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Abstract. Writing p1(n) < · · · < pr(n) for the distinct prime divisors of a given
integer n ≥ 2 and letting, for a fixed λ ∈ (0, 1], Uλ(n) := #{j ∈ {1, . . . , r − 1} :
log pj(n)/ log pj+1(n) < λ}, we recently proved that Uλ(n)/r ∼ λ for almost all integers
n ≥ 2. Now, given λ ∈ (0, 1) and p ∈ ℘, the set of prime numbers, let Bλ(p) := {q ∈ ℘ : λ <
log q
log p

< 1/λ} and consider the arithmetic function uλ(n) := #{p |n : (n/p,Bλ(p)) = 1}.
Here, we prove that

∑
n≤x(uλ(n)−λ2 log log n)2 = (C + o(1))x log log x as x → ∞, where

C is a positive constant which depends only on λ, and thereafter we consider the case of
shifted primes. Finally, we study a new function V (n) which counts the number of divisors
of n with large neighbour spacings and establish the mean value of V (n) and of V 2(n).

1. Introduction. Given an integer n ≥ 2, let ω(n) stand for the number
of distinct prime divisors of n ≥ 2 (setting ω(1) = 0) and let

(1.1) p1(n) < · · · < pω(n)(n) or briefly p1 < · · · < pω(n)

be those prime divisors. Many have shown interest for the relative size of
these prime factors pj(n).

Let ξ(n) → ∞ as n → ∞. In 1946, P. Erdős [4] proved that given any
small number ε > 0,

ee
k(1−ε)

< pk(n) < ee
k(1+ε)

(ξ(n) ≤ k ≤ ω(n)) for almost all n.

In 1976, J. Galambos [5] strengthened this result by showing that, given
any small ε > 0 and a function k = k(x) which tends to infinity with x in
such a manner that k(x) = o(log log x) as x→ ∞, we have

lim
x→∞

1

x
#{n ≤ x : e−(1+ε)k log x < log pω(n)−k(n) < e−(1−ε)k log x} = 1.

Galambos also established that, given any small ε > 0 and a function
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j = j(x) which tends to infinity with x in such a manner that

j(x) ≤ (1− ε) log log x,

for any fixed real number z > 1, we have

lim
x→∞

1

x
#

{
n ≤ x :

log pj+1(n)

log pj(n)
< z

}
= 1− 1

z
.

In 1987, De Koninck and Galambos [2] showed that for almost all n (with
the prime factors of n written as in (1.1)) and for any fixed positive integer k,
the corresponding

(log log pj+1 − log log pj , log log pj+2 − log log pj+1,

. . . , log log pj+k − log log pj+k−1)

is distributed as a k-tuple of independent exponential random variables with
parameter 1.

Finally, in 2007, Granville [6], [7] proved that if Sk(x) stands for the
number of positive integers n ≤ x such that ω(n) = k, then for all but
o(Sℓ(x)) of the integers n ∈ Sℓ(x), the sets{

log log p
1
ℓ log log(n

1/ℓ)
: p |n, p ≤ n1/ℓ

}
are Poisson distributed.

Recently, in [3], we further expanded on the above results by examining
the distribution of the consecutive neighbour spacings between the prime di-
visors of a typical integer n. Here, we examine other functions which provide
more information on the spacings between the prime divisors of an integer.

2. Setting the table. Let us write the distinct prime factors of an
integer n as in (1.1) and introduce the functions

γj(n) :=
log pj(n)

log pj+1(n)
(j = 1, . . . , r − 1).

From here on, the letters p and q (and at times the letter π) will denote
primes, whereas the letter ℘ will stand for the set of all prime numbers.
Given positive real numbers u < v, we set

Q(u, v) :=
∏

u<p<v
p∈℘

p.

Also, given an integer n ≥ 2 and a prime divisor p of n which is smaller than
P (n), the largest prime divisor of n, we set

νp = νp(n) := min {q |n : q > p}.
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In light of the above notation, we have

GCD
(
n

pνp
, Q(p, νp)

)
= 1.

When the context is clear, we shall write (a, b) instead of GCD(a, b). Given
a real number λ ∈ (0, 1], we introduce the function

Uλ(n) :=
∑
p|n

log p
log νp(n)

<λ

1,

or equivalently
Uλ(n) :=

∑
p|n

log log νp(n)−log log p>log 1
λ

1.

In a recent paper [3], we proved the following.

Theorem A (De Koninck–Kátai). For an arbitrary real number λ∈ (0, 1],∑
n≤x

Uλ(n) = (1 + o(1))λx log log x (x→ ∞).

Moreover, for every ε > 0,

lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Uλ(n)

ω(n)
− λ

∣∣∣∣ > ε

}
= 0.

Now, given λ ∈ (0, 1) and p ∈ ℘, consider the set

Bλ(p) :=

{
q ∈ ℘ : λ <

log q

log p
< 1/λ

}
.

We will say that a positive integer m is coprime to a set A of primes and
write (m,A) = 1 if (m, p) = 1 for every p ∈ A.

In the current paper, we study the arithmetic function

uλ(n) := #{p |n : (n/p,Bλ(p)) = 1}.

Observe that it follows from Theorem A that∑
n≤x

uλ(n) = (1 + o(1))λ2x log log x (x→ ∞),(2.1)

∑
n≤x

uλ(n)
2 = λ4x(log log x)2 +O(x log log x).(2.2)

Our first goal in this paper is to fine tune the above estimates so that we can
prove that

∑
n≤x(uλ(n) − λ2 log log x)2 = (C + o(1))x log log x as x → ∞,

where C is a positive constant which depends only on λ, and thereafter to
consider the case of shifted primes. Finally, we study a new function V (n)
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which counts the number of divisors of n with large neighbour spacings and
establish the mean value of V (n) and of V 2(n).

3. Main results. The following is an improvement of estimates (2.1)
and (2.2).

Theorem 3.1. As x→ ∞,

(3.1)
1

x

∑
n≤x

(
uλ(n)− λ2 log log x

)2
= (1 + o(1))ψ(λ) log log x,

where

(3.2) ψ(λ) = λ2 + 2λ2(1− λ2)− 4λ4 log
1

λ
.

We then have the following analogue result for shifted primes.

Theorem 3.2. As x→ ∞,
1

π(x)

∑
p≤x

uλ(p+ 1) = (1 + o(1))λ2 log log x,

1

π(x)

∑
p≤x

(
uλ(p+ 1)− λ2 log log x

)2
= (1 + o(1))ψ(λ) log log x,

where, as usual, π(x) stands for the number of primes not exceeding x.

Now, given real numbers 1 < ξ1 < ξ2, let

Λ(ξ1, ξ2) :=
log ξ1
log ξ2

.

Let k ≥ 2 be an integer and consider the intervals Ij := (uj , vj) ⊆ (0, 1) for
j = 1, . . . , k−1, and let λ ∈ (0, 1). Then, given a large number x, we let K be
the collection of all prime k-tuples (p1, . . . , pk) such that p1 < · · · < pk ≤ x
and

Λ(pj , pj+1) ∈ Ij (j = 1, . . . , k − 1).

We then let V (n) be the number of those divisors d of n of the form
d = p1 · · · pk, where (p1, . . . , pk) ∈ K, and for which we also have(

n

p1 · · · pk
, Q(pλ1 , p

1/λ
k )

)
= 1.

Further, let Ṽ (n) be the number of those divisors counted by V (n) but which
satisfy the additional condition Y1 < p1 < pk < Y2, where Y1 = Y1(x) and
Y2 = Y2(x) are defined as follows. Given a real number x ≥ ee

e , we set

(3.3) Y1 := Y1(x) = exp{(log x)ε(x)}, Y2 := Y2(x) = exp{(log x)1−ε(x)},
where

ε(x) :=
1

2

log log log x

log log x
.
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Finally, set

∆1 = ∆1(I1, . . . , Ik−1) := (v1 − u1) · · · (vk−1 − uk−1),

∆2 = ∆2(I1, . . . , Ik−1) :=

(
1

u1
− 1

v1

)
· · ·

(
1

uk−1
− 1

vk−1

)
.

Then we have the following.

Theorem 3.3. Let k, λ, Ij (j = 1, . . . , k − 1) and K be as above. Then

(i) 1
x

∑
n≤x Ṽ (n) = λ2∆1 log log x+O(1),

(ii) 1
x

∑
n≤x V (n) = λ2∆1 log log x+O(log log log x).

Finally, we will prove the following.

Theorem 3.4. We have

(3.4)
∑
n≤x

Ṽ 2(n) = λ4∆1∆2xS
2 +MxS + o(xS),

where

M := 2λ2∆1∆2(λ− λ2 − 2λ2 log 1/λ) + λ2∆1,

S :=
∑

Y1≤p≤Y2

1

p
= log log x+O(log log log x).

Moreover,

(3.5)
∑
n≤x

V 2(n) = λ4∆1∆2x(log log x)
2 +O(x log log x · log log log x).

4. Preliminary results. Here, we state some classical results from
prime number theory. We start with Mertens’ theorem, which in fact can
be formulated in three equivalent forms.

Theorem B (Mertens). For large x, we have

(i)
∑
p≤x

log p

p
= log x+O(1),

(ii)
∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
for some constant B,

(iii)
∏
p≤x

(
1− 1

p

)
=

eD

log x

(
1 +O

(
1

log x

))
for some constant D.

Proof. This is Theorem 10.1 in the book of De Koninck and Doyon [1],
where a detailed proof is also given.
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Lemma 4.1. Given real numbers y > x ≥ e, we have

(a)
∑

x<p≤y

log p

p
= log y − log x+O

(
1

log x

)
,

(b)
∑

x<p≤y

1

p
= log

(
log y

log x

)
+O

(
1

log x

)
.

Proof. To prove part (a), one will not succeed by simply using Theorem
B(i). A stronger estimate is required. In 1962, Rosser and Schoenfeld [9]
proved that there exist constants E < 0 and a > 0 such that

(4.1)
∑
p≤x

log p

p
= log x+ E +O

(
1

ea
√
log x

)
.

It is then clear that (a) is an easy consequence of (4.1).
Part (b) is an immediate consequence of Theorem B(ii).

With the notation introduced right before the statement of Theorem 3.3
along with the conditions attached to the related variables, we have the
following.

Lemma 4.2. For each j = 1, . . . , k − 1,∑
uj≤Λ(pj ,pj+1)<vj

log pj
pj

= (vj − uj) log pj +O

(
1

log pj

)
.

Proof. This is a direct consequence of Lemma 4.1(a).

Lemma 4.3. For each j = 1, . . . , k − 1,∑
p
1/vj
j <pj+1<p

1/uj
j

1

pj+1 log pj+1
=

(
1

uj
− 1

vj

)
1

log pj
+O

(
1

log2 pj

)
.

Proof. Using the prime number theorem in the form

π(x) =
x

log x
+O

(
x

log2 x

)
,

we get

∑
p
1/vj
j <pj+1<p

1/uj
j

1

pj+1 log pj+1
=

p
1/uj
j �

p
1/vj
j

1

t log t
d π(t)

=

p
1/uj
j �

p
1/vj
j

1

t log2 t

(
1 +O

(
1

log t

))
dt



SPACINGS BETWEEN PRIME DIVISORS 7

= − 1

log t

(
1 +O

(
1

log t

))∣∣∣∣p
1/uj
j

p
1/vj
j

=

(
1

uj
− 1

vj

)
1

log pj
+O

(
1

log2 pj

)
,

thus proving our claim.

Lemma 4.4. We have∑
{p1,...,pk}∈K

log p1
p1 · · · pk log pk

= ∆1 log log x+O(1).

Proof. Making repetitive use of Lemma 4.2, we obtain∑
{p1,...,pk}∈K

log p1
p1 · · · pk log pk

= (v1 − u1)
∑

p2,...,pk

log p2
p2 · · · pk log pk

(
1 +O

(
1

log2 p2

))
...

= (v1 − u1) · · · (vk−1 − uk−1)
∑
pk

log pk
pk log pk

(
1 +O

(
1

log2 p2

))
= ∆1

∑
pk

1

pk

(
1 +O

(
1

log2 p2

))
= ∆1 log log x+O(1).

Lemma 4.5. For all x ≥ ee
e,

(4.2) S :=
∑

Y1≤p≤Y2

1

p
= log log x− log log log x+O

(
1√

log log x

)
.

Proof. Using estimate (ii) of Theorem B, we have

S = log log Y2 − log log Y1 +O

(
1

log Y1

)
= (1− ε(x)) log log x− ε(x) log log x+O

(
1

eε(x) log log x

)
= log log x− 2ε(x) log log x+O

(
1

elog log log x/2

)
,

from which (4.2) follows immediately.

Finally, we recall Lemmas 5 and 6 of our recent paper [3] which we rename
here as Lemmas A and B.



8 J.-M. DE KONINCK AND I. KÁTAI

Lemma A. Let x ≥ ee
100 and let Y1 = Y1(x) and Y2 = Y2(x) be the

functions defined in (3.3). Let π1 < · · · < πs be s primes located in the
interval (Y1, Y2). Write their product as B = π1 · · ·πs. Further, set

η :=

s∑
i=1

1

πi
and SB(x) :=

∑
n≤x

(n,B)=1

1.

Assume that η ≤ K, where K is an arbitrary number, and let h be a positive
integer satisfying h ≥ 3e2K. Then, letting ϕ stand for the Euler totient
function, we have ∣∣∣∣SB(x)− ϕ(B)

B
x

∣∣∣∣ ≤ x(3e)−h + 2Y h
2 ,

so that in particular, if we choose h = ⌊log log log x⌋, there exists a positive
constant c such that ∣∣∣∣SB(x)− ϕ(B)

B
x

∣∣∣∣ ≤ cx

(log log x)2
.

Lemma B. Let x, B, h, η and K be as in Lemma A. Let D be a positive
integer ≤ Y c0

2 , where c0 is an arbitrary positive constant, and assume that
(B,D) = 1. Consider the sum

SB,D(x) :=
∑
p≤x

p+1≡0 (modD)
(p+1,B)=1

1.

Then, setting

ϕ̃0(n) =
ϕ(n)

n

∏
p|n

(
1− 1

(p− 1)2

)
,

for some positive constant c1 we have∣∣∣∣SB,D(x)− ϕ̃0(B)
li(x)
ϕ(D)

∣∣∣∣ ≤ c1
li(x) (3e)−h

ϕ(D)
+ Y h

2 ,

where li(x) :=
	x
2

dt
log t , so that in particular, by choosing h = ⌊log log log x⌋,

for some positive constant c2 we have∣∣∣∣SB,D(x)− ϕ̃0(B)
li(x)
ϕ(D)

∣∣∣∣ ≤ c2
li(x)

ϕ(D) (log log x)2
.

5. The proofs of Theorems 3.1 and 3.2. Our main goal in this
section is to prove relation (3.1).

Given an integer n ≥ 2, we start by subdividing the primes p dividing n
into three subsets: p < Y1, p ∈ [Y1, Y2], and p > Y2. Correspondingly, we
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write uλ(n) as the sum of three new functions:

(5.1) uλ(n) = u
(1)
λ (n) + ũλ(n) + u

(2)
λ (n).

First observe that

(5.2)
1

x

∑
n≤x

u
(1)
λ (n) ≤

∑
p<Y1

1

p
≪ log log Y1 = ε(x) log log x =

1

2
log log log x

and
1

x

∑
n≤x

u
(2)
λ (n) ≤

∑
Y2<p≤x

1

p
= log log x− log log Y2 +O(1)(5.3)

= log log x− (1− ε(x)) log log x+O(1)

= ε(x) log log x+O(1) =
1

2
log log log x+O(1).

Now, on the other hand, using Lemma A and Theorem B(iii), we have∑
n≤x

ũλ(n) =
∑

p∈[Y1,Y2]

#{m ≤ x/p : (m,Bλ(p)) = 1}(5.4)

=
∑

p∈[Y1,Y2]

x

p

∏
q∈Bλ(p)

(
1− 1

q

)(
1 +O

(
1

log p

))

= xλ2
∑

p∈[Y1,Y2]

1

p
+O

(
x
∑
p>Y1

1

p log p

)
= xλ2S + o(x).

We also have

(5.5)
∑
n≤x

ũλ
2(n)

= 2
∑

Y1<p1<p2<Y2

#

{
m ≤ x

p1p2
: q |m⇒ q ̸∈ Bλ(p1) ∪ Bλ(p2)

}
+

∑
p1=p2

Y1<p<Y2

#{m ≤ x/p : (m,Bλ(p)) = 1}

=: 2S1(x) + S2(x).

It is easy to see that S2(x) =
∑

n≤x ũλ(n). Thus, in light of estimate (5.4),
we may write

(5.6) S2(x) = xλ2S + o(x).

In order to estimate S1(x), we will again make use of Lemma A. To do
so, we need to examine the possible overlap of the sets Bλ(p1) and Bλ(p2).
First observe that

Bλ(p1) ∩ Bλ(p2) = ∅ if
log p1
log p2

< λ2,
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in which case we have, again using Theorem B(iii),∏
q∈Bλ(p1)∪Bλ(p2)

(
1− 1

q

)
=

∏
q∈Bλ(p1)

(
1− 1

q

)
·

∏
q∈Bλ(p2)

(
1− 1

q

)
(5.7)

= λ4
(
1 +O

(
1

log p1

))
.

Now, in the other situation, that is, if

λ2 <
log p1
log p2

< λ,

then ∏
q∈Bλ(p1)∪Bλ(p2)

(
1− 1

q

)
=

∏
pλ1<q<p

1/λ
2

(
1− 1

q

)
(5.8)

= λ2
log p1
log p2

(
1 +O

(
1

log p1

))
.

Thus, combining (5.7) and (5.8), and recalling the implicit definition of S1(x)
given in (5.5), we obtain

S1(x) = λ4x
∑

p1<pλ
2

2

1

p1p2
+ λ2x

∑
λ2<

log p1
log p2

<λ

log p1
p1p2 log p2

+ o(x)(5.9)

= λ4x

(
S2

2
−
∑
p2

1

p2

( ∑
pλ

2
2 <p1<p2

1

p1

))

+ λ2x
∑
p2

1

p2 log p2

∑
pλ

2
2 <p1<p2

log p1
p1

+ o(x)

= λ4x
S2

2
− λ4x

∑
p2

1

p2

( ∑
pλ

2
2 <p1<p2

1

p1

)
+ λ2x(1− λ2)S + o(x).

Using Theorem B(ii), we obtain∑
pλ

2
2 <p1<p2

1

p1
= log

(
log p2
λ2 log p2

)
+O

(
1

log p2

)
= 2 log

1

λ
+O

(
1

log p2

)
.

Inserting this last estimate in (5.9) gives

(5.10) S1(x) = λ4
S2

2
x− 2 · log 1

λ
· λ4Sx+ λ2(1− λ2)Sx+ o(x).
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Gathering (5.6) and (5.10) in (5.5) gives
1

x

∑
n≤x

ũλ
2(n) = λ4S2 + λ2S +

(
2λ2(1−λ2)− 4

(
log

1

λ

)
λ4

)
S + o(1)(5.11)

= λ4S2 + ψ(λ)S + o(1),

where ψ(λ) is the function defined in (3.2).
Using (5.11) and (5.4), we thus have

1

x

∑
n≤x

(
ũλ(n)− λ2S

)2
=

1

x

∑
n≤x

ũλ
2(n)− 2λ2S

1

x

∑
n≤x

ũλ(n) + λ4S2(5.12)

= ψ(λ)S + o(1).

Using the estimate of Lemma 4.5 in (5.12), we may rewrite (5.12) as

(5.13)
1

x

∑
n≤x

(
ũλ(n)− λ2 log log x

)2
= ψ(λ) log log x+O(log log log x).

Inserting (5.2), (5.3) and (5.13) in (5.1), we can prove that

(5.14)
1

x

∑
n≤x

(
uλ(n)− λ2 log log x

)2
= ψ(λ) log log x+ o(log log x).

Indeed, first, for each integer n ≥ 1, let us set

δn := ũλ(n)− λ2S,

κn := (uλ(n)− ũλ(n))− λ2(log log x− S).

The numbers δn and κn are tied by the relation

κn = (uλ(n)− λ2 log log x)− δn,

so that

(5.15) (uλ(n)− λ2 log log x)2 = δ2n + κ2n + 2δnκn.

Clearly, in light of (5.13) and of Lemma 4.5,

(5.16)
1

x

∑
n≤x

δ2n = ψ(λ) log log x+O(log log log x).

Now, setting ρn := #{p |n : p ̸∈ (Y1, Y2)}, we have

(5.17) |κn| ≤ ω(n) + λ2(log log x− S) ≤ ρn +O(log log log x).

On the other hand, it is clear that

(5.18)
∑
n≤x

ρn ≪ x log log log x and
∑
n≤x

ρ2n ≪ x(log log log x)2.

Using (5.18) in (5.17), we obtain

(5.19)
∑
n≤x

κn ≪ x log log log x and
∑
n≤x

κ2n ≪ x(log log log x)2.
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Hence, by using the Cauchy–Schwarz inequality, it follows from (5.16) and
(5.19) that

(5.20)
∣∣∣∑
n≤x

δnκn

∣∣∣ ≤ ∑
n≤x

|δnκn| ≤
(∑
n≤x

δ2n

)1/2
·
(∑
n≤x

κ2n

)1/2

≪
√
x log log x ·

√
x(log log log x)2 = x

√
log log x · log log log x.

Using estimates (5.16), (5.19) and (5.20) in identity (5.15) completes the
proof of (5.14) and thus at the same time the proof of Theorem 3.1.

The proof of Theorem 3.2 goes along the same lines as the proof of Theo-
rem 3.1, except that it uses the Bombieri–Vinogradov theorem (see Theorem
17.1 in the book of Iwaniec and Kowalski [8]) and the above Lemma B.

6. Proof of Theorem 3.3. It is clear that∑
n≤x

Ṽ (n) =
∑

Y1<p1<pk<Y2

{p1,...,pk}∈K

#

{
m ≤ x

p1 · · · pk
:

(
m,

Q(pλ1 , p
1/λ
k )

p1 · · · pk

)
= 1

}
(6.1)

=:
∑

Y1<p1<pk<Y2

{p1,...,pk}∈K

H(x | p1, . . . , pk).

It follows from Lemma A and Theorem B(iii) that

H(x | p1, . . . , pk) =
x

p1 · · · pk

∏
pλ1<q<p

1/λ
k

q ̸∈{p1,...,pk}

(
1− 1

q

)(
1 +O

(
1

log p1

))
(6.2)

=
x

p1 · · · pk
· λ log p1
(1/λ) log pk

(
1 +O

(
1

log p1

))
.

Using (6.2) in (6.1) and the estimate of Lemma 4.4, we obtain

(6.3)
∑
n≤x

Ṽ (n) = λ2x
∑

{p1,...,pk}∈K

log p1
p1 · · · pk log pk

= λ2∆1x log log x+O(x),

thus proving Theorem 3.3(i). It remains to prove (ii). To do so, it is clearly
sufficient to prove that

(6.4)
∑
n≤x

(V (n)− Ṽ (n)) ≪ x log log log x.

To evaluate the above sum, we need to estimate the contribution of those
{p1, . . . , pk} ∈ K for which either p1 < Y1 or pk > Y2.
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Now, given {p1, . . . , pk} ∈ K, we have

u1 · · ·uk ≤ Λ(p1, pk) =

k−1∏
j=1

Λ(pj , pj+1) ≤ v1 · · · vk.

Therefore, if p1 < Y1, then pk < Y C1
1 , where C1 = 1

u1
· · · 1

uk
, and if pk > Y2,

then p1 > Y C2
2 , where C2 = 1/C1.

Gathering the above, we find that∑
n≤x

(V (n)− Ṽ (n)) ≪ x

( ∑
p<Y

C1
1

1

p
+

∑
Y

C2
2 <p≤x

1

p

)
≪ x log log log x,

thus proving (6.4) and thereby completing the proof of Theorem 3.3(ii).

7. Proof of Theorem 3.4. We first estimate
S(x) :=

∑
n≤x

Ṽ 2(n).

In each n counted in Ṽ 2(n), we can separate its divisors {p1, . . . , pk} ∈ K,
{q1, . . . , qk} ∈ K into three categories:

(a) those such that {p1, . . . , pk} = {q1, . . . , qk},
(b) those for which pk < q1,
(c) those for which qk < p1.

Since the contribution of those in category (b) is the same as that of those
in category (c), we may write

(7.1) S(x) =
∑
n≤x

Ṽ (n) + 2Sb(x),

where

Sb(x) =
∑

{p1,...,pk}∈K
{q1,...,qk}∈K

pk<q1

#

{
m ≤ x

p1 · · · pkq1 · · · qk
:

(
m,

Q(pλ1 , p
1/λ
k )

p1 · · · pk

)
= 1 and

(
m,

Q(qλ1 , q
1/λ
k )

q1 · · · qk

)
= 1

}
.

Observe that
qλ

2

1 < qλ1 < q1.

So, there are three possibilities for the location of pk in the above chain of
inequalities:

(i) qλ1 < pk < q1,
(ii) qλ2

1 < pk < qλ1 ,
(iii) pk < qλ

2

1 .
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The first possibility can be ignored, since in this case we have log q1 ∈[
λ log p1,

1
λ log pk

]
, which is not counted in our case. Therefore, we are left

with situations (ii) and (iii), which we rename as scenarios (1) and (2), as
follows:

(1) qλ2

1 < pk < qλ1 (or equivalently λ2 < Λ(pk, q1) < λ),
(2) pk < qλ

2

1 (or equivalently Λ(pk, q1) < λ2).

We separate the sum Sb(x) into two subsums, depending on the two
scenarios, by writing

(7.2) Sb(x) = S
(1)
b (x) + S

(2)
b (x).

We first consider S(2)
b (x). In that sum, (Q(pλ1 , p

1/λ
k ), Q(qλ1 , q

1/λ
k )) = 1 and

therefore

(7.3)
∏

π|Q(pλ1 ,p
1/λ
k )

(
1− 1

π

) ∏
π|Q(qλ1 ,q

1/λ
k )

(
1− 1

π

)

= λ4
log p1
log pk

log q1
log qk

(
1 +O

(
1

log p1

))
.

On the other hand, in S(1)
b (x), we have

(7.4)
∏

π|Q(pλ1 ,q
1/λ
k )

(
1− 1

π

)
= λ2

log p1
log qk

(
1 +O

(
1

log p1

))
.

Using (7.3) and (7.4), and making repeated use of Lemma 4.2, we obtain

S
(2)
b (x)(7.5)

= xλ4
∑

{p1,...,pk}∈K
{q1,...,qk}∈K

pk<qλ
2

1

log p1
p1 · · · pk log pk

log q1
q1 · · · qk log qk

(
1 +O

(
1

log p1

))

= xλ4∆1

∑
pk<qλ

2
1

log q1
pkq1 · · · qk log qk

(
1 +O

(
1

log p1

))
.

Recall that from Lemma 4.3 we have∑
uj≤Λ(qj ,qj+1)<vj

1

qj+1 log qj+1
=

(
1

uj
− 1

vj

)
1

log qj
+O

(
1

log2 qj

)
.

Applying this relation for each j = k − 1, k − 2, . . . , 1, we obtain

(7.6)
∑

pk<qλ
2

1

log q1
pkq1 · · · qk log qk

= ∆2

∑
pk<qλ

2
1

1

pkq1
=: ∆2S3.
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To estimate S3, we proceed as follows. We would like to run the summation
over Y1 < pk < q1 < Y2, but if we do so, we must remove those terms for
which qλ

2

1 < pk. This is why we write (recalling the definition of S given
in (4.2))

S3 =
∑

Y1<pk<q1<Y2

1

pkq1
−

∑
Y1<pk<q1<Y2

q1<p
1/λ2

k

1

pkq1
(7.7)

=
S2

2
−

∑
Y1<pk<Y2

1

pk

∑
pk<q1<p

1/λ2

k

1

q1

=
S2

2
−

∑
Y1<pk<Y2

1

pk

(
log

1

λ2
+O

(
1

log pk

))

=
S2

2
− log

1

λ2
· S +O(1).

Inserting (7.7) in (7.6), we see that estimate (7.5) can be replaced by

(7.8) S
(2)
b (x) = λ4∆1∆2x

(
S2

2
− log

1

λ2
· S

)
+ o(x).

On the other hand, we have

(7.9) S
(1)
b (x) = xλ2

∑
{p1,...,pk}∈K
{q1,...,qk}∈K

λ2<Λ(pk,q1)<λ
Y1<p1, qk<Y2

log p1
p1 · · · pkq1 · · · qk log qk

.

Making use of Lemmas 4.2 and 4.3, relation (7.9) becomes

S
(1)
b (x) = x∆1∆2λ

2
∑

λ2<Λ(pk,q1)<λ

log p1
pkq1 log q1

+ o(x log log x),(7.10)

= x∆1∆2λ
2

∑
Y1<q1<Y2

(λ− λ2)
log q1
q1 log q1

+ o(x log log x)

= x∆1∆2λ
2(λ− λ2)S + o(x log log x).

Inserting estimates (7.8) and (7.10) in (7.2), and recalling (6.3), we can
replace (7.1) by

(7.11) S(x) = λ4∆1∆2xS
2 +MxS + o(xS),

where
M = 2λ2∆1∆2(λ− λ2 − 2λ2 log 1/λ) + λ2∆1.

Recalling the estimate of S given in Lemma 4.5, we find that the first estimate
of Theorem 3.4, namely (3.4), is proved.
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To establish that (3.5) follows from (3.4), we will use an approach some-
what similar to the one used to complete the proof of Theorem 3.1. It goes
as follows. We first set

(7.12) σn := V (n)− Ṽ (n).

Now, assume that p1 · · · pk |n for some {p1, . . . , pk} ∈ K. It is clear that
knowing p1 and n determines the values of p2, . . . , pk. Similarly, knowing the
values of pk and n will reveal the values of p1, . . . , pk−1. It follows from this
observation that

σn ≤
∑
p|n

p<Y1

1 +
∑
q|n

q>Y2

1 and σ2n ≤
∑
pq|n

p,q ̸∈(Y1,Y2)

1.

From these two inequalities, it follows that there exist absolute positive con-
stants c1 and c2 such that

(7.13)
∑
n≤x

σn ≤ c1x log log log x and
∑
n≤x

σ2n ≤ c2x(log log log x)
2.

Now, observe that it follows from (7.12) that

(7.14) V 2(n)− Ṽ 2(n) = σn(σn + 2Ṽ (n)).

Observe also that

(σn + 2Ṽ (n))2 ≤ 4σ2n + 8Ṽ 2(n),

implying that, in light of the second inequality in (7.13) and of Theorem
3.3(i), we have

(7.15)
∑
n≤x

(σn+2Ṽ (n))2 ≪ x(log log log x)2+x(log log x)2 ≪ x(log log x)2.

Applying the Cauchy–Schwarz inequality to expression (7.14) and using once
more the second inequality in (7.13) as well as the upper bound (7.15), we
obtain ∑

n≤x

(
V 2(n)− Ṽ 2(n)

)
≤

(∑
n≤x

σ2n

)1/2
·
(∑
n≤x

(σn + 2Ṽ (n))2
)1/2

(7.16)

≪
√
x log log log x ·

√
x log log x

= x log log x · log log log x.

Combining (7.16) with (3.4) and (7.11) proves (3.5), thus completing the
proof of Theorem 3.4.

8. Final remarks. In conclusion, we present an additional result which
we state as our fifth theorem.
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Theorem 8.1. We have
1

π(x)

∑
p≤x

V (p+ 1) = λ2∆1 log log x+O(log log log x),

1

π(x)

∑
p≤x

V 2(p+ 1) = λ4∆1∆2(log log x)
2 +O(log log x · log log log x).

We omit the proof, but let us mention that one can use the Bombieri–
Vinogradov theorem (already mentioned above in the proof of Theorem 3.2)
and then proceed essentially as in the proofs of Theorems 3.3 and 3.4.
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