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Abstract

Given an integer n > 2, let P(n) stand for its largest prime factor. We examine the
behaviour of Z P(n) in the case of two sets A, namely the set of r-free numbers and

n<z
neA

the set of h-full numbers.
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1 Introduction

Given an integer n > 2, let P(n) stand for its largest prime factor, with P(1) = 1. Even
though this function is very chaotic as the values of P(n) alternate between small and large
values as n varies, its average value over large intervals is more smooth and can be estimated.

The first published estimate regarding the sum ) _ P(n) is due to Alladi and Erdds [1]
as they proved that -
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1.1 P - ‘
(1.1) Z (n) 12log x O <log2x)

n<x

This result was later improved by De Koninck and Ivié [2] when they showed that, given
any positive integer k, there exist computable constants cs, . .., ¢, such that
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1.2 P(n)=— +c +---4c +O0|(—F/—m ).
(1.2) ; (n) 12logz  logax "logh z <logk+1x>

A natural question to ask is how the above formula changes if instead of summing P(n)
over all natural numbers n < x, we restrict these numbers n to a particular subset A of N.
For this purpose, we will consider here two large families of integers, namely the set of r-free
numbers and the set of h-full numbers.

Given an integer n > 2, write its prime factorisation as n = ¢7"'¢5* - - - ¢%*, where ¢ <
G2 < --- < @ are primes and ag, a9, ...,as € N. Given fixed integers » > 2 and h > 2,
we say that n is a r-free number if max(ay, as,...,as) < r — 1, whereas we say that n is
a h-full number if min(ay, o, ..., as) > h. We will denote by F, the set of r-free numbers;
amongst these sets, the sets [Fy of square-free numbers and the set F3 of cube-free numbers
are often mentioned in the literature. On the other hand, we will denote by P, the set of
h-full numbers. Particular cases are the set Py, known as the set of powerful numbers or
square-full numbers, and the set P, the set of cube-full numbers.



In what follows we will make frequent use of the Riemann zeta function ((s) defined by

C(s) ::2%:1‘[(1—%)_1 (s> 1),

p

Let p.(n) be the characteristic function of the r-free numbers, that is,

(n) = 1 if n is r-free,
HrA =19 0 otherwise,

implying in particular that its generating function is

= pr(n) 1 1
s = H<1+E+”'+p(r1)s

n=1 p

(1.3) _ 1L (1 _ ”L> _ Sl sy,

I, (1_#> C(rs)

Let xx(n) be the characteristic function of the h-full numbers, that is,

(n) = 1 if nis h-full,
X =10 otherwise,

implying in particular that its generating function is

= xn(n) B 1 1
; ns o H(l_'_ﬂ—i_p(h—l-l)s_'_

» p
1 1 1
= Q(hS)H<1—%)H(1+%+W+'“)
p p
1 1 1
(1.4) = ((hs) H <1 + s 4 o 4t p—(%_l)s> (s >1).
p

Finally, let us mention that the counting functions IF,.(x) and Pp,(x) of these two families
of numbers are well-known. These are, for fixed integers » > 2 and h > 2,

x) = L91: il
(1.5) Frl@) = ot 0@"),
(1.6) P.(z) = yat/" + O (a/ D)

for some positive constant 7,. For a proof of (1.5) in the simplest case, that is for r = 2,
see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4]; for a proof of the
general case, that is for any r > 2, see the survey paper of Pappalardi [5]. For a proof of
(1.6), see the paper of Ivic and Shiu [3], where in fact a much more accurate formula is
proved.



2 Main results

For our first set A, we choose the set of r-free numbers F,. In this case we can prove the
following.

Theorem 1. Let r > 2 be a fized integer. Then, given any positive integer k, there exist
computable constants dy,ds, . .., d; such that

P(n g g ot o=

. 1 NN 1 :
; ; il ogz * Clog’x “log @ <10g'“+1 x)
nefy

where in particular, in light of (1.5),

o L (n)  (2)
h=di" =3 n?  20(2r)

n=1

Remark 2.1. In the case r = 2, that is, the case of square-free numbers, we have

9 1
@ _ 62 _ 15 o009

L 2¢(4) 22
In the case r = 3, that s, the case of cube-free numbers, we have

(3 _ ¢(2) _ 315
boo¢(6)  4mt

When choosing A = P, we can prove the following general result.

= 0.808446. . ..

Theorem 2. Let h > 2 be a fized integer. Then, given any positive integer k, there exist
computable constants ey, e, ..., e, such that

22/h 2/h

T 22/P 72/h
(2.2) > P(n) tes—g— F e +O( kﬂm),

logx log” z log” x log

n<z
nePy,

where

h 1 h 1 1
61:§ZW:§H<1+ (ph)z/h+(ph+1)2/h+"')'

nePy, p

Remark 2.2. In the particular case of square-full numbers, we have, in light of (1.4) with
h=2ands=1,

Z H(1+ +—+ ) C2ICB) _y gy36..
ne]P’z C(6)
In the case of cube-full numbers, we find

3 1 3 1 1 1

nePs p



3 Preliminary results

Let 7(x) stand for the number of primes not exceeding x. Using the prime number theorem

in the form
T 1z 2z kE—1lx T
m(z) = + 5t 3 +"’+%+O( k+1 )7
logz  log®z log”x log"® x log" x

one can easily prove the following.

Lemma 1. Given any positive integer k, there exist computable constants as, . ..,ay such
that
1 X? X2 X? X?
(3.1) p== —+---~|—ak—~|—0(—)
1;( 2log X log2 X logh X logh™ X

We also have the following.

Lemma 2. Given fized positive integers s and k, there exist computable constants co s, Ci s, ..., Cis
such that
(3 2) Z 1 _ Cogs 4 Ci,s i i Ck,s L0 1
) n2log®(x/n)  loe®z ' log®t! stk st+k+1 :
Iy g*(x/n) g og’ log® ™" log x
On the other hand, given a fized integer r > 2, as well as fived integers s,k € N, there exist
computable constants dys,d; s, ..., dgs such that
Hor (n) dO s dl s dk s 1
3.3 = —2 ’ e ’ O(————— ).
(3:3) n;g n?log®(z/n)  log’x * log®™ o log®™* * log®th+l ¢
Proof. We only provide the proof of (3.3) since the proof of (3.2) is similar. Since we assumed
1 1
that n < y/x, we have that logn < 3 Therefore, for a fixed integer £ > 1 and all y < < =, we
og

may use the expansion

1
—— =1+4y+y+--+y +0@E")

L—y
to write that, in the case s =1,
(1 r(n (n logn log"tn logh n
21u() _ pir(n) :f;l()(HIg fop e +o( Y >)
n2log(x/n) nﬂog:c(l—%) n?log x og logh 1z log" x
~(n) 1 r(n)logn 1 (n)log"tn 1 1
M(Q) +u()2g : +m+u()2g i +O(T)-
n? logx n log” x n log™ z log
+(n)l
Then, observing that for each integer 7 > 1, the corresponding series Z w con-
n?
n=1
verges, estimate (3.3) in the case s = 1 easily follows. The case of an arbitrary s € N can be
handled similarly. O



Lemma 3. For each integer h > 2,

1 1 1
(3:4) ZW:ZW+O<W)

5 =
and, for each fived j € N,
log? m
(3.5) ; —n =0(1).
mE_]Ph

1
Proof. First observe that, replacing the sum Z —7n by a Stieltjes integral, using integra-
m

m>x
mePy,

tion by parts and thereafter using the bound Py, (t) = O(t'/") provided by (1.6), we obtain
that

1 o 1 H‘Dh(t) 2 > _2_
Z m2lh / tz/thh(t): 12/h +E/ 7R P(t) dt
m>x € x x
mePy,
1 2 [ 1 1
(3.6) <~ +E/x Y dt < 7

Using (3.6), it follows that

1 1 1 1 1
ZWIZW—ZWZZW+O<W>’

m<z mePy, m>xz mePy,
mePy, mePy,

thus completing the proof of (3.4).
The proof of (3.5) can easily be established using the same technique as that employed
to prove (3.4). O

4 Proof of Theorem 1

First observe that

M(z) == Y m(m)Pn)=>Y_p Y u(m)

nse PST Pty
= >op > mm+ D> p Y m(m)
PVE P Vesese pese,
It is trivial that
4.2 M ° Nz 2
. < g _
(4.2) @) < ) pe s =arVE) < o



To estimate My (x), first observe that if p > \/z, we have that x/p < p, in which case the
condition P(m) < p appearing in the definition of Ms(x) can be dropped. Hence, inverting
the sum over p with the sum over m, and then using Lemma 1 with X = /z, we obtain that

My(w) = > p Y mlm)=> mm) > p

Vr<p<z m<z/p m<\/x Vz<p<z/m
= > mm) > p— > m(m) ) p
m<yx p<z/m m<Vz p<VzT
23/2
= X ) X o (o)
m<y/z p<z/m
23/2
4.3 = M. @) .
(4.3 w)+0 (1)

Gain using Lemma 1 but this time with X = z/m and thereafter formula (3.3) of Lemma
2, we obtain

B 1 (z/m)? (z/m)*
My(x) = ) Mr<m>{§w+a2m

m<\/z
x/m)? x/m)?
e (gt )
tog (/) \iog"™ (a/m)
1 = pr(m) x? x? < x? >
4.4 = = +d ttd +0 ,
(4.4) QmZ::l m? logz  log’z “log" x log"tt
where we took the liberty to replace Hr (T) by MT(T), a justified move since
fir (m) — i (m) fir (M)
m2 Z m2 m2
m<yz m=1 m>y/z

P?:S

r < dt
(/)

pir (m) 1

0 vo(:)

Finally, gathering (4.2), (4.3) and (4.4) in (4.1) completes the proof of Theorem 1.
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5 Proof of Theorem 2

First, we write

U(x)::ZP(n) = Zp Z 1= Zp Z 1

n<z p<$1/h mph <z p<1‘1/h m<az/ph
nekry - mePy, - mePy,
P(m)<p P(m)<p
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= 2 r 2 1t > p )

p<x1/(h+1) mgz/ph xl/(h+1)<p<m1/h mgz/ph
- mePy, - mePy
P(m)<p P(m)<p

It follows from estimate (1.6) that

i < Y p Y 1= % pph<]§)

pgxl/(h+1) 'mgz/ph pgxl/(h+1)
mePy,
1/h h%iﬂ)
T X
5.2 < T =gty « .
(5:2) > (@) < 2

pgml/(h"rl)

x
To evaluate Us(z), first observe that for p > /(1) we have that — < p, implying that
p

in this case the condition P(m) < p appearing in the second sum defining Us(z) can be
dropped and therefore that

UEIEEED SIS SEED D SERED SIFD O

xl/(h+1><p§a:1/h mph <z pgzl/h mph<az pgatl/(h'H) mph <z
mePy, mePy, mePy,

hQ(Zii)
xr

= 1+0
>3 o)

p<zl/h  mph<a

mePy,
5.3 T(zx)+0O i Ty o 20
(5.3 - T +0 () 7@ +0 ()
here we made use of (5.2) and the fact that 2h+1 < 2
where we m u .2) an AR

Inverting the two sums appearing in the definition of T'(z), we can rewrite T'(x) as follows.

T) = > 2. p=2, 2 »

S ph<a/m e, PS(@/m)t/
= > 2 ot X >
m<exp{vlogz} pg(m/m)l/h exp{\/m}<m§pl/h pg(x/m)l/h
mePy, mePy,
(5.4) — Ty(2) + To(a).

Again, using the bound P, (t) < t'/* ensured by estimate (1.6), we have, arguing as we did
in Lemma 3,

x\2/h 2/h 1
Mos X (e y b
exp{vIogz}<m<pl/h exp{vIogz} <m<pl/h
mePy mePy
xX
= gt / t=2 APy, (t)
exp{/Iogz}



< xz/h (t—2/ht1/h’$ +/ t_i—ltl/hdt>
or{vicer} © f p(viogs)

x 22/h 2/h

x
<K < .
exp{v/IoET) exp{%\/log ) log"tx

Making use of Lemma 1 with X = (z/m)Y" and thereafter of formula (3.2) of Lemma 2,
we obtain

(5.5) < 2.

i

Ti(x) = Z {2%10g(x/7n)jL Q%IOgZ(x/m)

m<exp{Iogz}
Lo )

mePy,
mlog (a/m) " \log" (z/m)

22/h 22/h 22/h 22/h
5.6 = e +e +---+4e +0 ,
(5.6) ! log z ? log? z ’ log" « (log]“rl :z:)

e Fag

where we used the fact that, in light of estimate (3.4) of Lemma 3,

h l’Q/h Z 1 . h $2/h i 1 Z 1
2log m2h 2logx | 4~ m¥h m?2/h
m<exp{vIogT} m=1 m>exp{vIogT}
mePy, mePp, mePy,
22 h KXl 1
- logx§ ; m2/h <1+O<x1/h>)
mePy,

and where we used estimate (3.5) of Lemma 3 to estimate the other coefficients e; appearing
in (5.6).

Finally, gathering estimates (5.2), (5.3), (5.4), (5.5) and (5.6) in (5.1) completes the proof
of Theorem 2.
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