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Abstract

Given an integer q ≥ 2, let Aq := {0, 1, . . . , q − 1} be the set of base q digits.
We say that α = a1 . . . ak, where each ai ∈ Aq, is a word of length λ(α) = k. Let
H(1), H(2), . . . be a sequence of nonnegative integers and given a sequence of words

α1, α2, . . ., we examine under which conditions the number 0.α
H(1)
1 α

H(2)
2 . . . (where

αrj = αj . . . αj︸ ︷︷ ︸
r times

) is a normal number in base q.

AMS subject classification numbers: 11K16
Key words and phrases: normal numbers

1 Introduction

Fix an integer q ≥ 2 and let Aq := {0, 1, . . . , q − 1} be the set of base q digits. We say that
α = a1 . . . ak, where each ai ∈ Aq, is a word of length λ(α) = k.

Let β = α1α2 . . . be an infinite concatenation of words αi’s, which we write as β = j1j2 . . .,

where each ji ∈ Aq. Then, ξ = ξ(β) :=
∞∑
ν=1

jν
qν

is a q-ary normal number if the sequence of

fractional parts {qkξ}k≥1 is uniformly distributed in [0, 1] (see Theorem 8.1 in Kuipers and
Niederreiter [3]).

Over the past decade, we created several new families of normal numbers [2].
Here, we expose a new approach for creating normal numbers. To do so, we first let

H(1), H(2), H(3), . . . be a sequence of natural numbers and then, given a sequence of words

α1, α2, . . ., we examine under which conditions the number 0.α
H(1)
1 α

H(2)
2 . . . (where αrj =

αj . . . αj︸ ︷︷ ︸
r times

) is a normal number in base q.

2 Background results

In a 1994 paper, Bassily [1] generalized to polynomials a result which originally applied only
to the sum of digits function. To explain his result, we introduce additional notation. Let q
and Aq be as above. Then, every nonnegative integer n can be written as

n =
∞∑
r=0

ar(n)qr, where each ar(n) ∈ Aq.

1The research work of the first author was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.
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Clearly, the above sum is finite, since ar(n) = 0 if r > (log n)/(log q). Bassily investigated
digital functions α(n) which depend on the digital blocks of length k. More precisely, given
k ∈ N and a function Fk : Akq → R which satisfies the condition Fk(0, . . . , 0) = 0, consider
the function

α(n) :=
∞∑
j=0

Fk (aj(n), aj+1(n), . . . , aj+k−1(n)) ,

that is, a kind of generalisation of the sum of digits function. Further setting

M :=
1

qk

∑
(b0,...,bk−1)∈Ak

q

Fk(b0, . . . , bk−1),

Bassily showed [1] that

α(n) = (1 + o(1))M
log n

log q
(n→∞),

except perhaps on a set of density 0. Let π(x) stand for the number of primes not exceeding
x. In his paper, Bassily also proved the following theorem.

Theorem A. (Bassily) Let q ≥ 2 be a fixed integer. Let P (x) = crx
r + · · · + c1x + c0 be

a polynomial with integer coefficients taking on positive values for all x > 0 and such that
gcd(cr, q) = 1. Then,

∑
n≤x

(
α(P (n))−Mr

log x

log q

)2

� x log x,

∑
p≤x

(
α(P (p))−Mr

log x

log q

)2

� π(x) log x.

Let q and P (x) be as in the statement of Theorem A, and further let 2 = p1 < p2 < · · ·
be the sequence of all primes. Moreover, let η1 and η2 be the real numbers whose q-ary
expansions are given by

η1 = 0.P (1)P (2)P (3)P (4) . . . P (n) . . .

η2 = 0.P (2)P (3)P (5)P (7) . . . P (pn) . . . ,

where n stands for the concatenation of the base q digits of n. Bassily proved that η1 and
η2 are normal numbers in base q.

Moreover, fix k ∈ N and a word γ ∈ Akq , that is, a word made of k base q digits. Then,
given an arbitrary word β made of base q digits, we define ωγ(β) as the number of occurrences
of the subword γ in the word β. Bassily showed that if

(2.1) Γk := {γ = b1b2 . . . bk : bi ∈ Aq for i = 1, . . . , k},
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then,

∑
n≤x

max
γ∈Γk

(
ωγ(P (n))− r

qk
log x

log q

)2

� x log x,(2.2)

∑
p≤x

max
γ∈Γk

(
ωγ(P (p))− r

qk
log x

log q

)2

� π(x) log x.(2.3)

Now, before we state our main results, we introduce two new functions as follows. Given
an arithmetic function H : N→ N ∪ {0}, consider the two functions

sH(x) :=
∑
n≤x

H2(n)

/(∑
n≤x

H(n)

)2

and tH(x) :=
∑
p≤x

H2(p)

/(∑
p≤x

H(p)

)2

.

3 The main results

Theorem 1. Let q ≥ 2 be a fixed integer. Let P (x) = crx
r+· · ·+c1x+c0 be a polynomial with

integer coefficients taking on nonnegative values for all x > 0 and such that gcd(cr, q) = 1.
Let H(1), H(2), H(3), . . . be a sequence of natural numbers satisfying the condition

(3.1) lim
x→∞

sH(x) · x

log x
= 0.

Then, the number

(3.2) η1 := 0.P (1)
H(1)

P (2)
H(2)

P (3)
H(3)

P (4)
H(4)

. . .

is a q-normal number.

Theorem 2. Let q, P (x) and H(n) be as in Theorem 1. Assuming that

(3.3) lim
x→∞

tH(x) · x

log2 x
= 0,

then,

(3.4) η2 := 0.P (2)
H(2)

P (3)
H(3)

P (5)
H(5)

P (7)
H(7)

. . .

is a q-normal number.

4 Some preliminary results

We start with a classic result in analytic number theory. As is common, ζ(s) stands for the
Riemann Zeta Function.
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Proposition 1. Let f be an arithmetic function and let t be a positive real number. Assume
that, for every real s > 1,

∞∑
n=1

f(n)

ns
= ζt(s)

∞∑
n=1

g(n)

ns
,

where g is such that
∞∑
n=1

g(n)

n
converges absolutely. Then,

∑
n≤x

f(n) = (c+ o(1))x logt−1 x (x→∞),

where c =
1

Γ(t)

∞∑
n−1

g(n)

n
.

Proof. This is a particular case of Theorem 2 in the 1954 paper of Atle Selberg [5].

Let φ stand for the Euler totient function. The following is often called the prime number
theorem for arithmetic progressions.

Proposition 2. Given two coprime integers k ≥ 1 and `, let π(x; k, `) := #{p ≤ x : p ≡ `
(mod k)}. Then,

π(x; k, `) = (1 + o(1))
1

φ(k)

x

log x
(x→∞).

Proof. See Theorems 5.11 and 5.14 in the book of Narkiewicz [4].

We now recall a 1961 result of Wirsing [6] which we state as a proposition.

Proposition 3. Let f(n) be a real valued non negative multiplicative function satisfying
f(pν) ≤ c1c

ν
2 for all prime powers pν, ν ≥ 2, for some positive constant c1 and c2, with

c2 < 2. Assuming that there exists a positive constant τ for which∑
p≤x

f(p) = (τ + o(1))
x

log x
(x→∞),

then, as x→∞,∑
n≤x

f(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
,

where γ stands for the Euler-Mascheroni constant and Γ(r) is the Gamma function.

The next proposition is an immediate application of Proposition 3.

Proposition 4. Let f be a completely multiplicative function such that f(p) ∈ {0, 1} for all
primes p. Assume that there exists a real number δ ∈ (0, 1) such that∑

p≤x

f(p) = (δ + o(1))
x

log x
(x→∞).

Then, as x→∞, ∑
n≤x

f(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1− f(p)

p

)−1

.
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5 Proof of Theorem 1

Letting Γk be the set defined in (2.1), in order to prove that η1 is a q-normal number, it is
sufficient to prove that

(5.1)
∑
n≤x

H(n) ·max
γ∈Γk

∣∣∣∣ωγ(P (n))− r

qk
log x

log q

∣∣∣∣ = o

(
(log x) ·

∑
n≤x

H(n)

)
(x→∞).

Indeed, we need to show that for most integers n ≤ x, the number of occurrences of P (n) in

the words γ = b1 . . . bk ∈ Akq is asymptotic to
r

qk

⌊
log n

log q

⌋ (
which for large n ≤ x is asymptotic

to r
qk

log x
log q

)
. By proving (5.1), we will have shown that the largest possible difference between

ωγ(P (n)) and r
qk

log x
log q

is on average o(log x), which is sufficient to show that η1 is a q-normal
number.

Now, using the Cauchy-Schwarz inequality, the Bassily result (2.2) and finally the con-
dition (3.1), we obtain that∑

n≤x

H(n) ·max
γ∈Γk

∣∣∣∣ωγ(P (n))− r

qk
log x

log q

∣∣∣∣ ≤ √∑
n≤x

H2(n) · x log x

≤

√√√√x log x · sH(x) ·

(∑
n≤x

H(n)

)2

=
√
x log x ·

√
sH(x) ·

∑
n≤x

H(n)

= o

(
(log x) ·

∑
n≤x

H(n)

)
(x→∞),

thus establishing (5.1) and completing the proof of Theorem 1.

6 Proof of Theorem 2

Theorem 2 will follow if we can prove that

(6.1)
∑
p≤x

H(p) max
j∈Γk

∣∣∣∣ωγ(P (p))− r

qk
log x

log q

∣∣∣∣ = o

(
log x ·

∑
p≤x

H(p)

)
(x→∞).

Proceeding esentially as in the proof of Theorem 1, one can see that (6.1) is a consequence
of (3.3), from which the proof of Theorem 2 follows.

7 Applications

We now identify some particular types of functions H(n) for which Theorems 1 and 2 apply.
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7.1 Choosing H(n) to be a polynomial

Let Q(x) ∈ R[x] be a polynomial of degree d ≥ 1, and set H(n) := b|Q(n)|c for each n ∈ N.
In this case, ∑

n≤N

H(n) ≈ Nd+1 and
∑
n≤x

H2(n) ≈
∑
n≤x

n2d ∼ x2d+1.

Hence, (∑
n≤x

H(n)

)2

≈

(∑
n≤x

nd

)2

≈ (xd+1)2 = x2d+2,

from which it follows that condition (3.1) is satisfied, implying that the corresponding real
number defined by (3.2) is indeed a normal number in base q.

Following essentially the same kind of reasoning, one easily sees that the conditions of
Theorem 2 are also satisfied and therefore that the corresponding real number defined by
(3.4) is a normal number in base q.

7.2 Choosing H(n) to be a multiplicative function

Let H0 be an arithmetic multiplicative function such that H0(p) = w for all primes p,
where 1 < w < 2, and also such that H0(pr) < r + 1 for each prime power pr. Then, set
H(n) := bH0(n)c for every n ∈ N. In order to show that condition (3.1) holds, we will prove
that

(7.1) lim
x→∞

SH0(x) · x

log x
= 0.

and

(7.2) lim
x→∞

sH0(x)

sH(x)
= 1.

First observe that for <s > 1,

∞∑
n=1

H0(n)

ns
=

∏
p

(
1 +

w

ps
+
∑
r≥2

H0(pr)

prs

)
= ζ(s)wA1(s),

∞∑
n=1

H2
0 (n)

ns
= ζ(s)w

2

A2(s),

where A1(s) and A2(s) are two holomorphic functions bounded in the half plane <s > 1− δ,
where δ > 0 is a suitable small number, with A1(1) 6= 0 and A2(1) 6= 0. Then, it follows
from Proposition 1 that there exist positive constants c1 and c2 such that, as x→∞,∑

n≤x

H0(n) = (1 + o(1))c1x logw−1 x,∑
n≤x

H2
0 (n) = (1 + o(1))c2x logw

2−1 x,
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from which it follows that

(7.3) sH0(x) = (1 + o(1))
c2x logw

2−1 x

c2
1x

2 log2(w−1) x
= (1 + o(1))

c2

c2
1

log(w−1)2 x

x
(x→∞).

Since (w − 1)2 < 1, it is clear that (7.3) implies condition (7.1). On the other hand, since
H(n) = H0(n) +O(1), it follows that

H2(n) = H2
0 (n) +O(H0(n)) +O(1),

which combined with (7.3) implies (7.2). From this, condition (3.1) is proved.
Hence, it follows that the conditions of Theorem 1 is satisfied, so that the corresponding

real number defined by (3.2) is a normal number in base q.
Similarly, one can show that the conditions of Theorem 2 are satisfied and therefore that

the corresponding real number defined by (3.4) is also a normal number in base q.

7.3 Choosing H(n) as completely multiplicative functions

7.3.1 Considering sets of integers whose prime factors are all congruent to 1
mod D

Fix an integer D ≥ 3 and consider the completely multiplicative function H(n) defined on
primes p by

H(p) :=

{
1 if p ≡ 1 (mod D),
0 otherwise.

Applying Proposition 4 with f(n) = H(n), we find that, as x→∞,

(7.4)
∑
n≤x

H(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1− f(p)

p

)−1

.

Now, setting ℘0 := {p ∈ ℘ : f(p) = H(p) = 1}, we have that, in light of Proposition 2,

(7.5)
∑
p≤x
p∈℘0

1 =
∑
p≤x

p≡1 (mod D)

1 = (1 + o(1))
1

φ(D)

x

log x
,

so that, as x→∞,

(7.6)
∑
p≤x
p∈℘0

1

p
=

1

φ(D)
log log x+ C1 + o(1)

for some constant C1. Hence, using (7.6), we have, as x→∞,

∏
p≤x

(
1− f(p)

p

)−1

=
∏
p≤x
p∈℘0

(
1− 1

p

)−1

= exp

−
∑
p≤x
p∈℘0

log

(
1− 1

p

)
7



= exp


∑
p≤x
p∈℘0

1

p
+ C2 + o(1)


= exp

{
1

φ(D)
log log x+ C3 + o(1)

}
= (C4 + o(1))(log x)1/φ(D)(7.7)

for some constants C2, C3 and C4 > 0.
Using (7.7) in (7.4), we obtain that∑

n≤x

H(n) =

(
C4e

γr

Γ(r)
+ o(1)

)
x

(log x)1−1/φ(D)
(x→∞),

from which it follows, setting C =
C4e

γr

Γ(r)
and using the trivial fact that in this case H(n)2 =

H(n), that

sH(x) =

∑
n≤xH

2(n)(∑
n≤xH(n)

)2 = (1 + o(1))
(log x)1−1/φ(D)

Cx
= o

(
log x

x

)
(x→∞),

implying that condition (3.1) of Theorem 1 is satisfied. On the other hand, to see that the
conditions of Theorem 2 are satisfied, we first observe that H(p)2 = H(p) for all primes p
and that it follows from (7.5) that∑

p≤x

H(p) = (1 + o(1))
1

φ(D)

x

log x
(x→∞),

from which we have that

tH(x) =
1∑

p≤xH(p)
= (1 + o(1))

φ(D) log x

x
= o

(
log2 x

x

)
(x→∞),

as required. It is then easy to conclude that the conditions of Theorem 2 are satisfied.
The conditions of both Theorems 1 and 2 having been verified for this particular function

H, we may therefore conclude that the corresponding real numbers defined by (3.2) and (3.4)
are normal numbers in base q.

7.3.2 Considering sets of integers generated by particular subsets of primes

Let ℘ be a set of primes for which there exists a positive constant δ < 1 satisfying

#{p ≤ x : p ∈ ℘} = (δ + o(1))
x

log x
(x→∞).

Then, consider the completely multiplicative function H(n) defined on primes p by

H(p) :=

{
1 if p ∈ ℘,
0 otherwise.
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Proceeding in a manner similar to the one used in the preceding subsection, we obtain that∑
n≤x

H(n) = (A+ o(1))
x

(log x)1−δ (x→∞),

where A is a computable constant which depends on δ.
Again, proceeding as in preceding subsection, one will reach the conclusion that with

this particular function H(n), the corresponding real numbers defined by (3.2) and (3.4) are
normal numbers in base q.
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