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Given an integer n ≥ 2, let P (n) stand for its largest prime factor, setting P (1) = 1. We

introduce the arithmetic function fria(n) := logn/ logP (n) (with fria(1) = 1) and call it
the index of friability of the integer n. The index of friability of an integer is an absolute

measure of its friability (or smoothness). We first determine the respective mean values

of the functions fria(n) and 1/fria(n), thereafter obtaining various estimates comparing
the index of friability with the index of composition. Then, given any finite set of natural

numbers, we order its members according to their index of friability and obtain results

regarding their distribution. In particular, this allows us to construct arbitrarily long
monotonic sequences of integers with increasing index of friability.
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1. Introduction and basic properties

Given an integer n ≥ 2, let P (n) stand for its largest prime factor and

γ(n) :=
∏
p|n p. We set P (1) = γ(1) = 1. In 2001, De Koninck and Doyon [3] in-

troduced the function λ(n) := log n/ log γ(n) and called it the index of composition

of n, setting for convenience λ(1) = 1. The function λ(n) was further examined by

many, including De Koninck & Kátai [5], Zhai [20], De Koninck, Kátai & Subbarao

[6], De Koninck & Luca [8] and Zhang & Zhai [21], to name only a few.

We now introduce a function which measures the “friability” (or the “smooth-

ness”a) of a positive integer. Given an integer n ≥ 2, we let fria(n) := logn/ logP (n)

and call it the index of friability of the integer n. For convenience, we set fria(1) = 1.

aIn his recent book [17], Gérald Tenenbaum explains at length why the word “friable” is more

appropriate than the word “smooth” to describe a number without large prime factors.
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Here, we first determine the respective mean values of the functions fria(n) and

1/fria(n), thereafter obtaining various estimates comparing the index of friability

with the index of composition. Then, given any finite set of natural numbers, we

order its members according to their index of friability and obtain results regarding

their distribution. In particular, this allows us to construct arbitrarily long mono-

tonic sequences of integers with increasing index of friability.

In what follows, we let p1, p2, . . . stand for the sequence of prime numbers and let

π(x) stand for the number of primes not exceeding x. Given an integer n ≥ 2, we let

ω(n) stand for the number of distinct prime factors of n and set Ω(n) :=
∑
pα‖n α

with ω(1) = Ω(1) = 0.

The index of friability has the following basic properties:

(i) fria(n) is an integer if and only if n is a prime power.

(ii) If z = fria(n) is not an integer, then z is irrational and in fact it is a transcen-

dental number.

(iii) For all positive integers m and n, we have fria(mn) ≤ fria(m) + fria(n), with

equality if and only if P (m) = P (n).

(iv) For each integer n ≥ 2, we have fria(n) ≤ Ω(n), with equality if and only if n

is a prime power.

(v) Given any α > 1, there exists an increasing sequence of integers (ni)i≥1 such

that limi→∞ fria(ni) = α.

Property (i) is obvious. The first assertion in property (ii) follows from the fact

that if z = a/b, with a, b ∈ Z and b 6= 0, then

log n

logP (n)
=
a

b
, so that nb = P (n)a and n = P (n)a/b,

which, since factorization is unique, implies that a/b is an integer, thus contradicting

our hypothesis. To prove the second assertion in (ii), assume that z is algebraic.

Then n = P (n)z is an algebraic number, and this is false if z is irrational by the

Gelfond–Schneider theorem, according to which if a and b are complex algebraic

numbers with a 6= 0, 1, and b not rational, then any value of ab is a transcendental

number (see Baker ([1], p. 10)). Since we just proved that z is irrational, the proof

of (ii) is complete.

To prove (iii), one can proceed as follows. Without any loss in generality, we can

assume that P (m) ≤ P (n). We then have

fria(mn) =
logm+ log n

logP (n)
=

logm

logP (n)
+

log n

logP (n)

=
logm

logP (m)
· logP (m)

logP (n)
+

log n

logP (n)
= fria(m) · logP (m)

logP (n)
+ fria(n)

≤ fria(m) + fria(n),

which proves (iii).
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To prove (iv), we first write n in the form n =
∏r
i=1 q

αi
i , where q1 < · · · < qr are

the prime factors of n and αi ∈ N for i = 1, . . . , r. Then, using part (iii), we obtain

that

fria(n) = fria

(
r∏
i=1

qαii

)
≤

r∑
i=1

fria (qαii ) =

r∑
i=1

αi = Ω(n),

thus establishing property (iv).

For (v), it suffices to prove it when α is not an integer as when α is an integer

the property is obvious. Consider the sequence of integers

ni = p
bαc
i ·

⌊
p
α−bαc
i

⌋
(i = 1, 2, . . .). (1.1)

This sequence is strictly increasing because, for each integer i ≥ 2,

ni = p
bαc
i ·

⌊
p
α−bαc
i

⌋
≥ pbαci ·

⌊
p
α−bαc
i−1

⌋
> p
bαc
i−1 ·

⌊
p
α−bαc
i−1

⌋
= ni−1.

Now, observe that
⌊
p
α−bαc
i

⌋
< pi, which implies that P (ni) = pi and therefore that

fria(ni) =
log ni
log pi

. (1.2)

On the other hand, since

p
bαc
i ·

⌊
p
α−bαc
i

⌋
> p
bαc
i

(
p
α−bαc
i − 1

)
= pαi − p

bαc
i = pαi

(
1− 1

p
α−bαc
i

)
,

it follows from the definition of ni given in (1.1) that

pαi

(
1− 1

p
α−bαc
i

)
< ni < pαi ,

α log pi + log

(
1− 1

p
α−bαc
i

)
< log ni < α log pi.

Dividing both sides of the above by log pi and taking into account (1.2), we find

that

α+
log
(

1− 1/p
α−bαc
i

)
log pi

< fria(ni) < α. (1.3)

Now clearly, for some i0 = i0(α),

p
α−bαc
i > 2 for all i ≥ i0.

Therefore, since log(1− y) > −2y for all y ∈ (0, 1/2), we have

log
(

1− 1/p
α−bαc
i

)
> − 2

p
α−bαc
i

for all i ≥ i0,
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an inequality which combined with (1.3) gives that

fria(ni) = α+O

(
1

log pi · pα−bαci

)
,

thus proving property (v).

Remark 1.1. To illustrate property (v), let us choose to approximate the Euler

number e. Using formula (1.1), we obtain that the first ten terms of the sequence

(ni)i≥1 are

4, 18, 75, 196, 605, 1014, 2023, 2888, 4761, 9251,

with corresponding friability indexes

2, 2.63093, 2.68261, 2.71241, 2.67119, 2.69856, 2.68682, 2.70623, 2.70076, 2.71211.

The index of friability is clearly related to the function

Ψ(x, y) := #{n ≤ x : P (n) ≤ y} (2 ≤ y ≤ x).

Indeed, for a fixed z > 1, we have

Fz(x) :=
∑
n≤x

fria(n)≥z

1 =
∑
n≤x

logn
log P (n)

≥z

1 =
∑
n≤x

P (n)≤n1/z

1 = (1 + o(1))
∑
n≤x

P (n)≤x1/z

1 (1.4)

= (1 + o(1))Ψ(x, x1/z) = (1 + o(1))ρ(z)x (x→∞),

where ρ(u) stands for the Dickman function defined by ρ(u) = 1 for 0 ≤ u ≤ 1 and

thereafter as the solution to the differential equation with differences

uρ′(u) + ρ(u− 1) = 0 (u > 1).

The Dickman function is key in describing the asymptotic behaviour of the Ψ(x, y)

function. Indeed, it is known that given numbers 2 ≤ y ≤ x, setting u := log x/ log y,

we have

Ψ(x, y) = xρ(u) +O

(
x

log y

)
uniformly for 2 ≤ y ≤ x. (1.5)

The proof of the above can be found in our book [7]. In the sequence of estimates

(1.4), all of them are clear except for the last equality on the right. Note that

the symmetric difference between the sets {n ≤ x : P (n) ≤ n1/z} and {n ≤ x :

P (n) ≤ x1/z} is included in the union of {n ≤ x/ log x}, a set of counting function

O(x/ log x) = o(x) as x → ∞, and {n ≤ x : (x/ log x)1/z < P (n) ≤ x1/z}. The

positive integers from this last set are representable as n = qm, where q is a prime in

((x/ log x)1/z, x1/z]. For a fixed prime q, the number of such m’s is ≤ x/q. Summing

up over q we get that the cardinality of this last set is

x
∑

(x/ log x)1/z<q≤x1/z

1

q
= x

(
log log x1/z − log log((x/ log x)1/z) + o(1)

)
� x log log x

log x
= o(x) (x→∞),
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which together with the fact that Ψ(x, x1/z) is a positive proportion of x justify the

desired estimate.

2. The mean value of the index of friability

In [3], it was shown that the function λ(n) has mean value 1, and similarly for the

function 1/λ(n). We will show that the average value of fria(n) is eγ , where γ stands

for the Euler-Mascheroni constant. This is a consequence of the following result.

Theorem 2.1. We have∑
n≤x

fria(n) = eγ x+O

(
x

log x

)
. (2.1)

Proof. In [4], De Koninck and Ivić proved that∑
2≤n≤x

1

logP (n)
= eγ

x

log x
+O

(
x

log2 x

)
. (2.2)

Then, using partial summation, (2.1) follows immediately from (2.2).

What about the mean value of 1/fria(n) ? The answer is given in the next the-

orem. But first, let us introduce a very interesting constant called the Golomb-

Dickman constant ξ, which can be defined by

ξ :=

∫ ∞
0

ρ(u)

u+ 2
du = 0.6243299885 . . . .

The constant ξ can also be written as

ξ =

∫ ∞
0

ρ(u)

(u+ 1)2
du = 1−

∫ ∞
1

ρ(u)

u2
du =

∫ 1

0

eLi(x) dx,

where Li(x) :=

∫ x

0

dt

log t
dt. For more on this intriguing constant, see the book of

Finch [9] and the nice paper of Lagarias [11].

This brings us to a nice connection between the index of friability and the

Golomb-Dickman constant, namely the following.

Theorem 2.2. Let ξ be the Golomb-Dickman constant. Then,∑
2≤n≤x

1

fria(n)
= ξ x+ ξγ li(x) +O (R(x)) , (2.3)

where li(x) :=

∫ x

2

dt

log t
and R(x) = x exp{−(log x)

3
8−ε} with ε > 0 being any fixed

number.
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Proof. In the book of Tenenbaum ([16], p. 283), it is proven that

S(x) :=
∑

2≤n≤x

logP (n) = ξ x log x− ξ(1− γ)x+O (R(x)) . (2.4)

So, let us first set ϕ(t) := 1/ log t. Using partial summation and observing that

ϕ′(t) = −1/(t log2 t), we then obtain that∑
2≤n≤x

1

fria(n)
=

∑
2≤n≤x

logP (n)

log n
=
S(x)

log x
− S(2)

log 2
+

∫ x

2

S(t)

t log2 t
dt.

Using (2.4) in this last formula, we get that∑
2≤n≤x

1

fria(n)
= ξ x− ξ(1− γ)

x

log x
+ ξ li(x)− ξ(1− γ)

∫ x

2

dt

log2 t
+O

(
R(x)

log x

)

= ξ x− ξ x

log x
+ ξγ

x

log x
+ ξ

(
x

log x
+

∫ x

2

dt

log2 t

)
−ξ
∫ x

2

dt

log2 t
+ ξγ

∫ x

2

dt

log2 t
+O

(
R(x)

log x

)
= ξ x+ ξγ li(x) +O

(
R(x)

log x

)
.

Finally, since R(x) depends on some number ε > 0, we may ignore the log x factor

(by simply replacing ε by a smaller positive ε), thereby completing the proof of the

theorem.

3. Comparing the index of friability with the index of composition

It is clear that fria(n) ≥ λ(n) with equality if and only if n is a prime power. What

about their respective average values ? In the previous section, we proved that the

average value of fria(n) is eγ , whereas, as shown in [3], the average value of λ(n) is

1. Now, what about the average value of the quotient of these two key functions ?

We have the following.

Theorem 3.1. On average, fria(n)/λ(n) = fria(n)+o(1) almost everywhere. More

precisely, ∑
n≤x

fria(n)

λ(n)
=
∑
n≤x

fria(n) +O

(
x

log x

)
. (3.1)

Proof. First observe that for each integer n ≥ 2,

fria(n)

λ(n)
=

log γ(n)

logP (n)
=

log n

logP (n)
− log(n/γ(n))

logP (n)
= fria(n)− log(n/γ(n))

logP (n)
.

It follows from this identity that in order to prove (3.1), it is sufficient in light of

Theorem 2.1 to prove that

K(x) :=
∑
n≤x

log(n/γ(n))

logP (n)
� x

log x
. (3.2)
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Writing each integer n ≥ 2 as n = km, where k = k(n) is the squarefull part of

n (with therefore m squarefree and (k,m) = 1) and observing that P (km) ≥ P (m)

and that log(n/γ(n)) = log(k/γ(k)) ≤ log k for all k, we have that

K(x) ≤
∑
k≤x

k squarefull

log k
∑

m≤x/k

1

logP (m)
. (3.3)

Letting y = y(x) ≤ x be an increasing function which tends to infinity with x,

it is known that ∑
k>y

k squarefull

log k

k
� log y
√
y
. (3.4)

Let us recall a quick proof of it. First recall the basic upper bound for the number

N(x) of squarefull numbers not exceeding x, that is

N(x) ≤ c
√
x for some positive constant c, (3.5)

an estimate proved by Golomb [10] in 1970. This also follows from the fact that any

squarefull number n can be written uniquely as n = r2m3, where µ2(m) = 1, so

that

N(x) =
∑

r2m3≤x

µ2(m) =
∑

m≤x1/3

µ2(m)
∑

r2≤x/m3

1

=
∑

m≤x1/3

µ2(m)

⌊√
x

m3

⌋
≤
√
x

∞∑
m=1

µ2(m)

m3/2
.

Using integration by parts and thereafter estimate (3.5), we obtain

∑
k>y

k squarefull

log k

k
=

∫ ∞
y

log t

t
dN(t) =

log t

t
N(t)

∣∣∣∣∞
y

−
∫ ∞
y

N(t)

(
1− log t

t2

)
dt

� log y
√
y

+

∫ ∞
y

N(t) log t

t2
dt� log y

√
y

+

∫ ∞
y

log t

t3/2
dt� log y

√
y
,

thus proving (3.4).

Splitting the right-hand side of (3.3), we can rewrite inequality (3.3) as follows.

K(x) ≤
∑
k≤y

k squarefull

log k
∑

m≤x/k

1

logP (m)
+

∑
y<k≤x
k squarefull

log k
∑

m≤x/k

1

logP (m)

=: K1(x) +K2(x), (3.6)

say.
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On the one hand, using estimate (2.2) and in light of the easily proven fact that∑
k squarefull

log k

k
<∞ , we have that, choosing y := (log x)3,

K1(x) =
∑
k≤y

k squarefull

log k

(
eγx

k

1

log(x/k)
+O

(
x

k

1

log2(x/k)

))

� x

log x− log y

∑
k≤y

k squarefull

log k

k
+O

 x

(log x)2

∑
k≤y

k squarefull

log k

k

� x

log x
.(3.7)

On the other hand, using inequality (3.4), we have that

K2(x) ≤ x
∑
k>y

k squarefull

log k

k
� x log y

√
y
� x log log x

(log x)3/2
� x

log x
. (3.8)

Using estimates (3.7) and (3.8) in (3.6), estimate (3.2) follows, thus completing

the proof of Theorem 3.1.

One can ask the same question about the average value of λ(n)/fria(n). This is

answered in the following result.

Theorem 3.2. Letting ξ stand for the Golomb-Dickman constant, we have∑
2≤n≤x

λ(n)

fria(n)
=

∑
2≤n≤x

1

fria(n)
+O

(
x

log x

)
= ξ x+O

(
x

log x

)
.

Proof. First observe that, for n ≥ 2, we have

λ(n)

fria(n)
=

logP (n)

log γ(n)
=

logP (n)

log n+ log(γ(n)/n)

=
logP (n)

log n

(
1− log(γ(n)/n)

log n
+

(
log(γ(n)/n)

log n

)2

− · · ·

)

=
logP (n)

log n

(
1 +

log(n/γ(n))

log n
+

(
log(n/γ(n))

log n

)2

+ · · ·

)

=
1

fria(n)

(
1 +O

(
log(n/γ(n))

log n

))
. (3.9)

Now, recalling the definition of K(x) and its bound given in (3.2), we have that∑
2≤n≤x

1

fria(n)

log(γ(n)/n)

log n
<

∑
2≤n≤x

log(γ(n)/n)

log n
<

∑
2≤n≤x

log(γ(n)/n)

logP (n)

= K(x)� x

log x
. (3.10)
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Using (3.10) in (3.9), it follows that∑
2≤n≤x

λ(n)

fria(n)
=

∑
2≤n≤x

1

fria(n)
+O

(
x

log x

)
.

Combining this last estimate with that of Theorem 2.2, the proof of Theorem 3.2

is complete.

4. The index of friability at consecutive integers

The larger the index friability of an integer, the more friable it is. Can two consec-

utive integers both have a high index of friability ? How high ? What about three

consecutive integers ? The short answer is “YES, all the way”. Indeed, in 1998, Ba-

log and Wooley [2] proved that given any arbitrarily small ε > 0 and any integer

k ≥ 2, there exist infinitely many positive integers n such that

P ((n+ 1)(n+ 2) · · · (n+ k)) < nε.

In terms of the index of friability, Balog and Wooley’s result can be stated as:

Given a fixed integer k ≥ 2 and an arbitrarily large number K, there exist

infinitely many positive integers n such that

min(fria(n+ 1), fria(n+ 2), . . . , fria(n+ k)) > K.

For example, in the particular case k = 4 and K = 3, one can check that the number

n = 3 678 722 is the smallest positive integer such that

min(fria(n+ 1), fria(n+ 2), fria(n+ 3), fria(n+ 4)) > 3,

and according to Balog and Wooley’s result, there exist infinitely many such positive

integersn.

5. Integers with the same index of friability

It seems reasonable to claim that if two distinct positive integers have the same

index of friability, then they are both prime powers. However, this statement is

only true under the Four exponentials conjecture, which we now recall.

Conjecture 5.1. (Four exponentials conjecture) Assume λi,j for 1 ≤ i, j ≤
2 are positive algebraic numbers and consider the matrix

M =

(
log λ1,1 log λ1,2
log λ2,1 log λ2,2

)
.

Assume that the rows of M are linearly independent over Q and the columns of M

are linearly independent over Q. Then the determinant is nonzero.
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For us, assume that n1, n2 are such that fria(n1) = fria(n2) 6∈ N. Consider the

matrix

M =

(
logP (n1) logP (n2)

log n1 log n2

)
.

Let us check that the rows are linearly independent over Q. Since log ni, logP (ni)

are all positive, if they were linearly dependent then for some integers a, b not both

zero we would have

a(logP (n1), logP (n2)) = b(log n1, log n2).

We may assume that both a, b are positive. And we get log n1 = (a/b) logP (n1), so

that n1 = P (n1)a/b, which is impossible unless a/b is an integer and n1 and n2 are

both a prime powers which we assume that it does not hold. If the columns of M

are linearly dependent over Q, then we get that for some integers a, b not both zero

we have

a(logP (n1), log n1) = b(logP (n2), log n2).

Thus, P (n1) = P (n2)b/a. This makes a = b and then since also n2 = n
a/b
1 , we get

n2 = n1, which we assume it does not happen. So, indeed M fulfils the conditions

from the Four exponentials conjecture, so under this conjecture the determinant of

M is nonzero. Therefore, fria(n1) 6= fria(n2).

One may ask what can be said unconditionally about the equation

fria(n1) = fria(n2)

without imposing the condition that this common value is not in N. In this case

putting

E := {(n1, n2) : n1 < n2 ≤ x, fria(n1) = fria(n2)},

the referee observed that one may take n1 = p2, n2 = q2, where p < q ≤ x1/2 are

primes (for which fria(n1) = fria(n2) = 2), which gives right away that

#E � π(
√
x)2 � x/(log x)2

and asked for an upper bound. Fixing n1, and writing n2 = Pm, where P = P (n2),

we see that the equation fria(n1) = fria(n2) = 1 + logm/ logP shows that fix-

ing one of m, P the other one is uniquely determined. Since Pm ≤ x, ei-

ther m ≤ (x/ log x)1/2, or P ≤ (x log x)1/2 so the number of choices for P is

≤ π((x log x)1/2) � (x/ log x)1/2, and we get that #E � x3/2/(log x)1/2. We leave

it to the reader to find unconditional better upper bounds for the quantity #E .

But we can use the Six exponentials theorem to conclude that there do not exist

three distinct positive integers n1, n2, n3 such that

fria(n1) = fria(n2) = fria(n3) 6∈ N. (5.1)

The Six exponentials theorem can be stated as follows.
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Theorem 5.2. (Six exponentials theorem) Assume that λi,j for 1 ≤ i ≤ 2,

1 ≤ j ≤ 3 are positive algebraic numbers such that the matrix

M =

(
log λ1,1 log λ1,2 log λ1,3
log λ2,1 log λ2,2 log λ2,3

)
satisfies:

(i) log λ1,1, log λ1,2, log λ1,3 are linearly independent over Q;

(ii) log λ1,1 and log λ2,1 are also linearly independent over Q.

Then M has rank 2 over R.

So, let

M =

(
logP (n1) logP (n2) logP (n3)

log n1 log n2 log n3

)
.

For us, P (n1), P (n2), P (n3) are distinct primes (indeed if P (ni) = P (nj), then since

also fria(ni) = fria(nj), we would get ni = nj , which is false). Hence, logP (n1),

logP (n2), logP (n3) are linearly independent over Q. Also, logP (n1) and log n1 are

linearly independent over Q, since otherwise by what we have seen above we would

get n1 = P (n1)r, for some rational number r, so that r is a positive integer and

n1 is a power of P (n1), which is not our case. Hence, M fulfils the hypothesis of

the Six exponentials theorem, implying that the rank of M is 2, which contradicts

assumption (5.1).

We have thus proved the following result.

Theorem 5.3. There are no three distinct positive integers n1, n2, n3 such that

fria(n1) = fria(n2) = fria(n3) 6∈ N. Under the Four exponentials conjecture, there

are no two distinct positive integers n1, n2 such that fria(n1) = fria(n2) 6∈ N.

The reader will find more details on the Four exponentials conjecture and the

Six exponentials theorem in the book of Lang [12] and the paper of Ramachandra

[14].

6. Ordering the integers according to their index of friability

Given an integer N ≥ 10, consider the subset of {6, 7, . . . , N} consisting of those

integers which are not prime powers and order its members according to their index

of friability. More formally, letting AN := {n ≤ N : ω(n) ≥ 2} and given any two

integers m,n ∈ AN , we will write

m / n if fria(m) ≤ fria(n). (6.1)

For instance, from the set of integers {6, 7, . . . , 20}, remove the prime powers and

sort the remaining set of integers according to their index of friability as follows:

14 / 10 / 6 / 15 / 20 / 12 / 18

1.3562 < 1.4307 < 1.6309 < 1.6826 < 1.8614 < 2.2619 < 2.6309
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Observe that in light of Theorem 5.3 and because the Four exponentials conjecture

is most likely true, in practice, the inequality appearing in (6.1) will always be a

strict inequality.

For a given integer N ≥ 6 with corresponding set AN with a = #AN , one will

notice, at times, that for some integers k ≥ 2, the sequence

n1 / n2 / · · · / na

contains strings ni / ni+1 / · · · / ni+k−1 of k elements of AN which fall into one of

the following two categories:

(i) ni > ni+1 > · · · > ni+k−1,

(ii) ni < ni+1 < · · · < ni+k−1.

Numerical experiments show that as we order AN with the order relation / and list

its element from smallest to largest, this order relation starts with a long string as

in (i) and ends with a long string as in (ii). This we prove to be the case in the next

two theorems. We also show that for large N the maximum possible lengths of a

decreasing string as in (i) is given by the beginning string. We conjecture that this

is true for large N for the largest increasing string as in (ii) (namely that is given

by the end of the ordering of AN with the order relation /) and we leave that as a

problem to the reader.

Let us now state the last two theorems of this paper.

Theorem 6.1. Given an integer N ≥ 6, let AN := {n ≤ N : ω(n) ≥ 2} with

a = #AN . Set s := π(N/2), t := π(N/3) and consider the set

B := {2ps, 2ps−1, . . . , 2pr},

where pr is the smallest prime number satisfying

log pt ·
log 2

log 3
< log pr. (6.2)

Then,

(A) The list of elements in B is decreasing, whereas the sequence formed by their

corresponding index of friability is increasing, that is,

2ps > 2ps−1 > · · · > 2pr (6.3)

and

fria(2ps) < fria(2ps−1) < · · · < fria(2pr).

(B) The cardinality of B is k := s− r + 1.

(C) The list of elements in B are the first k elements of the entire sequence

n1 / n2 / · · · / na. (6.4)

(D) The string formed by the elements in B is the longest decreasing subsequence in

(6.4).
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For example, with N = 100, we find that a = #AN = 64 and that the reordering

of the elements of set AN according to their index of friability gives the sequence

94, 86, 82, 74, 62, 58, 46, 38, 34, 26, 22, 93, 87, 69, 14, 57, 51, 39, 10, 92, 33, 76,

68, 52, 95, 21, 85, 44, 65, 6, 55, 15, 78, 28, 66, 91, 77, 35, 20, 88, 99, 42, 56, 30,

63, 70, 12, 84, 40, 98, 45, 50, 60, 18, 75, 80, 90, 100, 24, 36, 48, 54, 72, 96.

In this case we have s = π(N/2) = 15, t = π(N/3) = 11, r = 5, pr = 11, pt = 31

so the set

B = {94, 86, 82, 74, 62, 58, 46, 38, 34, 26, 22}

has k = s− r + 1 = 15− 5 + 1 = 11 elements.

Theorem 6.2. Given an integer N ≥ 10, let AN := {n ≤ N : ω(n) ≥ 2} and let

N0 be the number

N0 := max{n ∈ AN : P (n) = 5}.

Then, letting ` be the cardinality of the set

C := {m ≤ N : γ(m) = 6 and fria(m) > fria(N0)} = {b1, b2, . . . , b`},

where b1 < b2 < · · · < b`, we have

` = `(N) = (c+ o(1))(logN)2 (N →∞),

where

c :=
1

2 log 2 log 3

(
1−

(
log 3

log 5

)2
)
.

Moreover, provided N is sufficiently large, the string of the last ` largest elements

in AN (ordered by /) is precisely the string composed of the elements of C.

Conjecture 6.3. For large N , the longest string of elements n1 < n2 < · · · < nk,

with ni ∈ AN , such that

n1 / n2 / · · · / nk,

that is, such that

fria(n1) < fria(n2) < · · · < fria(nk),

is precisely the string composed of the elements of C (so that also k = `).

We leave this as a challenge to the reader. For example, with N = 167, we obtain

N0 = 160 and easily compute that fria(N0) = fria(160) = 3.15338. Therefore, in

this case, we have the following as the longest possible sequence made of increasing

numbers ≤ 167 with increasing index of friability:

36, 48, 54, 72, 96, 108, 144, 162,
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whose corresponding index of friability are:

3.26186, 3.52372, 3.63093, 3.89279, 4.15465, 4.26186, 4.52372, 4.63093,

so k = ` = 8.

Remark 6.4. For some “small” integers N , the set C mentioned in Theorem 6.2

may not be the only provider of the longest string of increasing integers n1 < n2 <

· · · < nk, where each ni ∈ AN and fria(n1) < fria(n2) < · · · < fria(nk). Indeed,

choose for instance N = 67. In this case, #AN = 38 and in fact the list of elements

of AN rearranged according to their index of friability is as follows:

62,58,46,38,34,26,22,14,57,51,39,10,33,52,21,44,65,6,55,

15,28,66,35,20,42,56,30,63,12,40,45,50,60,18,24,36,48,54.

In this case there exist two longest increasing subsequences n1 < n2 < · · · < nk
(here with k = 5), namely

12, 40, 45, 50, 60 and 18, 24, 36, 48, 54.

Before we move on with the proofs of Theorems 6.1 and 6.2, we establish a few

lemmas.

Lemma 6.5. Let N ≥ 10 and AN := {n ≤ N : ω(n) ≥ 2} with a = #AN . Let

n1 /n2 / · · · /na be the elements of AN ordered according to their index of friability.

(i) If for some i < a, we have ni < ni+1, then P (ni) ≤ P (ni+1).

(ii) If for some i < a, we have ni > ni+1, then P (ni) > P (ni+1).

Proof. To establish part (i), we attempt a proof by contradiction. Assume that

p := P (ni) > q := P (ni+1). We attempt to construct n ∈ AN satisfying

fria(ni) < fria(n) < fria(ni+1), that is, ni / n / ni+1, (6.5)

thus contradicting the fact that ni and ni+1 are two consecutive elements in the

string n1 / n2 / · · · / na. To do so, first observe that there exist integers m′ ≥ 2,

α ≥ 1 and m0 ≥ 2 such that ni = pαm′ and ni+1 = m0q, where P (m′) < p and

P (m0) ≤ q. Let r := max{P (m′), q} < p. By our assumptions, we have

n := m′rα < pαm′ = ni < ni+1 = m0q < m0p, implying that pα−1m′ < m0.

(6.6)

Assume n ∈ AN . In light of (6.6), we have

fria(ni) =
log(pα−1m′)

log p
+ 1 =

logm′

log p
+ α <

logm′

log r
+ α =

log(rα−1m′)

log r
+ 1

= fria(n) <
logm0

log q
+ 1 = fria(ni+1),

thus proving (6.5) and thereby contradicting the fact that ni/ni+1. But it is possible

that n 6∈ AN . This happens if n is a prime power, therefore m′ = rγ for some γ ≥ 1

and r ≥ q. In this case, we attempt to take n := (r − 1)rα−1+γ < pαm′ = ni,
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so n < N . Furthermore, since q = P (ni+1) ≤ r it follows that r ≥ 3, therefore

ω(n) = ω(r − 1) + 1 ≥ 2. Thus, n ∈ AN . Now

fria(n) =
log n

log r
=

log((r − 1)rγ−1)

log r
+ α <

logm′

log r
+ α <

logm0

log q
+ 1 = fria(ni+1).

We want fria(n) > fria(ni). This is equivalent to

log(rγ)

log p
+ α <

log((r − 1)rα−1+γ−1)

log r
+ 1 =

log((r − 1)rγ−1)

log r
+ α,

which is equivalent to

γ
log r

log p
< (γ − 1) +

log(r − 1)

log r
or

1− log(r − 1)/log r

1− log r/log p
< γ.

The above inequality is satisfied for all p ≥ r+2 and r ≥ 5 with any γ ≥ 1. It is also

satisfied for r = 3 and p ≥ 7 with any γ ≥ 1. It is also satisfied for r = 3, p = 5 and

any γ ≥ 2. So, the only remaining case is p = 5, r = 3, so q = r = 3, ni = pq = 15,

ni+1 = 3m0 with P (m0) ≤ 3. Since ni+1 ∈ AN , it follows that ni+1 = 2a3b with

b ≥ 1 and a ≥ 1. Since ni < ni+1, it follows that ni+1 ≥ 18 (so, either a ≥ 3, or

b ≥ 2). In both cases ni = 15 / 12 / ni+1, a contradiction.

The proof of (ii) is somewhat different and in fact simpler. To seek a contra-

diction, we will assume that p := P (ni) ≤ q := P (ni+1). Set again ni = mp and

ni+1 = m0q. In this case, we then have

mp = ni > ni+1 = m0q ≥ m0p, implying that m > m0. (6.7)

Using our assumption that p ≤ q and (6.7), we then have

fria(ni+1) =
logm0

log q
+ 1 <

logm

log q
+ 1 ≤ logm

log p
+ 1 = fria(ni),

thus contradicting the fact that ni / ni+1, and completing the proof of Lemma 6.5.

Lemma 6.6. Let N ≥ 10 be an integer and assume that n ∈ AN is such that

P (n) = pr for some r ≥ 4. Then there exists an integer n0 ∈ AN such that P (n0) ≤
pr−1 and fria(n) < fria(n0).

Proof. For that particular n given in the statement of the lemma, there exist

positive integers m and α such that n = mpαr with P (m) ≤ pr−1. Then, consider

the number n0 := mpαr−1. Observe that n0 < n ≤ N . First assume that n0 ∈ AN .

Then

fria(n) =
logm

log pr
+ α <

logm

log pr−1
+ α = fria(mpαr−1) = fria(n0),

thus obtaining the desired conclusion. But it can be that n0 6∈ AN . This happens

exactly if m = pβr−1 for some positive integer β. We then consider the number
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n0 := 2 ·3α+β . We have n0 = 3α+β−1 ·6 ≤ pα+β−1r−1 pr ≤ n, where we used that r ≥ 4,

so pr ≥ p4 = 7 > 6 and pr−1 ≥ p3 = 5 > 3. Furthermore,

fria(n) = β
log pr−1
log pr

+ α < α+ β < fria(n0),

completing the proof of Lemma 6.6.

Lemma 6.7. Let N ≥ 6 and assume that some two distinct elements m,n ∈ AN
have the same largest prime factor. Then m < n⇐⇒ m / n.

Proof. First, assume that m < n and set p := P (m) = P (n). Then

fria(m) =
logm

log p
<

log n

log p
= fria(n),

implying that m / n. Now assume that m / n. Then,

logm

log p
<

log n

log p
,

implying that m < n.

Let q1 < · · · < qr be fixed primes and let

S = {qα1
1 · · · qαrr : αi ≥ 0, i = 1, . . . , r}

be the set of positive integers whose prime factors are among q1, . . . , qr. We enu-

merate 1 = n1 < n2 < · · · the S integers ordered increasingly. The next result is

due to Tijdeman [18], [19].

Lemma 6.8. There exist effective constants C1, C2 such that

ni
(log ni)C1

� ni+1 − ni �
ni

(log ni)C2

for all i ≥ 2.

In the particular case when r = 2, all constants in Tijdeman’s results have been

made explicit in [13].

Lemma 6.9. Assuming r = 2, we have for ni ≥ 3

C3
ni

(log ni)C1
< ni+1 − ni < C4

ni
(log ni)C2

,

where C1 = 2 · 109 log q1 log q2, C2 = C−11 , C3 = (log q1)C1 , C4 = 8q2.

Lemma 6.10. Given an integer N ≥ 6, let

D := {n ∈ N : γ(n) = 6} and D(N) := #{n ≤ N : n ∈ D}.

Then,

D(N) =
1

2

log2N

log 2 log 3
+O(logN). (6.8)
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Moreover, letting ` be as in Theorem 6.2, we have

` = (c0 + o(1))D(N), (6.9)

where

c0 = 1−
(

log 3

log 5

)2

.

Proof. Estimate (6.8) is Corollary 3.1 in [16] for y = 2 and x = N . Lemma 6.8 for

the set {q1, q2, q3} = {2, 3, 5} tells us that for large N , we have

N0 = N −O
(

N

(logN)C2

)
.

Thus,

fria(N0) =
logN0

log 5
=

logN

log 5
+O

(
1

(logN)C2

)
.

Thus, b` is some integer of the form 2a ·3b with positive a, b with the property that

fria(b`) ∈
(

logN

log 5
−O

(
1

(logN)C2

)
,

logN

log 5

)
,

This makes

b` ∈
(
N log 3/ log 5

(
1 +O

(
1

(logN)C2

))
, N log 3/ log 5

)
.

Up to eventually making the constant C2 smaller, the above interval does contain

numbers of the form 2a · 3b for large N thanks again to Lemma 6.8 for {q1, q2} =

{2, 3}. It now follows that

` = D(N)−D(b`) =

(
(logN)2

2 log 2 log 3
+O(logN)

)
−
(

(log b`)
2

2 log 2 log 3
+O(log b`)

)
=

1

2 log 2 log 3
((logN)2 − (log b`)

2) +O(logN)

=
1

2 log 2 log 3

(
(logN)2 −

(
log 3

log 5

)2

(logN)2
(

1 +O

(
1

(logN)C2

))2
)

+ O(logN)

=
1

2 log 2 log 3

(
1−

(
log 3

log 5

)2
)

(logN)2 +O((logN)2−C2).

We now have the necessary tools to prove our two theorems.

Proof of Theorem 6.1. Conclusions (A) and (B) are immediate. To see that

(C) holds, first observe that 2ps is the element of AN with the smallest index of
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friability, meaning that n1 = 2ps. This comes from the fact that ps is the largest

prime such that 2ps ≤ N and therefore that

fria(2ps) =
log 2

log ps
+ 1 < fria(n) for all n ∈ AN , n 6= 2ps. (6.10)

Indeed, given any n ∈ AN where n 6= 2ps, then there exist some positive integer

i < s and an integer m ≥ 2 such that n = mpi with P (m) ≤ pi, in which case we

have that

fria(n) =
logm

log pi
+ 1 >

log 2

log ps
+ 1 = fria(2ps),

thus proving (6.10).

Using the same reasoning, one can establish that n2 = 2ps−1, n3 = 2ps−2, and

so on. In the end, we obtain

n1 = 2ps, n2 = 2ps−1, . . . , nk = 2pr.

Now, according to (6.2), we have that

log pr−1 < log pt ·
log 2

log 3
< log pr, (6.11)

and therefore

log 2

log pr
+ 1 <

log 3

log pt
+ 1 <

log 2

log pr−1
+ 1.

That is,

fria(2pr) < fria(3pt) < fria(2pr−1). (6.12)

On the other hand, (6.11) also implies that

pt > p
log 3/ log 2
r−1 . (6.13)

Observe that one can easily establish that

p
log 3/ log 2
j−1 ≥ pj (j ≥ 2). (6.14)

This inequality can be obtained using the inequalities

j(log j + log log j − 3/2) < pj < j(log j + log log j − 1/2) (j ≥ 20)

which can be found in Rosser and Schoenfeld [15] and checked individually for the

remaining j in [2, 20].

It follows from (6.14) and (6.13) that pt > pr and thus that

3pt > 2pr. (6.15)

Hence, combining (6.12) and (6.15) establishes that the number 3pt interrupts the

descent of the numbers in (6.3) right after 2pr, due to the fact that fria(3pt) is

located in between the indexes of friability of 2pr and 2pr−1 as confirmed by (6.12).

This completes the proof of (C).
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For (D), we use a counting argument. That is, we already established that the

first k = s− r + 1 elements in AN with the order / form the decreasing string

2ps > 2ps−1 > · · · > 2pr.

Note that s = π(N/2) and pr−1 < p
log 2/ log 3
t < (N/3)log 2/ log 3. Thus,

k = s− (r − 1) ≥ π(N/2)− π((N/3)log 2/ log 3).

Let us look at any other string

n′1 > n′2 > · · · > n′k′ all in AN

with

n′1 / n
′
2 / · · · / n′k′ .

Write n′i := m′ip
′
i with p′i = P (n′i). If m′1 ≥ 3, then p′1 ≤ N/3 and p′i+1 < p′i for

i = 1, . . . , k′ − 1 thanks to Lemma 6.5 (ii). Thus, k′ ≤ π(N/3) in this case. Assume

next that m′i = 2. Since the current increasing chain is not the initial one, it follows

that p′i ≤ pr−1. Hence, k′ ≤ r − 1 ≤ π((N/3)log 2/ log 3) ≤ π(N/3). So, in both

cases, the length of any other increasing string in the order / which is formed by a

decreasing string of integers is of length at most π(N/3). Thus, it suffices to verify

that

π(N/2)− π((N/3)log 2/ log 3) > π(N/3). (6.16)

Using Theorem 2 and Corollary 1 in Rosser and Schoenfeld [15], we have

x

log x− 1/2
< π(x) <

x

log x− 3/2
for x ≥ 67,

it remains to verify that

π(N/2) >
N/2

log(N/2)− 1/2
>

N/3

log(N/3)− 3/2
+ (N/3)log 2/ log 3

> π(N/3) + π((N/3)log 2/ log 3),

and the middle inequality holds for all N > 27000. In the range N ∈ [10, 27000], the

inequality (6.16) fails sometimes but the largest value for which it fails is N = 253.

For N ∈ [10, 253], we checked that the longest string satisfying (i) is indeed given

by the number k. This finishes the proof of Theorem 6.1.

Proof of Theorem 6.2. Since ω(n) ≥ 2 in AN , it follows that the largest elements

of AN are obtained for numbers of the form n = 2a ·3b such that fria(n) ≥ fria(N0).

The rest of the assertions have been verified in Lemma 6.10.
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[5] J.-M. De Koninck and I. Kátai, On the mean value of the index of composition of an
integer, Monatshefte für Mathematik 145(2) (2005) 131–144.
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