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Abstract

Given an integer n ≥ 2, let P (n) stand for its largest prime factor. We examine the

behaviour of
∑
n≤x
n∈A

P (n) in the case of two sets A, namely the set of r-free numbers and

the set of h-full numbers.
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1 Introduction

Given an integer n ≥ 2, let P (n) stand for its largest prime factor, with P (1) = 1. Even
though this function is very chaotic as the values of P (n) alternate between small and large
values as n varies, its average value over large intervals is more smooth and can be estimated.

The first published estimate regarding the sum
∑

n≤x P (n) is due to Alladi and Erdős [1]
as they proved that

(1.1)
∑
n≤x

P (n) =
π2

12

x2

log x
+O

(
x2

log2 x

)
.

This result was later improved by De Koninck and Ivić [2] when they showed that, given
any positive integer k, there exist computable constants c2, . . . , ck such that

(1.2)
∑
n≤x

P (n) =
π2

12

x2

log x
+ c2

x2

log2 x
+ · · ·+ ck

x2

logk x
+O

(
x2

logk+1 x

)
.

A natural question to ask is how the above formula changes if instead of summing P (n)
over all natural numbers n ≤ x, we restrict these numbers n to a particular subset A of N.
For this purpose, we will consider here two large families of integers, namely the set of r-free
numbers and the set of h-full numbers.

Given an integer n ≥ 2, write its prime factorisation as n = qα1
1 qα2

2 · · · qαs
s , where q1 <

q2 < · · · < qs are primes and α1, α2, . . . , αs ∈ N. Given fixed integers r ≥ 2 and h ≥ 2,
we say that n is a r-free number if max(α1, α2, . . . , αs) ≤ r − 1, whereas we say that n is
a h-full number if min(α1, α2, . . . , αs) ≥ h. We will denote by Fr the set of r-free numbers;
amongst these sets, the sets F2 of square-free numbers and the set F3 of cube-free numbers
are often mentioned in the literature. On the other hand, we will denote by Ph the set of
h-full numbers. Particular cases are the set P2, known as the set of powerful numbers or
square-full numbers, and the set P3, the set of cube-full numbers.
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In what follows we will make frequent use of the Riemann zeta function ζ(s) defined by

ζ(s) :=
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
(s > 1).

Let µr(n) be the characteristic function of the r-free numbers, that is,

µr(n) =

{
1 if n is r-free,
0 otherwise,

implying in particular that its generating function is

∞∑
n=1

µr(n)

ns
=

∏
p

(
1 +

1

ps
+ · · ·+ 1

p(r−1)s

)

=

∏
p

(
1− 1

prs

)
∏

p

(
1− 1

ps

) =
ζ(s)

ζ(rs)
(s > 1).(1.3)

Let χh(n) be the characteristic function of the h-full numbers, that is,

χh(n) =

{
1 if n is h-full,
0 otherwise,

implying in particular that its generating function is

∞∑
n=1

χh(n)

ns
=

∏
p

(
1 +

1

phs
+

1

p(h+1)s
+ · · ·

)
= ζ(hs)

∏
p

(
1− 1

phs

)∏
p

(
1 +

1

phs
+

1

p(h+1)s
+ · · ·

)
= ζ(hs)

∏
p

(
1 +

1

p(h+1)s
+

1

p(h+2)s
+ · · ·+ 1

p(2h−1)s

)
(s > 1).(1.4)

Finally, let us mention that the counting functions Fr(x) and Ph(x) of these two families
of numbers are well-known. These are, for fixed integers r ≥ 2 and h ≥ 2,

Fr(x) =
1

ζ(r)
x+O

(
x1/r

)
,(1.5)

Pr(x) = γhx
1/h +O

(
x1/(h+1)

)
(1.6)

for some positive constant γh. For a proof of (1.5) in the simplest case, that is for r = 2,
see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4]; for a proof of the
general case, that is for any r ≥ 2, see the survey paper of Pappalardi [5]. For a proof of
(1.6), see the paper of Iv́ıc and Shiu [3], where in fact a much more accurate formula is
proved.
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2 Main results

For our first set A, we choose the set of r-free numbers Fr. In this case we can prove the
following.

Theorem 1. Let r ≥ 2 be a fixed integer. Then, given any positive integer k, there exist
computable constants d1, d2, . . . , dk such that

(2.1)
∑
n≤x
n∈Fr

P (n) =
∑
n≤x

µr(n)P (n) = d1
x2

log x
+ d2

x2

log2 x
+ · · ·+ dk

x2

logk x
+O

(
x2

logk+1 x

)
,

where in particular, in light of (1.5),

d1 = d
(r)
1 =

1

2

∞∑
n=1

µr(n)

n2
=

ζ(2)

2ζ(2r)

Remark 2.1. In the case r = 2, that is, the case of square-free numbers, we have

d
(2)
1 =

ζ(2)

2ζ(4)
=

15

2π2
= 0.759909 . . . .

In the case r = 3, that is, the case of cube-free numbers, we have

d
(3)
1 =

ζ(2)

2ζ(6)
=

315

4π4
= 0.808446 . . . .

When choosing A = Ph, we can prove the following general result.

Theorem 2. Let h ≥ 2 be a fixed integer. Then, given any positive integer k, there exist
computable constants e1, e2, . . . , ek such that

(2.2)
∑
n≤x
n∈Ph

P (n) = e1
x2/h

log x
+ e2

x2/h

log2 x
+ · · ·+ ek

x2/h

logk x
+O

(
x2/h

logk+1 x

)
,

where

e1 =
h

2

∑
n∈Ph

1

n2/h
=
h

2

∏
p

(
1 +

1

(ph)2/h
+

1

(ph+1)2/h
+ · · ·

)
.

Remark 2.2. In the particular case of square-full numbers, we have, in light of (1.4) with
h = 2 and s = 1,

e1 =
∑
n∈P2

1

n
=
∏
p

(
1 +

1

p2
+

1

p3
+ · · ·

)
=
ζ(2)ζ(3)

ζ(6)
= 1.9436 . . .

In the case of cube-full numbers, we find

e1 =
3

2

∑
n∈P3

1

n2/3
=

3

2

∏
p

(
1 +

1

p2
+

1

p8/3
+

1

p10/3
+ · · ·

)
= 3.44967 . . . .
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3 Preliminary results

Let π(x) stand for the number of primes not exceeding x. Using the prime number theorem
in the form

π(x) =
x

log x
+

1!x

log2 x
+

2!x

log3 x
+ · · ·+ (k − 1)!x

logk x
+O

(
x

logk+1 x

)
,

one can easily prove the following.

Lemma 1. Given any positive integer k, there exist computable constants a2, . . . , ak such
that

(3.1)
∑
p≤X

p =
1

2

X2

logX
+ a2

X2

log2X
+ · · ·+ ak

X2

logkX
+O

(
X2

logk+1X

)
.

We also have the following.

Lemma 2. Given fixed positive integers s and k, there exist computable constants c0,s, c1,s, . . . , ck,s
such that

(3.2)
∑

n≤exp{
√
log x}

1

n2 logs(x/n)
=

c0,s
logs x

+
c1,s

logs+1 x
+ · · ·+ ck,s

logs+k x
+O

(
1

logs+k+1 x

)
.

On the other hand, given a fixed integer r ≥ 2, as well as fixed integers s, k ∈ N, there exist
computable constants d0,s, d1,s, . . . , dk,s such that

(3.3)
∑
n≤
√
x

µr(n)

n2 logs(x/n)
=

d0,s
logs x

+
d1,s

logs+1 x
+ · · ·+ dk,s

logs+k x
+O

(
1

logs+k+1 x

)
.

Proof. We only provide the proof of (3.3) since the proof of (3.2) is similar. Since we assumed

that n ≤
√
x, we have that

log n

log x
≤ 1

2
. Therefore, for a fixed integer k ≥ 1 and all y ≤ 1

2
, we

may use the expansion

1

1− y
= 1 + y + y2 + · · ·+ yk +O(yk+1)

to write that, in the case s = 1,

µr(n)

n2 log(x/n)
=

µr(n)

n2 log x
(

1− logn
log x

) =
µr(n)

n2 log x

(
1 +

log n

log x
+ · · ·+ logk−1 n

logk−1 x
+O

(
logk n

logk x

))

=
µr(n)

n2

1

log x
+
µr(n) log n

n2

1

log2 x
+ · · ·+ µr(n) logk−1 n

n2

1

logk x
+O

(
1

logk+1 x

)
.

Then, observing that for each integer j ≥ 1, the corresponding series
∞∑
n=1

µr(n) logj n

n2
con-

verges, estimate (3.3) in the case s = 1 easily follows. The case of an arbitrary s ∈ N can be
handled similarly.
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Lemma 3. For each integer h ≥ 2,

(3.4)
∑
m≤x
m∈Ph

1

m2/h
=
∑
m∈Ph

1

m2/h
+O

(
1

x1/h

)

and, for each fixed j ∈ N,

(3.5)
∑
m≤x
m∈Ph

logjm

m2/h
= O(1).

Proof. First observe that, replacing the sum
∑
m>x
m∈Ph

1

m2/h
by a Stieltjes integral, using integra-

tion by parts and thereafter using the bound Ph(t) = O(t1/h) provided by (1.6), we obtain
that ∑

m>x
m∈Ph

1

m2/h
=

∫ ∞
x

1

t2/h
dPh(t) =

Ph(t)
t2/h

∣∣∣∣∞
x

+
2

h

∫ ∞
x

t−
2
h
−1Ph(t) dt

� 1

x2/h−1/h
+

2

h

∫ ∞
x

t1/h−1 dt� 1

x1/h
.(3.6)

Using (3.6), it follows that∑
m≤x
m∈Ph

1

m2/h
=
∑
m∈Ph

1

m2/h
−
∑
m>x
m∈Ph

1

m2/h
=
∑
m∈Ph

1

m2/h
+O

(
1

x1/h

)
,

thus completing the proof of (3.4).
The proof of (3.5) can easily be established using the same technique as that employed

to prove (3.4).

4 Proof of Theorem 1

First observe that

M(x) :=
∑
n≤x

µr(n)P (n) =
∑
p≤x

p
∑
mp≤x

P (m)<p

µr(m)

=
∑
p≤
√
x

p
∑

m≤x/p
P (m)<p

µr(m) +
∑
√
x<p≤x

p
∑

m≤x/p
P (m)<p

µr(m)

= M1(x) +M2(x).(4.1)

It is trivial that

(4.2) M1(x) ≤
∑
p≤
√
x

p · x
p

= x π(
√
x)� x3/2

log x
.

5



To estimate M2(x), first observe that if p >
√
x, we have that x/p < p, in which case the

condition P (m) < p appearing in the definition of M2(x) can be dropped. Hence, inverting
the sum over p with the sum over m, and then using Lemma 1 with X =

√
x, we obtain that

M2(x) =
∑
√
x<p≤x

p
∑
m≤x/p

µr(m) =
∑
m≤
√
x

µr(m)
∑

√
x<p≤x/m

p

=
∑
m≤
√
x

µr(m)
∑
p≤x/m

p−
∑
m≤
√
x

µr(m)
∑
p≤
√
x

p

=
∑
m≤
√
x

µr(m)
∑
p≤x/m

p+O

(
x3/2

log x

)

= M3(x) +O

(
x3/2

log x

)
.(4.3)

Gain using Lemma 1 but this time with X = x/m and thereafter formula (3.3) of Lemma
2, we obtain

M3(x) =
∑
m≤
√
x

µr(m)

{
1

2

(x/m)2

log(x/m)
+ a2

(x/m)2

log2(x/m)

+ · · ·+ ak
(x/m)2

logk(x/m)
+O

(
(x/m)2

logk+1(x/m)

)}
=

1

2

∞∑
m=1

µr(m)

m2

x2

log x
+ d2

x2

log2 x
+ · · ·+ dk

x2

logk x
+O

(
x2

logk+1 x

)
,(4.4)

where we took the liberty to replace
∑
m≤
√
x

µr(m)

m2
by

∞∑
m=1

µr(m)

m2
, a justified move since

∑
m≤
√
x

µr(m)

m2
=

∞∑
m=1

µr(m)

m2
−
∑
m>
√
x

µr(m)

m2

=
∞∑
m=1

µr(m)

m2
+O

(∫ ∞
√
x

dt

t2

)
=

∞∑
m=1

µr(m)

m2
+O

(
1√
x

)
.

Finally, gathering (4.2), (4.3) and (4.4) in (4.1) completes the proof of Theorem 1.

5 Proof of Theorem 2

First, we write

U(x) :=
∑
n≤x
n∈Ph

P (n) =
∑
p≤x1/h

p
∑

mph≤x
m∈Ph

P (m)≤p

1 =
∑
p≤x1/h

p
∑

m≤x/ph

m∈Ph
P (m)≤p

1
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=
∑

p≤x1/(h+1)

p
∑

m≤x/ph

m∈Ph
P (m)≤p

1 +
∑

x1/(h+1)<p≤x1/h
p
∑

m≤x/ph

m∈Ph
P (m)≤p

1

= U1(x) + U2(x).(5.1)

It follows from estimate (1.6) that

U1(x) ≤
∑

p≤x1/(h+1)

p
∑

m≤x/ph

m∈Ph

1 =
∑

p≤x1/(h+1)

p Ph
(
x

ph

)

�
∑

p≤x1/(h+1)

p
x1/h

p
= x1/h π(x1/(h+1))� x

2h+1
h(h+1)

log x
.(5.2)

To evaluate U2(x), first observe that for p > x1/(h+1), we have that
x

ph
< p, implying that

in this case the condition P (m) ≤ p appearing in the second sum defining U2(x) can be
dropped and therefore that

U2(x) =
∑

x1/(h+1)<p≤x1/h
p
∑

mph≤x
m∈Ph

1 =
∑
p≤x1/h

p
∑

mph≤x
m∈Ph

1−
∑

p≤x1/(h+1)

p
∑

mph≤x
m∈Ph

1

=
∑
p≤x1/h

p
∑

mph≤x
m∈Ph

1 +O

(
x

2h+1
h(h+1)

log x

)

= T (x) +O

(
x

2h+1
h(h+1)

log x

)
= T (x) +O

(
x2/h

logk+1 x

)
,(5.3)

where we made use of (5.2) and the fact that
2h+ 1

h(h+ 1)
<

2

h
.

Inverting the two sums appearing in the definition of T (x), we can rewrite T (x) as follows.

T (x) =
∑
m≤x
m∈Ph

∑
ph≤x/m

p =
∑
m≤x
m∈Ph

∑
p≤(x/m)1/h

p

=
∑

m≤exp{
√

log x}
m∈Ph

∑
p≤(x/m)1/h

p+
∑

exp{
√
log x}<m≤p1/h

m∈Ph

∑
p≤(x/m)1/h

p

= T1(x) + T2(x).(5.4)

Again, using the bound Ph(t)� t1/h ensured by estimate (1.6), we have, arguing as we did
in Lemma 3,

T2(x) ≤
∑

exp{
√
log x}<m≤p1/h

m∈Ph

( x
m

)2/h
= x2/h

∑
exp{

√
log x}<m≤p1/h

m∈Ph

1

m2/h

= x2/h
∫ x

exp{
√
log x}

t−2/hdPh(t)
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� x2/h
(
t−2/ht1/h

∣∣x
exp{

√
log x} +

∫ x

exp{
√
log x}

t−
2
h
−1t1/h dt

)
� x2/h · 1

t1/h

∣∣∣∣x
exp{

√
log x}

� x2/h

exp{ 1
h

√
log x}

� x2/h

logk+1 x
.(5.5)

Making use of Lemma 1 with X = (x/m)1/h and thereafter of formula (3.2) of Lemma 2,
we obtain

T1(x) =
∑

m≤exp{
√

log x}
m∈Ph

{
1

2

(x/m)2/h

1
h

log(x/m)
+ a2

(x/m)2/h

1
h2

log2(x/m)

+ · · ·+ ak
(x/m)2/h

1
hk

logk(x/m)
+O

(
(x/m)2/h

logk+1(x/m)

)}
= e1

x2/h

log x
+ e2

x2/h

log2 x
+ · · ·+ ek

x2/h

logk x
+O

(
x2/h

logk+1 x

)
,(5.6)

where we used the fact that, in light of estimate (3.4) of Lemma 3,

h

2

x2/h

log x

∑
m≤exp{

√
log x}

m∈Ph

1

m2/h
=

h

2

x2/h

log x

 ∞∑
m=1
m∈Ph

1

m2/h
−

∑
m>exp{

√
log x}

m∈Ph

1

m2/h


=

x2/h

log x

h

2

∞∑
m=1
m∈Ph

1

m2/h

(
1 +O

(
1

x1/h

))

and where we used estimate (3.5) of Lemma 3 to estimate the other coefficients ei appearing
in (5.6).

Finally, gathering estimates (5.2), (5.3), (5.4), (5.5) and (5.6) in (5.1) completes the proof
of Theorem 2.
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[3] A. Ivić and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26 (1982),
no. 4, 576–590.

[4] I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction of the Theory of
Numbers, Fifth Edition, John Wiley & Sons, Inc., 1991.

[5] F. Pappalardi, A survey on k-freeness, Number Theory, Ramanujan Math. Sec. Lect.
Notes Ser., vol. 1, Ramanujan Math. Soc., Mysore, 2005, 71–88.

JMDK, January 22, 2022; file: r-free-h-full.tex

8


