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Abstract
Given an integer ¢ > 2, let A, := {0,1,...,¢ — 1} be the set of base ¢ digits.
We say that a = a...a, where each a; € Ay, is a word of length A\(a) = k. Let

H(1),H(2),... be a sequence of nonnegative integers and given a sequence of words
a1,q9, ..., we examine under which conditions the number O.Q{{(l)af@) ... (where

7 = aj...q;) is a normal number in base g.
~——

r times
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1 Introduction

Fix an integer ¢ > 2 and let A, := {0,1,...,¢ — 1} be the set of base ¢ digits. We say that
a = ay...a, where each a; € Ay, is a word of length A\(a) = k.
Let 8 = ajas ... be an infinite concatenation of words «;’s, which we write as 5 = j17j3. . .,

where each j; € A,. Then, £ =¢(B) = Z T s a q-ary normal number if the sequence of
qV
v=1
fractional parts {¢*¢}x>; is uniformly distributed in [0, 1] (see Theorem 8.1 in Kuipers and
Niederreiter [3]).
Over the past decade, we created several new families of normal numbers [2].
Here, we expose a new approach for creating normal numbers. To do so, we first let

H(1),H(2),H(3),... be a sequence of natural numbers and then, given a sequence of words
aq, o, ..., we examine under which conditions the number 0.0zf(l)af@) ... (where of =
@;j ...y ) is a normal number in base ¢.
~—

r times

2 Background results
In a 1994 paper, Bassily [1] generalized to polynomials a result which originally applied only

to the sum of digits function. To explain his result, we introduce additional notation. Let ¢
and A, be as above. Then, every nonnegative integer n can be written as

n = Z a.(n)q", where each a,.(n) € A,.
r=0
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Clearly, the above sum is finite, since a,(n) = 0 if » > (logn)/(logq). Bassily investigated
digital functions a(n) which depend on the digital blocks of length k. More precisely, given
k € N and a function Fj, : A’; — R which satisfies the condition F(0,...,0) = 0, consider
the function

a(n) = Z Fy (aj(n), aj1(n), ... ajk-1(n)),

that is, a kind of generalisation of the sum of digits function. Further setting
1
M::q_k: Z Fk(b(),...,bk_l),
(bo ..... bk_l)E.AI;
Bassily showed [1] that

logn

a(n) = (1+ 0<1)>M10gq

(n — 00),

except perhaps on a set of density 0. Let 7(z) stand for the number of primes not exceeding
x. In his paper, Bassily also proved the following theorem.

Theorem A. (Bassily) Let ¢ > 2 be a fixed integer. Let P(x) = c¢,a" + -+ + c1x + ¢y be
a polynomial with integer coefficients taking on positive values for all x > (0 and such that
ged(c,,q) = 1. Then,

Z(a(P(n))—MrlOg$)2 < zlogz,

= log q
log x 2
P — M I )
E (a( (p)) Tlogq) < w(z)logx

p<w

Let g and P(z) be as in the statement of Theorem A, and further let 2 =p; < py < - -+
be the sequence of all primes. Moreover, let n; and 7, be the real numbers whose g¢-ary
expansions are given by

m = 0.P(1)P(2)P(3)P(4)...P(n) ...
ne = 0.P(2)P(3)P(B)P(7)...P(p,) ...,

where 7 stands for the concatenation of the base ¢ digits of n. Bassily proved that n; and
12 are normal numbers in base q.

Moreover, fix k € N and a word v € .A’;, that is, a word made of k base ¢ digits. Then,
given an arbitrary word § made of base ¢ digits, we define w, (/) as the number of occurrences
of the subword v in the word 3. Bassily showed that if

(21) Pkiz{’}/:blbg...bkIbiGAqfOYizl,...,k},



then,

r logx 2
2.2 max [ w,(P(n)) — — < zlogx,
22) S (w700 - ) :
(2.3) P) - 218 o r)
. max | w —_ — T\ ) 1028 T .
p<z rere \ P ¢~ logq &

Now, before we state our main results, we introduce two new functions as follows. Given
an arithmetic function H : N — N U {0}, consider the two functions

s(x) ::ZHQ(n)/ (ZH(n)) and  ty(z) ::ZHQ(p)/ (ZH@)) .

n<x n<x <z p<x

3 The main results

Theorem 1. Let ¢ > 2 be a fized integer. Let P(x) = c,a"+- - -+c1x+co be a polynomial with
integer coefficients taking on nonnegative values for all x > 0 and such that ged(c,,q) = 1.
Let H(1),H(2), H(3),... be a sequence of natural numbers satisfying the condition

: T
(3.1) IILIEO sp(x) - g 7 =0
Then, the number
(3.2) m=0P0) VPP Py Py

s a g-normal number.

Theorem 2. Let q, P(x) and H(n) be as in Theorem 1. Assuming that

X

3.3 lim ¢ . =0,

(3:3) it (@) -5

then,

(3.4) n =02 PPy Pey Y ey

1$ a q-normal number.

4 Some preliminary results

We start with a classic result in analytic number theory. As is common, ((s) stands for the
Riemann Zeta Function.



Proposition 1. Let f be an arithmetic function and let t be a positive real number. Assume
that, for every real s > 1,

ns ns
n=1 n=1

(n)

where g s such that Z ——= converges absolutely. Then,

Zf =(c+o(l)zlog (r — 00),

n<lx
1 —ygn)
h -
where ¢ = ¢ 0 "
n—1
Proof. This is a particular case of Theorem 2 in the 1954 paper of Atle Selberg [5]. O]

Let ¢ stand for the Euler totient function. The following is often called the prime number
theorem for arithmetic progressions.

Proposition 2. Given two coprime integers k > 1 and ¢, let w(z;k,0) == #{p<z:p="{
(mod k)}. Then,

1 =
ko) =(1 1)—— .
Proof. See Theorems 5.11 and 5.14 in the book of Narkiewicz [4]. O

We now recall a 1961 result of Wirsing [6] which we state as a proposition.

Proposition 3. Let f(n) be a real valued non negative multiplicative function satisfying
f(p¥) < eidy for all prime powers p¥, v > 2, for some positive constant ¢; and co, with
Co < 2. Assuming that there exists a positive constant T for which

Y fp) = (r+o(1))

p<lz

oz 2 (x — 00),

0(1)) 102£H(1+@+f<€2)+...)7

then, as x — o0,

> 1= (o

n<zx

p p

where vy stands for the Euler-Mascheroni constant and I'(r) is the Gamma function.
The next proposition is an immediate application of Proposition 3.

Proposition 4. Let [ be a completely multiplicative function such that f(p) € {0,1} for all
primes p. Assume that there exists a real number 6 € (0,1) such that

Y fp) = (6+0(1))

p<zx

g 2 (x — 00).

Then, as x — oo,

- (8 0) e 1 %)

n<x



5 Proof of Theorem 1

Letting [y be the set defined in (2.1), in order to prove that 7; is a g-normal number, it is
sufficient to prove that

r logx
P _
o (Pln)) = o

(5.1) ZH( - max

7€l

=0 ((loga:) . ZH(n)) (x — 0).

n<lz n<lzx

Indeed, we need to show that for most integers n < x, the number of occurrences of P(n) in
logn
log q

to #ﬁ%)' By proving (5.1), we will have shown that the largest possible difference between

wy(P(n)) and q%izg’; is on average o(log ), which is sufficient to show that 7, is a g-normal
number.

Now, using the Cauchy-Schwarz inequality, the Bassily result (2.2) and finally the con-
dition (3.1), we obtain that

the words v = by ... b, € .A’€ is asymptotic to - L J (Which for large n < x is asymptotic

oy (P(n)) — 1B

¢~ log q

E H(n) - max
vEl

n<zx

\/ZHQ(n) -xlogx

n<x

2
< zlogx - sy(x (ZH )

— Valogz - ven@@) Y Hn)
= 0 ((logx) . ZH(n)) (x — 00),

thus establishing (5.1) and completing the proof of Theorem 1.

6 Proof of Theorem 2

Theorem 2 will follow if we can prove that

r logx

o (P) — e

(6.1) ZH (p) max

JET)

:0<10gm-ZH(p)> (x — 0).

p<w p<x

Proceeding esentially as in the proof of Theorem 1, one can see that (6.1) is a consequence
of (3.3), from which the proof of Theorem 2 follows.

7 Applications

We now identify some particular types of functions H(n) for which Theorems 1 and 2 apply.



7.1 Choosing H(n) to be a polynomial
Let Q(x) € R[x] be a polynomial of degree d > 1, and set H(n) := [|Q(n)|] for each n € N.

In this case,
ZH(n) ~ N and ZHz(n) %anwxw“.

n<N n<lz n<x

Hence,

2 2
<Z H(n)> ~ (Z nd) ~ (xd+1>2 _ x2d+27
n<x nlx
from which it follows that condition (3.1) is satisfied, implying that the corresponding real
number defined by (3.2) is indeed a normal number in base g.

Following essentially the same kind of reasoning, one easily sees that the conditions of
Theorem 2 are also satisfied and therefore that the corresponding real number defined by
(3.4) is a normal number in base g.

7.2 Choosing H(n) to be a multiplicative function

Let Hy be an arithmetic multiplicative function such that Hy(p) = w for all primes p,
where 1 < w < 2, and also such that Hy(p") < r + 1 for each prime power p”. Then, set
H(n) := | Ho(n)] for every n € N. In order to show that condition (3.1) holds, we will prove
that

_ T
(7.1) xh_}rgo Sh, () - gz 0.
and

(7.2) lim $H(®)

First observe that for fs > 1,

3 Hjli”) 11 (1 + Z% +> —Hgifr)> = ()" Auls),

Ho(m) oy ag(),

ns

(]

(]

n=1

where A;(s) and As(s) are two holomorphic functions bounded in the half plane s > 1 —9,
where 6 > 0 is a suitable small number, with A;(1) # 0 and As(1) # 0. Then, it follows
from Proposition 1 that there exist positive constants ¢; and ¢y such that, as x — oo,

ZHO(n) = (1+o(1)cxrlog” 'z,

n<x

ZHOQ(n) = (1+o0(1))ezlog” 'z,

n<x



from which it follows that

Cox logwg_1 x Co log(w_l)2 x
7.3 =(1 1 = (1 1))—— .
73 snle) = (o)) e = (o) FE " (o)

Since (w — 1)* < 1, it is clear that (7.3) implies condition (7.1). On the other hand, since
H(n) = Hy(n) + O(1), it follows that

H?(n) = Hg(n) + O(Ho(n)) + O(1),

which combined with (7.3) implies (7.2). From this, condition (3.1) is proved.

Hence, it follows that the conditions of Theorem 1 is satisfied, so that the corresponding
real number defined by (3.2) is a normal number in base q.

Similarly, one can show that the conditions of Theorem 2 are satisfied and therefore that
the corresponding real number defined by (3.4) is also a normal number in base q.

7.3 Choosing H(n) as completely multiplicative functions

7.3.1 Considering sets of integers whose prime factors are all congruent to 1
mod D

Fix an integer D > 3 and consider the completely multiplicative function H(n) defined on
primes p by

_J 1 ifp=1 (mod D),
H(p) = { 0 otherwise.

Applying Proposition 4 with f(n) = H(n), we find that, as x — oo,

ne-)"

p<z p

(74) >_Hn) = <1f(77~) +0(1>> oer

n<x

Now, setting po := {p € p: f(p) = H(p) = 1}, we have that, in light of Proposition 2,

(7.5) Si= % L= (14 o(1)) —— %

= - o(D)logx’
PEPO p=1 (mod D)
so that, as v — oo,
(7.6) Z oL loglogz + Cy + o(1)
~p ¢D)
PEPQ

for some constant Cy. Hence, using (7.6), we have, as © — oo,

n(-22) - 1 (-3) ] )

p<x p<z
PEPQ PERQ



1
=expq Y —+Cy+o(l)

p<z
PEPQ

= exp{@logloga:—l—c*g—i—o(l)}

(7.7) = (C4+ o(1))(log z)/*P)

for some constants Cy, C3 and Cy > 0.
Using (7.7) in (7.4), we obtain that

Cye” T

n<x

04 e’

(r)

from which it follows, setting C' = and using the trivial fact that in this case H(n)? =

H(n), that

Zn<:cH2(n)
SH(T) = = 5 = (1 +o(1
(z) (5. H() (1+0(1))

)

implying that condition (3.1) of Theorem 1 is satisfied. On the other hand, to see that the
conditions of Theorem 2 are satisfied, we first observe that H(p)?> = H(p) for all primes p
and that it follows from (7.5) that

(log z)t =1/ ) log =
Cx B x

) @)

1 T
gH(P)Z(lJrO(l))M@ (z — o0),
from which we have that
ty(x) = - = (1—1—0(1))% :0<10g2$> (x — 00)
Zpgx H(p) z z 7

as required. It is then easy to conclude that the conditions of Theorem 2 are satisfied.

The conditions of both Theorems 1 and 2 having been verified for this particular function
H, we may therefore conclude that the corresponding real numbers defined by (3.2) and (3.4)
are normal numbers in base q.

7.3.2 Considering sets of integers generated by particular subsets of primes

Let @ be a set of primes for which there exists a positive constant § < 1 satisfying

#{p<z:pep}=(5+o(l))

— .
log x (z = o)

Then, consider the completely multiplicative function H(n) defined on primes p by

1 ifpeg,
O = { o e

0 otherwise.



Proceeding in a manner similar to the one used in the preceding subsection, we obtain that

> H(n)=(A+o(1))

n<x

X

gyt (17

where A is a computable constant which depends on 4.

Again, proceeding as in preceding subsection, one will reach the conclusion that with
this particular function H(n), the corresponding real numbers defined by (3.2) and (3.4) are
normal numbers in base q.
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