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Abstract

We denote by `(n) the minimal length of an addition chain leading to
n and we define the counting function

F (m, r) := #
{
n ∈ [2m, 2m+1) : `(n) ≤ m + r

}
,

where m is a positive integer and r ≥ 0 is a real number. We show that
for 0 < c < log 2 and for any ε > 0, we have as m→∞,

F

(
m,

cm

logm

)
< exp

(
cm +

εm log logm

logm

)
and

F

(
m,

cm

logm

)
> exp

(
cm− (1 + ε)cm log logm

logm

)
.

This extends a result of Erdős which says that for almost all n, as n→∞,

`(n) =
logn

log 2
+ (1 + o(1))

logn

log logn
.

AMS subject classification numbers: 11B83, 11Y55
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bution of arithmetic functions

1 Introduction

We say that 1 = a0 < a1 < · · · < ak = n is an addition chain of length k if
aj = as + ai with 0 ≤ i, s < j for all j, 1 ≤ j ≤ k. In other words, a term in an
addition chain is obtained either by adding two distinct previous terms or by
doubling a previous term.

For example, the following is an addition chain:

a0 = 1,

a1 = a0 + a0 = 1 + 1 = 2,

a2 = a1 + a1 = 2 + 2 = 4,

a3 = a2 + a0 = 4 + 1 = 5,

a4 = a3 + a1 = 5 + 2 = 7,

a5 = a3 + a2 = 5 + 4 = 9.
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A question of interest is: Given a positive integer n, what is the shortest
addition chain leading to n? For example, if n = 10, the following addition chain
leads to 10: a0 = 1, a1 = 1+1 = 2, a2 = 2+2 = 4, a3 = 4+4 = 8, a4 = 8+2 = 10.
We can show that there exists no shorter addition chain leading to 10.

When n is a power of two, say n = 2r, the shortest addition chain leading to
n is of length r and consists only of doubling steps, since we have the addition
chain a0 = 1, a1 = 2a0 = 2, a2 = 2a1 = 4, . . . , ar = 2ar−1 = 2r.

Observe that the shortest addition chain leading to n is not necessarily
unique. For instance, we have a0 = 1, a1 = 2, a3 = 4, a4 = 5 as well as
b0 = 1, b1 = 2, b2 = 3, b4 = 5 both being chains of minimal length leading
to 5.

Definition 1.1. We denote by `(n) the length of a shortest addition chain
leading to n.

In this note, we investigate a question related to the distribution of `(n): For
a given positive integer k, how many integers n can be obtained by an addition
chain of length at most k? For example, if we take k = 3, the following integers
can be obtained by addition chains of length at most 3:

a0 = 1,

a0 = 1, a1 = 2,

a0 = 1, a1 = 2, a2 = 3,

a0 = 1, a1 = 2, a2 = 4,

a0 = 1, a1 = 2, a2 = 3, a3 = 5,

a0 = 1, a1 = 2, a2 = 3, a3 = 6,

a0 = 1, a1 = 2, a2 = 4, a3 = 8.

It follows that 7 different integers can be obtained by addition chains of length
at most 3.

Definition 1.2. We denote by H(k) the number of distinct integers that can be
obtained by an addition chain of length at most k. Explicitly,

H(k) := #{n : `(n) ≤ k}.

Given that the largest integer that can be obtained by an addition chain of
length k is 2k, we trivially have

H(k) ≤ 2k.

It turns out that, in some sense, this simple upper bound is relatively close to
the truth. The sequence H(n) begins with

H(1) = 2, H(2) = 4, H(3) = 7, H(4) = 12, . . .

Doubling steps, that is steps given by ar = 2ar−1, play an important role in
addition chains since for addition chains of minimal length, most of the steps
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must be doubling steps. It is therefore natural to work with intervals of the form
[2m, 2m+1). Instead of working directly with the function H, we will investigate
a closely related function.

Definition 1.3. Let m be a positive integer and r a positive real number. We
define

F (m, r) := #
{
n ∈ [2m, 2m+1) : `(n) ≤ m+ r

}
.

We will investigate the asymptotic behaviour of the function F . A critical
region is given by

r =
cm

logm
,

where 0 < c < log 2 is a fixed constant and m → ∞. As we will discuss in the
next section, previous results imply that F (m, r) = 2m when c > log 2 and m is
large enough.

Relying on this notation, we will show

F

(
m,

cm

logm

)
= exp (cm(1 + o(1))) ,

as well as more precise results.

2 Previous work

Lower and upper bounds for the function `(n) have been obtained.
Arnold Scholz [6] seems to have been the first (in 1937) to study the length

of an addition chain. In his paper, one can find what is now known as the Scholz
conjecture, namely that

`(2n+1 − 1) ≤ n+ `(n+ 1).

This conjecture has been shown to be true for all n ≤ 5 784 688 by Clift [3].
This conjecture has also been shown to be true for infinite families of integers,
see [1] and [8].

Observe that it is easy to establish that

`(n) ≤ log2 n+ ν(n),

where log2m = logm/ log 2 and ν(n) is the number of digits equal to one in the
binary expansion of n. The best result in the direction of the Scholz conjecture
is the one obtained in 1939 by Arnold T. Brauer [2], namely the upper bound

`(2n+1 − 1) ≤ n+ `∗(n+ 1),

where `∗(n) is the minimum length of only those addition chains in which every
ap can be written as ap−1 + ar, r ≤ p− 1. In fact, Brauer proved that

`(n) ≤ min
1≤r≤m

{(
1 +

1

r

)
log2 n+ 2r − 2

}
,
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where 2m ≤ n < 2m+1. In Brauer’s upper bound, choosing r = (1− ε) log log n

log 2
,

it follows that for n sufficiently large,

`(n) ≤ log2 n+ (1 + ε)
log n

log log n
. (2.1)

In 1960, Erdős [4] showed that (2.1) is best possible in the sense that for almost
all n (i.e., for all n except a sequence of density 0),

`(n) = log2 n+ (1 + o(1))
log n

log log n
.

In 1975, Arnold Schönhage [7] proved that

`(n) ≥ log2 n+ log2 ν(n)− 2.13.

To summarize, what has been proved so far unconditionally is that

log2 n+ log2 ν(n)− 2.13 ≤ `(n) ≤ dlog2 ne+ ν(n)− 1.

Providing a more concrete bound, Thurber [10] showed that if ν(n) ≥ 9,
then

`(n) ≥ blog2 nc+ 4.

The problem of numerically computing `(n) for a given n is also an important
challenge. Methods to effectively generate an addition chain of minimal length
leading to a given integer can be found in [9].

A broad view of the results regarding addition chains can be found in the
book of Richard Guy [5, p.169–171].

3 Result statement

Our main results consist in an upper bound and a lower bound for the function
F .

Theorem 3.1. For any ε > 0 and for 0 < c < log 2, we have for m large
enough

F

(
m,

cm

logm

)
< exp

(
cm+

εm log logm

logm

)
.

Theorem 3.2. For any ε > 0 and for 0 < c < log 2, we have for m large
enough

F

(
m,

cm

logm

)
> exp

(
cm− c(1 + ε)m log logm

logm

)
.

These results partially answer a comment of Paul Erdős [4] who wrote that
it would be interesting to obtain an asymptotic value for the distribution of the
function `(n).
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4 Proof of the upper bound

The proof of the upper bound is the most complicated of the two and accord-
ingly, it is divided into several subsections.

4.1 Notation and definitions

We begin the proof of the upper bound by providing a few more definitions. We
denote by γ the golden ratio

γ :=
1 +
√

5

2
≈ 1.618.

Definition 4.1. For a fixed integer m ≥ 2, we define

δ = δ(m) :=
1

logm
.

We expand upon the ideas of Erdős as we will divide the addition steps into
several types.

Definition 4.2. Let m > 4 be a positive integer and r a positive real number.
Consider an addition chain consisting of 1 = a0 < · · · < abm+rc = n with
n ∈ [2m, 2m+1). Let the set A consist of the doubling steps of this chain. We
subdivide the nondoubling steps into three sets B, C and D according to their
associated relative growth rate:

A : = {1 ≤ j ≤ m+ r : aj = 2aj−1}, the doubling steps,

B : = {1 ≤ j ≤ m+ r : γaj−1 ≤ aj < 2aj−1}, the large steps,

C : = {1 ≤ j ≤ m+ r : (1 + δ)aj−1 ≤ aj < γaj−1}, the midsize steps,

D : = {1 ≤ j ≤ m+ r : aj < (1 + δ)aj−1}, the small steps.

We denote their respective cardinalities by

A := #A, B := #B, C := #C, D := #D.

4.2 Remarks on the size of the sets A, B, C and D
We now obtain bounds on A, B, C and D.

Lemma 4.1. Suppose that an integer n ∈ [2m, 2m+1) is obtained by an addition
chain of length bm + rc such that the number of steps of each type is given by
A, B, C and D, respectively. Then

B + C +D ≤ r 1

1− log2 γ
.
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Proof. In [7], it was shown by induction that

n ≤ 2AγB+C+D. (4.1)

The intuition being that a chain with additive (nondoubling) steps cannot grow
faster than the Fibonacci sequence.

Using the fact that A+B + C +D = bm+ rc and n ≥ 2m, we obtain from
(4.1) that

2m ≤ 2m+r−(B+C+D)γB+C+D,

which yields

1 ≤ 2r
(γ

2

)B+C+D

.

From this, we get

B + C +D ≤ r 1

1− log2 γ
,

completing the proof of Lemma 4.1.

We also have the following upper bound on the size of the set D.

Lemma 4.2. Suppose that an integer n ∈ [2m, 2m+1) is obtained by an addition
chain of length bm + rc such that the number of steps of each type is given by
A, B, C and D, respectively. We have

D ≤ r − C(1− log2 γ)

1− log2(1 + δ)
.

Proof. Using the definition of the sets A, B, C and D, we have

2m ≤ n ≤ 2A+BγC(1 + δ)D

≤ 2m+r−C−DγC(1 + δ)D.

From this, we get

1 ≤ 2r
(γ

2

)C (1 + δ

2

)D
.

Taking the base 2 logarithm of each side of the inequality yields

0 ≤ r − C(1− log2 γ)−D(1− log2(1 + δ)),

which we can rearrange to conclude

D ≤ r − C(1− log2 γ)

1− log2(1 + δ)
,

thus proving Lemma 4.2.
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4.3 The number of ways of choosing the sets A, B, C andD
The sets A, B, C and D specify the position in the addition chain of the steps
of a given type.

We define
S = S(A,B,C,D,m, r)

as the number of ways of choosing these sets for given values of A,B,C,D,m
and r.

It is trivial that

S ≤
(
bm+ rc
A,B,C,D

)
where we use the multinomial coefficient notation:(

bm+ rc
A,B,C,D

)
=
bm+ rc!
A!B!C!D!

with bm+ rc = A+B + C +D.
We can however improve upon this by observing the following result.

Lemma 4.3. A step in B must be preceded by a step in either C or D.

Proof. Suppose that j ∈ B. Since a step in B is not a doubling step, we have

aj ≤ aj−1 + aj−2.

By definition of the set B, we also have

aj ≥ γaj−1,

and since aj , aj−1 are integers while γ is irrational, it must be that aj > γaj−1.
Thus

γaj−1 < aj−1 + aj−2,

from which we conclude

aj−1 <
1

γ − 1
aj−2 = γaj−2

and
j − 1 ∈ C ∪ D.

From the above, we can conclude the following bound.

Lemma 4.4. Let m be a positive integer and r a positive real number such that
r = cm/ logm with c a fixed constant, 0 < c < log 2. We have as m→∞

S ≤
(
bm+ rc
C +D

)
exp(O(r)).
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Proof. The number of ways of choosing the sets C and D is given by(
bm+ rc
C +D

)(
C +D

D

)
.

By Lemma 4.3, the number of ways to choose the set B is less than or equal to(
B + C +D − 1

B − 1

)
.

We have thus shown

S ≤
(
bm+ rc
C +D

)(
C +D

D

)(
B + C +D − 1

B − 1

)
.

This implies

S ≤
(
bm+ rc
C +D

)
2C+D2B+C+D.

Given that from Lemma 4.1, B + C +D = O(r), we conclude

S ≤
(
bm+ rc
C +D

)
exp(O(r)).

We will also make use of the following lemma.

Lemma 4.5. Assume as above that m is a positive integer and that r is a
positive real number with r = cm/ logm and c a fixed constant such that 0 <
c < log 2. Further assume that the addition steps are grouped in k sequences of
consecutive addition steps. Then

S ≤
(
bm+ rc

k

)
exp(O(r))

as m→∞.

Proof. Suppose that the steps in B ∪ C ∪ D are grouped into k blocks and that
the length of each block is respectively b1, b2, . . . , bk. We then have

b1 + b2 + · · ·+ bk = B + C +D.

The number of ways of choosing the integers b1, b2, . . . , bk is less than or equal
to

2B+C+D = exp(O(r)).

The number of ways of choosing if the addition steps belong to B, C or D is less
than or equal to

3B+C+D = exp(O(r)).
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It remains to specify how the A doubling steps will be distributed amongst
the k additive blocks. This is equivalent to choosing a sequence of integers
t1, t2, . . . , tk+1 in such a way that

t1 + t2 + · · ·+ tk+1 = A

with t1 ≥ 0, tk+1 ≥ 0 and tj > 0, 2 ≤ j ≤ k. The number of ways of doing so is
less than or equal to (

A+ k

k

)
=

(
bm+ rc

k

)
,

thus completing the proof of Lemma 4.5.

4.4 The number of ways of choosing the added elements
at each step

To completely specify an addition chain, we still have to choose which elements
will be added at each step.

First observe that for doubling steps in A there is no choice to make, since
if j ∈ A then necessarily aj = 2aj−1. We start by proving the following result.

Lemma 4.6. Let m be a positive integer and r a positive real number such
that r = cm/ logm with c a fixed constant, 0 < c < log 2. Let 1 = a0 <
. . . < abm+rc = n be an addition chain of length bm + rc leading to n with
n ∈ [2m, 2m+1). Assume that the sets A, B, C and D are fixed. Denote by R
the number of ways of choosing which integers will be added in steps belonging
to B. Then,

R = exp(O(r))

as m→∞.

Proof. Suppose that j ∈ B and that

aj = as + ak, j > s ≥ k, k < j − 1.

We have
γaj−1 ≤ aj = as + ak ≤ aj−1 + ak,

from which we deduce
ak ≥ (γ − 1)aj−1.

It follows that all u such that k < u < j are in C ∪ D as assuming the contrary
would yield aj−1 > ak. The number of ways of choosing s and k is thus less
than or equal to h(j)2 where for j ∈ B,

h(j) := max
t≥1
{j − u ∈ C ∪ D for all 1 ≤ u ≤ t}.
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In other words, h(j) is the maximal integer t such that all the integers in the
interval [j − t, j − 1] are in the set C ∪ D. We thus have

R ≤
∏
j∈B

h(j)2. (4.2)

From Lemma 4.3, we have ∑
j∈B

h(j) ≤ C +D. (4.3)

From (4.3) and the arithmetic-geometric mean inequality, we have∏
j∈B

h(j)1/B ≤ 1

B

∑
j∈B

h(j) ≤ C +D

B
.

From (4.2), we can conclude

R ≤
(
C +D

B

)2B

= exp(O(r)).

We will now prove an upper bound for the number of ways of choosing the
integers which will be added in steps belonging to C. This turns out to be one
of the most technical steps in the proof.

Lemma 4.7. Let m be a positive integer and r a positive real number such that
r = cm/ logm with c a real constant such that 0 < c < log 2. Let 1 = a0 < a1 <
· · · < abm+rc = n with n ∈ [2m, 2m+1) be an addition chain of length bm + rc.
Assume that the sets A, B, C and D are fixed. Denote by T the number of ways
of choosing which integers will be added in steps belonging to C. For any ε > 0,
we have as m→∞

T ≤ (logm)(1+ε)2C exp(O(r)).

Proof. The intuitive idea behind the proof of Lemma 4.7 is that for steps j in
C, the number of choices will be limited since if aj = ak + as, then neither ak
nor as can be very small (smaller than δaj).

We denote by β1, . . . , βC the elements of the set C in increasing order. For
1 ≤ s ≤ C, we write

aβs
= aβ′s + aβ′′s ,

where β′s and β′′s are not necessarily in C.
We will now get an upper bound for the number of ways of choosing the

values of β′s and β′′s .
Given that βs ∈ C, we have aβs ≥ (1 + δ)aβs−1. It follows that aβ′s , aβ′′s ≤

aβs−1 ≤ (1 + δ)−1aβs . From this and from aβ′s + aβ′′s = aβs , we get

aβ′s = aβs − aβ′′s ≥ aβs −
1

1 + δ
aβs = aβs − (1− δ + δ2 − · · · )aβs ≥ δaβs .
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Similarilly, we have aβ′′s ≥ δaβs .
For 1 ≤ s ≤ C, let

u(s) := #{j : δaβs ≤ aj ≤ aβs , j ∈ A ∪ B ∪ C}.

Then

(1 + δ)u(s) ≤ 1

δ
,

which yields

u(s) ≤ − log δ

log(1 + δ)
≤ −2 log δ

δ
(4.4)

provided that δ is small enough (which is the case if m is large enough). Let
t = t(s) be the smallest integer such that

#{j : t(s) ≤ j ≤ βs, j ∈ A ∪ B ∪ C} ≤
−2 log δ

δ
.

The interest of this is that β′s and β′′s must be chosen in the interval [t(s), βs].

Therefore, the number of integers in this interval is at most
−2 log δ

δ
+ η(s),

where
η(s) := #{j : t(s) ≤ j ≤ βs, j ∈ D}.

Hence, the number of ways of choosing the integers β′s and β′′s for 1 ≤ s ≤ C is
less than or equal to

C∏
s=1

(
−2 log δ

δ
+ η(s)

)2

.

We have
C∑
s=1

(
−2 log δ

δ
+ η(s)

)
=
−2C log δ

δ
+

C∑
s=1

η(s).

Because each element in D is counted in at most −2 log δ
δ sets of the form {j :

t(s) ≤ j ≤ βs, j ∈ D}, we have

C∑
s=1

η(s) ≤ −2D log δ

δ
.

We can conclude

C∑
s=1

(
−2 log δ

δ
+ η(s)

)
≤ −2(C +D) log δ

δ
.

By the arithmetic-geometric mean inequality, we get

C∏
s=1

(
−2 log δ

δ
+ η(s)

)1/C

≤ 1

C

C∑
s=1

(
−2 log δ

δ
+ η(s)

)
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≤ −2(C +D) log δ

Cδ
.

Raising both sides to the power 2C, it follows that

C∏
s=1

(
−2 log δ

δ
+ η(s)

)2

≤
(
−2 log δ

δ

)2C (
C +D

C

)2C

. (4.5)

Writing C = ξD, we get(
C +D

C

)2C

=

(
ξ + 1

ξ

)2ξD

= exp (2ξD log(1 + 1/ξ))

≤ exp(2D).

From Lemma 4.1, it follows that(
C +D

C

)2C

= exp(O(r)).

From the definition of δ, we have for any ε > 0 and for m large enough,(
−2 log δ

δ

)2C

= (2 logm log logm)2C ≤ (logm)(1+ε)2C .

We can thus conclude

T ≤ (logm)(1+ε)2C exp(O(r)).

Finally, we provide an upper bound for the number of ways of choosing which
integers need to be added in steps belonging to D.
Lemma 4.8. Let m be a positive integer and let r be a positive real number
such that r = cm/ logm with c a fixed constant, 0 < c < log 2. Let 1 = a0 <
a1 < · · · < abm+rc = n be an addition chain of length bm+ rc leading to n with
n ∈ [2m, 2m+1). Assume that the sets A, B, C and D are fixed. The number of
ways of choosing the integers added in steps belonging to D is less than or equal
to

exp (D logm+ (1 + o(1))D log logm)

as m→∞.

Proof. We follow the approach used by Erdős in [4]. Assume that j ∈ D with
aj = as + ak. The pair (s, k) must be chosen in the box [1,m + r] × [1,m + r]
which contains bm+ rc2 elements. Thus, the number of ways of choosing which
integers are added in steps of D is less than or equal to(

bm+ rc2

D

)
.

From this, we can prove Lemma 4.8 by observing(
bm+ rc2

D

)
≤
(
e(m+ r)2

D

)D
≤ exp (D logm+ (1 + o(1))D log logm) .
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4.5 Some intermediate results

We now have the tools to obtain some intermediate results that will take us
closer to the proof of the upper bound.

Definition 4.3. Let m be a positive integer and r a positive real number. We
denote by

N = N(A,B,C,D,m, r)

the number of distinct addition chains of length bm + rc leading to an integer
n ∈ [2m, 2m+1) with A,B,C,D fixed.

The results of the previous subsections will yield an upper bound on N .

Lemma 4.9. Let m a positive integer and let r be a positive real number with
r = cm/ logm where c is a fixed constant with 0 < c < log 2. We have

N(A,B,C,D,m, r) ≤ exp (D logm+ (1 + o(1))(2D + 3C) log logm)

as m→∞.

Proof. The proof of Lemma 4.9 follows directly from Lemmas 4.4, 4.6, 4.7 and
4.8.

From Lemmas 4.2 and 4.9, we have

N ≤ exp

(
r − C(1− log2 γ)

1− log2(1 + δ)
logm+ (1 + o(1))

(
2
r − C(1− log2 γ)

1− log2(1 + δ)
+ 3C

)
log logm

)
≤ exp

(
r − C(1− log2 γ)

1− log2(1 + δ)
logm+ (1 + o(1)) (2r + 3C) log logm

)
. (4.6)

From (4.6), we can obtain the following upper bound which, though weaker than
Theorem 3.1, will be useful.

Lemma 4.10. Let m be a positive integer and 0 < c < log 2 a real number.Then,
for any ε > 0 and for m large enough,

F

(
m,

cm

logm

)
≤ exp

(
cm+

(2 + ε)cm log logm

logm

)
.

Proof. Assume that r = cm/ logm with 0 < c < log 2. From inequality (4.6),
we have as m→∞,

N(A,B,C,D,m, r) ≤ exp (r logm+ (1 + o(1))2r log logm) .

From this, we conclude that

F (m, r) ≤
∑

A,B,C,D≤m+r

N(A,B,C,D,m, r)

≤ (m+ r)4 max
A,B,C,D≤m+r

N(A,B,C,D,m, r)

≤ exp (r logm+ (1 + o(1))2r log logm) .

Using r = cm/ logm completes the proof of Lemma 4.10.
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It is interesting to note that from Lemma 4.10 and inequality (4.6), we can
conclude that addition chains with a large value of C, for instance chains such
that

C <
7r log logm

(1− log2 γ) logm
, (4.7)

have a negligible contribution to F (m, r).

4.6 Addition blocks

We divide the addition steps (that is, steps in B∪C∪D) in blocks of consecutive
addition steps. Say we have K blocks of lengths

L1, L2, . . . , LK

with
L1 + L2 + · · ·+ Lk = B + C +D.

Suppose that
aj , . . . , aj+L−1

is a sequence of L > 1 consecutive addition steps. That is, suppose that s ∈
B ∪ C ∪ D for j ≤ s ≤ j + L− 1 and that aj−1 ∈ A, aj+L ∈ A.

Then, after aj−1 = 2aj−2, the sequence begins with

aj = aj−1 + at, t < j − 1.

Indeed, if aj = as+at with s, t < j−1, we would have aj ≤ aj−2 +aj−2 = aj−1,
a contradiction. For s such that j ≤ s ≤ j + L− 1, if we write

as = av + at, v ≥ t,

then v ≥ j − 1 or else as ≤ aj−1. Indeed, assuming the contrary yields

as = av + at ≤ aj−2 + aj−2 = aj−1,

a contradiction.
We will use this observation and the block structure to refine the upper

bound on the number of ways of choosing the integers that are in steps belonging
to D.

Lemma 4.11. Consider a block of L consecutive additive steps with L′ steps
in D and L′′ steps in B ∪ C in an addition chain of length bm + rc. Then, the
number of ways of choosing which integers are added in steps of type D of this
block is less than or equal to(

(L′ + L′′)bm+ rc
L′

)
.
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Proof. Suppose that the addition block ranges from aj to aj+L−1, that j ≤
s ≤ j + L − 1 and that as = av + at with t ≤ v. The pair (t, v) must be
chosen in the set [1,m+ r]× [j − 1, j +L− 2]. Notice that we use the fact that
v ∈ [j − 1, j + L − 2] but don’t use the condition t ≤ v as it would not lead to
significant improvements. The cardinality of the set [1,m+ r]× [j−1, j+L−2]
is Lbm+ rc = (L′ + L′′)bm+ rc. Since we must choose L′ distinct pairs (t, v),
the number of ways of making this choice is less than or equal to(

(L′ + L′′)bm+ rc
L′

)
.

Using Lemma 4.11, we can improve the bound obtained in Lemma 4.8.

Lemma 4.12. Let m be a positive integer and r a positive real number such
that r = cm/ logm with c a fixed constant, 0 < c < log 2. Consider 1 =
a0 < a1 < · · · < abm+rc an addition chain of length bm + rc leading to n with
n ∈ [2m, 2m+1). Assume that the sets A, B, C and D are fixed. The number of
ways of choosing which integers are added in steps belonging to D is less than
or equal to

exp(D logm+O(m/ logm)).

Proof. Assume that the addition steps are divided in k blocks of lengths L1, . . . , Lk.
Assume that the number of steps in D in the block s, with 1 ≤ s ≤ k, is L′s and
that the number of steps in B ∪ C in this block is L′′s . From Lemma 4.11, the
number of ways of choosing the integers added in steps belonging to D is less
than or equal to∏

1≤s≤k

(
(L′s + L′′s )bm+ rc)

L′s

)
≤

∏
1≤s≤k

(
e(L′s + L′′s )(m+ r)

L′s

)L′s
= (e(m+ r))D

∏
1≤s≤k

(
1 +

L′′s
L′s

)L′s

≤ (e(m+ r))D exp

(
k∑
s=1

L′′s

)
= (e(m+ r))DeB+C

= exp(D logm+O(m/ logm)).

For the last equality, we used the fact that B+C = O(r) and r = O(m/ logm).

Using Lemma 4.12, we can improve Lemma 4.10 and obtain the following
result.

Lemma 4.13. Let m be a positive integer and c, 0 < c < log 2, be a real
constant. For any ε > 0, we have for m large enough

F

(
m,

cm

logm

)
≤ exp

(
cm+

(1 + ε)cm log logm

logm

)
.
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While this result is still weaker than Theorem 3.1, we are getting closer.

Proof. The proof of Lemma 4.13 follows rather directly from our previous re-
sults. The number of ways of choosing A, B, C and D is O(m4). By Lemma
4.4, the number of ways of choosing the sets A, B, C and D is less than or equal
to (

bm+ rc
C +D

)
exp(O(r)).

By Lemmas 4.6 and 4.7, for any ε > 0 and for m large enough, the number of
ways of choosing the integers added in steps belonging to B ∪ C is less than or
equal to

(logm)(1+ε)2C exp (O(r)) .

Using Lemma 4.12 and assuming r =
cm

logm
, we obtain

F

(
m,

cm

logm

)
≤

(
bm+ rc
C +D

)
exp(D logm) exp(O(r))

=

(
bm+ rc
C +D

)
exp(D logm) exp

(
O

(
m

logm

))
. (4.8)

Finally, Lemma 4.13 follows from (4.8) and Lemma 4.2.

We end this subsection by observing that from the above results, the number
of addition chains of length bm+ rc leading to n with n ∈ [2m, 2m+1) and with
k addition blocks is less than or equal to(

bm+ rc
k

)
exp

(
D logm+ o

(
m log logm

logm

))
.

This implies that if k = o(m/ logm), the proof of Theorem 3.1 is complete.
In the rest of the demonstration, we will thus assume that there is a positive
constant c1 such that k > c1m/ logm.

4.7 Minimal addition chains

As discussed in the Introduction, several addition chains of the same length can
lead to the same integer. Thus far, we did not distinguish between such chains.
To make further progress, we will need a few additional definitions.

Definition 4.4. Let m,n be positive integers and let r be a positive real number.
Let

1 = a0 < a1 < · · · < abm+rc = n

and
1 = b0 < b1 < · · · < bbm+rc = n

be two addition chains of the same length leading to the same integer.

16



Assume that bj ≤ aj for all j. Assume further that there exists an s, 1 ≤
s ≤ m+ r, such that bs < as.

In this case, we say that the chain a0, . . . , abm+rc dominates the addition
chain b0, . . . , bbm+rc.

If an addition chain dominates another addition chain of the same length
and leads to the same integer, we say that the first chain is not valid. Our goal
is to count only valid addition chains.

For example, consider the two addition chains a0 = 1, a1 = 2, a3 = 4, a4 = 5
and b0 = 1, b1 = 2, b3 = 3, b4 = 5. The chain aj , 0 ≤ j ≤ 4, dominates the chain
bj , 0 ≤ j ≤ 4, and thus is not valid.

We also define the notion of a marked element of an addition chain.

Definition 4.5. Let 1 = a0 < a1 < · · · < abm+rc = n be an addition chain. We
say that the step s is marked if there exists a j > s+ 1 such that aj = as + at
for some t or else the addition chain cannot be a valid chain of minimal length.

We provide a few examples to illustrate this notion. Suppose that an addition
chain begins with

a0 = 1, a1 = 2, a2 = 4, a3 = 5, a4 = 8, . . .

The step 3 (a3 = 5) is marked since if it is not used in a later step of the chain,
it can simply be removed from the addition chain which would yield a chain of
smaller length leading to the same integer.

We now give another example that will be more relevant in the rest of the
proof. Suppose that an addition chain begins with

a0 = 1, a1 = 2, a2 = 4, a3 = 8, a4 = 10, a5 = 20, . . .

then the step 3 (a3 = 8) is marked since if it is not used in a future step of the
chain, the chain could be replaced by

b0 = 1, b1 = 2, b2 = 4, b3 = 5, b4 = 10, b5 = 20, bj = aj , j > 5.

Since the chain aj dominates the chain bj , it is not valid. The previous example
can be generalized. Assume that an addition chain contains the sequence

a0 = 1, . . . , as = 2as−1, . . . , aj = 2aj−1, aj+1 = aj + as, . . . ,

then the step aj is marked. Indeed if aj is not used in a step following aj+1, we
can replace the addition chain a0, a1, . . . , abm+rc, by the chain b0, b1, . . . , bbm+rc,
defined as bt = at, 0 ≤ t ≤ j − 1, bj = bj−1 + bs−1, bj+1 = 2bj as well as
bt = at, t > j + 1. The important point is to observe that

bj+1 = 2bj = 2bj−1 + 2bs−1 = 2aj−1 + 2as−1 = aj+1.

We extend the definition of a marked step of a chain to a marked addition
block.
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Definition 4.6. Let 1 = a0 < a1 < · · · < am+r be an addition chain. Assume
that this chain contains the sequence

aj = 2aj−1 < aj+1 < · · · < aj+L < aj+L+1 = 2aj+L,

where aj+1, . . . , aj+L ∈ B∪C ∪D. We say that the addition block aj+1, . . . aj+L
is marked if at least one element preceding an element of this block must be
used in a subsequent block for the chain to be valid.

We illustrate this definition with an example. Consider an addition chain
that begins with the sequence

a0 = 1, a1 = 2a0 = 2, a2 = 2a1 = 4, a3 = 2a2 = 8, a4 = a3 + a1 = 10,

a5 = a4 + a2 = 14, a6 = 2a5 = 28, . . .

In this example, the addition block a4, a5 is marked. Indeed, assume that neither
a3 nor a4 is used in a subsequent addition block, then the beginning of the chain
can be replaced by

b0 = 1, b1 = 2b0 = 2, b2 = 2b1 = 4, b3 = b2 + b0 = 5, b4 = b3 + b1 = 7,

b5 = 2b4 = 14, b6 = 2b5 = 28, . . .

This example can be generalized into the following result.

Lemma 4.14. Let 1 = a0 < a1 < · · · < abm+rc be an addition chain. Let
aj+1, . . . , aj+L be an addition block of this chain. For j + 1 ≤ s ≤ j + L, write

as = at(s) + ar(s), t(s) ≥ r(s).

Assume that for all s with j + 1 ≤ s ≤ j + L,

t(s), r(s) < j + 1⇒ t(s), r(s) ∈ A,

then the addition block aj+1, . . . , aL is marked.

Proof. Let 1 = a0 < a1 < · · · < abm+rc be an addition chain. Let aj+1, . . . , aj+L
be an addition block of this chain. Assume that none of the steps aj , . . . , aj+L−1
are used in subsequent addition blocks. Then we can show that this addition
chain is not valid by comparing it to the addition chain b0, . . . , bbm+rc defined
by

bs = as, s < j, bs = as+1/2, j ≤ s ≤ j + L− 1, bs = as, s ≥ j + L.

For any addition chain, we divide the addition blocks into two types.

Definition 4.7. We say that an addition block is of type 1 if either

• a0 = 1 is used in an addition of the block.

• An element of a previous addition block of type 1 is used in an addition of
the block.

We say that an addition block is of type 2 otherwise.

Remark 4.1. Observe that it follows directly from this definition and from
Lemmas 4.3 and 4.14 that the addition blocks of type 2 are marked.

We are now ready to complete the proof of Theorem 3.1.
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4.8 Completing the proof of the upper bound

Let K1 and K2 be the number of blocks of type 1 and type 2, respectively. Let
D1 and D2 stand for the total number of steps in D in blocks of type 1 and 2,
respectively. Finally, let T1 and T2 be the number of elements of blocks of type
2 that are used in subsequent blocks of type 1 and type 2, respectively. Since
blocks of type 2 are marked, we have

T1 + T2 ≥ K2.

The number of ways to choose the elements added in steps of blocks of type 1
will be less than or equal to

exp (D1 logm− (K1 + T1) log logm(1 + o(1))) , m→∞.

The number of ways to choose the elements added in steps of blocks of type 2
will be at most

exp (D2 logm− T2 log logm(1 + o(1))) , m→∞.

We get that the total number of ways to choose which integers are added in
addition steps will be smaller than or equal to

exp (r logm−K log logm(1 + o(1))) , m→∞,

where K is the total number of addition blocks in the addition chain. Multiply-
ing this by the number of ways of choosing the elements in each set and using
Lemma 4.5, we get

F (m, r) ≤ exp

(
r logm+ o

(
m log logm

logm

))
, m→∞.

This completes the proof of Theorem 3.1.

4.9 Proof of the lower bound

For the lower bound, we will provide a constructive proof. In this proof, we will
make use of binary expansion.

Explicitly, the constructive process goes as follows.

• Step 1. Choose postive integers k and u. We will later describe how to
specify these integers. For now, assume that ku ≤ m and that 2u + k − u ≤ r.

• Step 2. Choose nonnegative integers s1, . . . , sk−1 such that

k−1∑
j=1

sj + ku = m.
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• Step 3. Define U as the set of odd positive integers in the interval
[2u−1, 2u]. Choose k integers U1, . . . , Uk in the set U , possibly with repe-
titions.

• Step 4. Let the first steps of the chain be

a0 = 1, a1 = 2, a2 = 3, a3 = 4, . . . , a2u−2 = 2u − 1.

• Step 5. Construct the rest of the chain as follows (using binary expan-
sion):

a2u−1 = U1,

...

a2u−1+s1 = U1 0 . . . 0︸ ︷︷ ︸
s1 zeros

,

...

a2u−1+s1+u = U1 0 . . . 0︸ ︷︷ ︸
s1 zeros

0 . . . 0︸ ︷︷ ︸
u zeros

,

a2u+s1+u = U1 0 . . . 0︸ ︷︷ ︸
s1 zeros

U2,

...

N = at = U1 0 . . . 0︸ ︷︷ ︸
s1 zeros

U2 0 . . . 0︸ ︷︷ ︸
s2 zeros

U3 . . . Uk−1 0 . . . 0︸ ︷︷ ︸
sk−1 zeros

Uk,

with

t = 2u +

k−1∑
j=1

sj + (k − 1)u+ k − 2.

We can make the following remarks about the chains generated in such a
manner.

• Remark 1. The number of binary digits of N is

k−1∑
j=1

sj + ku.

• Remark 2. In light of Step 2, the length of such an addition chain is

2u +

k−1∑
j=1

sj + (k − 1)u+ k − 2 = 2u +m− u+ k − 2 < m+ r.

Here, the inequality comes from our assumption that 2u + k − u ≤ r.

20



• Remark 3. Every distinct chain in this family of addition chains yields
a different integer.

• Remark 4. The number of ways of choosing the integers U1, . . . , Uk is(
2u

4

)k
.

• Remark 5. The number of ways of choosing nonnegative integers s1, . . . sk−1
such that

s1 + · · ·+ sk−1 = m− ku

is equal to (
m− ku+ k − 2

k − 1

)
.

From Remarks 1, 2, and 3, every chain constructed is valid and leads to a
distinct integer. From Remarks 4 and 5, we can conclude

F (m, r) ≥
(

2u

4

)k (
m− ku+ k − 2

k − 1

)
≥
(

2u(m− ku+ k − 2)

4(k − 1)

)k
. (4.9)

To continue, we will assume r = cm/ logm. We will also assume 2u + k = r,
that is, u = log(r − k)/ log 2.

Observe that since k ≤ r and u ≤ log r/ log 2, we have for m large enough

ku ≤ r log r

log 2
≤ cm

log 2
. (4.10)

Using (4.10) in (4.9), we get

F

(
m,

cm

logm

)
≥
(

2um

k

)k (
1

4

(
1− c

log 2

))k
.

Under the assumptions that c > 0 and k = O(m/ logm), we deduce from this

F

(
m,

cm

logm

)
≥ 2uk

(m
k

)k
exp

(
O

(
m

logm

))
.

Given that k ≤ r = cm/ logm, we have

F

(
m,

cm

logm

)
≥ 2uk exp(k log logm) exp

(
O

(
m

logm

))
.

Using u = log(r − k)/ log 2, it follows that

F

(
m,

cm

logm

)
≥ exp

(
k log(r − k) + k log logm+O

(
m

logm

))
.
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It remains to choose the value of k to make the right-hand side as large as
possible.

We set r − k = y and obtain

F

(
m,

cm

logm

)
≥ exp

(
(r − y) log y + (r − y) log logm+O

(
m

logm

))
= exp

(
(r − y) log y + r log logm+O(y log logm) +O

(
m

logm

))
.

The value of y maximizing (r − y) log y satisfies

r

y
= log y + 1,

This is a transcendental equation and a good approximation of its solution is
y = r/ log r. For the sake of simplicity, we use the following approximation of
r/ log r:

y =
cm

(logm)2
.

We can conclude

F

(
m,

cm

logm

)
≥ exp

((
cm

logm
− cm

(logm)2

)
(logm− 2 log logm) +

cm log logm

logm
+O

(
m

logm

))
= exp

(
cm− cm log logm

logm
+O

(
m

logm

))
.

Observe that for any fixed ε > 0 and for m large enough,

exp

(
cm− cm log logm

logm
+O

(
m

logm

))
> exp

(
cm− cm log logm

logm
− εm log logm

logm

)
.

This completes the proof of the lower bound in Theorem 3.1.

5 Conclusion

It would be nice to find an argument that would allow one to close the gap
between our lower and upper bounds. However, the approach used in the proof
of the lower bound (say with other values for k and u for instance) cannot yield
a much better result. This is due to the limited number of choices we have in
this approach for each additive step. Indeed, in each additive step, the number
of ways of choosing the added integer is 2u = cm/(logm)2.

One could also consider the following approach to obtain a greater number
of chains:

1. Construct an addition chain with r additive steps of the form aj = aj−1+at
with t < j − 1 and m doubling steps.
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2. Choose the position of the additive steps. The number of ways to make
this choice is (

r +m

r

)
= exp

(
(1 + o(1))

cm log logm

logm

)
.

3. At each addition step, add any previous odd integer. The number of ways
to make this choice is r!.

The number of such chains is

r!

(
r +m

r

)
= exp

(
cm+ o

(
m log logm

logm

))
.

The main difficulty with this approach is that some of these chains may lead
to the same value. It is not clear how many of these chains lead to different
integers. Answering this question would allow one to close the gap between the
lower and upper bounds.
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