Summing the largest prime factor over integer sequences

Jean-Marie De Koninck and Rafael Jakimczuk

Edition of January 22, 2022

Abstract

Given an integer $n \geq 2$, let $P(n)$ stand for its largest prime factor. We examine the behaviour of $\sum_{\substack{n \leq x \\ n \in A}} P(n)$ in the case of two sets A, namely the set of r-free numbers and

 the set of h-full numbers.AMS subject classification numbers: 11N37, 11A05
Key words and phrases: largest prime factor function, square-full numbers

1 Introduction

Given an integer $n \geq 2$, let $P(n)$ stand for its largest prime factor, with $P(1)=1$. Even though this function is very chaotic as the values of $P(n)$ alternate between small and large values as n varies, its average value over large intervals is more smooth and can be estimated.

The first published estimate regarding the sum $\sum_{n \leq x} P(n)$ is due to Alladi and Erdős [1] as they proved that

$$
\begin{equation*}
\sum_{n \leq x} P(n)=\frac{\pi^{2}}{12} \frac{x^{2}}{\log x}+O\left(\frac{x^{2}}{\log ^{2} x}\right) \tag{1.1}
\end{equation*}
$$

This result was later improved by De Koninck and Ivić [2] when they showed that, given any positive integer k, there exist computable constants c_{2}, \ldots, c_{k} such that

$$
\begin{equation*}
\sum_{n \leq x} P(n)=\frac{\pi^{2}}{12} \frac{x^{2}}{\log x}+c_{2} \frac{x^{2}}{\log ^{2} x}+\cdots+c_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) \tag{1.2}
\end{equation*}
$$

A natural question to ask is how the above formula changes if instead of summing $P(n)$ over all natural numbers $n \leq x$, we restrict these numbers n to a particular subset A of \mathbb{N}. For this purpose, we will consider here two large families of integers, namely the set of r-free numbers and the set of h-full numbers.

Given an integer $n \geq 2$, write its prime factorisation as $n=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{s}^{\alpha_{s}}$, where $q_{1}<$ $q_{2}<\cdots<q_{s}$ are primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{N}$. Given fixed integers $r \geq 2$ and $h \geq 2$, we say that n is a r-free number if $\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \leq r-1$, whereas we say that n is a h-full number if $\min \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \geq h$. We will denote by \mathbb{F}_{r} the set of r-free numbers; amongst these sets, the sets \mathbb{F}_{2} of square-free numbers and the set \mathbb{F}_{3} of cube-free numbers are often mentioned in the literature. On the other hand, we will denote by \mathbb{P}_{h} the set of h-full numbers. Particular cases are the set \mathbb{P}_{2}, known as the set of powerful numbers or square-full numbers, and the set \mathbb{P}_{3}, the set of cube-full numbers.

In what follows we will make frequent use of the Riemann zeta function $\zeta(s)$ defined by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad(s>1)
$$

Let $\mu_{r}(n)$ be the characteristic function of the r-free numbers, that is,

$$
\mu_{r}(n)= \begin{cases}1 & \text { if } n \text { is } r \text {-free } \\ 0 & \text { otherwise }\end{cases}
$$

implying in particular that its generating function is

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{\mu_{r}(n)}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{s}}+\cdots+\frac{1}{p^{(r-1) s}}\right) \\
& =\frac{\prod_{p}\left(1-\frac{1}{p^{r s}}\right)}{\prod_{p}\left(1-\frac{1}{p^{s}}\right)}=\frac{\zeta(s)}{\zeta(r s)} \quad(s>1) \tag{1.3}
\end{align*}
$$

Let $\chi_{h}(n)$ be the characteristic function of the h-full numbers, that is,

$$
\chi_{h}(n)= \begin{cases}1 & \text { if } n \text { is } h \text {-full } \\ 0 & \text { otherwise }\end{cases}
$$

implying in particular that its generating function is

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{\chi_{h}(n)}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{h s}}+\frac{1}{p^{(h+1) s}}+\cdots\right) \\
& =\zeta(h s) \prod_{p}\left(1-\frac{1}{p^{h s}}\right) \prod_{p}\left(1+\frac{1}{p^{h s}}+\frac{1}{p^{(h+1) s}}+\cdots\right) \\
& =\zeta(h s) \prod_{p}\left(1+\frac{1}{p^{(h+1) s}}+\frac{1}{p^{(h+2) s}}+\cdots+\frac{1}{p^{(2 h-1) s}}\right) \quad(s>1) \tag{1.4}
\end{align*}
$$

Finally, let us mention that the counting functions $\mathbb{F}_{r}(x)$ and $\mathbb{P}_{h}(x)$ of these two families of numbers are well-known. These are, for fixed integers $r \geq 2$ and $h \geq 2$,

$$
\begin{align*}
& \mathbb{F}_{r}(x)=\frac{1}{\zeta(r)} x+O\left(x^{1 / r}\right) \tag{1.5}\\
& \mathbb{P}_{r}(x)=\gamma_{h} x^{1 / h}+O\left(x^{1 /(h+1)}\right) \tag{1.6}
\end{align*}
$$

for some positive constant γ_{h}. For a proof of (1.5) in the simplest case, that is for $r=2$, see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4]; for a proof of the general case, that is for any $r \geq 2$, see the survey paper of Pappalardi [5]. For a proof of (1.6), see the paper of Ivíc and Shiu [3], where in fact a much more accurate formula is proved.

2 Main results

For our first set A, we choose the set of r-free numbers \mathbb{F}_{r}. In this case we can prove the following.

Theorem 1. Let $r \geq 2$ be a fixed integer. Then, given any positive integer k, there exist computable constants $d_{1}, d_{2}, \ldots, d_{k}$ such that

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in \mathbb{P}_{r}}} P(n)=\sum_{n \leq x} \mu_{r}(n) P(n)=d_{1} \frac{x^{2}}{\log x}+d_{2} \frac{x^{2}}{\log ^{2} x}+\cdots+d_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) \tag{2.1}
\end{equation*}
$$

where in particular, in light of (1.5),

$$
d_{1}=d_{1}^{(r)}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\mu_{r}(n)}{n^{2}}=\frac{\zeta(2)}{2 \zeta(2 r)}
$$

Remark 2.1. In the case $r=2$, that is, the case of square-free numbers, we have

$$
d_{1}^{(2)}=\frac{\zeta(2)}{2 \zeta(4)}=\frac{15}{2 \pi^{2}}=0.759909 \ldots
$$

In the case $r=3$, that is, the case of cube-free numbers, we have

$$
d_{1}^{(3)}=\frac{\zeta(2)}{2 \zeta(6)}=\frac{315}{4 \pi^{4}}=0.808446 \ldots
$$

When choosing $A=\mathbb{P}_{h}$, we can prove the following general result.
Theorem 2. Let $h \geq 2$ be a fixed integer. Then, given any positive integer k, there exist computable constants $e_{1}, e_{2}, \ldots, e_{k}$ such that

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in \mathbb{P}_{h}}} P(n)=e_{1} \frac{x^{2 / h}}{\log x}+e_{2} \frac{x^{2 / h}}{\log ^{2} x}+\cdots+e_{k} \frac{x^{2 / h}}{\log ^{k} x}+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right) \tag{2.2}
\end{equation*}
$$

where

$$
e_{1}=\frac{h}{2} \sum_{n \in \mathbb{P}_{h}} \frac{1}{n^{2 / h}}=\frac{h}{2} \prod_{p}\left(1+\frac{1}{\left(p^{h}\right)^{2 / h}}+\frac{1}{\left(p^{h+1}\right)^{2 / h}}+\cdots\right) .
$$

Remark 2.2. In the particular case of square-full numbers, we have, in light of (1.4) with $h=2$ and $s=1$,

$$
e_{1}=\sum_{n \in \mathbb{P}_{2}} \frac{1}{n}=\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots\right)=\frac{\zeta(2) \zeta(3)}{\zeta(6)}=1.9436 \ldots
$$

In the case of cube-full numbers, we find

$$
e_{1}=\frac{3}{2} \sum_{n \in \mathbb{P}_{3}} \frac{1}{n^{2 / 3}}=\frac{3}{2} \prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{8 / 3}}+\frac{1}{p^{10 / 3}}+\cdots\right)=3.44967 \ldots .
$$

3 Preliminary results

Let $\pi(x)$ stand for the number of primes not exceeding x. Using the prime number theorem in the form

$$
\pi(x)=\frac{x}{\log x}+\frac{1!x}{\log ^{2} x}+\frac{2!x}{\log ^{3} x}+\cdots+\frac{(k-1)!x}{\log ^{k} x}+O\left(\frac{x}{\log ^{k+1} x}\right)
$$

one can easily prove the following.
Lemma 1. Given any positive integer k, there exist computable constants a_{2}, \ldots, a_{k} such that

$$
\begin{equation*}
\sum_{p \leq X} p=\frac{1}{2} \frac{X^{2}}{\log X}+a_{2} \frac{X^{2}}{\log ^{2} X}+\cdots+a_{k} \frac{X^{2}}{\log ^{k} X}+O\left(\frac{X^{2}}{\log ^{k+1} X}\right) \tag{3.1}
\end{equation*}
$$

We also have the following.
Lemma 2. Given fixed positive integers s and k, there exist computable constants $c_{0, s}, c_{1, s}, \ldots, c_{k, s}$ such that

$$
\begin{equation*}
\sum_{n \leq \exp \{\sqrt{\log x\}}} \frac{1}{n^{2} \log ^{s}(x / n)}=\frac{c_{0, s}}{\log ^{s} x}+\frac{c_{1, s}}{\log ^{s+1} x}+\cdots+\frac{c_{k, s}}{\log ^{s+k} x}+O\left(\frac{1}{\log ^{s+k+1} x}\right) . \tag{3.2}
\end{equation*}
$$

On the other hand, given a fixed integer $r \geq 2$, as well as fixed integers $s, k \in \mathbb{N}$, there exist computable constants $d_{0, s}, d_{1, s}, \ldots, d_{k, s}$ such that

$$
\begin{equation*}
\sum_{n \leq \sqrt{x}} \frac{\mu_{r}(n)}{n^{2} \log ^{s}(x / n)}=\frac{d_{0, s}}{\log ^{s} x}+\frac{d_{1, s}}{\log ^{s+1} x}+\cdots+\frac{d_{k, s}}{\log ^{s+k} x}+O\left(\frac{1}{\log ^{s+k+1} x}\right) \tag{3.3}
\end{equation*}
$$

Proof. We only provide the proof of (3.3) since the proof of (3.2) is similar. Since we assumed that $n \leq \sqrt{x}$, we have that $\frac{\log n}{\log x} \leq \frac{1}{2}$. Therefore, for a fixed integer $k \geq 1$ and all $y \leq \frac{1}{2}$, we may use the expansion

$$
\frac{1}{1-y}=1+y+y^{2}+\cdots+y^{k}+O\left(y^{k+1}\right)
$$

to write that, in the case $s=1$,

$$
\begin{aligned}
\frac{\mu_{r}(n)}{n^{2} \log (x / n)} & =\frac{\mu_{r}(n)}{n^{2} \log x\left(1-\frac{\log n}{\log x}\right)}=\frac{\mu_{r}(n)}{n^{2} \log x}\left(1+\frac{\log n}{\log x}+\cdots+\frac{\log ^{k-1} n}{\log ^{k-1} x}+O\left(\frac{\log ^{k} n}{\log ^{k} x}\right)\right) \\
& =\frac{\mu_{r}(n)}{n^{2}} \frac{1}{\log x}+\frac{\mu_{r}(n) \log n}{n^{2}} \frac{1}{\log ^{2} x}+\cdots+\frac{\mu_{r}(n) \log ^{k-1} n}{n^{2}} \frac{1}{\log ^{k} x}+O\left(\frac{1}{\log ^{k+1} x}\right) .
\end{aligned}
$$

Then, observing that for each integer $j \geq 1$, the corresponding series $\sum_{n=1}^{\infty} \frac{\mu_{r}(n) \log ^{j} n}{n^{2}}$ converges, estimate (3.3) in the case $s=1$ easily follows. The case of an arbitrary $s \in \mathbb{N}$ can be handled similarly.

Lemma 3. For each integer $h \geq 2$,

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}+O\left(\frac{1}{x^{1 / h}}\right) \tag{3.4}
\end{equation*}
$$

and, for each fixed $j \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{\log ^{j} m}{m^{2 / h}}=O(1) \tag{3.5}
\end{equation*}
$$

Proof. First observe that, replacing the sum $\sum_{\substack{m>x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}$ by a Stieltjes integral, using integration by parts and thereafter using the bound $\mathbb{P}_{h}(t)=O\left(t^{1 / h}\right)$ provided by (1.6), we obtain that

$$
\begin{align*}
\sum_{\substack{m>x \\
m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}} & =\int_{x}^{\infty} \frac{1}{t^{2 / h}} d \mathbb{P}_{h}(t)=\left.\frac{\mathbb{P}_{h}(t)}{t^{2 / h}}\right|_{x} ^{\infty}+\frac{2}{h} \int_{x}^{\infty} t^{-\frac{2}{h}-1} \mathbb{P}_{h}(t) d t \\
& \ll \frac{1}{x^{2 / h-1 / h}}+\frac{2}{h} \int_{x}^{\infty} t^{1 / h-1} d t \ll \frac{1}{x^{1 / h}} \tag{3.6}
\end{align*}
$$

Using (3.6), it follows that

$$
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}-\sum_{\substack{m>x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}+O\left(\frac{1}{x^{1 / h}}\right)
$$

thus completing the proof of (3.4).
The proof of (3.5) can easily be established using the same technique as that employed to prove (3.4).

4 Proof of Theorem 1

First observe that

$$
\begin{align*}
M(x) & :=\sum_{n \leq x} \mu_{r}(n) P(n)=\sum_{p \leq x} p \sum_{\substack{m p \leq x \\
P(m)<p}} \mu_{r}(m) \\
& =\sum_{\substack{n \leq \sqrt{x}}} p \sum_{\substack{m \leq x / p \\
P(m)<p}} \mu_{r}(m)+\sum_{\sqrt{x}<p \leq x} p \sum_{\substack{m \leq x / p \\
P(m)<p}} \mu_{r}(m) \\
& =M_{1}(x)+M_{2}(x) . \tag{4.1}
\end{align*}
$$

It is trivial that

$$
\begin{equation*}
M_{1}(x) \leq \sum_{p \leq \sqrt{x}} p \cdot \frac{x}{p}=x \pi(\sqrt{x}) \ll \frac{x^{3 / 2}}{\log x} \tag{4.2}
\end{equation*}
$$

To estimate $M_{2}(x)$, first observe that if $p>\sqrt{x}$, we have that $x / p<p$, in which case the condition $P(m)<p$ appearing in the definition of $M_{2}(x)$ can be dropped. Hence, inverting the sum over p with the sum over m, and then using Lemma 1 with $X=\sqrt{x}$, we obtain that

$$
\begin{align*}
M_{2}(x) & =\sum_{\sqrt{x}<p \leq x} p \sum_{m \leq x / p} \mu_{r}(m)=\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{\sqrt{x}<p \leq x / m} p \\
& =\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq x / m} p-\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq \sqrt{x}} p \\
& =\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq x / m} p+O\left(\frac{x^{3 / 2}}{\log x}\right) \\
& =M_{3}(x)+O\left(\frac{x^{3 / 2}}{\log x}\right) . \tag{4.3}
\end{align*}
$$

Gain using Lemma 1 but this time with $X=x / m$ and thereafter formula (3.3) of Lemma 2, we obtain

$$
\begin{align*}
M_{3}(x)= & \sum_{m \leq \sqrt{x}} \mu_{r}(m)\left\{\frac{1}{2} \frac{(x / m)^{2}}{\log (x / m)}+a_{2} \frac{(x / m)^{2}}{\log ^{2}(x / m)}\right. \\
& \left.+\cdots+a_{k} \frac{(x / m)^{2}}{\log ^{k}(x / m)}+O\left(\frac{(x / m)^{2}}{\log ^{k+1}(x / m)}\right)\right\} \\
= & \frac{1}{2} \sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}} \frac{x^{2}}{\log x}+d_{2} \frac{x^{2}}{\log ^{2} x}+\cdots+d_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) \tag{4.4}
\end{align*}
$$

where we took the liberty to replace $\sum_{m \leq \sqrt{x}} \frac{\mu_{r}(m)}{m^{2}}$ by $\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}$, a justified move since

$$
\begin{aligned}
\sum_{m \leq \sqrt{x}} \frac{\mu_{r}(m)}{m^{2}} & =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}-\sum_{m>\sqrt{x}} \frac{\mu_{r}(m)}{m^{2}} \\
& =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}+O\left(\int_{\sqrt{x}}^{\infty} \frac{d t}{t^{2}}\right) \\
& =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}+O\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Finally, gathering (4.2), (4.3) and (4.4) in (4.1) completes the proof of Theorem 1.

5 Proof of Theorem 2

First, we write

$$
U(x):=\sum_{\substack{n \leq x \\ n \in \mathbb{P}_{h}}} P(n)=\sum_{\substack{ \\p \leq x^{1 / h}}} p \sum_{\substack{m p^{h} \leq x \\ m \in \mathbb{N}_{n} \\ P(m) \leq p}} 1=\sum_{\substack{p \leq x^{1 / h}}} p \sum_{\substack{m \leq x / p^{h} \\ m \\ m(m) \leq p}} 1
$$

$$
\begin{align*}
& =\sum_{\substack{p \leq x^{1 /(h+1)}}} p \sum_{\substack{m \leq x / p^{p} \\
m \in \mathbb{P}^{h} \\
P(m) \leq p}} 1+\sum_{\substack{x^{1 /(h+1)<p \leq x^{1 / h}}}} p \sum_{\substack{m \leq x / p^{h} \\
m \in \mathbb{R}^{p} \\
P(m) \leq p}} 1 \\
& =U_{1}(x)+U_{2}(x) . \tag{5.1}
\end{align*}
$$

It follows from estimate (1.6) that

$$
\begin{align*}
U_{1}(x) & \leq \sum_{p \leq x^{1 /(h+1)}} p \sum_{\substack{m \leq x / p^{h} \\
m \in \mathbb{P}_{h}}} 1=\sum_{p \leq x^{1 /(h+1)}} p \mathbb{P}_{h}\left(\frac{x}{p^{h}}\right) \\
& \ll \sum_{p \leq x^{1 /(h+1)}} p \frac{x^{1 / h}}{p}=x^{1 / h} \pi\left(x^{1 /(h+1)}\right) \ll \frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x} . \tag{5.2}
\end{align*}
$$

To evaluate $U_{2}(x)$, first observe that for $p>x^{1 /(h+1)}$, we have that $\frac{x}{p^{h}}<p$, implying that in this case the condition $P(m) \leq p$ appearing in the second sum defining $U_{2}(x)$ can be dropped and therefore that

$$
\begin{align*}
U_{2}(x) & =\sum_{x^{1 /(h+1)<p \leq x^{1 / h}}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{p}}} 1=\sum_{\substack{p \leq x^{1 / h}}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1-\sum_{p \leq x^{1 /(h+1)}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1 \\
& =\sum_{p \leq x^{1 / h}} p \sum_{\substack{m^{h} \leq x \\
m \in \mathbb{P}_{h} h}} 1+O\left(\frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x}\right) \\
& =T(x)+O\left(\frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x}\right)=T(x)+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right), \tag{5.3}
\end{align*}
$$

where we made use of (5.2) and the fact that $\frac{2 h+1}{h(h+1)}<\frac{2}{h}$.
Inverting the two sums appearing in the definition of $T(x)$, we can rewrite $T(x)$ as follows.

$$
\begin{align*}
& T(x)=\sum_{\substack{m \leq x \\
m \in \mathbb{P}_{h}}} \sum_{p^{h} \leq x / m} p=\sum_{\substack{m \leq x \\
m \in \mathbb{P}_{h}}} \sum_{p \leq(x / m)^{1 / h}} p \\
& =\sum_{\substack{m \leq \exp \{\sqrt{\log x}\} \\
m \in \mathbb{P}_{h}}} \sum_{p \leq(x / m)^{1 / h}} p+\sum_{\substack{\exp \{\sqrt{\log x}\}<m \leq p^{1 / h} \\
m \in \mathbb{P}_{h}}} \sum_{p \leq(x / m)^{1 / h}} p \\
& =T_{1}(x)+T_{2}(x) . \tag{5.4}
\end{align*}
$$

Again, using the bound $\mathbb{P}_{h}(t) \ll t^{1 / h}$ ensured by estimate (1.6), we have, arguing as we did in Lemma 3,

$$
\begin{aligned}
T_{2}(x) & \leq \sum_{\substack{\exp \left\{\sqrt{\log x\}<m \leq p^{1 / h}} \\
m \in \mathbb{P}_{h}\right.}}\left(\frac{x}{m}\right)^{2 / h}=x^{2 / h} \sum_{\substack{\exp \{\sqrt{\log x}\}<m \leq p^{1 / h} \\
m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}} \\
& =x^{2 / h} \int_{\exp \{\sqrt{\log x}\}}^{x} t^{-2 / h} d \mathbb{P}_{h}(t)
\end{aligned}
$$

$$
\begin{align*}
& \ll x^{2 / h}\left(\left.t^{-2 / h} t^{1 / h}\right|_{\exp \{\sqrt{\log x}\}} ^{x}+\int_{\exp \{\sqrt{\log x}\}}^{x} t^{-\frac{2}{h}-1} t^{1 / h} d t\right) \\
& \left.\ll x^{2 / h} \cdot \frac{1}{t^{1 / h}}\right|_{\exp \{\sqrt{\log x}\}} ^{x} \ll \frac{x^{2 / h}}{\exp \left\{\frac{1}{h} \sqrt{\log x}\right\}} \ll \frac{x^{2 / h}}{\log ^{k+1} x} . \tag{5.5}
\end{align*}
$$

Making use of Lemma 1 with $X=(x / m)^{1 / h}$ and thereafter of formula (3.2) of Lemma 2, we obtain

$$
\begin{align*}
T_{1}(x)= & \sum_{\substack{m \leq \exp \left\{\sqrt[1 l o g]{\log x} \\
m \in \mathbb{P}_{h}\right.}}\left\{\frac{1}{2} \frac{(x / m)^{2 / h}}{\frac{1}{h} \log (x / m)}+a_{2} \frac{(x / m)^{2 / h}}{\frac{1}{h^{2}} \log ^{2}(x / m)}\right. \\
& \left.+\cdots+a_{k} \frac{(x / m)^{2 / h}}{\frac{1}{h^{k}} \log ^{k}(x / m)}+O\left(\frac{(x / m)^{2 / h}}{\log ^{k+1}(x / m)}\right)\right\} \\
= & e_{1} \frac{x^{2 / h}}{\log x}+e_{2} \frac{x^{2 / h}}{\log ^{2} x}+\cdots+e_{k} \frac{x^{2 / h}}{\log ^{k} x}+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right), \tag{5.6}
\end{align*}
$$

where we used the fact that, in light of estimate (3.4) of Lemma 3,

$$
\begin{aligned}
\frac{h}{2} \frac{x^{2 / h}}{\log x} \sum_{\substack{m \leq \exp \left\{\sqrt[l l o w]{\log x\}} \\
m \in \mathbb{P}_{h}\right.}} \frac{1}{m^{2 / h}} & =\frac{h}{2} \frac{x^{2 / h}}{\log x}\left(\sum_{\substack{m=1 \\
m \in \mathbb{P}_{h}}}^{\infty} \frac{1}{m^{2 / h}}-\sum_{\substack{m>\exp \left\{\sqrt[1]{\log x\}} \\
m \in \mathbb{P}_{h}\right.}} \frac{1}{m^{2 / h}}\right) \\
& =\frac{x^{2 / h}}{\log x} \frac{h}{2} \sum_{\substack{m=1 \\
m \in \mathbb{P}_{h}}}^{\infty} \frac{1}{m^{2 / h}}\left(1+O\left(\frac{1}{x^{1 / h}}\right)\right)
\end{aligned}
$$

and where we used estimate (3.5) of Lemma 3 to estimate the other coefficients e_{i} appearing in (5.6).

Finally, gathering estimates (5.2), (5.3), (5.4), (5.5) and (5.6) in (5.1) completes the proof of Theorem 2 .

References

[1] K. Alladi and P. Erdős, On an additive function, Pacific J. Math. 71 (1977), 275-294.
[2] J.M. De Koninck and A. Ivić, The distribution of the average prime divisor of an integer, Archiv der Math. 43 (1984), 37-43.
[3] A. Ivić and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26 (1982), no. 4, 576-590.
[4] I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction of the Theory of Numbers, Fifth Edition, John Wiley \& Sons, Inc., 1991.
[5] F. Pappalardi, A survey on k-freeness, Number Theory, Ramanujan Math. Sec. Lect. Notes Ser., vol. 1, Ramanujan Math. Soc., Mysore, 2005, 71-88.

JMDK, January 22, 2022; file: r-free-h-full.tex

