj_1 <aj <~vyaj_1}, the midsize steps,
D: = {1<j<m+r:a; <(l+0)aj_1}, the small steps.

We denote their respective cardinalities by

A:=H#A, B:=#B, C:=#C, D := #D.

4.2 Remarks on the size of the sets A, B, C and D
We now obtain bounds on A, B, C and D.

Lemma 4.1. Suppose that an integer n € [2™,2™+1) is obtained by an addition
chain of length |m + r| such that the number of steps of each type is given by
A, B, C and D, respectively. Then

B+C+D<r———.
1 —logyy



Proof. In [7], it was shown by induction that

The intuition being that a chain with additive (nondoubling) steps cannot grow
faster than the Fibonacci sequence.
Using the fact that A+ B+ C + D = |m +r| and n > 2™, we obtain from

(4.1) that
om < 2m+T—(B+C+D),yB+C+D7

which yields

B+C+D
=2 ()
2
From this, we get
B+C+D<r————
1 —logyy
completing the proof of Lemma 4.1. O

We also have the following upper bound on the size of the set D.

Lemma 4.2. Suppose that an integer n € [2™,2™m+1) is obtained by an addition
chain of length |m + r| such that the number of steps of each type is given by
A, B, C and D, respectively. We have

r—C(1—logy7)
1—logy(144)

Proof. Using the definition of the sets A, B, C and D, we have

2m n < 2478101 4 4)P

<
S 2m+r—C—D,yC(1_~_5)D.

v () ()

Taking the base 2 logarithm of each side of the inequality yields

From this, we get

0<r—C(1—-1logyvy)— D(1—log,(1+9)),
which we can rearrange to conclude

r—C(1—1logy7)

D <
~— 1-logy(1+46) "’

thus proving Lemma 4.2. O



4.3 The number of ways of choosing the sets A, 5, C and D

The sets A, B, C and D specify the position in the addition chain of the steps
of a given type.
We define
S=S(A,B,C,D,m,r)

as the number of ways of choosing these sets for given values of A, B,C, D, m

and r.
oo lm+r)
~—\A4,B,C,D

It is trivial that
where we use the multinomial coefficient notation:

lm+r]\  [m4r]
A B,C,D) AB!C\D!

with [m+r|=A+B+C+ D.
We can however improve upon this by observing the following result.

Lemma 4.3. A step in B must be preceded by a step in either C or D.
Proof. Suppose that j € B. Since a step in B is not a doubling step, we have
a; < aj_1+aj_s.
By definition of the set B, we also have
aj = Yaj-1,

and since aj, a;_1 are integers while +y is irrational, it must be that a; > vya;_1.
Thus
Yaj-1 < @j-1+ aj-2,

from which we conclude

a;j_1 < aj_9 = ya;_
j—1 7_1J2 Va2

and
j—1e€eCunD. O

From the above, we can conclude the following bound.

Lemma 4.4. Let m be a positive integer and r a positive real number such that
r = cm/logm with ¢ a fized constant, 0 < ¢ < log2. We have as m — co

s<(@jg)mmmm>



Proof. The number of ways of choosing the sets C and D is given by

(eip)(5")

By Lemma 4.3, the number of ways to choose the set B is less than or equal to

B+C+D-1
B-1 '

We have thus shown
g (lmHr\(C+D\(B+C+D-1
—\C+D D B-1 ’

S < (Lgig) 9C+D9B+C+D

Given that from Lemma 4.1, B4+ C + D = O(r), we conclude

sg(@jg)wmmm»

This implies

We will also make use of the following lemma.

Lemma 4.5. Assume as above that m is a positive integer and that v is a
positive real number with r = em/logm and ¢ a fived constant such that 0 <
c < log2. Further assume that the addition steps are grouped in k sequences of
consecutive addition steps. Then

sg(W;“)mmmm>

as m — oQ.

Proof. Suppose that the steps in BUC U D are grouped into k blocks and that
the length of each block is respectively by, bs,...,b;. We then have

bi+bs+---+bpy=B+C+D.

The number of ways of choosing the integers by, bo, ..., bg is less than or equal

to
2BHCHD — oxp(O(r)).

The number of ways of choosing if the addition steps belong to B, C or D is less

than or equal to
3BFHCHD — oxp(O(r)).



It remains to specify how the A doubling steps will be distributed amongst
the k additive blocks. This is equivalent to choosing a sequence of integers
t1, ta,..., tgy1 in such a way that

ti+tat+ - +tgp1 =4

with ¢1 > 0, tg41 > 0 and ¢; > 0, 2 < j < k. The number of ways of doing so is

less than or equal to
A+k\ _ [Im+r]
k N k ’

thus completing the proof of Lemma 4.5.
O

4.4 The number of ways of choosing the added elements
at each step

To completely specify an addition chain, we still have to choose which elements
will be added at each step.

First observe that for doubling steps in A there is no choice to make, since
if j € A then necessarily a; = 2a;_1. We start by proving the following result.

Lemma 4.6. Let m be a positive integer and r a positive real number such
that r = em/logm with ¢ a fized constant, 0 < ¢ < log2. Let 1 = ag <
oo < Amsr] = n be an addition chain of length |m + r] leading to n with
n € [2m,2m Y Assume that the sets A, B, C and D are fived. Denote by R
the number of ways of choosing which integers will be added in steps belonging
to B. Then,

R = exp(O(r))

as m — oo.
Proof. Suppose that j € B and that
aj=as+ag,j>s>k k<j—1
We have
vaj—1 < a; =as+ag < aj_1 + ag,

from which we deduce
Qg Z (’)/ — 1)aj_1.

It follows that all w such that k < u < j are in C UD as assuming the contrary
would yield aj—1 > ax. The number of ways of choosing s and k is thus less
than or equal to h(j)? where for j € B,

h(j) ::Iygf({jfUGCUDforalllgugt}.



In other words, h(j) is the maximal integer ¢ such that all the integers in the
interval [j — ¢, j — 1] are in the set C UD. We thus have

R <[] rG)* (42)

jeB
From Lemma 4.3, we have

> h(j) < C+D. (4.3)

JjEB
From (4.3) and the arithmetic-geometric mean inequality, we have

[1h)* < =3 i) < S22,

JEB JEB

From (4.2), we can conclude
D\ 2B
R< (C; > — exp(O(r)). 0

We will now prove an upper bound for the number of ways of choosing the
integers which will be added in steps belonging to C. This turns out to be one
of the most technical steps in the proof.

Lemma 4.7. Let m be a positive integer and r a positive real number such that
r = cm/logm with ¢ a real constant such that 0 < ¢ <log2. Let 1 =ap < a1 <
o < Apmer] = with no€ [2M,27FY) be an addition chain of length |m +r].
Assume that the sets A, B, C and D are fixed. Denote by T the number of ways
of choosing which integers will be added in steps belonging to C. For any € > 0,
we have as m — 0o

T < (logm) 192 exp(O(r)).

Proof. The intuitive idea behind the proof of Lemma 4.7 is that for steps j in
C, the number of choices will be limited since if a; = aj + as, then neither ay
nor as can be very small (smaller than da;).
We denote by S, ..., B¢ the elements of the set C in increasing order. For
1<s<C, we write
ag, = ag, +agy,
where 8. and 3 are not necessarily in C.

We will now get an upper bound for the number of ways of choosing the

values of 8. and §7.
Given that 8, € C, we have ag, > (1 + 6)ag, 1. It follows that ag:,agy <
ag,—1 < (14 0)'ag,. From this and from ag + agr = ag,, we get

1

T3 5% =ag, —(1=0+06° —-)ag, > dag,.

ag, = ap, — agy = ag, —

10



Similarilly, we have agr > dag, .
For 1 <s<C(C,let

u(s) == #{j : dag, <a; <ag,, j € AUBUC}.

Then 1
14 6)“) < =
(1+6)" <,
which yields
—logé —2logd
< 4.
u(s) < log(1+d) = ¢ (44)

provided that § is small enough (which is the case if m is large enough). Let
t = t(s) be the smallest integer such that

—2logé
#{j 1) <j < Be j € AUBUC) S =22,
The interest of this is that 8 and 7 must be chosen in the interval [t(s), Ss].
—2logd
Therefore, the number of integers in this interval is at most 080 4 n(s),

where
n(s) = #{j:t(s) <j < B j €D}

Hence, the number of ways of choosing the integers 8, and g7 for 1 < s < C'is

less than or equal to
c 2
—2logd
11 < s+ n(s)) :
s=1

We have c c
—2logé —2C'log d
S (R ) = LSt
s=1 s=1
Because each element in D is counted in at most % sets of the form {7 :

t(s) < j < pBs,7 €D}, we have

C
—2Dlogd

We can conclude

C
—2logd —2(C'+ D)logé
Z ( 5og +77(3)> < (%)Og.
s=1

By the arithmetic-geometric mean inequality, we get

(25 o) = (2 )

s=1

11



—2(C+ D)logé
Co '
Raising both sides to the power 2C, it follows that
c 2 2C 2C
—2logd —2logd C+D
< . 4.
(=55 em) < (552) (557) - o9

Writing C' = ¢D, we get

() = (F)
exp (26D log(1 + 1/¢))
< exp(2D).

<

From Lemma 4.1, it follows that

(”D )20 — exp(O(r)).

C

From the definition of §, we have for any € > 0 and for m large enough,

—2logd 2 2C (1+¢€)2C
5 = (2logmloglogm)“~ < (logm) .

We can thus conclude
T < (logm)1+2C exp(O(r)). O

Finally, we provide an upper bound for the number of ways of choosing which
integers need to be added in steps belonging to D.

Lemma 4.8. Let m be a positive integer and let r be a positive real number
such that r = em/logm with ¢ a fixed constant, 0 < ¢ < log2. Let 1 = ag <
a; < -+ < Amqr| =N be an addition chain of length |m +r] leading to n with
n € [2™m,2mFL). Assume that the sets A, B, C and D are fized. The number of
ways of choosing the integers added in steps belonging to D is less than or equal
to
exp (Dlogm + (14 o(1))Dloglog m)

as m — oo.

Proof. We follow the approach used by Erdés in [4]. Assume that j € D with
a; = as + ai. The pair (s, k) must be chosen in the box [1,m + r] x [1,m + r]
which contains |m +r|? elements. Thus, the number of ways of choosing which
integers are added in steps of D is less than or equal to

(*57)

From this, we can prove Lemma 4.8 by observing

(Lm;rﬁ) . (W)D < exp (Dlogm + (1 + o(1))Dloglogm). O

12



4.5 Some intermediate results

We now have the tools to obtain some intermediate results that will take us
closer to the proof of the upper bound.

Definition 4.3. Let m be a positive integer and r a positive real number. We
denote by
N =N(A,B,C,D,m,r)

the number of distinct addition chains of length |m + r| leading to an integer
n € [2m, 2™ with A, B,C, D fized.

The results of the previous subsections will yield an upper bound on N.

Lemma 4.9. Let m a positive integer and let r be a positive real number with
r = cm/logm where ¢ is a fixed constant with 0 < ¢ < log2. We have

N(A,B,C,D,m,r) <exp(Dlogm+ (1+ 0(1))(2D + 3C) log log m)
as m — oo.

Proof. The proof of Lemma 4.9 follows directly from Lemmas 4.4, 4.6, 4.7 and
4.8. O

From Lemmas 4.2 and 4.9, we have

r—C(1—log,7)

r—C(1—1logy7)
<
N €xp ( 1~ logy(1 + ) logm + (14+o0(1)) { 2 T log,(1 1 0) +3C ) loglogm
—-C(1-1
< exp (r il 082 7) logm + (1 + o(1)) (2r 4+ 3C) log logm> . (4.6)

1 —logy(1+0)

From (4.6), we can obtain the following upper bound which, though weaker than
Theorem 3.1, will be useful.

Lemma 4.10. Let m be a positive integer and 0 < ¢ < log2 a real number. Then,
for any € > 0 and for m large enough,

2 log1
Fm cm < oxp cm+( + e)emloglogm .
logm logm

Proof. Assume that r = e¢m/logm with 0 < ¢ < log2. From inequality (4.6),
we have as m — oo,

N(A,B,C,D,m,r) <exp (rlogm+ (1 + o(1))2rloglogm) .

From this, we conclude that

F(m,r) < > N(4,B,C,D,m,7)
A,B,C,D<m+r
< (m+r)t max N(A,B,C,D,m,r)
A,B,C,D<m+r
< exp(rlogm+ (1+o(1))2rloglogm).
Using r = e¢m/ logm completes the proof of Lemma 4.10. O

13



It is interesting to note that from Lemma 4.10 and inequality (4.6), we can
conclude that addition chains with a large value of C', for instance chains such

that
7rloglogm

(1 —logy ) logm’

have a negligible contribution to F(m,r).

C< (4.7

4.6 Addition blocks

We divide the addition steps (that is, steps in BUCUD) in blocks of consecutive
addition steps. Say we have K blocks of lengths

L17L2a 7LK
with
Li+Ly+--+Lpy=B+C+D.

Suppose that
Qjy .oy Aj+L—1

is a sequence of L > 1 consecutive addition steps. That is, suppose that s €
BUCUD for j <s<j+L—1andthat a;_; € A, aj1 € A
Then, after a;_1 = 2a;_2, the sequence begins with

aj =aj_1+a;,t<j—1

Indeed, if a; = as+a; with 5,7 < j—1, we would have a; < a;_2+aj_2 = a;_1,
a contradiction. For s such that j < s < j+ L — 1, if we write

as = ay +ag, v > 1,
then v > j — 1 or else a; < a;_;1. Indeed, assuming the contrary yields
as = ay +a; < aj_2+aj_2=a;_1,

a contradiction.
We will use this observation and the block structure to refine the upper

bound on the number of ways of choosing the integers that are in steps belonging
to D.

Lemma 4.11. Consider a block of L consecutive additive steps with L' steps
in D and L" steps in BUC in an addition chain of length |m + r|. Then, the
number of ways of choosing which integers are added in steps of type D of this
block is less than or equal to

((L' + L“L)ILm + rj) '

14



Proof. Suppose that the addition block ranges from a; to ajyr—1, that j <
s < j+ L —1 and that as = a, + a; with ¢ < v. The pair (¢,v) must be
chosen in the set [1,m + 7] x [j — 1,j + L — 2]. Notice that we use the fact that
v € [j—1,74+ L — 2] but don’t use the condition ¢ < v as it would not lead to
significant improvements. The cardinality of the set [1,m+7r]x [j — 1,5+ L —2]
is Lim+r| = (L' 4+ L")|m +r]. Since we must choose L’ distinct pairs (¢, v),
the number of ways of making this choice is less than or equal to

((L' + L“L)ILm + rj) ' O

Using Lemma 4.11, we can improve the bound obtained in Lemma 4.8.

Lemma 4.12. Let m be a positive integer and r a positive real number such
that = em/logm with ¢ a fized constant, 0 < ¢ < log2. Consider 1 =
ag < ap < -+ < Qmqr| an addition chain of length [m + r] leading to n with
n € [2™m,2m+1). Assume that the sets A, B, C and D are fizred. The number of
ways of choosing which integers are added in steps belonging to D is less than
or equal to

exp(Dlogm + O(m/log m)).

Proof. Assume that the addition steps are divided in &k blocks of lengths L1, ..., L.
Assume that the number of steps in D in the block s, with 1 < s < k, is L/, and
that the number of steps in BUC in this block is L”. From Lemma 4.11, the
number of ways of choosing the integers added in steps belonging to D is less
than or equal to

10 (L +LDm+7])) 10 e(L, + L) (m + 1)\ “*
Ly - Ly
1<s<k 1<s<k
L Ly,
= (e(m+r)” ] (1+Lf>
1<s<k S
<

k
(e(m +1))” exp (Z Lé’)

(em + 1)) PeP+C
= exp(Dlogm + O(m/logm)).
For the last equality, we used the fact that B+ C = O(r) and r = O(m/logm).
O

Using Lemma 4.12, we can improve Lemma 4.10 and obtain the following
result.

Lemma 4.13. Let m be a positive integer and ¢, 0 < ¢ < log2, be a real
constant. For any € > 0, we have for m large enough

P (m, cm ) < exp <0m+ (1 +5)cmloglogm) .
logm logm

15



While this result is still weaker than Theorem 3.1, we are getting closer.

Proof. The proof of Lemma 4.13 follows rather directly from our previous re-
sults. The number of ways of choosing A, B, C' and D is O(m*). By Lemma
4.4, the number of ways of choosing the sets A, B, C and D is less than or equal

’ (Lg‘j ;J) exp(O(r)).

By Lemmas 4.6 and 4.7, for any € > 0 and for m large enough, the number of
ways of choosing the integers added in steps belonging to B UC is less than or
equal to

(log m) 1<% exp (O(r)) .

Using Lemma 4.12 and assuming r = ﬂ, we obtain
logm

F <m Cm) < (ng:g) exp(D logm) exp(O(r))

"logm
_ (Lg:£J>exp<Dlogm) exp (0 (me))' (4.8)

Finally, Lemma 4.13 follows from (4.8) and Lemma 4.2. O

We end this subsection by observing that from the above results, the number
of addition chains of length [m + 7| leading to n with n € [2™,2™%1) and with
k addition blocks is less than or equal to

log 1
1] oo (Drogm + o (10818 )Y
k logm
This implies that if & = o(m/logm), the proof of Theorem 3.1 is complete.

In the rest of the demonstration, we will thus assume that there is a positive
constant ¢; such that k& > ¢;m/logm.

4.7 Minimal addition chains

As discussed in the Introduction, several addition chains of the same length can
lead to the same integer. Thus far, we did not distinguish between such chains.
To make further progress, we will need a few additional definitions.

Definition 4.4. Let m,n be positive integers and let r be a positive real number.
Let
1:CLO<CL1 < v e <aLm+7.J =n

and
1=0y <by <+ <blmyr =n

be two addition chains of the same length leading to the same integer.
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Assume that b; < a; for all j. Assume further that there exists an s, 1 <
s <m+r, such that by < as.

In this case, we say that the chain ag,...,a 4, dominates the addition
chain by, ..., b|myr)-

If an addition chain dominates another addition chain of the same length
and leads to the same integer, we say that the first chain is not valid. Our goal
is to count only valid addition chains.

For example, consider the two addition chains ag = 1,a1 = 2,a3 =4,a4 =5
and bg = 1,b1 = 2,b3 = 3,by = 5. The chain a;, 0 < j < 4, dominates the chain
bj, 0 < j <4, and thus is not valid.

We also define the notion of a marked element of an addition chain.

Definition 4.5. Let 1 = ag < a1 < -+ < a|ypqr) = n be an addition chain. We
say that the step s is marked if there exists a j > s+ 1 such that a; = as + a;
for some t or else the addition chain cannot be a valid chain of minimal length.

We provide a few examples to illustrate this notion. Suppose that an addition
chain begins with

aozl,a1 :2,a2:4,a3:5,a4:8,...

The step 3 (a3 = 5) is marked since if it is not used in a later step of the chain,
it can simply be removed from the addition chain which would yield a chain of
smaller length leading to the same integer.

We now give another example that will be more relevant in the rest of the
proof. Suppose that an addition chain begins with

ag=1,a1 =2,a3 =4,a3 = 8,a4 = 10,a5 = 20, ...

then the step 3 (a3 = 8) is marked since if it is not used in a future step of the
chain, the chain could be replaced by

b():l,bl :2,6224,b3=5,b4=10,b5=20, bj :aj,j>5.

Since the chain a; dominates the chain b;, it is not valid. The previous example
can be generalized. Assume that an addition chain contains the sequence

ao:1,...,a3:2a5_1,...,aj :2aj_1,aj+1 :ajJras,...,

then the step a; is marked. Indeed if a; is not used in a step following a;41, we
can replace the addition chain ag, a1, ..., @|pm4r|, by the chain by, b1, ..., 0 mir),
defined as b, = a4, 0 < ¢t < j—1,b; = bj_1 + bs—1, bj41 = 2b; as well as
by = a¢, t > j 4+ 1. The important point is to observe that

bj+1 = ij = 2bj—1 +2bs_1 = 2a_1 + 2a5_1 = a;41.

We extend the definition of a marked step of a chain to a marked addition
block.
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Definition 4.6. Let 1 =ag < a1 < -+ < A4y be an addition chain. Assume
that this chain contains the sequence

a; = 2aj_1 <@j41 << Aj4p < Ajpp41 = 2aj+L,

where aji1,...,a;4r € BUCUD. We say that the addition block ajiq1,...a;4+1
is marked if at least one element preceding an element of this block must be
used in a subsequent block for the chain to be valid.

We illustrate this definition with an example. Consider an addition chain
that begins with the sequence

ag =1,a1 = 2ag = 2,a9 = 2a1 = 4,a3 = 2a2 = 8,a4 = a3 + a1 = 10,
as = aqg + ao = 14, a6 = 2a5 = 28, . ..

In this example, the addition block a4, as is marked. Indeed, assume that neither
as nor a4 is used in a subsequent addition block, then the beginning of the chain
can be replaced by

bo =1,b1 = 2bg = 2,by = 2b1 = 4,b3 = ba +bo =5,bs = b3 +b1 =7,
bs = 2by = 14,bg = 2b5 = 28, . ..
This example can be generalized into the following result.

Lemma 4.14. Let 1 = ap < a1 < -+ < a4y be an addition chain. Let
@j41,---,ajL be an addition block of this chain. For j+1<s < j+ L, write

As = Qi(s) + Qr(s), t(S) 2 T(S)'
Assume that for all s with j +1<s<j+ L,
t(s),r(s) <j+1=1t(s),r(s) € A,

then the addition block a;i1,...,ar is marked.

Proof. Let 1l =ag < a1 <--- < a|m+r) be an addition chain. Let ajy1,...,a54L
be an addition block of this chain. Assume that none of the steps a;,...,a;4r—1
are used in subsequent addition blocks. Then we can show that this addition
chain is not valid by comparing it to the addition chain by, ...,b ;4 defined
by

bs:as7 s <7, bs:as+l/2aj§5§j+L_1a bs = as, 52]+L O
For any addition chain, we divide the addition blocks into two types.
Definition 4.7. We say that an addition block is of type 1 if either

e ay =1 is used in an addition of the block.

o An element of a previous addition block of type 1 is used in an addition of
the block.

We say that an addition block is of type 2 otherwise.

Remark 4.1. Observe that it follows directly from this definition and from
Lemmas 4.8 and 4.14 that the addition blocks of type 2 are marked.

We are now ready to complete the proof of Theorem 3.1.
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4.8 Completing the proof of the upper bound

Let K7 and K5 be the number of blocks of type 1 and type 2, respectively. Let
Dy and Dy stand for the total number of steps in D in blocks of type 1 and 2,
respectively. Finally, let T} and Ty be the number of elements of blocks of type
2 that are used in subsequent blocks of type 1 and type 2, respectively. Since
blocks of type 2 are marked, we have

T1 +T2 > KQ.

The number of ways to choose the elements added in steps of blocks of type 1
will be less than or equal to

exp (D1 logm — (K7 + T1)loglogm(1 + o(1))), m — 0o.

The number of ways to choose the elements added in steps of blocks of type 2
will be at most

exp (D2 logm — Ty loglogm(1 + o(1))), m — oo.

We get that the total number of ways to choose which integers are added in
addition steps will be smaller than or equal to

exp (rlogm — K loglogm(1 + o(1))), m — 00,

where K is the total number of addition blocks in the addition chain. Multiply-
ing this by the number of ways of choosing the elements in each set and using
Lemma 4.5, we get

log 1
F(m,r)gexp<rlogm+o(m0g0gm>), m — 00.
logm

This completes the proof of Theorem 3.1.

4.9 Proof of the lower bound

For the lower bound, we will provide a constructive proof. In this proof, we will
make use of binary expansion.
Explicitly, the constructive process goes as follows.

e Step 1. Choose postive integers k and u. We will later describe how to

specify these integers. For now, assume that kv < m and that 2% + k —u < r.

e Step 2. Choose nonnegative integers si,...,S;g_1 such that

k—1
Z s; + ku =m.
j=1
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e Step 3. Define U as the set of odd positive integers in the interval
[24=1 24]. Choose k integers Uy, ..., Uy in the set U, possibly with repe-
titions.

e Step 4. Let the first steps of the chain be

ap=1,a1=2,a0=3,a3=4,...,a9u_o =2 — 1.

e Step 5. Construct the rest of the chain as follows (using binary expan-
sion):

agu_1 = Uy,

Aou 145, = U1 0.. .0,

S1 Zeros

A2u 1481 4+u — U1 0...00.. .O,

81 Z€eros u zeros
A2u 4 gy 4u = Ul 0...0 UQ,

S1 Zeros

N:at:U10...0U20...0U3...Uk_1 0...0 Uk,

S1 Zeros S2 Zeros Sk—1 ZEros

with
k—1
t=2"4) sj+(k—Lu+k—2
j=1

We can make the following remarks about the chains generated in such a
manner.

e Remark 1. The number of binary digits of N is
k—1
Z s; + ku.
j=1
e Remark 2. In light of Step 2, the length of such an addition chain is
k—1
2"+ si+(k—lu+k-2=2"+m-utk—2<m+r.
j=1
Here, the inequality comes from our assumption that 2“ + k —u < r.
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e Remark 3. Every distinct chain in this family of addition chains yields
a different integer.

e Remark 4. The number of ways of choosing the integers Uy, ..., Uy is
21\ ¥
(7).
e Remark 5. The number of ways of choosing nonnegative integers sy, ... Sp_1
such that

$14+ -+ Ssp_1=m—ku

m—ku+k—2
kE—1 '
From Remarks 1, 2, and 3, every chain constructed is valid and leads to a
distinct integer. From Remarks 4 and 5, we can conclude

F(m,r) > (%f)k (miufle) > <2u(m4(:11+1)k2)>k. (4.9)

is equal to

To continue, we will assume r = e¢m/logm. We will also assume 2% + k = r,
that is, u = log(r — k)/log 2.
Observe that since k < r and u < logr/log2, we have for m large enough

fu < rlogr o om

. 4.1
log2 ~— log2 (4.10)

Using (4.10) in (4.9), we get

cm 2%m k1 c k
F > - [1- .
(m’ 1ogm> _( k > <4< 10g2)>

Under the assumptions that ¢ > 0 and k = O(m/logm), we deduce from this

cm wk (T F m
> — .
F(m, 1ogm> 22 (kz) P <O <logm>)

Given that k& < r = e¢m/logm, we have

Fm, an > 2"* exp(kloglogm)exp [ O mn .
logm logm

Using u = log(r — k)/log 2, it follows that

F (m, an
logm

) > exp <klog(r—k)+kloglogm+0< mn )>

logm
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It remains to choose the value of k£ to make the right-hand side as large as
possible.
We set 7 — k = y and obtain

F(m, an > exp| (r—y)logy + (r —y)loglogm+ O mn
logm logm

The value of y maximizing (r — y) log y satisfies
L —logy+1,
Yy

This is a transcendental equation and a good approximation of its solution is
y = r/logr. For the sake of simplicity, we use the following approximation of
r/logr:
cm
! (logm)?’

We can conclude

# ()
logm

log 1
exp an_ o an 5 | (logm — 2loglogm) + AnOoB oM | (T
logm  (logm) logm logm

log 1
exp em — L0808 08 Ogm—I—O mn .
logm logm

Observe that for any fixed € > 0 and for m large enough,

\%

exp ((r —y)logy + rloglogm + O(yloglogm) + O ( m )) .
logm

))

exp <cm

logm logm logm logm

This completes the proof of the lower bound in Theorem 3.1.

5 Conclusion

It would be nice to find an argument that would allow one to close the gap
between our lower and upper bounds. However, the approach used in the proof
of the lower bound (say with other values for k£ and u for instance) cannot yield
a much better result. This is due to the limited number of choices we have in
this approach for each additive step. Indeed, in each additive step, the number
of ways of choosing the added integer is 2* = e¢m/(logm)?.

One could also consider the following approach to obtain a greater number
of chains:

1. Construct an addition chain with r additive steps of the form a; = a;_1+a:
with ¢ < j — 1 and m doubling steps.
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2. Choose the position of the additive steps. The number of ways to make

this choice is
r+m cmloglogm
( ) = exp ((1 + 0(1))”) .
r logm

3. At each addition step, add any previous odd integer. The number of ways
to make this choice is r!.

The number of such chains is

o r+m —exp (em 4o mloglogm
\or logm '

The main difficulty with this approach is that some of these chains may lead
to the same value. It is not clear how many of these chains lead to different
integers. Answering this question would allow one to close the gap between the
lower and upper bounds.
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