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Département de mathématiques et de statistique, Université Laval,
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Abstract

We focus on the class M∗
1 of completely multiplicative functions f whose

set of values belong to the unit circle and their related function ∆f(n) := f(n+
1) − f(n). For such functions f , we study the higher iterations ∆mf(n) for
fixed integers m ∈ {2, 3, . . . , 7}, and for each of these we establish an absolute
bound for |∆mf(n)|. We also characterise those triplets of multiplicative
functions f, g, h with unusually small gaps between their consecutive values.
All our characterisations and bounds are obtained following new results of O.
Klurman and A.P. Mangerel in the context of their proof of an old conjecture
of Kátai characterising subclasses of M∗

1.
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1 Introduction

Let T := {z ∈ C : |z| = 1} stand for the set of points on the unit circle and let M∗1
stand for the set of completely multiplicative functions f : N→ T. Given f ∈ M∗1,
we let ∆ f(n) := f(n+ 1)− f(n).

1Research supported in part by a grant from NSREC.
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In 2017, Klurman [3] proved a 1983 conjecture of the second author [1], namely
that given f ∈ M∗1 such that

∑
n≤x |∆f(n)| = o(x) as x → ∞ (or such that∑

n≤x

|∆f(n)|
n

= o(log x) as x→∞), then there exists some real number t such that

f(n) = nit for all n ∈ N.
Given f ∈M∗1, we shall denote by S(f) the set of limit points of the set {f(n) :

n ∈ N} and by R(f) the set {p ∈ ℘ : f(p) 6= 1}, where ℘ stands for the set of all
primes. Also, given k ∈ N, we set Wk := {e(a/k) : a = 0, 1, . . . , k − 1} = {ω ∈ C :
ωk = 1}, where e(y) := e2πiy. Finally, given a set of complex numbers {an : n ∈ N},
we denote its closure by {an : n ∈ N}.

In 2018, Klurman and Mangerel [4] proved the following.

Theorem A. Assume that f, g ∈M∗1 are such that S(f) = S(g) = T and also that
{(f(n), g(n+ 1)) : n ∈ N} 6= T× T. Further assume that for infinitely many j ∈ N,
either |R(f j)| · |R(gj)| > 1 or R(f j) 6= R(gj). Then, for some real number t and
positive integers k and `, we have f(n) = nit/kF (n) and g(n) = nit/`G(n), where
F (N) ∈Wk and G(N) ∈W`.

This last theorem motivates the introduction of the set H, namely the set made
up of those pairs (f, g) of functions in M∗1 for which there exist infinitely many
j ∈ N for which either |R(f j)| · |R(gj)| > 1 or R(f j) 6= R(gj).

Here, we apply the above results of Klurman and Mangerel to characterise those
triplets of multiplicative functions f, g, h with unusually small gaps between their
consecutive values. We also consider the higher iterations ∆mf(n) for each of the
integers m = 2, 3, 4, 5, 6, 7 and obtain bounds for |∆mf(n)|.

2 Consequences of Klurman’s result

Shortly after Klurman’s 2017 result became known, Kátai and Phong [2] used his

result to prove that if f, g ∈ M∗1 are such that
∑
n≤x

|g(2n+ 1)−Af(n)|
n

= o(log x)

as x→∞ for some constant A, then there exists a real number t such that f(n) =
g(n) = nit for all n ∈ N and moreover A = f(2). They also proved that the same
result holds if

∑
n≤x |g(2n+ 1)−Af(n)| = o(x) as x→∞.

As a consequence of this result, we have the following.

Theorem B. If f, g ∈M∗1 are such that
∑
n≤x |g(n+ 1)− f(n)| = o(x) as x→∞

or such that
∑
n≤x

|g(n+ 1)− f(n)|
n

= o(log x) as x → ∞, then there exists a real

number t such that f(n) = g(n) = nit for all n ∈ N.

Proof. By hypothesis, the sequence g(n+1)−f(n) tends to 0 for almost all n. Hence,
the same is true for the sequence g(2n + 1) − f(2)f(n), in which case Theorem B
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follows as a direct consequence of the above result of Kátai and Phong.

3 The case of three functions

We can prove the following.

Theorem 1. Let f, g, h ∈M∗1 be such that the function s(n) := g(n+ 2)− 2h(n+
1) + f(n) satisfies ∑

n≤x

|s(n)|
n

= o(log x) (x→∞).

Then, there exists a real number t such that f(n) = g(n) = h(n) = nit for all n ∈ N.

Proof. It follows from the definition of s(n) that

− s(n)

h(n+ 1)
=

(
1− g(n+ 2)

h(n+ 1)

)
+

(
1− f(n)

h(n+ 1)

)
= γ(n) + δ(n),

say. Since <(γ(n)) ≥ 0 with 2<(γ(n)) = |γ(n)|2 and also <(δ(n)) ≥ 0 with
2<(δ(n)) = |δ(n)|2 for all n ∈ N, and since |1− z|2 = 2(1−<(z)) for all z ∈ T, one
easily obtains that∑

n≤x

|γ(n)|2

n
= o(log x) and

∑
n≤x

|δ(n)|2

n
= o(log x) (x→∞). (3.1)

Now, in general, given a bounded sequence of complex numbers (an)n≥1, one

can easily show that the statement
∑
n≤x

|an|2

n
= o(log x) as x → ∞ is equivalent

to the statement
∑
n≤x

|an|
n

= o(log x) as x → ∞. Similarly, one can show that the

statement
∑
n≤x

|an|2 = o(x) as x→∞ is equivalent to the statement
∑
n≤x

|an| = o(x)

as x→∞.
In light of these observations, it follows from (3.1) that∑

n≤x

|γ(n)|
n

= o(log x) and
∑
n≤x

|δ(n)|
n

= o(log x) (x→∞)

and therefore that∑
n≤x

|g(n+ 1)− h(n)|
n

= o(log x) and
∑
n≤x

|h(n+ 1)− f(n)|
n

= o(log x) (x→∞).

Using Theorem B completes the proof of Theorem 1.
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Theorem 2. Let f, g, h ∈M∗1 be such that S(f) = S(g) = S(h) = T. Assume also
that

{(g(n+ 1), h(n)) : n ∈ N} 6= T× T and {(h(n+ 1), f(n)) : n ∈ N} 6= T× T

and that (f, h), (h, g) ∈ H. Finally, let ω, κ ∈ T be such that

s(n) := g(n+ 2)ω − 2h(n+ 1) + f(n)κ (3.2)

satisfies
lim
n→∞

s(n) = 0.

Then, there exists a real number t such that f(n) = g(n) = h(n) = nit for all n ∈ N
and moreover ω = κ = 1.

Proof. As in the proof of Theorem 1, we write

− s(n)

h(n+ 1)
=

(
1− g(n+ 2)ω

h(n+ 1)

)
+

(
1− f(n)κ

h(n+ 1)

)
= γ(n) + δ(n),

say. Since <(γ(n)) ≥ 0, <(δ(n)) ≥ 0, |γ(n)|2 = 2<(γ(n)) and |δ(n)|2 = 2<(δ(n))
for all n ∈ N, it follows that lim

n→∞
γ(n) = 0 and lim

n→∞
δ(n) = 0. From Theorem A,

we then obtain that

f(n) = nit1F (n), h(n) = nit2H(n), g(n) = nit3G(n),

where F ∈Wk1 , H ∈Wk2 and G ∈Wk3 for some positive integers k1, k2, k3. Setting
τ1 = t1 − t2 and τ3 = t3 − t2, we write

f1(n) := n−it2f(n), g1(n) := n−it2g(n), h1(n) = H(n).

Using the estimate (n+ 2)iτ3 = niτ3 + o(1) as n→∞, we then have

2k2 = (2H(n+ 1))k2 = (niτ1κF (n) + niτ3ωG(n+ 2))k2 + o(1) (n→∞). (3.3)

Let us now introduce the function

ρ(n) :=
niτ1κF (n) + niτ3ωG(n+ 2)

2
.

It clearly follows from (3.3) that ρ(n)k2 → 1 as n→∞. Therefore,

(niτ1κF (n))j · (niτ3ωG(n+ 2))k2−j → 1 as n→∞ (j = 0, 1, . . . , k2). (3.4)

Then, in particular,

(niτ1κF (n))k2 = nik2τ1κk2 → 1 as n→∞,
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which is impossible if τ1 6= 0. Hence, τ1 = 0. Proceeding in a similar manner, we
obtain that τ3 = 0. In light of (3.4), we have thus established that

(κF (n))j · (ωG(n+ 2))k2−j = 1 (j = 0, 1, . . . , k2).

We conclude from this that (ωG(n+ 2))k2 = 1 and therefore that

κF (n)

ωG(n+ 2)
= 1.

This implies that if we set

ρ̃(n) := κF (n)−H(n+ 1),

we have ρ̃(n) = 0 for all n ≥ n0 for some positive integer n0. Then, we obtain
H(n2) = κF (n2 − 1) and H(n) = κF (n − 1). From this it follows that for some
n0 ∈ N, we have H(n) = F (n + 1) for all n ≥ n0. Thus, F (n + 1)F (n − 1) = κ.
This allows us to write

κ = F (m+ 1)F (m) = F (2m+ 2)F (2m)

= F (2m+ 2)F (2m+ 1)F (2m+ 1)F (2m)

= κ2 if n ≥ n0,

which clearly implies that κ = 1 and therefore that F (n) = F (n+ 1) if n ≥ n0.
This obviously means that, for each k ∈ N, F (n) = F (n+k) if n ≥ n0. Therefore,

F (mn) = F (n) for n ≥ n0, from which we may conclude that F (m) = 1 for every
positive integer m.

Now, since ρ(n) = 0 for all n ≥ n0, we have that H(n + 1) = 1 if n ≥ n0, and
proceeding as above we may conclude that H(n) = 1 for every n ∈ N.

Similarly, we can prove that ω = 1 and that G(n) = 1 for every n ∈ N, thereby
completing the proof of Theorem 2.

Interestingly, the situation is much simpler if at least one of the three sets S(f),
S(g), S(h) is not equal to T, as can be seen in the following theorem.

Theorem 3. Let f, g, h ∈M∗1, where at least one of the three sets S(f), S(g), S(h)
is not equal to T. Letting s(n) be as in Theorem 2 and assuming that relation (3.2)
of Theorem 2 holds, then

ω = κ = 1 and f(n) = g(n) = h(n) = 1 for all n ∈ N.

Essential for the proof of Theorem 3 are the following four lemmas.

Lemma 1. Let u ∈M∗1 and assume that this function is such that

#{u(n+ 1)u(n) : n ∈ N} <∞.

Then there exist t ∈ R, k ∈ N and a function U(n) with U(N) ∈ Wk such that
u(n) = nitU(n) for all n ∈ N.
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Proof. Thus result is due to E. Wirsing [6].

As a consequence of Lemma 1, we have the following.

Lemma 2. Let u, v ∈ M∗1 and let λn := v(n + 1)u(n) for n = 1, 2, . . . Assuming
that #{λn : n ∈ N} < ∞, then there exist t ∈ R, k1, k2 ∈ N and two functions
U(n) and V (n) with U(N) ∈ Wk1 and V (N) ∈ Wk2 such that u(n) = nitU(n) and
v(n) = nitV (n) for all n ∈ N.

Proof. By hypothesis, we have

λn2−1λn−1
2

= u(n− 1)u(n+ 1)

and
λ(2k+1)2−1λ2m

2
= u(2m)u(2m+ 2) = u(m)u(m+ 1).

Hence, since the set of limit points of the sequence λn is finite, then the same is
true for the sequence u(m)u(m+ 1). From Lemma 1, we then get that there exist
t1 ∈ R, k1 ∈ N and a function U(n) with U(N) ∈ Wk1 such that u(n) = nit1U(n)
for all n ∈ N. Similarly we can prove that the set of limit points of the sequence
v(n + 1)v(n) is finite and therefore that there exist t2 ∈ R, k2 ∈ N and a function
V (n) with V (N) ∈ Wk2 such that v(n) = nit2V (n) for all n ∈ N. It follows from
this that

λn = (n+ 1)it2n−it1V (n+ 1)U(n) = ni(t2−t1)V (n+ 1)U(n) + o(1) (n→∞).

Since the set of limit points of the sequence λn is finite, we may conclude that
t1 = t2(= t).

Lemma 3. Given u, v ∈ M∗1, set t(n) := Av(n + 1) − Bu(n), where AB 6= 0,
and assume that #{t(n) : n ∈ N} <∞. Then, letting λn := v(n+ 1)u(n), we have
#{λn : n ∈ N} <∞.

Proof. Let the set of limit points of t(n) be {c1, . . . , cr}. Let f ∈ M∗1 and assume
that S(f) 6= T. Then the set of limit points of the sequence∣∣∣∣ t(n)

A

∣∣∣∣ =

∣∣∣∣ t(n)

Af(n)

∣∣∣∣ =

∣∣∣∣λn − B

A

∣∣∣∣
is {

dj :=
|cj |
|A|

: j = 1, . . . , r

}
.

Let α = limj→∞ λnj , where n1 < n2 < · · · Then

∣∣∣∣α− B

A

∣∣∣∣ ∈ {d1, . . . , dr}. No more

than two numbers α may exist for which |α−B/A| = dj and |α| = 1 since B/A 6= 0,
thereby completing the proof of Lemma 3.
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Lemma 4. Given f, g, h ∈ M∗1, set σ(n) := Ag(n + 2) + Bh(n + 1) + Cf(n),
where ABC 6= 0. Assuming that S(f) 6= T and that limn→∞ σ(n) = 0. Then there
exist t ∈ R and k1, k2, k3 ∈ N and functions F (n), G(n), H(n) with F (N) ∈ Wk1 ,
G(N) ∈Wk2 , H(N) ∈Wk3 such that

f(n) = F (n), g(n) = nitG(n), h(n) = nitH(n)

and, for some n0 ∈ N,

AG(n+ 2) +BH(n+ 1) + CF (n) = 0 for all n ≥ n0. (3.5)

Proof. Since the set of limit points of the sequence σ(n)−Cf(n) is finite, it follows
from Lemma 3 that

σ(n) = nit (AG(n+ 2) +BH(n+ 1)) + CF (n).

Since the number of possible values of F (n), G(n) and H(n) is finite and since
the sequence nit is dense on T, provided t 6= 0, we may conclude that σ(n) does
not tend to 0 as n → ∞ provided t 6= 0. Thus, the set of possible values of
σ(n) = AG(n + 2) + BH(n + 1) + CF (n) is finite and since limn→∞ σ(n) = 0, we
may conclude that t = 0 and that (3.5) holds.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Without any loss in generality, let us assume S(f) 6= T. Let
us use Lemma 4 with B = −2, C = κ and D = ω. Repeating the argument
used in the proof of Theorem 2, we find that κ = ω = 1, A = C = 1, B = −2
and G(n + 2) − 2H(n + 1) + F (n) = 0 provided n ≥ n0. We also obtain that
F (n) = G(n) = H(n) = 1 if n ≥ n0. Then, similarly as above, we may conclude
that F (n) = G(n) = H(n) = 1 for all n ∈ N, thus completing the proof of Theorem
3.

4 Iterations of ∆f(n)

From here on we will always assume that f ∈M∗1, S(f) = T and also that |R(fm)| =
∞ for infinitely many positive integers m. These conditions will allow us to freely
use Theorem A. Moreover, we set

ξ(n) := f(n+ 1)f(n).

We then have the following result.

Theorem 4. Assume that there exist δ > 0, ω ∈ T and some n0 ∈ N such that

|ξ(n)ω − 1| < 2− δ (n ≥ n0). (4.1)

Then, there exists a real number t such that f(n) = nitF (n) for all n ∈ N, where
F (N) ⊆Wk and ω ∈Wk for some positive integer k.
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Proof. It follows from (4.1) that |ξ(n)(−ω)− 1| ≥ δ for all n ≥ n0. Therefore

{(f(n+ 1), f(n)) : n ∈ N} 6= T× T.

Hence, applying Theorem A, the result follows.

We now consider iterations of ∆f(n). For this, we let ∆2f(n) := ∆∆f(n) =
∆(f(n + 1) − f(n)) = f(n + 2) − 2f(n + 1) + f(n), and for an arbitrary integer
k ≥ 3, we let ∆kf(n) := ∆∆k−1f(n). Observe that we have the trivial bound
|∆kf(n)| ≤ 2k, with equality achieved in the case of the multiplicative function
f(n) = (−1)n+1.

In each of the following theorems, the real numbers ε > 0 and δ > 0 are arbitrary
but fixed.

Theorem 5. Assume that |∆2f(n)| ≤ K := 2− δ for all n ≥ n0 for some positive
integer n0. Then, there exists a real number t and some positive integer k such that
f(n) = nit/kF (n) for all n ∈ N, where F k(n) = 1 for all n ≥ 1. Moreover, setting
E(n) := F (n+ 2)− 2F (n+ 1) + F (n), we have |E(n)| ≤ K + ε for all n ≥ n0.

Proof. Observing that ∆2f(n) = f(n + 2) − 2f(n + 1) + f(n) and setting λn :=
1 + ξ(n+ 1) and µn := ξ(n)− 3, we have

∆2f(n)

f(n+ 1)
= λn + µn.

Since

∣∣∣∣ ∆2f(n)

f(n+ 1)

∣∣∣∣ ≤ K for all n ≥ n0, it follows that 2 ≤ |µn| ≤ K + |λn|, implying

that |λn| > δ. From this it follows that |ξ(n + 1)(−1) − 1| ≥ δ > 0 provided n is
sufficiently large. Now, using Theorem A, we may conclude that there exists a real
number t such that f(n) = nitF (n) for all n ∈ N and therefore that, as n→∞,

|E(n)| =
∣∣(∆2f(n))n−it + o(1)

∣∣ < K + ε provided n ≥ n0,

thus completing the proof of Theorem 5.

Theorem 6. Assume that |∆3f(n)| ≤ K := 4− δ for all n ≥ n0 for some positive
integer n0. Then, there exists some real number t such that f(n) = nitF (n) for all
n ∈ N, where F `(n) = 1 for all n ∈ N and |∆3F (n)| ≤ K + ε provided n ≥ n1(ε).

Proof. Set s(n) := ∆3f(n) and observe that s(n) = f(n+ 3)− 3f(n+ 2) + 3f(n+
1)− f(n). It follows that 3(∆f(n+ 1)) = f(n+ 3)− f(n)− s(n) and therefore that

3|∆f(n+ 1)| ≤ K + 2 and therefore |∆f(n+ 1)| ≤ K + 2

3
= 2− δ

3
.

Applying Theorem 4, the result follows.

Theorem 7. Assume that |∆4f(n)| ≤ K := 4− δ for all n ≥ n0 for some positive
integer n0. Then, there exists some real number t such that f(n) = nitF (n) for all
n ∈ N, where F k(n) = 1 for all n ∈ N, and |∆4F (n)| ≤ K + ε provided n ≥ n0(ε).
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Proof. Set s(n) := ∆4f(n) and let t(n) := f(n + 4) − 2f(n + 2) + f(n). Clearly,
s(n) = t(n)− 4∆2f(n+ 1). It follows that

4
∣∣∆2f(n+ 1)

∣∣ ≤ |t(n)|+ |s(n)| ≤ 8− δ,

so that ∣∣∆2f(n+ 1)
∣∣ ≤ 2− δ

4
.

Applying Theorem 6, the result follows.

Theorem 8. Assume that |∆5f(n)| ≤ K := 8− δ for all n ≥ n0 for some positive
integer n0. Then, there exists some real number t such that f(n) = nitF (n) for all
n ∈ N, where F k(n) = 1 for all n ∈ N, and |∆5F (n)| ≤ K + ε provided n ≥ n0(ε).

Proof. Set s(n) := ∆5f(n). Observing that s(n) = f(n+ 5)− f(n)− 5(f(n+ 4)−
f(n+ 1)) + 10∆f(n+ 2), we have that

10|∆f(n+ 2)| ≤ |s(n)|+ 10 + 2 ≤ K + 12.

Therefore,

|∆f(n+ 2)| ≤ K + 12

10
= 2− δ

10
.

This implies that |f(n+ 2) + f(n+ 1)| ≥ δ/10 and therefore

|f(n+ 1)f(n)(−1)− 1| ≥ δ

10
.

Applying Theorem A, the result follows.

Theorem 9. Assume that |∆6f(n)| ≤ K := 6− δ for all n ≥ n0 for some positive
integer n0. Then, there exists some real number t such that f(n) = nitF (n) for all
n ∈ N, where F k(n) = 1 for all n ∈ N, and |∆6F (n)| ≤ K + ε provided n ≥ n0(ε).

Proof. Set s(n) := ∆6f(n). Observing that s(n) = (f(n) + f(n+ 6))− 6(f(n+ 1) +
f(n+ 5)) + 15∆2f(n+ 2)− 10∆f(n+ 3). Therefore,∣∣15∆2f(n+ 2)

∣∣ ≤ 24 + |s(n)| ≤ K + 24 = 30− δ,

implying that

|∆2f(n+ 2)| ≤ 2− δ

15
.

Applying Theorem 5, the result follows.

Theorem 10. Assume that |∆7f(n)| ≤ K := 12− δ. Then, there exists some real
number t such that f(n) = nitF (n) for all n ∈ N, where F k(n) = 1 for all n ∈ N,
and |∆7F (n)| ≤ K + ε provided n ≥ n0(ε).
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Proof. Set s(n) := ∆7f(n). Observing that (x−1)7 = (x7−1)−7(x6−x)+21(x5−
x2)− 35(x4 − x3), it follows that

s(n) = −35∆f(n+9)+21(f(n+5)−f(n+2))−7(f(n+6)−f(n+1))+(f(n+7)−f(n)),

implying that

|∆f(n+ 3)| ≤ K + 58

35
≤ 2− δ

35
.

Applying Theorem A, the result follows.

Remark 1. We are unable to obtain similar results for ∆mf(n) for any of the
integers m ≥ 8.

5 Final remarks

We believe that the following holds.

Conjecture 1. Theorem A remains true if the condition {(f(n), g(n+ 1)) : n ∈ N} 6=
T × T is weakened and replaced by the following: there exists a pair of points ξ, η

located on the unit circle for which
∑
n≤x

|f(n)−ξ|<ε
|g(n+1)−η|<ε

1

n
= o(log x) as x → ∞, provided

ε > 0 is sufficiently small.

Observe that, perhaps a modification of the proof of Theorem A could lead to a
proof of Conjecture 1. However, we could not find the right approach to reach that
goal.

Finally, it is interesting to observe that if Conjecture 1 is true, then the theorems
of the previous section remain true under a weaker condition, that is, instead of
assuming that |∆mf(n)| ≤ K for all n ≥ n0, one can only assume that |∆mf(n)| ≤
K for all n ∈ N with the exception of some integers n1 < n2 < · · · for which∑
nj≤x

1
nj

= o(log x) as x→∞.
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