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Canada.
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Abstract

Given a positive integer n, let ρ1(n) := max{d | n : d ≤
√
n} and

ρ2(n) := min{d | n : d ≥
√
n} stand for the middle divisors of n.

We examine the average value of the quotient log ρ2(n)/ log ρ1(n)
as n runs through the composite integers and of the quo-
tient log ρ1(n)/ log ρ2(n) as n runs through all integers n ≥ 2.
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1 Introduction

Given a positive integer n, let

ρ1(n) := max{d | n : d ≤
√
n} and ρ2(n) := min{d | n : d ≥

√
n}

stand for the middle divisors of n.

1
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2 Middle divisors of an integer

The mean value of ρ2(n) has been established more than 40 years ago as
Tenenbaum [4] proved that

∑
n≤x

ρ2(n) =
π2

12

x2

log x

(
1 +O

(
1

log x

))
.

Recently, we [2] slightly improved and generalised this estimate by showing
that, given any real number a > 0 and any integer k ≥ 1,

∑
n≤x

ρ2(n)a = c0
xa+1

log x
+ c1

xa+1

log2 x
+ · · ·+ ck−1

xa+1

logk x
+O

(
xa+1

logk+1 x

)
,

where, for ` = 0, 1, . . . , k−1, c` = c`(a) =
`!

(a+ 1)`+1

∑̀
j=0

(a+ 1)j(−1)jζ(j)(a+ 1)

j!

with ζ standing for the Riemann zeta function.
On the other hand, finding the mean value of ρ1(n) is not an easy task.

The best known result in that direction is due to Ford [3] as he showed

∑
n≤x

ρ1(n) � x3/2

(log x)δ(log log x)3/2
,

where δ = 1− 1 + log log 2

log 2
≈ 0.086071.

In [2], we provided estimates for
∑
n≤x

ρ2(n)

ρ1(n)
and

∑
n≤x

ρ1(n)

ρ2(n)
.

Here we examine the average value of the quotient
log ρ2(n)

log ρ1(n)
as n runs

through the composite integers and that of the quotient
log ρ1(n)

log ρ2(n)
as n runs

through all integers n ≥ 2.
In what follows, given an integer n ≥ 2, we let P (n) stand for the largest

prime factor of n. For convenience, we set P (1) = 1. Moreover, for 2 ≤ y ≤ x,
let Ψ(x, y) := #{n ≤ x : P (n) ≤ y}. Also, we let ρ(u) stand for the Dickman
function which is defined as the unique continuous function ρ : [0,∞)→ (0, 1]
which is differentiable on [1,∞) and satisfies ρ(u) = 1 for 0 ≤ u ≤ 1 and
uρ′(u) + ρ(u− 1) = 0 for u ≥ 1.

2 Main results

Theorem 1 Set S(x) :=
∑

4≤n≤x
n 6=prime

log ρ2(n)

log ρ1(n)
. Then,

S(x) = x log log x+O(x).
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Theorem 2 Set T (x) :=
∑

2≤n≤x

log ρ1(n)

log ρ2(n)
. Then, for all x sufficient large,

c1 x < T (x) < c2 x, (1)

where

c1 = 1− log 2 +

∫ 2

1

1− log u

u(u+ 1)
du+

∫ ∞
3

u− 1

u+ 1

ρ(u− 1)

u
du ≈ 0.528087,

c2 = 2− 2 log 2 ≈ 0.613706.

3 Preliminary results

The following results will be helpful in the proofs of Theorems 1 and 2.

Proposition 3 For 2 ≤ y ≤ x,

Ψ(x, y)� x exp

{
−1

2

log x

log y

}
.

Proof This upper bound of Ψ(x, y) is due to Tenenbaum (see for instance Théorème
5.1 in his book [5]). �

Proposition 4 Letting u = log x/ log y, we have

Ψ(x, y) = xρ(u) +O

(
x

log y

)
(2 ≤ y ≤ x).

Proof For a proof, see Theorem 9.14 in the book of De Koninck and Luca [1]. �

The following two lemmas will be useful in the proofs of these two theorems.

Lemma 5 Given any integer n ≥ 2, P (n) ≥
√
n if and only if ρ2(n) = P (n).

Proof If n is prime, then the result is obvious. If n is composite and P (n) ≥
√
n,

then all other divisors of n smaller than n must not exceed
√
n, in which case it is

clear that ρ2(n) = P (n). Conversely, if ρ2(n) = P (n), we have
√
n ≤ ρ2(n) = P (n),

which proves our claim. �

Lemma 6 Given any integer n ≥ 2, we have

ρ1(n) ≥
√

n

P (n)
. (2)
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4 Middle divisors of an integer

Proof Clearly, inequality (2) is equivalent to

ρ2(n) ≤
√
nP (n). (3)

First consider the case where P (n) ≥
√
n. In this case, in light of Lemma 5, we have

ρ2(n) = P (n) =
√
P (n)P (n) ≤

√
nP (n),

thus proving (3) in this case. Let us now assume that n1/3 ≤ P (n) <
√
n. In this

case, we have
n

P (n)
>

n√
n

=
√
n

which implies that n/P (n) is a divisor of n which is larger than
√
n, and therefore

that
ρ2(n) ≤ n

P (n)
. (4)

On the other hand, since in this case, n1/3 ≤ P (n), we have successively

n ≤ P 3(n),
n

P 2(n)
≤ P (n),

n2

P 2(n)
≤ nP (n),

which in light of (4) implies that

ρ2(n) ≤ n

P (n)
=

√
n2

P 2(n)
≤
√
nP (n),

thus proving (3) in this case.

It remains to consider the case where P (n) < n1/3. In this case, we may write
n as n = p1p2 · · · pk, where p1 ≥ p2 ≥ · · · ≥ pk are primes and k ≥ 4. Let r be the
smallest positive integer such that p1p2 · · · pr >

√
n. Then, the numbers

A := p1p2 · · · pr−1 and B :=
n

p1p2 · · · pr
are two divisors of n no larger than

√
n and therefore ≥ ρ1(n). If we can show that

we have either

A ≥
√

n

P (n)
or B ≥

√
n

P (n)
, (5)

estimate (2) will follow.

To prove (5), we will show that assuming that A <

√
n

P (n)
implies that

B >

√
n

P (n)
. Indeed, if A <

√
n

P (n)
, we have that

B =
n

Apr
>
n
√
P (n)√
npr

=

√
n
√
P (n)

pr
>

√
n
√
P (n)

P (n)
=

√
n

P (n)
,

thus proving (5) and completing the proof of Lemma 6. �

4 Proof of Theorem 1

As we will see, the main contribution to the sum S(x) comes from those integers
n for which P (n) >

√
n. First we write

S(x) =
∑

6≤n≤x

n 6=prime, n6=m2

log ρ2(n)

log ρ1(n)
+O(

√
x)
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=
∑

6≤n≤x

n6=prime, n6=m2

P (n)<
√

n

log ρ2(n)

log ρ1(n)
+

∑
6≤n≤x

n 6=prime, n6=m2

P (n)>
√

n

log ρ2(n)

log ρ1(n)
+O(

√
x)

= S1(x) + S2(x) +O(
√
x), (6)

say. Clearly, in the first sum, since P (n) <
√
n, we have that

P (n) ≤ ρ1(n) <
√
n and therefore,

S1(x) =
∑
n≤x

n 6=prime, n6=m2

P (n)<
√

n

log n− log ρ1(n)

log ρ1(n)
≤

∑
n≤x

n6=prime, n6=m2

P (n)<
√

n

log n− logP (n)

logP (n)

<
∑
n≤x

n 6=prime, n6=m2

P (n)<
√

x

log n− logP (n)

logP (n)
=
∑
p<
√
x

∑
mp≤x, m≥2

P (m)≤p

log(mp)− log p

log p

=
∑
p<
√
x

1

log p

∑
2≤m≤x/p
P (m)≤p

logm =
∑
p<
√
x

1

log p

∫ x/p

2

log t · dΨ(t, p)

=
∑
p<
√
x

1

log p

log t ·Ψ(t, p)

∣∣∣∣∣
x/p

2

−
∫ x/p

2

Ψ(t, p)
dt

t


<
∑
p<
√
x

log x− log p

log p
Ψ

(
x

p
, p

)

< log x
∑
p<
√
x

1

log p
Ψ

(
x

p
, p

)
= log x · S0(x), (7)

say. Using Proposition 3, we find that

S0(x) �
∫ √x
2

1

log2 t
Ψ
(x
t
, t
)
dt

�
∫ √x
2

1

log2 t

x

t
exp

{
−1

2

log x− log t

log t

}
dt

� x

∫ 1
2 log x

log 2

1

u2 exp{ 12
log x
u }

du, (8)

where we used the change of variable u = log t. Now, it is clear that the

function f(u) :=
1

u2 exp{ 12
log x
u }

is increasing at u = log 2 and decreasing at

u = 1
2 log x, reaching its maximum value in between these two values. In order

to find this maximum, we set g(u) := log f(u) = −2 log u − 1
2
log x
u and search
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for which value of u we have g′(u) = 0. Since

g′(u) = − 2

u
+

1

2

log x

u2
,

we easily see that g′(u) = 0 when u = log x/4. Since

f

(
log x

4

)
=

(
e2

16
· log2 x

)−1
,

we conclude from (8) that

S0(x) � x

(
1

2
log x− log 2

)
max

log 2≤u≤ 1
2 log x

f(u)

= x

(
1

2
log x− log 2

)(
e2

16
· log2 x

)−1
� x

log x
.

Using this last bound in (7), we obtain that

S1(x)� x. (9)

It remains to estimate S2(x). Using Lemma 5, we may write

S2(x) =
∑

6≤n≤x, n6=prime

P (n)>
√

n

logP (n)

log n− logP (n)

=
∑

6≤n≤x, n6=prime

P (n)>
√

x

logP (n)

log n− logP (n)
− E(x), (10)

where E(x) accounts for the error introduced by replacing the condition
P (n) >

√
n by P (n) >

√
x, that is,

E(x) =
∑

6≤n≤x, n6=prime√
n<P (n)<

√
x

log ρ2(n)

log ρ1(n)
.

Observing that log ρ2(n)/ log ρ1(n) < 2 log n for all composite integers n > 1,
it follows that, as x→∞,

E(x) <
∑

6≤n≤x/ log2 x, n6=prime√
n<P (n)<

√
x

2 log n+
∑

x/ log2 x<n≤x, n6=prime√
n<P (n)<

√
x

logP (n)

log n− logP (n)

≤ 2 log x · x

log2 x
+

∑
x/ log2 x<n≤x, n6=prime√

x/ log x<P (n)<
√

x

logP (n)

log n− logP (n)
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� x

log x
+

∑
√

x
log x<p<

√
x

∑
x

log2 x
<mp≤x

P (m)≤p

log p

logm

<
x

log x
+

∑
√

x
log x<p<

√
x

log p
∑

x
p log2 x

<m≤ x
p

1

logm

<
x

log x
+

∑
√

x
log x<p<

√
x

log p

log x− log p− 2 log log x
· x
p

� x

log x
+

x

log x

∑
√

x
log x<p<

√
x

log p

p
� x

log x
log log x = o(x). (11)

We now move to estimate

S̃2(x) :=
∑

n≤x, n6=prime

P (n)>
√

x

logP (n)

log n− logP (n)
.

We have

S̃2(x) =
∑

√
x<p≤x/2

∑
mp≤x, m≥2

P (m)≤p

log p

log(mp)− log p
=

∑
√
x<p≤x/2

log p
∑

2≤m≤x/p
P (m)≤p

1

logm

=
∑

√
x<p≤x/2

log p

∫ x/p

2

1

log t
dΨ(t, p)

=
∑

√
x<p≤x/2

log p

Ψ(t, p)

log t

∣∣∣∣∣
x/p

2

+

∫ x/p

2

Ψ(t, p)

t log2 t
dt

 . (12)

In the range
√
x < p ≤ x/2, it is clear that for t ∈ [2, x/p], we have

t ≤ x/p <
√
x, implying that Ψ(t, p) = t. Using this in (12), we find that

S̃2(x) =
∑

√
x<p≤x/2

x log p

p log(x/p)
+

∑
√
x<p≤x/2

log p

∫ x/p

2

1

log2 t
dt

= S3(x) + S4(x), (13)

say. On the one hand,

S3(x) =

(
1 +O

(
1

log x

))∫ x/2

√
x

x

t
· 1

log(x/t)
dt

=

(
1 +O

(
1

log x

))
I3(x), (14)
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say. By using the change of variable u = x/t, we obtain

I3(x) = x

∫ √x
2

du

u log u
= x log log x+O(x). (15)

Using (15) in (14), we find that

S3(x) = x log log x+O(x). (16)

On the other hand, it is immediate that

S4(x)�
∑

√
x<p≤x/2

log p · x
p
· 1

log2(x/p)
�
∫ x/2

√
x

x

t
· 1

log2(x/t)
dt.

Again, using the change of variable u = x/t, we obtain

S4(x)� x

∫ √x
2

du

u log2 u
du = O(x). (17)

Gathering estimates (16) and (17) in (13), we get

S̃2(x) = x log log x+O(x). (18)

Putting (18) and (11) in (10) yields

S2(x) = x log log x+O(x). (19)

Using (9) and (19) in (6) completes the proof of Theorem 1.

5 Proof of Theorem 2

We begin by splitting the sum T (x) as follows.

T (x) =
∑

2≤n≤x

P (n)>
√

x

log ρ1(n)

log ρ2(n)
+

∑
2≤n≤x

P (n)≤
√

x

log ρ1(n)

log ρ2(n)

= T1(x) + T2(x), (20)

say.
We first establish that

T1(x) = (1− log 2)x+O

(
x

log x

)
. (21)
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Indeed, in light of Lemma 5, we have that

T1(x) =
∑

√
x<p≤x

∑
mp≤x

P (m)≤p

log(mp)− log p

log p

=
∑

√
x<p≤x

1

log p

∑
m≤x/p
P (m)≤p

logm =
∑

√
x<p≤x

1

log p

∫ x/p

1

log t · dΨ(t, p)

=
∑

√
x<p≤x

1

log p

log t ·Ψ(t, p)

∣∣∣∣∣
x/p

1

−
∫ x/p

1

Ψ(t, p)

t
dt


=

∑
√
x<p≤x

1

log p

{
log(x/p)Ψ(x/p, p)−

∫ x/p

1

dt

}

=
∑

√
x<p≤x

1

log p
· log(x/p) · x

p
− x

∑
√
x<p≤x

1

p log p

= T ′1(x) + T ′′1 (x), (22)

say, where once more, we used the fact that, because
√
x < p ≤ x/2

and t ∈ [2, x/p], we have t ≤ x/p <
√
x, implying that in those ranges,

Ψ(x/p, p) = x/p and Ψ(t, p) = t. Now, it is clear that

T ′′1 (x)� x

∫ x

√
x

1

t log2 t
dt = x

−1

log t

∣∣∣∣∣
x

√
x

� x

log x
. (23)

On the other hand, letting π(x) stand for the number of prime num-
bers not exceeding x and using the prime number theorem in the form
π(x) = x/ log x+O(x/ log2 x), we have

T ′1(x) =

∫ x

√
x

1

log t

x

t
log
(x
t

)
dπ(t)

=
1

log t

x

t
log
(x
t

)
π(t)

∣∣∣∣∣
x

√
x

−
∫ x

√
x

π(t)
d

dt

(
1

log t
· x
t
· log

(x
t

))
dt

=
x

log2 t
log
(x
t

) ∣∣∣∣∣
x

√
x

+

∫ x

√
x

π(t)
x

t2
1

log t
log
(x
t

)(
1 +O

(
1

log x

))
dt

= O

(
x

log x

)
+

∫ x

√
x

t

log t

(
1 +O

(
1

log t

))
x

t2
1

log t
log
(x
t

)
dt

= O

(
x

log x

)
+

(
1 +O

(
1

log x

))∫ x

√
x

1

log2 t

x

t
log
(x
t

)
dt. (24)
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Using the change of variable u = x/t in this last integral, we obtain

I(x) :=

∫ x

√
x

1

log2 t

x

t
log
(x
t

)
dt =

∫ √x
1

log u

log2(x/u)

x

u
du.

Doing yet another change of variable, this time setting w = log x−log u, we get

I(x) = x

∫ log x

1
2 log x

log x− w
w2

dw = x(1− log 2).

Substituting this value of I(x) in (24), we obtain

T ′1(x) = (1− log 2)x+O

(
x

log x

)
. (25)

Combining (23) and (25) in (22) proves (21).

We will now prove that(∫ 2

1

1− log u

u(u+ 1)
du+

∫ ∞
3

u− 1

u+ 1

ρ(u− 1)

u
du

)
x+O

(
x

log x
log log x

)
< T2(x) < (1− log 2)x+O

(
x

log x

)
. (26)

First, the lower bound. For this, we split the sum T2(x) as follows.

T2(x) =
∑

2≤n≤x

n1/3≤P (n)<
√

x

log ρ1(n)

log ρ2(n)
+

∑
2≤n≤x

P (n)<n1/3

log ρ1(n)

log ρ2(n)
= U1(x) + U2(x), (27)

say.
Since in U1(x), we count those integers n ∈ [2, x] for which P (n) <

√
n, it

follows from the inequalities P (n) ≤ ρ1(n) <
√
n that

U1(x) =
∑

2≤n≤x

n1/3≤P (n)<
√

x

logP (n)

log n− logP (n)

=
∑

x1/3≤p<
√
x

∑
mp≤x

P (m)≤p

log p

log(mp)− log p
− E2(x), (28)

where

E2(x) =
∑

n1/3≤p<x1/3

∑
mp≤x

P (m)≤p

log p

log(mp)− log p
.
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To show that E2(x) is “small” compared to the main term in (28), we proceed
essentially along the same lines as with the evaluation of E(x) in (11), that is by
first putting aside those n ≤ x which are larger that x/ log x, thus introducing
an error no larger than x/ log x, so that we may write that

E2(x) � x

log x
+

∑
( x

log x )
1/3≤p<x1/3

∑
mp≤x

P (m)≤p

1

≤ x

log x
+

∑
( x

log x )
1/3≤p<x1/3

x

p

=
x

log x
+ x

(
log log x1/3 − log log

((
x

log x

)1/3
)

+O

(
1

log x

))

� x log log x

log x
. (29)

Getting back to the double sum in (28), we have

∑
x1/3≤p<

√
x

∑
mp≤x

P (m)≤p

log p

log(mp)− log p
=

∑
x1/3≤p<

√
x

log p
∑

2≤m≤x/p
P (m)≤p

1

logm

=
∑

x1/3≤p<
√
x

log p

∫ x/p

2

1

log t
dΨ(t, p)

=
∑

x1/3≤p<
√
x

log p

Ψ(t, p)

log t

∣∣∣∣∣
x/p

2

+

∫ x/p

2

Ψ(t, p)

t log2 t
dt


>

∑
x1/3≤p<

√
x

log p

log(x/p)
Ψ(x/p, p)

= U ′1(x), (30)

say.
Using Proposition 4, it follows that

U ′1(x) =
∑

x1/3≤p<
√
x

log p

log(x/p)

(
x

p
ρ

(
log x

log p
− 1

)
+O

(
x

p log p

))

=
∑

x1/3≤p<
√
x

log p

log(x/p)

x

p
ρ

(
log x

log p
− 1

)
+O

 ∑
x1/3≤p<

√
x

x/p

log(x/p)


=

∫ √x
x1/3

log t

log(x/t)

x

t
ρ

(
log x

log t
− 1

)
d π(t) +O

 x

log x

∑
x1/3≤p<

√
x

1

p
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=

∫ √x
x1/3

1

log(x/t)

x

t
ρ

(
log x

log t
− 1

)(
1 +O

(
1

log t

))
dt+O

(
x

log x

)
= x

(
1 +O

(
1

log x

))∫ 3

2

ρ(u− 1)

(u− 1)u
du+O

(
x

log x

)
, (31)

where we used the change of variable u = log x/ log t. Using (31) in (30) and
taking into account (29), it follows from estimate (28) that

U1(x) > x

∫ 2

1

ρ(u)

u(u+ 1)
du+O

(
x

log x

)
= x

∫ 2

1

1− log u

u(u+ 1)
du+O

(
x

log x

)
.

(32)
As for the second sum in (27), we have, in light of Lemma 6,

U2(x) =
∑

2≤n≤x

P (n)<n1/3

log ρ1(n)

log n− log ρ1(n)
≥

∑
2≤n≤x

P (n)<n1/3

1
2 log n− 1

2 logP (n)
1
2 log n+ 1

2 logP (n)

=
∑

p<x1/3

∑
mp≤x

P (m)≤p

logm

logm+ 2 log p
− E3(x), (33)

where E3(x) accounts for the error term created by counting those integers
n ∈ [2, x] such that n1/3 ≤ P (n) < x1/3. Using the same technique as that
employed earlier to evaluate the size of E2(x), we find that

E3(x)� x log log x

log x
. (34)

We now evaluate the inner sum on the right hand side of (33), writing it as a
Stieltjes integral and thereafter using integration by parts,

∑
m≤x/p
P (m)≤p

logm

logm+ 2 log p
=

∫ x/p

1

log t

log t+ 2 log p
dΨ(t, p)

=
log t

log t+ 2 log p
Ψ(x, p)

∣∣∣∣∣
x/p

1

−
∫ x/p

1

Ψ(t, p)

t

(
1

log t+ 2 log p
+

log t

(log t+ 2 log p)2

)
dt

= A(x, p)−B(x, p), (35)

say.
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On the one hand, observing that for each p < x1/3, we have x2/3 <
x

p
< x

and using Proposition 4, we may write that

∑
p<x1/3

A(x, p) =

(
1 +O

(
1

log x

))∫ x1/3

2

log x− log t

log x+ log t

x

t
ρ

(
log x

log t
− 1

)
dπ(t)

= x

(
1 +O

(
1

log x

))
×
∫ x1/3

2

log x− log t

log x+ log t

1

t log t
ρ

(
log x

log t
− 1

)
dt

= x

∫ ∞
3

1− 1/u

1 + 1/u

ρ(u− 1)

u
du+O

(
x

log x

)
= x

∫ ∞
3

u− 1

u+ 1

ρ(u− 1)

u
du+O

(
x

log x

)
, (36)

where we used the change of variable u = log x/ log t.
To complete our evaluation, we will show that∑

p<x1/3

B(x, p)� x

log x
. (37)

Indeed, first we have

∑
p<x1/3

B(x, p) �
∑

p<x1/3

∫ x/p

2

Ψ(x, p)

t log t
dt

=
∑

p<x1/3

∫ x2/3

2

Ψ(x, p)

t log t
dt+

∑
p<x1/3

∫ x/p

x2/3

Ψ(x, p)

t log t
dt

= I1(x) + I2(x), (38)

say. On the one hand, using Proposition 3, we obtain that

I1(x) �
∑

p<x1/3

∫ x2/3

2

exp

{
−1

2

log t

log p

}
dt

log t

≤
∑

p<x1/3

exp

{
−1

3

log x

log p

}∫ x2/3

2

dt

log t

≤ e−1
∑

p<x1/3

∫ x2/3

2

dt

log t
� π(x1/3)

x2/3

log x
� x

log2 x
, (39)
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where we used the fact that

∫ y

2

dt

log t
� y

log y
and the Chebyshev inequality

π(y)� y/ log y.
On the other hand, again using Proposition 3, we get that

I2(x) �
∑

p<x1/3

1

log x

∫ x/p

x2/3

exp

{
−1

3

log x

log p

}
dt

<
1

log x

∑
p<x1/3

exp

{
−1

3

log x

log p

}
x

p

� x

log x

∫ x1/3

2

exp

{
−1

3

log x

log t

}
dt

t log t
. (40)

Since∫ x1/3

2

exp

{
−1

3

log x

log t

}
dt

t log t
≤
∫ exp(

√
log x)

2

exp

{
−1

3

log x

log t

}
dt

t log t

+

∫ x1/3

exp(
√
log x)

exp

{
−1

3

log x

log t

}
dt

t log t

≤ exp

{
−1

3

√
log x

}∫ exp(
√
log x)

2

dt

t log t

+

∫ 1
3 log x

√
log x

exp

{
−1

3

log x

u

}
du

u

� exp

{
−1

3

√
log x

}
log log e

√
log x

+

∫ √log x

3

1

ve
1
3 v
dv

� exp

{
−1

3

√
log x

}
log log x+O(1) = O(1),

estimate (40) can be replaced by

I2(x)� x

log x
. (41)

Using (39) and (41) in (38), we obtain (37). Then, gathering estimates (36)
and (37) in (35) and taking into account (34), we get from (33) that

U2(x)� x log log x

log x
.

Using this last bound along with inequality (32) in (27) completes the proof
of the first inequality in (26).
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Finally, it follows from Proposition 4 that

T2(x) <
∑
n≤x

P (n)≤
√

x

1 = Ψ(x,
√
x) = xρ(2)+O

(
x

log x

)
= x(1−log 2)+O

(
x

log x

)
,

which establishes the second inequality in (26).
To complete the proof of Theorem 2, we only need to observe that the first

inequality in (1) follows from relations (20), (21) and the first inequality in
(26), whereas the second inequality in (1) follows from relations (20), (21) and
the second inequality in (26).

6 Final remark

Regarding possible improvements to Theorem 2, one might wonder if there
exists a positive constant c such that T (x) = (c+ o(1))x as x→∞. If there is
such a constant c, using a computer to calculate T (x) up to x = 4× 109 seems
to indicate that c is approximately 0.566.
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