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Given an integer n > 2, let P(n) stand for its largest prime factor, setting P(1) = 1. We
introduce the arithmetic function fria(n) := logn/log P(n) (with fria(1) = 1) and call it
the index of friability of the integer n. The index of friability of an integer is an absolute
measure of its friability (or smoothness). We first determine the respective mean values
of the functions fria(n) and 1/fria(n), thereafter obtaining various estimates comparing
the index of friability with the index of composition. Then, given any finite set of natural
numbers, we order its members according to their index of friability and obtain results
regarding their distribution. In particular, this allows us to construct arbitrarily long
monotonic sequences of integers with increasing index of friability.
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1. Introduction and basic properties

Given an integer n > 2, let P(n) stand for its largest prime factor and
v(n) := [, p- We set P(1) = (1) = 1. In 2001, De Koninck and Doyon [3] in-
troduced the function A\(n) :=logn/log~y(n) and called it the index of composition
of n, setting for convenience A(1) = 1. The function A(n) was further examined by
many, including De Koninck & Kétai [5], Zhai [20], De Koninck, Kétai & Subbarao
[6], De Koninck & Luca [8] and Zhang & Zhai [21], to name only a few.

We now introduce a function which measures the “friability” (or the “smooth-
ness”?) of a positive integer. Given an integer n > 2, we let fria(n) := logn/log P(n)
and call it the indez of friability of the integer n. For convenience, we set fria(1) = 1.

2In his recent book [17], Gérald Tenenbaum explains at length why the word “friable” is more
appropriate than the word “smooth” to describe a number without large prime factors.
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Here, we first determine the respective mean values of the functions fria(n) and
1/fria(n), thereafter obtaining various estimates comparing the index of friability
with the index of composition. Then, given any finite set of natural numbers, we
order its members according to their index of friability and obtain results regarding
their distribution. In particular, this allows us to construct arbitrarily long mono-
tonic sequences of integers with increasing index of friability.

In what follows, we let p1, po, . .. stand for the sequence of prime numbers and let
7(x) stand for the number of primes not exceeding . Given an integer n > 2, we let
w(n) stand for the number of distinct prime factors of n and set Q(n) := >
with w(1) = Q(1) = 0.

The index of friability has the following basic properties:

pelln &

(i) fria(n) is an integer if and only if n is a prime power.

(ii) If z = fria(n) is not an integer, then z is irrational and in fact it is a transcen-
dental number.

(iii) For all positive integers m and n, we have fria(mn) < fria(m) + fria(n), with
equality if and only if P(m) = P(n).

(iv) For each integer n > 2, we have fria(n) < Q(n), with equality if and only if n
is a prime power.

(v) Given any a > 1, there exists an increasing sequence of integers (n;);>1 such
that lim;_, fria(n;) = «.

Property (i) is obvious. The first assertion in property (ii) follows from the fact
that if z = a/b, with a,b € Z and b # 0, then

logn

Tog P(n) = %, so that n® = P(n)® and n = P(n)a/b,
which, since factorization is unique, implies that a/b is an integer, thus contradicting
our hypothesis. To prove the second assertion in (ii), assume that z is algebraic.
Then n = P(n)? is an algebraic number, and this is false if z is irrational by the
Gelfond—Schneider theorem, according to which if a and b are complex algebraic
numbers with a # 0,1, and b not rational, then any value of a® is a transcendental
number (see Baker ([1], p. 10)). Since we just proved that z is irrational, the proof
of (ii) is complete.

To prove (iii), one can proceed as follows. Without any loss in generality, we can
assume that P(m) < P(n). We then have

logm + logn logm logn

fria(mn) = log P(n)  logP(n)  log P(n)

logm  log P(m) logn .
= . f— f .
log P(m) Tog P(n) | Tog P(n) — iam)

< fria(m) + fria(n),

log P(m)
log P(n)

+ fria(n)

which proves (iii).
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To prove (iv), we first write n in the form n = []}_, ¢/, where ¢ < -+ < ¢, are
the prime factors of n and o; € N for ¢ = 1,...,7. Then, using part (iii), we obtain
that

fria(n) = fria (H q?) < Zfria () = Z a; = Q(n),
i=1 i=1 i=1

thus establishing property (iv).
For (v), it suffices to prove it when « is not an integer as when « is an integer
the property is obvious. Consider the sequence of integers

ne=pl™ [0 =120, (1.1)
This sequence is strictly increasing because, for each integer ¢ > 2,
no=pl [ | 2l [ s ke [ = e,

a—la]

Now, observe that {p J < pi, which implies that P(n;) = p; and therefore that

log n;
fria(n;) = 12?2- . (1.2)

On the other hand, since

e} a—|a e} a—|a o « « 1
pZ-H[pi HJ>piH(pi Hfl):pi*pl'uzpi <10_M>,
D;

7

it follows from the definition of n; given in (1.1) that

1
2 <1_am> < n; <pf,
b;

1
alogp; + log <1 — aM) < logn; < alogp;.
p,

K2

Dividing both sides of the above by logp; and taking into account (1.2), we find

that
log (1 - l/p?_w)
o+ o2 p; < fria(n;) < a. (1.3)
Now clearly, for some ig = ig(«),
a—|a]

D; > 2 for all i > .

Therefore, since log(1 — y) > —2y for all y € (0,1/2), we have

_ 2
log (171/;0? L(XJ) > =Ty for all i > g,
p;
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an inequality which combined with (1.3) gives that
. 1
fI‘la(’rLi) =a+0 ﬂ s
log pi - p;
thus proving property (v).
Remark 1.1. To illustrate property (v), let us choose to approximate the Euler

number e. Using formula (1.1), we obtain that the first ten terms of the sequence
(n;)i>1 are

4, 18, 75, 196, 605, 1014, 2023, 2888, 4761, 9251,
with corresponding friability indexes
2, 2.63093, 2.68261, 2.71241, 2.67119, 2.69856, 2.68682, 2.70623, 2.70076, 2.71211.
The index of friability is clearly related to the function
U(z,y) :=#{n<z:Pn) <y} (2<y<z).

Indeed, for a fixed z > 1, we have

Fua):= > 1= > 1= Y 1=(@+o0(1) Y 1 (14

n<z n<z n<z n<z
fria(n) >z 101;1%?71) >z P(n)<nl/? P(n)<z'/*

= (1+o0(1)¥(z,zY*) = (14 0(1))p(2)z (x — 00),

where p(u) stands for the Dickman function defined by p(u) =1 for 0 < wu < 1 and
thereafter as the solution to the differential equation with differences

up'(u) + plu—1)=0 (u>1).
The Dickman function is key in describing the asymptotic behaviour of the ¥(z,y)
function. Indeed, it is known that given numbers 2 < y < z, setting u := logz/log y,
we have

U(z,y) =zp(u) + O (1023/) uniformly for 2 <y < z. (1.5)

The proof of the above can be found in our book [7]. In the sequence of estimates
(1.4), all of them are clear except for the last equality on the right. Note that
the symmetric difference between the sets {n < z : P(n) < n'/?*} and {n < z :
P(n) < 2'/#} is included in the union of {n < x/logz}, a set of counting function
O(z/logz) = o(x) as ¢ — oo, and {n < z : (z/logx)'/* < P(n) < xz'/*}. The
positive integers from this last set are representable as n = gm, where ¢ is a prime in
((z/logx)'/# x'/]. For a fixed prime ¢, the number of such m’s is < x/q. Summing
up over g we get that the cardinality of this last set is

1
x Z - =z (log log z'/% — loglog((x/log z)"/#) + 0(1))

(x/logz)l/?<q<at/=
x log log x
< TOogl08T

gz = o(x) (z — 00),
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which together with the fact that U(z, z'/#) is a positive proportion of z justify the
desired estimate.

2. The mean value of the index of friability

In [3], it was shown that the function A(n) has mean value 1, and similarly for the
function 1/A(n). We will show that the average value of fria(n) is €, where y stands
for the Euler-Mascheroni constant. This is a consequence of the following result.

Theorem 2.1. We have

" fria(n) = ¢’z + O (be)' (2.1)

n<z

Proof. In [4], De Koninck and Ivié proved that

1 x T
=e7 +0 . 2.2
292:93 log P(n) log x (log2 ;p) (22)
Then, using partial summation, (2.1) follows immediately from (2.2). |

What about the mean value of 1/fria(n)? The answer is given in the next the-
orem. But first, let us introduce a very interesting constant called the Golomb-
Dickman constant £, which can be defined by

o0
¢ = / ) g — 0.6243299885 ...
0 u+ 2

The constant £ can also be written as

[e'e) o) 1 .
o (u+1)? 1w 0

v odt
where Li(z) := / ot dt. For more on this intriguing constant, see the book of
o 108
Finch [9] and the nice paper of Lagarias [11].
This brings us to a nice connection between the index of friability and the

Golomb-Dickman constant, namely the following.

Theorem 2.2. Let £ be the Golomb-Dickman constant. Then,

Py ) = 7€) + O (R@)). (23
where li(x / Togt and R(z) = z exp{—(log x)%*e} with € > 0 being any fived

number.
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Proof. In the book of Tenenbaum ([16], p. 283), it is proven that
Z log P(n) =&z logx — &(1 —v)z+ O (R(x)). (2.4)
2<n<z

So, let us first set p(t) := 1/logt. Using partial summation and observing that
¢ (t) = —1/(tlog? t) we then obtain that

_ Z logP(n) _ S(x) S(2) n TS

logn  logz log2 J, tlog’t

frla
2<n<z 2<n<w

Using (2.4) in this last formula, we get that

—55’3_5(1_7)10;3+£11(:z:)—§(1_7)/: dt +O<R(x)>

log? ¢ log
x Todt
=te Elogw‘ Evlogx+€<logw+/z loth)
Todt R(x
o o ()
log?t 2 log”t log z

— ot 1) + 0 (1ir ).

log x

frla
2<n<zx

Finally, since R(z) depends on some number € > 0, we may ignore the log x factor
(by simply replacing e by a smaller positive ¢), thereby completing the proof of the
theorem. D

3. Comparing the index of friability with the index of composition

It is clear that fria(n) > A(n) with equality if and only if n is a prime power. What
about their respective average values 7 In the previous section, we proved that the
average value of fria(n) is e”, whereas, as shown in [3], the average value of A(n) is
1. Now, what about the average value of the quotient of these two key functions?
We have the following.

Theorem 3.1. On average, fria(n)/A(n) = fria(n)+o(1) almost everywhere. More
precisely,

> 5 f”“ =" fria(n) + O <logx> (3.1)

n<z n<z

Proof. First observe that for each integer n > 2,
fia(n) _ logo(n) _ _logn__log(n/s(m) _ o log(n/r(n)
A(n) log P(n)  log P(n) log P(n) log P(n)
It follows from this identity that in order to prove (3.1), it is sufficient in light of
Theorem 2.1 to prove that

K(@):=Y 10;(;0(;/](7(;)) < 102 . (3.2)

n<x
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Writing each integer n > 2 as n = km, where k = k(n) is the squarefull part of
n (with therefore m squarefree and (k, m) = 1) and observing that P(km) > P(m)
and that log(n/y(n)) = log(k/v(k)) < logk for all k, we have that

1
K(x) < log k —_— 3.3
W< Y ok Y b 63)
k<z m<zx/k
k squarefull
Letting y = y(z) <  be an increasing function which tends to infinity with z,
it is known that

log k logy
> < ==, (3.4)
k>y k \/37
k squarefull

Let us recall a quick proof of it. First recall the basic upper bound for the number
N(z) of squarefull numbers not exceeding z, that is

N(z) < cy/z  for some positive constant c, (3.5)

an estimate proved by Golomb [10] in 1970. This also follows from the fact that any
squarefull number n can be written uniquely as n = r?m3, where p?(m) = 1, so

that

N@ = Y wm= Y wm) 31

rm3<z m<zl/3 r2<z/m?

S : $ ()
m

m<zl/3 m=1

Using integration by parts and thereafter estimate (3.5), we obtain
log k log ¢ logt > > 1—logt
ok / BLaN@) = 225 N _/ N(t) (fg) dt
k ) t , t

t
k>y
] ] 1 ol lo
ogy+/ ()ogtdt ogy logt .,  logy
Y

k squarefull
+ 3/2 ’
VY t2 VY y t VY

<

thus proving (3.4).
Splitting the right-hand side of (3.3), we can rewrite inequality (3.3) as follows.

K(z) < Z log k Z + Z log k Z Tog P(m) P
k<y m<w/k y<k<z m<z/k
k squarefull k squarefull

say.
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On the one hand, using estimate (2.2) and in light of the easily proven fact that

log k
Z Oi < 00 , we have that, choosing y := (log z)?,

k squarefull

we - X k(o (t )

k<y

k squarefull

T log k T log k& T
<« +0 < ——3.7)
logz — logy é k (log x)? é k log z
k squarefull k squarefull

On the other hand, using inequality (3.4), we have that

log k zlogy xloglogx x
K. < .
2(z) <@ Z < NG (log 2)3/2 < log

(3.8)
k>y

k squarefull

Using estimates (3.7) and (3.8) in (3.6), estimate (3.2) follows, thus completing
the proof of Theorem 3.1. 0

One can ask the same question about the average value of A\(n)/fria(n). This is
answered in the following result.

Theorem 3.2. Lettmg & stand for the Golomb-Dickman constant, we have

A 0( ° )
Z frza 2<Z< fma ( ) frt log x

2<n<zx
Proof. First observe that, for n > 2, we have
) log P(n > log P(n)
fria(n)  logvy(n) logn + log( ( )/n)

1og P(n log log 2
+ — ...
logn log n log n

= (M
g P(n ( ( loen/ o), (/1) )+>

log n logn + logn

fna( ) < "o (W)) (3.9)

Now, recalling the definition of K (x) and its bound given in (3.2), we have that

1 lo n lo n lo n
an g(()/)<z g(()/)<2 log(v(n)/n)

a(n)  logn logn “logP(n)

2<n<zx 2<n<zx

T
=K —. 1
() < o (3.10)

2<n<z
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Using (3.10) in (3.9), it follows that

Aln) 1 x
Z fria(n) Z fria(n) +0 (loga:) ’

2<n<zx 2<n<z

Combining this last estimate with that of Theorem 2.2, the proof of Theorem 3.2
is complete. O

4. The index of friability at consecutive integers

The larger the index friability of an integer, the more friable it is. Can two consec-
utive integers both have a high index of friability 7 How high ? What about three
consecutive integers ? The short answer is “YES, all the way”. Indeed, in 1998, Ba-
log and Wooley [2] proved that given any arbitrarily small & > 0 and any integer
k > 2, there exist infinitely many positive integers n such that

P((n+1)(n+2)---(n+k)) <n®.
In terms of the index of friability, Balog and Wooley’s result can be stated as:

Given a fixed integer k > 2 and an arbitrarily large number K, there exist
infinitely many positive integers n such that

min(fria(n + 1), fria(n + 2), ..., fria(n + k)) > K.

For example, in the particular case £ = 4 and K = 3, one can check that the number
n = 3678722 is the smallest positive integer such that

min(fria(n + 1), fria(n + 2), fria(n + 3), fria(n + 4)) > 3,

and according to Balog and Wooley’s result, there exist infinitely many such positive
integersn.

5. Integers with the same index of friability

It seems reasonable to claim that if two distinct positive integers have the same
index of friability, then they are both prime powers. However, this statement is
only true under the Four exponentials conjecture, which we now recall.

Conjecture 5.1. (FOUR EXPONENTIALS CONJECTURE) Assume A; j for 1 <i,j <
2 are positive algebraic numbers and consider the matriz

_ (logAq1log Aq 2
o log )\2,1 log )\272 ’

Assume that the rows of M are linearly independent over Q and the columns of M
are linearly independent over Q. Then the determinant is nonzero.
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For us, assume that ny,ns are such that fria(n,) = fria(ng) ¢ N. Consider the
matrix

log P(nq) log P(ns)
M = .
log nq log na

Let us check that the rows are linearly independent over Q. Since logn;, log P(n;)
are all positive, if they were linearly dependent then for some integers a, b not both
zero we would have

a(log P(n1),log P(n2)) = b(log ny,logns).

We may assume that both a, b are positive. And we get logny = (a/b)log P(n1), so
that n; = P(n1)*/®, which is impossible unless a/b is an integer and n; and ny are
both a prime powers which we assume that it does not hold. If the columns of M
are linearly dependent over Q, then we get that for some integers a, b not both zero
we have

a(log P(ny),logny) = b(log P(ns2),logns).

Thus, P(n;) = P(ny)®®. This makes a = b and then since also ny = n'll/b, we get
ng = np, which we assume it does not happen. So, indeed M fulfils the conditions
from the Four exponentials conjecture, so under this conjecture the determinant of
M is nonzero. Therefore, fria(n,) # fria(ns).

One may ask what can be said unconditionally about the equation

fria(nq) = fria(ng)

without imposing the condition that this common value is not in N. In this case
putting

E :={(n1,n2) : n1 < ng <z, fria(ny) = fria(ng)},

the referee observed that one may take n; = p?, ny = ¢2, where p < ¢ < z'/? are
primes (for which fria(n,) = fria(ng) = 2), which gives right away that

#E > n(vx)? > 2/(log x)?

and asked for an upper bound. Fixing ny, and writing no = Pm, where P = P(ns),
we see that the equation fria(n,) = fria(ng) = 1 4 logm/log P shows that fix-
ing one of m, P the other one is uniquely determined. Since Pm < =z, ei-
ther m < (z/logz)/?, or P < (xzlogz)'? so the number of choices for P is
< w((zlogx)'/?) < (x/logx)'/?, and we get that #& < 2%/%/(logz)'/2. We leave
it to the reader to find unconditional better upper bounds for the quantity #¢&.

But we can use the Siz exponentials theorem to conclude that there do not exist
three distinct positive integers ni, ns,ng such that

fria(n;) = fria(ng) = fria(ns) ¢ N. (5.1)

The Siz exponentials theorem can be stated as follows.
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Theorem 5.2. (SIX EXPONENTIALS THEOREM) Assume that \;; for 1 < i < 2,
1 < j <3 are positive algebraic numbers such that the matriz

. log )\1,1 IOg )\1’2 IOg )\173
o log )\2,1 log )\272 log )\273

satisfies:

(i) log A1,1,1log A1 2,log A1 3 are linearly independent over Q;
(i) log A11 and log Ae 1 are also linearly independent over Q.

Then M has rank 2 over R.
So, let

A = (log P(n1) log P(n2) log P(n3)
—\ logng log no logng )~

For us, P(n1), P(ng), P(ns) are distinct primes (indeed if P(n;) = P(n;), then since
also fria(n;) = fria(n;), we would get n, = n;, which is false). Hence, log P(n1),
log P(nz), log P(ng) are linearly independent over Q. Also, log P(n1) and logn, are
linearly independent over Q, since otherwise by what we have seen above we would
get n1 = P(n1)", for some rational number r, so that r is a positive integer and
ny is a power of P(ny), which is not our case. Hence, M fulfils the hypothesis of
the Six exponentials theorem, implying that the rank of M is 2, which contradicts
assumption (5.1).
We have thus proved the following result.

Theorem 5.3. There are no three distinct positive integers ny, na, ng such that
fria(n1) = fria(ng) = fria(ng) € N. Under the Four exponentials conjecture, there
are no two distinct positive integers ny,ng such that fria(ny) = fria(ns) € N.

The reader will find more details on the Four exponentials conjecture and the
Six exponentials theorem in the book of Lang [12] and the paper of Ramachandra
[14].

6. Ordering the integers according to their index of friability

Given an integer N > 10, consider the subset of {6,7,..., N} consisting of those
integers which are not prime powers and order its members according to their index
of friability. More formally, letting Ay := {n < N : w(n) > 2} and given any two
integers m,n € Ay, we will write

m<an if  fria(m) < fria(n). (6.1)
For instance, from the set of integers {6,7,...,20}, remove the prime powers and
sort the remaining set of integers according to their index of friability as follows:

14 <« 10 « 6 < 15 <« 20 <« 12 <« 18
1.3562 < 1.4307 < 1.6309 < 1.6826 < 1.8614 < 2.2619 < 2.6309
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Observe that in light of Theorem 5.3 and because the Four exponentials conjecture
is most likely true, in practice, the inequality appearing in (6.1) will always be a
strict inequality.

For a given integer N > 6 with corresponding set Ay with a = # Ay, one will
notice, at times, that for some integers k > 2, the sequence

Ny <dng <-- < nNg
contains strings n; <m;41 < - -+ dn;yp—1 of k elements of Ay which fall into one of
the following two categories:
(1) Ny > MNjyp1 > - > Njypk—1,
(ll) Ny < Njp1 <o < Nyjyg—1-

Numerical experiments show that as we order A with the order relation < and list
its element from smallest to largest, this order relation starts with a long string as
in (i) and ends with a long string as in (ii). This we prove to be the case in the next
two theorems. We also show that for large N the maximum possible lengths of a
decreasing string as in (i) is given by the beginning string. We conjecture that this
is true for large N for the largest increasing string as in (ii) (namely that is given
by the end of the ordering of Ay with the order relation <) and we leave that as a
problem to the reader.
Let us now state the last two theorems of this paper.

Theorem 6.1. Given an integer N > 6, let Ay := {n < N : w(n) > 2} with
a=#Ayn. Set s :=mw(N/2), t := w(N/3) and consider the set

B = {2ps; 2ps—17 ceey 2pr}7

where p, is the smallest prime number satisfying

log 2
logp; - & < log p,. (6.2)

Then,

(A) The list of elements in B is decreasing, whereas the sequence formed by their
corresponding index of friability is increasing, that is,

2ps > 2P571 > > 2pr (63)
and
fria(2ps) < fria(2ps—1) < --- < fria(2p,).

(B) The cardinality of B is k:=s—r+ 1.
(C) The list of elements in B are the first k elements of the entire sequence

ny<dng -+ <dNg. (6.4)

(D) The string formed by the elements in B is the longest decreasing subsequence in

(6.4)-
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For example, with NV = 100, we find that a = #Ax = 64 and that the reordering
of the elements of set Ax according to their index of friability gives the sequence

94, 86,82, 74, 62, 58, 46, 38, 34, 26, 22, 93, 87, 69, 14, 57, 51, 39, 10, 92, 33, 76,
68,52,95,21, 85,44, 65, 6, 55, 15, 78, 28, 66, 91, 77, 35, 20, 88, 99, 42, 56, 30,
63,70, 12,84, 40,98, 45, 50, 60, 18, 75, 80, 90, 100, 24, 36, 48, 54, 72, 96.

In this case we have s = n(N/2) =15, t =n(N/3) =11, r =5, p, = 11, p, = 31
so the set

B = {94,86,82,74,62,58,46, 38,34, 26, 22}
hask=s—r+1=15—-5+1 =11 elements.

Theorem 6.2. Given an integer N > 10, let Ay := {n < N : w(n) > 2} and let
Ny be the number

Ny :=max{n € Ay : P(n) = 5}.
Then, letting £ be the cardinality of the set
C:={m < N :~v(m) =06 and fria(m) > fria(No)} = {b1,b2,...,be},
where by < by < --- < by, we have

¢ =4(N)=(c+o(1)(logN)> (N — o0),

1 log 3 2
ci=——7——1|1- .
2log2log 3 log 5

Moreover, provided N is sufficiently large, the string of the last ¢ largest elements
in Ay (ordered by <) is precisely the string composed of the elements of C.

where

Conjecture 6.3. For large N, the longest string of elements ny < ng < --- < ng,
with n; € Ay, such that

Ny <Ang <- - <N,
that is, such that
fria(ny) < fria(ng) < --- < fria(ng),
is precisely the string composed of the elements of C (so that also k = ¢).

We leave this as a challenge to the reader. For example, with N = 167, we obtain
No = 160 and easily compute that fria(Ny) = fria(160) = 3.15338. Therefore, in
this case, we have the following as the longest possible sequence made of increasing
numbers < 167 with increasing index of friability:

36,48, 54,72,96, 108,144,162,
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whose corresponding index of friability are:
3.26186, 3.52372, 3.63093, 3.89279, 4.15465, 4.26186, 4.52372, 4.63093,
sok=/{(=38.

Remark 6.4. For some “small” integers IV, the set C mentioned in Theorem 6.2
may not be the only provider of the longest string of increasing integers n; < ny <

- < ny, where each n; € Ay and fria(ny) < fria(ng) < --- < fria(ng). Indeed,
choose for instance N = 67. In this case, #Axn = 38 and in fact the list of elements
of Ay rearranged according to their index of friability is as follows:
62,58,46,38,34,26,22,14,57,51,39,10,33,52,21,44,65,6,55,
15,28,66,35,20,42,56,30,63,12,40,45,50,60,18,24,36,48,54.

In this case there exist two longest increasing subsequences nqy < ng < --- < ng

(here with k = 5), namely

12, 40, 45, 50, 60 and 18, 24, 36, 48, 54.

Before we move on with the proofs of Theorems 6.1 and 6.2, we establish a few
lemmas.

Lemma 6.5. Let N > 10 and Ay := {n < N : w(n) > 2} with a = #An. Let
ni<ng<---<dn, be the elements of Ay ordered according to their index of friability.

(i) If for some i < a, we have n; < n;y1, then P(n;) < P(niy1).
(i) If for some i < a, we have n; > n;y1, then P(n;) > P(niy1).

Proof. To establish part (i), we attempt a proof by contradiction. Assume that
p:= P(n;) > q := P(n;y1). We attempt to construct n € Ay satisfying

fria(n;) < fria(n) < fria(n;+1), that is, n; <n <nyq, (6.5)

thus contradicting the fact that n; and n;y; are two consecutive elements in the
string ny <ng < --- d4ny. To do so, first observe that there exist integers m’ > 2,
a > 1 and mg > 2 such that n;, = p®m’ and n;y1 = moq, where P(m’) < p and
P(mgp) < q. Let r := max{P(m’), ¢} < p. By our assumptions, we have

n = m/r® < p®m’ =n; < ni1 = moeq < mgp, implying that p®~'m’ < mo.
(6.6)
Assume n € Ay. In light of (6.6), we have
1 a—1,.,/ 1 / 1 / 1 a—1,,/
fria(ny) = OB@ )y dogm g’ log(r )
log p log p log r logr
1
= fria(n) < =L LU fria(n;y1),
q

thus proving (6.5) and thereby contradicting the fact that n;<n; 1. But it is possible
that n &€ Ay. This happens if n is a prime power, therefore m’ = r7 for some v > 1
and r > ¢. In this case, we attempt to take n = (r — 1)r*='*7 < p¥m/ = n;,
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so n < N. Furthermore, since ¢ = P(n;41) < r it follows that r > 3, therefore
w(n)=w(r—1)+1>2. Thus, n € Ay. Now
_logn  log((r—1)r71) log m/ logm

0 .
= = < < — 1= i .
log r log r ta log r ta log q + ria(nit1)

fria(n)

We want fria(n) > fria(n;). This is equivalent to

log(r? 1 —1)ro-ttr-l 1 — 1)yt
0s(r7) | _losllr = Vet L doa((r 1)
log p log r log r

which is equivalent to

logr

log(r — 1 1 —log(r — 1)/1
" og(r —1) or og(r —1)/logr
ogp

logr 1 —logr/logp

<(vy-=-1+

The above inequality is satisfied for all p > r+2 and r > 5 with any v > 1. It is also
satisfied for r = 3 and p > 7 with any v > 1. It is also satisfied for r = 3, p =5 and
any v > 2. So, the only remaining case is p =5, r=3,s0¢=1 =3, n; = pqg = 15,
nir1 = 3mg with P(mg) < 3. Since n;; € Ay, it follows that n;; = 23° with
b>1and a > 1. Since n; < n;y1, it follows that n;.q1 > 18 (so, either a > 3, or
b > 2). In both cases n; = 15912 <n;11, a contradiction.

The proof of (ii) is somewhat different and in fact simpler. To seek a contra-
diction, we will assume that p := P(n;) < q := P(n;+1). Set again n; = mp and
n;4+1 = Moq. In this case, we then have

mp =mn; > n;+1 = Moq > mep, implying that m > my. (6.7)
Using our assumption that p < ¢ and (6.7), we then have

logm

log mg 1 logm t1<

1 = fri i)y
log q log q ~ logp + ria(n:)

fria(nH_l) =
thus contradicting the fact that n; <n;11, and completing the proof of Lemma 6.5

Lemma 6.6. Let N > 10 be an integer and assume that n € Ay is such that
P(n) = p, for some r > 4. Then there exists an integer ng € An such that P(ng) <
pr—1 and fria(n) < fria(ng).

Proof. For that particular n given in the statement of the lemma, there exist
positive integers m and « such that n = mp® with P(m) < p,_1. Then, consider
the number ng := mp&_;. Observe that nyp < n < N. First assume that ng € Ayn.
Then

logm logm

fria(n) = Tog p. +a< Togprs + a = fria(mpy_,) = fria(ng),

thus obtaining the desired conclusion. But it can be that ng ¢ Ay. This happens
exactly if m = pff1 for some positive integer 8. We then consider the number
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ng := 2-3%TP. We have ng = 3¢T8-1.6 < pfjlﬁ_lpT < n, where we used that r > 4,
SO p. > py =7 > 6 and p,._1 > p3 =5 > 3. Furthermore,

log p,— .
fria(n) = B% +a < a+ B < fria(ng),
log pr
completing the proof of Lemma 6.6. O

Lemma 6.7. Let N > 6 and assume that some two distinct elements m,n € Ay
have the same largest prime factor. Then m < n <= m<n.

Proof. First, assume that m < n and set p := P(m) = P(n). Then
logm logn

- log p logp -

implying that m <n. Now assume that m <n. Then,

fria(m)

logm logn
logp ~logp’
implying that m < n. D

Let ¢1 < --- < g, be fixed primes and let
S={¢" ¢ ia;>0,i=1,...,1r}
be the set of positive integers whose prime factors are among qi,...,q,.. We enu-

merate 1 = n; < ng < --- the S integers ordered increasingly. The next result is
due to Tijdeman [18], [19].

Lemma 6.8. There exist effective constants C1, Coy such that
M« < —2
e — s € —
(logn; )< R (log n;)C2

for alli > 2.
In the particular case when r = 2, all constants in Tijdeman’s results have been

made explicit in [13].

Lemma 6.9. Assuming r = 2, we have for n; > 3
.

[/ E—

? (log n;)

where Cy = 2-10°log q1 log ga, Cy = C;*, C3 = (logq1)C", Cy = 8¢s.

2

< Mgl — Ny < C4W7

Lemma 6.10. Given an integer N > 6, let
D:={neN:q(n)=6} and DN):=#{n<N:neD}
Then,

1 log? N
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Moreover, letting £ be as in Theorem 6.2, we have

= (co+0(1))D(N), (6.9)

log 3 2
Co = 1— .
log 5
Proof. Estimate (6.8) is Corollary 3.1 in [16] for y = 2 and = N. Lemma 6.8 for
the set {q1, 42,93} = {2,3,5} tells us that for large N, we have

where

Thus,

fria(No) = logNg  log N (( 1 > '

logh ~ logh log N )2

Thus, b, is some integer of the form 2% - 3? with positive a, b with the property that

. log N 1 log N
f _
ria(be) € < log 5 0 ((logN)CZ> " logh > ’

. 1
b Nlog 3/ log 5 1 Nlog 3/logh )
ge( O\ logmye ) )

Up to eventually making the constant C; smaller, the above interval does contain
numbers of the form 2% - 3% for large N thanks again to Lemma 6.8 for {q,q2} =
{2,3}. It now follows that

This makes

(log N)? (log be)?
310z 2logs e N) 310z 2log3 T Olloe )

=L (log )2 = (loghe)?) + O(log N)

£= () - 200 = (

2log2log3
1 log 3 2 1 2
= S7or01o3 | Qs N)* = { == ) (log N)* (1 I
2log 2log 3 ((og ) (10g5) (log N) ( +O((logN)CZ>)>
+ O(log N)
_ 1 log 3\ ) .
= Slog2iogd <1 (22) )(logN) + O((log N)2C2). ]

We now have the necessary tools to prove our two theorems.

Proof of Theorem 6.1. Conclusions (A) and (B) are immediate. To see that
(C) holds, first observe that 2p; is the element of Ay with the smallest index of
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friability, meaning that n; = 2ps. This comes from the fact that p, is the largest
prime such that 2p, < N and therefore that
. log 2 .
fria(2ps) = +1 < fria(n) for alln € Ax, n # 2p,. (6.10)
log ps

Indeed, given any n € Ay where n # 2p,, then there exist some positive integer
i < s and an integer m > 2 such that n = mp; with P(m) < p;, in which case we
have that

1 log 2
ogm+1> og

fri =
ria(n) log p; log ps

+ 1 = fria(2ps),

thus proving (6.10).
Using the same reasoning, one can establish that ny = 2ps_1, n3 = 2ps_2, and
so on. In the end, we obtain

ny = 22757 ng = 2p8717 RN ng = 2pr

Now, according to (6.2), we have that

log 2
logp_1 < logp; - —o= < logpr, (6.11)
log 3

and therefore

log 2 log 3 log 2
LY

log p; log p; logp, 1
That is,
fria(2p,) < fria(3p;) < fria(2p,_1). (6.12)
On the other hand, (6.11) also implies that
pr > piBi/ios?, (6.13)
Observe that one can easily establish that
PEY I s (522), (6.14)

This inequality can be obtained using the inequalities

j(logj +loglogj —3/2) < p; < j(logj +loglogj—1/2)  (j >20)
which can be found in Rosser and Schoenfeld [15] and checked individually for the
remaining j in [2, 20].
It follows from (6.14) and (6.13) that p; > p, and thus that

3p: > 2p,. (6.15)

Hence, combining (6.12) and (6.15) establishes that the number 3p, interrupts the
descent of the numbers in (6.3) right after 2p,, due to the fact that fria(3p;) is
located in between the indexes of friability of 2p, and 2p,_; as confirmed by (6.12).
This completes the proof of (C).
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For (D), we use a counting argument. That is, we already established that the
first k = s —r + 1 elements in Ay with the order < form the decreasing string

2ps > 2ps_1 > -+ > 2py.
Note that s = 7(N/2) and p,_; < pi8 >/ 8% < (N/3)los2/1083 Thys,
k=s—(r—1)>7(N/2) — n((N/3)s2/183),
Let us look at any other string
ny>mny>--->np allin Ay
with
ny<Anh < <dng.

Write nj := mjp; with pj = P(n}). If m} > 3, then pj < N/3 and pj,, < pj for
i=1,...,k" — 1 thanks to Lemma 6.5 (ii). Thus, ¥’ < 7(NN/3) in this case. Assume
next that m/; = 2. Since the current increasing chain is not the initial one, it follows
that p, < p,_;. Hence, k' < r — 1 < 7((N/3)082/183) < 7(N/3). So, in both
cases, the length of any other increasing string in the order < which is formed by a
decreasing string of integers is of length at most 7(N/3). Thus, it suffices to verify
that

m(N/2) — m((N/3)1°82/ 1083y > 7(N/3). (6.16)

Using Theorem 2 and Corollary 1 in Rosser and Schoenfeld [15], we have

T T

—_ —_ f > 67
logx—1/2<ﬂ-(x)<logx—3/2 or E=nh

it remains to verify that

N/2 N/3
log(N/2) —1/2 ~ log(N/3) — 3/2
> w(N/3) + m((N/3)\082/ 1083),

m(N/2) > + (N/3)los2/log3

and the middle inequality holds for all N > 27000. In the range N € [10, 27000], the
inequality (6.16) fails sometimes but the largest value for which it fails is N = 253.
For N € [10,253], we checked that the longest string satisfying (i) is indeed given
by the number k. This finishes the proof of Theorem 6.1. O

Proof of Theorem 6.2. Since w(n) > 2 in Ay, it follows that the largest elements
of Ay are obtained for numbers of the form n = 2%-3% such that fria(n) > fria(N).
The rest of the assertions have been verified in Lemma 6.10. O
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