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Abstract

Finding elliptic curves with high ranks has been the focus of much research.
Recently, with the goal of generating elliptic curves with a large rank, some
authors used large integers n which have many divisors, amongst which one
can find divisors d such that d + n/d is a perfect square. This strategy is in
itself a motivation for studying the function τ�(n) which counts the number of
divisors d of an integer n for which d+ n/d is a perfect square. We show that∑

n≤x τ�(n) = c�x
3/4 + O(

√
x) for some explicit constant c�. Moreover,

letting ρ1(n) := max{d | n : d ≤
√
n} and ρ2(n) := min{d | n : d ≥

√
n}

stand for the middle divisors of n, we show that the order of magnitude of the
number of positive integers n ≤ x for which ρ1(n) + ρ2(n) is a perfect square
is x3/4/ log x.
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1 The connection with elliptic curves

Let E be an elliptic curve over Q. According to the Mordell-Weil theorem, the set E(Q)
of rational points (x, y) ∈ E is a finitely generated abelian group, whose structure
is given by E(Q) = T

⊕
Zr, where T is a finite torsion group and r is the rank of

the elliptic curve. It is widely believed (but not yet proved) that there is no maximal
rank for an elliptic curve. Nevertheless, the highest rank ever found is 28 (N.D. Elkies,
2006). Since there are no known algorithm for establishing the rank of an elliptic curve,
finding elliptic curves with a large rank can end up being quite a challenge. It is in
this context that in 1974 and 1975, Penney and Pomerance ([7], [8]) had the idea of
considering the group of rational points of the elliptic curve

y2 = x3 + ax2 + bx,

where a, b ∈ Z and a2 − 4b is not a perfect square and then examine those divisors
d of b with the property that d + b/d + a is an integral perfect square. They found
that with an appropriate choice of the integers a and b, they could establish that the
corresponding elliptic curve is of rank 7.

Later, Aguirre, Castañeda, and Peral [1], using a slightly different approach, came
up with an elliptic curve of rank 8. More specifically, they considered the elliptic curve

y2 = x3 +Bx, (1)

where B is a large negative integer with many divisors, amongst which at least two
distinct ones, d1 and d2, are such that the numbers d1 +B/d1 and d2 +B/d2 are both
perfect squares. Then, by choosing

B = −14 752 493 461 692 = −22 · 32 · 7 · 23 · 71 · 113 · 281 · 1129

(which has 576 positive divisors), they identified eight positive divisors d1 < · · · < d8
of B which have the property that di + B/di is a perfect square for i = 1, . . . , 8, and
then, using a clever argument, were able to show that the elliptic curve (1) is of rank 8.

Further exploiting their method, Aguirre, Castañeda, and Peral [2] later found
elliptic curves of rank 13.

The fact that such achievements rely essentially on numbers n with many pairs
of co-divisors d and n/d whose sum is a perfect square is certainly a motivation for
investigating the function n 7→ #{d | n : d + n/d is a square}. On the other hand,
since the numbers

ρ1(n) := max{d | n : d ≤
√
n} and ρ2(n) := min{d | n : d ≥

√
n},

called the middle divisors of n, are of special interest for number theorists (see for
instance the papers of Tenenbaum [10] and Ford [4]), we also investigate the particular
case of those integers n for which ρ1(n) + ρ2(n) is a perfect square.
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2 Main results

Given a divisor d of n, we say that d and n/d are co-divisors of n. We first introduce
the function

τ�(n) := #
{
d | n : d+

n

d
= c2 for some c ∈ N

}
and the sum T (x) :=

∑
n≤x

τ�(n). We also introduce the set

R := {n ∈ N : ρ1(n) + ρ2(n) = c2 for some c ∈ N}

and its counting function R(x) := #{n ≤ x : n ∈ R}.

Our main results are the following.

Theorem 1. With c� :=
4
√

2πΓ(5/4)

3Γ(3/4)
≈ 2.4721, where Γ stands for the Gamma

function, we have
T (x) = c�x

3/4 +O
(√
x
)
,

so that in particular
τ�(n) = 0 a.e.

Theorem 2. Letting c� be defined as in Theorem 1, then for x sufficiently large,

c�
x3/4

log x
< R(x) < 2c�

x3/4

log x
. (2)

3 Preliminary results

Given an integer a ≥ 2, consider the number n = a2 − 1. Since 1 and a2 − 1 are
co-divisors of n and since 1 + a2 − 1 = a2, it follows that τ�(n) ≥ 1 and therefore
that T (x)�

√
x. On the other hand, if a ≥ 3 is an arbitrary odd integer, then there

exists m ∈ N such that a2 = 2m + 1. Setting n = m(m + 1), so that ρ1(n) = m
and ρ2(n) = m + 1, we find that ρ1(n) + ρ2(n) = a2. It then easily follows from this
observation that R(x)�

√
x.

With little effort, we have thus established somewhat weak lower bounds for T (x)
and R(x). Clearly we can do better.

First, some notation and preliminary results. Given an integer n ≥ 2, we let P (n)
stand for its largest prime factor. We let π(x) stand for the number of primes not
exceeding x. In what follows, the letter p will always represent a prime number, so
that in particular we may write π(x) =

∑
p≤x 1. We will often be using the prime

number theorem in the form

π(x) =
x

log x
+R(x), where R(x) = O

(
x

log2 x

)
. (3)

Frequently, given a large number x, we shall encounter sums running over primes
p ≤ x, such as the ones given in the following result.
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Lemma 1. For large X,

(a)
∑
p≤X

√
p =

2

3

X3/2

logX

(
1 +O

(
1

logX

))
.

(b)
∑
p≤X

1
√
p

= 2

√
X

logX

(
1 +O

(
1

logX

))
.

Proof. We start with part (a). We separate the sum in two parts as follows.∑
p≤X

√
p =

∑
p<
√
X

√
p+

∑
√
X≤p≤X

√
p. (4)

On the one hand,

∑
p<
√
X

√
p <

∑
n≤
√
X

√
n�

∫ √X

1

√
t dt� X3/4. (5)

On the other hand, using the representation of a sum as a Stieltjes integral and then
using integration by parts, we obtain

∑
√
X≤p≤X

√
p =

∫ X

√
X

√
t dπ(t) =

√
t π(t)

∣∣∣t=X

t=
√
X
− 1

2

∫ X

√
X

π(t)

t1/2
dt

=
√
t
t

log t

(
1 +O

(
1

log t

))∣∣∣∣t=X

t=
√
X

−1

2

∫ X

√
X

t

log t

(
1 +O

(
1

log t

))
dt

t1/2
, (6)

where we used the prime number theorem in the form (3). Observe that in the above,
the range of t is

√
X ≤ t ≤ X, which means that twice in (6) we may replace(

1 +O

(
1

log t

))
by

(
1 +O

(
1

logX

))
, thereby implying that (6) becomes

∑
√
X≤p≤X

√
p =

X3/2

logX

(
1 +O

(
1

logX

))
− 1

2

X3/2

logX3/2

(
1 +O

(
1

logX

))

=
2

3

X3/2

logX

(
1 +O

(
1

logX

))
. (7)

Substituting the estimates (5) and (7) in (4) completes the proof of part (a).

The proof of part (b) uses the same technique and we will therefore skip it.

The following result already appeared as Lemma 5 in [3]. For the sake of
completeness, we also include its proof here.
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Lemma 2. Given any integer n ≥ 2, P (n) ≥
√
n if and only if ρ2(n) = P (n).

Proof. If n is prime, then the result is obvious. If n is composite and P (n) ≥
√
n, then

all other divisors of n smaller than n must not exceed
√
n, in which case it is clear

that ρ2(n) = P (n). Conversely, if ρ2(n) = P (n), we have
√
n ≤ ρ2(n) = P (n), which

proves our claim.

Lemma 3. For all integers n ≥ 1,

τ�(n) = 2τ0(n) + χ(n),

where
τ0(n) := #

{
d | n : d <

√
n and d+

n

d
= c2

}
and

χ(n) :=

{
1 if n = 24s+2`4 for some integers s ≥ 0 and ` odd,
0 otherwise.

Proof. It is obvious that if n is not a perfect square, then τ�(n) = 2τ0(n). On the other
hand, if n is a perfect square, say n = m2, then in order for n to satisfy m+n/m = c2

for a certain positive integer c, we must have 2
√
n = c2 and therefore 4n = c4. Hence,

c must be even and similarly for n. Writing c = 2r` for certain positive integers r and
` with ` odd, we have 4n = 24r`4, which implies that

n = 24r−2`4 = 24s+2`4 (s ≥ 0),

thus completing the proof of the lemma.

Lemma 4. Let χ(n) be the function defined in the statement of Lemma 3. Then,

∑
n≤x

χ(n) =
x1/4√

2
+O(log x).

Proof. It follows from the definition of χ(n) that∑
n≤x

χ(n) =
∑

24s+2`4≤x
s≥0, `≥1, ` odd

1 =
∑

0≤s≤ 1
4

log x
log 2−

1
2

∑
`4≤x/24s+2

` odd

1

=
∑

0≤s≤ 1
4

log x
log 2−

1
2

(
x1/4

2 · 2s+1/2
+O(1)

)

=
x1/4

2
√

2

∑
0≤s≤ 1

4
log x
log 2−

1
2

1

2s
+O(log x). (8)
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Let us write

∑
0≤s≤ 1

4
log x
log 2−

1
2

1

2s
=

∞∑
s=0

1

2s
−

∑
s> 1

4
log x
log 2−

1
2

1

2s
= 2−

∑
s> 1

4
log x
log 2−

1
2

1

2s
. (9)

It is clear that

∑
s> 1

4
log x
log 2−

1
2

1

2s
�
∫ ∞

log x
4 log 2−

1
2

1

2t
dt = − 1

2t log 2

∣∣∣∣t=∞
t= log x

4 log 2−
1
2

=

√
2

x1/4 log 2
. (10)

Combining the relations (9) and (10), relation (8) becomes

∑
n≤x

χ(n) =
∑

24s+2`4≤x
s≥0, `≥1, ` odd

1 =
x1/4√

2
+O(1) +O(log x) =

x1/4√
2

+O(log x),

which completes the proof of Lemma 4.

Let

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt (Re(x) > 0, Re(y) > 0)

and

Γ(z) :=

∫ ∞
0

tz−1e−tdt (Re(z) > 0)

stand respectively for the Beta function and the Gamma function.

Basic properties of these two functions can be found in Chapter 2 of the book of
Rainville [9]. We will be needing the additional properties detailed in the following
lemma.

Lemma 5. We have

B(x, y) =

∫ 1

0

tx−1 + ty−1

(1 + t)x+y
dt (Re(x) > 0, Re(y) > 0) , (11)

Γ(x+ y) · B(x, y) = Γ(x)Γ(y) (Re(x) > 0, Re(y) > 0) (12)

and

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z) (Re(z) > 0) . (13)

Proof. We begin by establishing relation (11). In the definition of the Beta function,
we make the change of variable t = s/(1 + s) and get

B(x, y) =

∫ ∞
0

(
s

1 + s

)x−1(
1

1 + s

)y−1
1

(1 + s)2
ds =

∫ ∞
0

sx−1

(1 + s)x+y
ds
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=

∫ 1

0

sx−1

(1 + s)x+y
ds+

∫ ∞
1

sx−1

(1 + s)x+y
ds. (14)

Setting s = 1/u in the last integral, we obtain∫ ∞
1

sx−1

(1 + s)x+y
ds = −

∫ 0

1

(1/u)x−1(1/u)2

(1 + 1/u)x+y
du =

∫ 1

0

ux+y−1−x

(1 + u)x+y
du =

∫ 1

0

uy−1

(1 + u)x+y
du.

Using this last relation in (14), we immediately obtain (11).

To prove (12), we first expand its right hand side as follows.

Γ(x)Γ(y) =

∫ ∞
0

tx−1e−t dt ·
∫ ∞
0

ry−1e−r dr =

∫ ∞
0

∫ ∞
0

tx−1ry−1e−(t+r) dr dt. (15)

We introduce the variables u and v defined by u = t+ r and v = t/(t+ r), imposing
new limits of integration for u and v, namely with u going from 0 to ∞, and v going
from 0 to 1. Thus, taking into account that the Jacobian appearing in the integrand
is equal to |∆|, where

∆ :=

∣∣∣∣ ∂t
∂u

∂t
∂v

∂r
∂u

∂r
∂v

∣∣∣∣ = −uv − u(1− v) = −u,

relation (15) becomes

Γ(x)Γ(y) =

∫ 1

0

∫ ∞
0

(uv)x−1(u(1− v))y−1e−(uv+u(1−v))u du dv

=

∫ 1

0

∫ ∞
0

ux+y−1vx−1(1− v)y−1e−u du dv

=

∫ 1

0

vx−1(1− v)y−1 dv ·
∫ ∞
0

ux+y−1e−u du

= B(x, y) · Γ(x+ y),

thus completing the proof of (12).

Relation (13) is known as the Legendre duplication formula and its original proof
can be found in the 1809 paper of Legendre [5]. For the sake of completeness, we
provide here a classical proof which in fact uses the first two identities of this lemma.
First, we choose x = z and y = z in formula (12) and thereafter use identity (11)
which gives

Γ(z)2 = Γ(2z)

∫ 1

0

tz−1(1− t)z−1 dt.

Replacing t by (s+ 1)/2 in the above integral, we obtain

Γ(z)2 = Γ(2z)

∫ 1

−1

(
1 + s

2

)z−1(
1− s

2

)z−1
ds

2
=

Γ(2z)

22z−1

∫ 1

−1
(1− s2)z−1 ds.
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Rearranging this last formula, we get

22z−1Γ(z)2 = 2Γ(2z)

∫ 1

0

(1− s2)z−1 ds. (16)

If we make the change of variable t = s2 in the integral appearing in (11), we obtain

B(x, y) =

∫ 1

0

s2x−2(1− s2)y−1 2s ds = 2

∫ 1

0

s2x−1(1− s2)y−1 ds.

Replacing x by 1/2 and y by z in the above, we get that

B(1/2, z) = 2

∫ 1

0

(1− s2)z−1 ds. (17)

Combining (16) and (17), and thereafter using (12), we find

22z−1Γ(z)2 = Γ(2z)
Γ(1/2)Γ(z)

Γ(1/2 + z)
,

which, taking into account the fact that Γ(1/2) =
√
π, completes the proof of (13).

The following are standard identities in real analysis.
Lemma 6. In a neighborhood of t = 0, we have the two series expansion

(a)
√

1 + t = 1 +
t

2
− 1

8
t2 +O(t3),

(b)
1√

1 + t
= 1− t

2
+

3

8
t2 +O(t3).

4 Proof of Theorem 1

In light of Lemmas 3 and 4, we have∑
n≤x

τ�(n) = 2
∑
n≤x

τ0(n) +O(x1/4). (18)

Observe that τ0(n) counts the number of ways that one can write n as n = k(a2 − k)
for some positive integer a with k ∈ N satisfying k < a2 − k, that is,

a2 > 2k. (19)
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We are interested in counting those n ≤ x for which n = k(a2 − k) ≤ x, that is,
a2 − k ≤ x/k. This amounts to counting those positive integers a for which

a2 ≤ x

k
+ k. (20)

Thus it is clear that in light of (19) and (20), we may write that∑
n≤x

τ0(n) =
∑

1≤k<
√
x

∑
√
2k<a≤

√
x
k+k

1

=
∑

1≤k<
√
x

(⌊√
x

k
+ k

⌋
−
⌊√

2k
⌋)

=
∑

1≤k<
√
x

√
x

k
+ k −

∑
1≤k<

√
x

√
2k +O

(√
x
)

=

∫ √x

1

√
x

u
+ u du−

∫ √x

1

√
2u du+O(

√
x)

= S1(x)− S2(x) +O(
√
x), (21)

say, where the error term O(
√
x) accounts for replacing

(⌊√
x

k
+ k

⌋
−
⌊√

2k
⌋)

by√
x

k
+ k −

√
2k. The estimation of S2(x) is very simple since

S2(x) =
√

2
u3/2

3/2

∣∣∣∣u=
√
x

u=1

=
2
√

2

3
x3/4 +O(1). (22)

On the other hand, using integration by parts, we find that

S1(x) =

∫ √x

1

√
u ·
√

1 +
x

u2
du

=
2

3
u3/2

√
1 +

x

u2

∣∣∣∣u=
√
x

u=1

+
2

3
x

∫ √x

1

du

u3/2
√

1 + x
u2

=
2
√

2

3
x3/4 +

2

3
x

∫ √x

1

du

u3/2
√

1 + x
u2

+O(
√
x). (23)

It remains to estimate

I(x) :=
2

3
x

∫ √x

1

du

u3/2
√

1 + x
u2

.
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We have

I(x) =
2

3

√
x

∫ √x

1

du
√
u
√

1 + u2

x

,

and by the change of variable t = u2/x, we obtain

I(x) =
1

3
x3/4

∫ 1

1/x

dt

t3/4
√

1 + t
=

1

3
x3/4

(∫ 1

0

dt

t3/4
√

1 + t
−
∫ 1/x

0

dt

t3/4
√

1 + t

)

=
1

3
x3/4 (J − U(x)) , (24)

say.
To estimate J , we use relation (11) with x = y = 1/4, which gives

J =

∫ 1

0

dt

t3/4
√

1 + t
=

1

2
B(1/4, 1/4). (25)

Then, using (12) and then (13) first with z = 1/4 and then with z = 3/4, we find that

J =
1

2

Γ(1/4)2

Γ(1/2)
=

π
√
π

Γ(3/4)2
=

2
√

2πΓ(5/4)

Γ(3/4)
, (26)

where we used the fact that Γ(1/2) =
√
π and that Γ(3/2) =

1

2
Γ(1/2) =

1

2

√
π. Let us

now evaluate U(x). Using Lemma 6(b), we obtain

U(x) =

∫ 1/x

0

1

t3/4

(
1− t

2
+O(t2)

)
dt =

4

x1/4
+O

(
1

x5/4

)
= O

(
1

x1/4

)
. (27)

Combining (27) and (26) in (24), we obtain

I(x) =
2
√

2πΓ(5/4)

3Γ(3/4)
x3/4 +O(

√
x).

Bringing this last estimate in (23) gives

S1(x) =

(
2
√

2

3
+

2
√

2πΓ(5/4)

3Γ(3/4)

)
x3/4 +O(

√
x). (28)

Finally, combining relations (22) and (28) in (21) and thereafter in (18), the proof of
Theorem 1 is complete.
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5 Proof of Theorem 2

Let x be a large number and let n ∈ R. If n = P (n)2, then n = p2 for some prime
p, in which case we easily obtain that the only number n with this property is n = 4.
Hence, we will examine separately the two sets

R1 =
{
n ∈ R : P (n) >

√
n
}

and R2 =
{
n ∈ R : P (n) <

√
n
}

and estimate the size of their respective counting functions R1(x) and R2(x), so that

R(x) = R1(x) +R2(x) + 1.

5.1 The estimation of R1(x)

Let n ∈ R1, n ≤ x. For such numbers n, in light of Lemma 2, we have ρ2(n) = P (n).
Therefore, setting k = ρ1(n) and p = ρ2(n) = P (n), we may write that n = k · p,
where k ∈ {1, 2, . . . , p− 1} and p+ k = c2 for some positive integer c. Since n ≤ x, we
have n = k · p ≤ x, so that k ≤ x/p. This is why we have

n = k · p ≤ x and p+ k = a square, where 1 ≤ k ≤ α(p, x) := min

(
p− 1,

x

p

)
.

It is clear that the number of perfect squares amongst the numbers

p+ 1, p+ 2, . . . , p+ α(p, x)

is equal to ⌊√
p+ α(p, x)

⌋
−
⌊√

p+ 1
⌋

=
⌊√

p+ α(p, x)
⌋
− b√pc .

This is why

R1(x) =
∑
p≤x

(⌊√
p+ α(p, x)

⌋
− b√pc

)
=
∑
p≤
√
x

(⌊√
2p− 1

⌋
− b√pc

)
+

∑
√
x<p≤x

(⌊√
p+

x

p

⌋
− b√pc

)
= U1(x) + U2(x), (29)

say. On the one hand, since⌊√
2p− 1

⌋
− b√pc =

√
2p− 1−√p+O(1) = (

√
2− 1)

√
p+O(1),

11



it follows, using Lemma 1(a), that

U1(x) =
∑
p≤
√
x

(
√

2− 1)
√
p+O(π(

√
x)) = (

√
2− 1)

∑
p≤
√
x

√
p+O

( √
x

log x

)

=
4

3
(
√

2− 1)
x3/4

log x
+O

(
x3/4

log2 x

)
. (30)

To estimate U2(x), we first write

U2(x) =
∑

√
x<p≤x2/3

(⌊√
p+

x

p

⌋
− b√pc

)
+

∑
x2/3<p≤x

(⌊√
p+

x

p

⌋
− b√pc

)
= T1(x) + T2(x), (31)

say.
We begin by showing that

T2(x)� x2/3

log x
. (32)

To do so, we introduce the function

g(x, p) :=

⌊√
p+

x

p

⌋
− b√pc

and verify that

g(x, p) ∈ {0, 1} for each prime p ∈ I(x) := (x2/3, x]. (33)

Indeed, for each prime p ∈ I(x), setting d := x/p, we have

g(x, p) =
⌊√

p+ d
⌋
− b√pc ≤

√
p+ d−√p+ 1

=
(
√
p+ d−√p)(

√
p+ d+

√
p)

√
p+ d+

√
p

+ 1

≤ d

2
√
p

+ 1. (34)

It is obvious that, for each p ∈ I(x), we have d ≤ x1/3. Therefore, for each p > x2/3, we
have 4p > x2/3, and consequently 2

√
p > x1/3 ≥ d. This last inequality implies that

d

2
√
p
< 1. (35)

Combining (34) and (35), we obtained that g(x, p) < 2, and since g(x, p) is an integer,
it proves (33).

12



In light of (33), we have

g(x, p) =

{
1 if there exists an integer r such that p < r2 ≤ p+

x

p
,

0 otherwise.

Therefore, since T2(x) =
∑

p∈I(x)

g(x, p), the function T2(x) counts the number of

primes p ≤ x for which there exists an integer r such that p < r2 ≤ p + x/p. This is
equivalent to counting the number of integers r for which there exists a prime p such
that p < r2 ≤ p+ x/p. To this effect, we introduce the function

h(x, r) =

{
1 if there exists a prime p such that p < r2 ≤ p+

x

p
,

0 otherwise,

and subdivide the set of primes p ∈ I(x) into disjoint subsets

Ek :=

{
p :

x

k + 1
< p ≤ x

k

}
(k = 1, 2, . . . , bx1/3c).

Now, let p ∈ Ek, k fixed, and assume that there exists an integer r such that
p < r2 ≤ p+ x/p. Then,

p < r2 ≤ p+ x/p =⇒
√

x

k + 1
< r <

√
x

k
+ 2k

=⇒
√

x

k + 1
< r <

√
x

k

√
1 +

2k2

x

=⇒
√

x

k + 1
< r <

√
x

k

(
1 +

k2

x

)
because 1 +

2k2

x
<

(
1 +

k2

x

)2

=⇒
√

x

k + 1
< r <

√
x

k
+
k3/2√
x

=⇒
√

x

k + 1
< r <

√
x

k
+ 1 because k ≤ x1/3

and that

p < r2 ≤ p+ x/p =⇒ r2 − x

p
≤ p < r2 =⇒ r2 − k − 1 < p < r2 =⇒ r2 − k ≤ p < r2.

Gathering these relations, we may write that

T2(x) =
∑

p∈I(x)

g(x, p) =
∑

1≤k≤x1/3

∑
p∈Ek

g(x, p)

13



≤
∑

1≤k≤x1/3

∑
√

x
k+1<r<

√
x
k+1

h(x, r)

≤
∑

1≤k≤x1/3

∑
√

x
k+1<r<

√
x
k+1

∑
r2−k≤p<r2

1

=
∑

1≤k≤x1/3

∑
√

x
k+1<r<

√
x
k+1

(
π(r2)− π(r2 − k)

)
.

Recalling the inequality

π(y + d)− π(y) ≤ 2d

log d
(y, d ≥ 2)

(see formula (4.11) in the book of Montgomery [6]), we have

T2(x) ≤ 2
∑

1≤k≤x1/3

k

log k

∑
√

x
k+1<r<

√
x
k+1

1 ≤ 2
∑

1≤k≤x1/3

k

log k

(√
x

k
−
√

x

k + 1
+ 2

)

= 2
∑

1≤k≤x1/3

k

log k

(√
x

k
−
√

x

k + 1

)
+ 4

∑
1≤k≤x1/3

k

log k

= 2
√
x

∑
1≤k≤x1/3

k

log k

(
1√
k
− 1√

k + 1

)
+O

(
x2/3

log x

)

= 2
√
x

∑
1≤k≤x1/3

k

log k

(√
k + 1−

√
k√

k
√
k + 1

)
+O

(
x2/3

log x

)

= 2
√
x

∑
1≤k≤x1/3

k

log k

(
1

(
√
k
√
k + 1)(

√
k +
√
k + 1)

)
+O

(
x2/3

log x

)

≤
√
x

∑
1≤k≤x1/3

1√
k log k

+O

(
x2/3

log x

)

� x2/3

log x
,

thus proving (32).

Now, for T1(x), we have

T1(x) =
∑

√
x<p≤x2/3

(⌊√
p+

x

p

⌋
− b√pc

)
=

∑
√
x<p≤x2/3

(√
p+

x

p
−√p+O(1)

)

=
∑

√
x<p≤x2/3

(√
p+

x

p
−√p

)
+O

(
π
(
x2/3

))

14



=
∑

√
x<p≤x2/3

√
p

(√
1 +

x

p2
− 1

)
+O

(
x2/3

log x

)

= Z(x) +O

(
x2/3

log x

)
, (36)

say. Writing Z(x) as a Stieltjes integral, integrating by parts and using the fact that,
as a consequence of Lemma 6(b), we have√

1 +
1

x1/3
− 1 = O

(
1

x1/3

)
,

and therefore,

π(x2/3)x1/3

(√
1 +

1

x1/3
− 1

)
= O

(
x2/3

log x

)
,

we obtain

Z(x) =

∫ x2/3

√
x

√
t

(√
1 +

x

t2
− 1

)
dπ(t)

=

(
π(t)
√
t

(√
1 +

x

t2
− 1

)) ∣∣∣∣t=x2/3

t=
√
x

−
∫ x2/3

√
x

π(t)
d

dt

(√
t

(√
1 +

x

t2
− 1

))

= π(x2/3)x1/3

(√
1 +

1

x1/3
− 1

)
− π

(√
x
)
x1/4(

√
2− 1)

−
∫ x2/3

√
x

π(t)

(
1

2
√
t

(√
1 +

x

t2
− 1

)
− x

√
t

t3
√

1 + x
t2

)
dt

= O

(
x2/3

log x

)
− π

(√
x
)
x1/4(

√
2− 1)

− 1

2

(
1 +O

(
1

log x

))∫ x2/3

√
x

√
t

(√
1 +

x

t2
− 1

)
dt

log t

+

(
1 +O

(
1

log x

))∫ x2/3

√
x

x

t3/2
√

1 + x
t2

dt

log t

=O

(
x2/3

log x

)
− 2(
√

2− 1)
x3/4

log x
+O

(
x3/4

log2 x

)
− 1

2

(
1 +O

(
1

log x

))
K1(x) +

(
1 +O

(
1

log x

))
K2(x), (37)

where

K1(x) =

∫ x2/3

√
x

√
t

(√
1 +

x

t2
− 1

)
dt

log t
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and

K2(x) =

∫ x2/3

√
x

x

t3/2
√

1 + x
t2

dt

log t
.

For the evaluation of K2(x), we first set

f2(t) :=
x

t3/2
√

1 + x
t2

and F2(u) :=

∫ u

1

f2(t) dt. (38)

Using integration by parts, we get

K2(x) =
F2(u)

log u

∣∣∣∣u=x2/3

u=
√
x

+

∫ x2/3

√
x

F2(u)

u log2 u
du

=
3

2

F2(x2/3)

log x
− 2

F2(
√
x)

log x
+

∫ x2/3

√
x

F2(u)

u log2 u
du

=
3

2

F2(x2/3)

log x
− 2

F2(
√
x)

log x
+ L(x), (39)

say. Since
√
x ≤ u ≤ x2/3,

L(x) =

∫ x2/3

√
x

(∫ x2/3

1

f2(t) dt−
∫ x2/3

u

f2(t) dt

)
du

u log2 u

= F2(x2/3)

∫ x2/3

√
x

du

u log2 u
−
∫ x2/3

√
x

(∫ x2/3

u

f2(t) dt

)
du

u log2 u

= F2(x2/3)

(
− 1

log u

∣∣∣∣u=x2/3

u=
√
x

)
−
∫ x2/3

√
x

(∫ x2/3

u

f2(t) dt

)
du

u log2 u

=
1

2

F2(x2/3)

log x
−
∫ x2/3

√
x

(∫ x2/3

u

f2(t) dt

)
du

u log2 u
. (40)

Observe that ∫ x2/3

u

f2(t) dt = x

∫ x2/3

u

1

t3/2
√

1 + x
t2

dt ≤ x
∫ x2/3

u

1

t3/2
dt

= x

(
− 2√

x

∣∣∣∣t=x2/3

t=u

)
≤ 2

x√
u
,

from which it follows that∫ x2/3

√
x

(∫ x2/3

u

f2(t) dt

)
du

u log2 u
≤ 2

∫ x2/3

√
x

x

u3/2 log2 u
du� x

log2 x

∫ x2/3

√
x

1

u3/2
du

16



� x3/4

log2 x
,

and therefore that (40) can be replaced by

L(x) =
1

2

F2(x2/3)

log x
+O

(
x3/4

log2 x

)
.

Using this last estimate in (39), we obtain

K2(x) = 2
F2(x2/3)

log x
− 2

F2(
√
x)

log x
+O

(
x3/4

log2 x

)
. (41)

We already know from (25) that

F2(
√
x) =

1

4
B(1/4, 1/4)x3/4 +O(

√
x). (42)

By a calculation similar to the one done in (24), we have

F2(x2/3) =
1

2
x3/4

∫ x1/3

1/x

1

t3/4
√

1 + t
dt

=
1

2
x3/4

(∫ ∞
0

1

t3/4
√

1 + t
dt−

∫ 1/x

0

1

t3/4
√

1 + t
dt−

∫ ∞
x1/3

1

t3/4
√

1 + t
dt

)

=
1

2
x3/4

(∫ ∞
0

1

t3/4
√

1 + t
dt−

∫ ∞
x1/3

1

t3/4
√

1 + t
dt

)
+O(

√
x). (43)

We can easily see that∫ ∞
x1/3

1

t3/4
√

1 + t
dt ≤

∫ ∞
x1/3

1

t5/4
dt =

4

x1/12
, (44)

and it follows from Lemma 5 that∫ ∞
0

1

t3/4
√

1 + t
dt = B(1/4, 1/4). (45)

Hence, using (44) and (45) in (43), we obtain

F2(x2/3) =
1

2
B(1/4, 1/4)x3/4 +O(

√
x). (46)

Using (42) and (46) in (41) gives

K2(x) =
1

2
B(1/4, 1/4)

x3/4

log x
+O

(
x3/4

log2 x

)
. (47)
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Similarly, for the evaluation of K1(x), we set

f1(t) :=
√
t

(√
1 +

x

t2
− 1

)
and F1(u) :=

∫ u

1

f1(t) dt. (48)

Integrating by parts as we did before, we get

K1(x) = 2
F1(x2/3)

log x
− 2

F1(
√
x)

log x
−
∫ x2/3

√
x

(∫ x2/3

u

f1(t) dt

)
du

u log2 u

= 2
F1(x2/3)

log x
− 2

F1(
√
x)

log x
−N(x), (49)

say.
Observe that in the representation of N(x), we have

√
x ≤ u ≤ t ≤ x2/3, so that

x/t2 ≤ 1. Using Lemma 6(a), we have√
1 +

x

t2
− 1 = O

( x
t2

)
,

implying that for some positive constant C,

∫ x2/3

u

√
t

(√
1 +

x

t2
− 1

)
dt ≤ Cx

∫ x2/3

u

1

t3/2
dt = Cx

(
− 2√

x

∣∣∣∣t=x2/3

t=u

)
≤ 2C

x√
u
.

It follows that

N(x) ≤ 2C

∫ x2/3

√
x

x

u3/2 log2 u
du� x

log2 x

∫ x2/3

√
x

1

u3/2
du� x3/4

log2 x
. (50)

Recalling the definition of F1(u) given in (48) and using integration by parts, we find
that

F1(u) =

∫ u

1

√
t

(√
1 +

x

t2
− 1

)
dt

=
2

3
t3/2

(√
1 +

x

t2
− 1

) ∣∣∣∣t=u

t=1

+
2

3

∫ u

1

x

t3/2
√

1 + x
t2

dt

=
2

3

(√
1 +

x

u2
− 1

)
u3/2 +

2

3
F2(u) +O(

√
x). (51)

Using (42) in (51), we obtain

F1(
√
x) =

(
2

3
(
√

2− 1) +
1

6
B(1/4, 1/4)

)
x3/4 +O(

√
x) (52)
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and using Lemma 6(a) and (46) in (51), it follows that

F1(x2/3) =
2

3
x

(√
1 +

1

x1/3
− 1

)
+

1

3
B(1/4, 1/4)x3/4 +O(

√
x)

=
1

3
B(1/4, 1/4)x3/4 +O(x2/3). (53)

Gathering (52), (53) and (50) in (49) gives us

K1(x) =

(
1

3
B(1/4, 1/4)− 4

3
(
√

2− 1)

)
x3/4

log x
+O

(
x3/4

log2 x

)
. (54)

Combining (47) and (54) in (37), and then substituting the result thus obtained in
(36), we obtain

Z(x) =

(
1

3
B(1/4, 1/4)− 4

3
(
√

2− 1)

)
x3/4

log x
+O

(
x3/4

log2 x

)
= T1(x) +O

(
x2/3

log x

)
. (55)

Using (32) and (55) in (31), we get

U2(x) =

(
1

3
B(1/4, 1/4)− 4

3
(
√

2− 1)

)
x3/4

log x
+O

(
x3/4

log2 x

)
. (56)

Finally, using (30) and (56) in (29), and recalling the values of B(1/4, 1/4) obtained
through (25) and (26), we conclude that

R1(x) =
1

3
B(1/4, 1/4)

x3/4

log x
+O

(
x3/4

log2 x

)
=

4
√

2πΓ(5/4)

3Γ(3/4)

x3/4

log x
+O

(
x3/4

log2 x

)
. (57)

5.2 Evaluation of R2(x)

As we will see, the estimation of R2(x) represents a much bigger challenge and we
therefore only obtain an upper bound for it. We begin with a result of general interest.

Lemma 7. For all integers n ≥ 2,

ρ1(n) + ρ2(n) ≤ P (n) +
n

P (n)
. (58)
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Proof. If P (n) ≥
√
n, then according to Lemma 2, P (n) = ρ2(n), implying that the

right hand side of (58) is ρ2(n) +
n

ρ2(n)
= ρ2(n) + ρ1(n), so that in this case, (58) is

in fact an equality.
If P (n) <

√
n, then P (n) =

√
n/a for some number a > 1. Let also b be defined

by ρ1(n) =
√
n/b, so that

√
n

a
= P (n) ≤ ρ1(n) =

√
n

b
,

which implies that a ≥ b. Therefore (58) is equivalent to

√
n

b
+

n√
n/b
≤
√
n

a
+

n√
n/a

,

that is,
1

b
+ b ≤ 1

a
+ a, (59)

which is indeed true for any a ≥ b > 1, because the function x 7→ 1

x
+ x is increasing

on the interval [1,∞).

Let n ∈ R2, n ≤ x. Since p := P (n) <
√
n, we may write

n = m · p, with p < m ≤ x/p. (60)

Moreover, it follows from the definition of ρ1(n) that P (n) ≤ ρ1(n). Combining this
with the fact that ρ1(n) ≤ ρ2(n), we have that

2P (n) < ρ1(n) + ρ2(n).

Also, from Lemma 7,

ρ1(n) + ρ2(n) ≤ P (n) +
n

P (n)
.

Using these last two inequalities and assuming that ρ1(n)+ρ2(n) = c2 for some integer
c, we obtain that

2p = 2P (n) < c2 = ρ1(n) + ρ2(n) ≤ P (n) +
n

P (n)
= p+

mp

p
. (61)

Combining (60) and (61), we get that

R2(x) =
∑
n≤x

ρ1(n)+ρ2(n)=c2

P (n)<
√
n

1 ≤
∑
n≤x

∑
p|n, p<

√
n

2p<c2≤p+n
p

1 ≤
∑
p<
√
x

∑
2p<c2≤p+mp

p
p<m≤x/p

1

≤
∑
p<
√
x

∑
2p<c2≤p+ x

p

1 =
∑
p<
√
x

(⌊√
p+

x

p

⌋
−
⌊√

2p
⌋)
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=
∑
p<
√
x

(√
p+

x

p
−
√

2p+O(1)

)

=
∑
p<
√
x

√
p+

x

p
−
√

2
∑
p<
√
x

√
p+O

( √
x

log x

)

=
∑
p<
√
x

√
p

√
1 +

x

p2
− 4
√

2

3

x3/4

log x
+O

(
x3/4

log2 x

) (
from Lemma 1(a)

)
= W (x)− 4

√
2

3

x3/4

log x
+O

(
x3/4

log2 x

)
, (62)

say. Writing W (x) as a Stieltjes integral, integrating by parts and using the function
R(t) defined in (3), we get

W (x) =

∫ √x

2

√
t

√
1 +

x

t2
dπ(t)

=

(
π(t)
√
t

√
1 +

x

t2

) ∣∣∣∣t=
√
x

t=2

−
∫ √x

2

π(t)
d

dt

(√
t

(√
1 +

x

t2

))
= 2
√

2
x3/4

log x
−
∫ √x

2

π(t)

(
1

2
√
t

√
1 +

x

t2
− x

√
t

t3
√

1 + x
t2

)
dt+O(

√
x)

= 2
√

2
x3/4

log x
− 1

2

(∫ √x

2

√
t

√
1 +

x

t2
dt

log t
+

∫ √x

2

R(t)√
t

√
1 +

x

t2
dt

)

+

∫ √x

2

x

t3/2
√

1 + x
t2

dt

log t
+

∫ √x

2

xR(t)

t5/2
√

1 + x
t2

dt

= 2
√

2
x3/4

log x
− 1

2
(W1(x) +R1(x)) +W2(x) +R2(x), (63)

say.
Using the prime number theorem in the form (3), there exists a constant C > 0

and real number x0 ≥ 2 such that for all t ≥ x0, we have |R(t)| < C
t

log2 t
, so that

|R1(x)| =

∣∣∣∣∣
∫ √x

2

R(t)√
t

√
1 +

x

t2
dt

∣∣∣∣∣ ≤
∫ √x

2

∣∣∣∣R(t)√
t

√
1 +

x

t2

∣∣∣∣ dt
≤
∫ x0

2

|R(t)|√
t

√
1 +

x

t2
dt+

∫ √x

x0

|R(t)|√
t

√
1 +

x

t2
dt

< C

∫ √x

x0

√
t

√
1 +

x

t2
dt

log2 t
+O(

√
x)

� 1

log2 x

∫ √x

x0

√
t

√
1 +

x

t2
dt� x3/4

log2 x
, (64)
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where we used Lemma 6(a) to manage the last integral.
Analogously, using Lemma 6(b), we find that

|R2(x)| � 1

log2 x

∫ √x

x0

x

t3/2
√

1 + x
t2

dt� x3/4

log2 x
. (65)

Recalling the definitions of f2(t) and F2(u) given in (38), we obtain, using integration
by parts,

W2(x) =

∫ √x

2

x

t3/2
√

1 + x
t2

dt

log t
=

∫ √x

2

f2(t)
dt

log t

=
F2(u)

log u

∣∣∣∣u=
√
x

u=2

+

∫ √x

2

F2(u)

u log2 u
du

== 2
F2(
√
x)

log x
− F2(2)

log 2
+

∫ √x

2

F2(u)

u log2 u
du. (66)

Observe that for all 2 ≤ u ≤
√
x,

F2(u) =

∫ u

1

x

t3/2
√

1 + x
t2

dt =

∫ u

1

√
x

√
t
√

1 + t2

x

dt

≤
∫ u

1

√
x√
t
dt =

√
x

(
2
√
t

∣∣∣∣t=u

t=1

)
≤ 2
√
x
√
u.

It follows that∫ √x

2

F2(u)

u log2 u
du ≤ 2

√
x

∫ √x

2

1
√
u log2 u

du =
√
x

∫ x1/4

√
2

1

log2 t
dt

�
√
x
x1/4

log2 x
=

x3/4

log2 x
(67)

and that
F (2)�

√
x. (68)

Using (42), (67) and (68) in (66), we get

W2(x) =
1

2
B(1/4, 1/4)

x3/4

log x
+O

(
x3/4

log2 x

)
. (69)

Set h(t) :=
√
t

√
1 +

x

t2
and H(u) :=

∫ u

1

h(t) dt, so that

W1(x) =

∫ √x

2

√
t

√
1 +

x

t2
dt

log t
=

∫ √x

2

h(t)
dt

log t
.
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Using integration by parts, we get

W1(x) =
H(u)

log u

∣∣∣∣u=
√
x

u=2

+

∫ √x

2

H(u)

u log2 u
du

= 2
H(
√
x)

log x
− H(2)

log 2
+

∫ √x

2

H(u)

u log2 u
du. (70)

For 1 ≤ t ≤
√
x,

h(t) =
√
t

√
1 +

x

t2
≤
√
t

(
1 +

√
x

t

)
=
√
t+

√
x√
t
≤ 2

√
x√
t
.

Therefore, for 2 ≤ u ≤
√
x,

H(u) ≤ 2

∫ u

1

√
x√
t
dt = 2

√
x

(
2
√
t

∣∣∣∣t=u

t=1

)
≤ 4
√
x
√
u.

And similarly as with (67), we easily establish that∫ √x

2

H(u)

u log2 u
du� x3/4

log2 x
(71)

and that
H(2)�

√
x. (72)

Observe that by definition, H(
√
x) = S1(x) (the function defined in (21) and

handled in (23)), so that because of (28), we may write that

H(
√
x) = S1(x) =

(
2
√

2

3
+

2
√

2πΓ(5/4)

3Γ(3/4)

)
x3/4 +O(

√
x). (73)

Using (71), (72) and (73) in (70), we get

W1(x) =

(
4
√

2

3
+

4
√

2πΓ(5/4)

3Γ(3/4)

)
x3/4

log x
+O

(
x3/4

log2 x

)
. (74)

Combining (64), (65), (69) and (74) in (63), we obtain

W (x) =

(
4
√

2

3
+

4
√

2πΓ(5/4)

3Γ(3/4)

)
x3/4

log x
+O

(
x3/4

log2 x

)
.

Substituting this last equation in (62) yields

R2(x) ≤ 4
√

2πΓ(5/4)

3Γ(3/4)

x3/4

log x
+O

(
x3/4

log2 x

)
. (75)
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5.3 Evaluation of R(x)

Combining the estimation of R1(x) and R2(x) provided by (57) and (75), the
inequalities in Theorem 2 follow immediately.

6 Final remarks, numerical data and open problems

The main reason we could obtain an asymptotic formula for T (x) :=
∑

n≤x τ�(n)
(stated in Theorem 1) is that we could rely on an exact formula for

∑
n≤x τ0(n), where

τ0(n) := #{d | n : d <
√
n and d+n/d = c2 for some c ∈ N}, since T (x) = 2V (x) + 1,

where

V (x) :=
∑
n≤x

τ0(n) =
∑

1≤k<
√
x

(⌊√
x

k
+ k

⌋
−
⌊√

2k
⌋)

. (76)

This allowed us to compute the values of T (x) for x = 10k, k = 1, 2, . . . , 16,
using the exact formula (76). Unsurprisingly, as indicated in Table 1, the quotient
T (x)/c�x

3/4 tends to 1 rapidly (as predicted by Theorem 1).

Table 1: Values of T (x)

x T (x) T (x)/c�x
3/4

101 5 0.359670
102 51 0.652385
103 349 0.793888
104 2 183 0.883055
105 12 997 0.934926
106 75 199 0.961936
107 430 251 0.978714
108 2 442 733 0.988121
109 13 808 741 0.993318
1010 77 883 647 0.996277
1011 438 686 005 0.997902
1012 2 469 185 551 0.998821
1013 13 892 386 569 0.999335
1014 78 145 511 685 0.999627
1015 439 515 879 593 0.999790
1016 2 471 807 878 895 0.999882

Regarding the estimation ofR(x) := #{n ≤ x : ρ1(n) + ρ2(n) = c2 for some c ∈ N},
the outcome is very different. Indeed, recall that

R(x) = R1(x) +R2(x) + 1,

where R1(x) = #{n ≤ x : P (n) >
√
n and ρ1(n) + ρ2(n) = c2 for some c ∈ N} and

R2(x) = #{n ≤ x : P (n) <
√
n and ρ1(n) + ρ2(n) = c2 for some c ∈ N}.

24



Even though we could obtain an exact formula for R1(x), namely

R1(x) =
∑
p≤
√
x

(⌊√
2p− 1

⌋
− b√pc

)
+

∑
√
x<p≤x

(⌊√
p+

x

p

⌋
− b√pc

)
,

from which we deduced the asymptotic formula R1(x) ∼ c�x
3/4/ log x (as x → ∞)

– and actually the more accurate formula (57), we were unable to obtain an exact
formula forR2(x) and had to settle for an upper bound. Perhaps, eventually, one could
prove that R(x) ∼ c4x3/4/ log x as x→∞, for some constant c4 ∈ (c�, 2c�). If such
a constant exists, it could be near 2c�, as the data in Table 2 seems to indicate.

Table 2: Values of R(x)

x R(x) R(x)/(x3/4/ log x)

10 2 0.818928
102 12 1.74754
103 65 2.52494
104 325 2.99336
105 1 647 3.37194
106 8 517 3.72095
107 45 167 4.09388
108 241 394 4.44664
109 1 295 225 4.77313

Finally, as mentioned in Section 1, the underlying motivation for studying the
function τ�(n) originated in the search for elliptic curves with a high rank, and more
precisely in a particular search that relies on integers n with a corresponding large
value for τ�(n). So, it seems natural to ask how large can τ�(n) be. Most likely, it can
be of any size, but we could not prove that. Nevertheless, through a computer search,
we did find integers n with a large number of divisors d <

√
n with the property that

d+ n/d is a perfect square. For instance, the number

10 631 634 411 847 680 000 = 226 · 35 · 54 · 7 · 11 · 19 · 23 · 31

has 32 such divisors. More generally, letting Tk stand for the set of integers n which
have k distinct divisors d <

√
n such that d + n/d is a perfect square, we conjecture

that for each positive integer k, the corresponding set Tk is infinite.

Also, consider the numbers n = 4k4− 1, where k = 2, 3, . . . . Since ρ1(n) +ρ2(n) =
(2k2 − 1) + (2k2 + 1) = 4k2, we have that n ∈ R, and since n + 1 = 4k4, we have
that ρ1(n + 1) + ρ2(n + 1) = 4k2, implying that n + 1 ∈ R as well. This observation
establishes the fact that there exist infinitely many integers n ∈ R such that n+1 ∈ R
as well. Setting R(2)(x) := #{n ≤ x : n, n + 1 ∈ R}, we have thus proved that
R(2)(x) � x1/4. What about triplets ? Are there infinitely many n ∈ R such that
n+ 1, n+ 2 ∈ R as well ? Setting R(3) := {n ∈ N : n, n+ 1, n+ 2 ∈ R}, one can check
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that 154, 282 674, 144 544 673 718 847 655 and 10 931 129 469 745 989 328 319 belong to
R(3). This set is most likely infinite, but we were unable to prove it.
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