ON THE VARIATIONS OF COMPLETELY MULTIPLICATIVE FUNCTIONS AT CONSECUTIVE ARGUMENTS

Jean-Marie De Koninck ${ }^{1}$
Département de mathématiques et de statistique, Université Laval, Québec G1V 0A6, Canada jmdk@mat.ulaval.ca
Imre Kátai
Computer Algebra Department, Eötvös Loránd University, 1117 Budapest, Hungary katai@inf.elte.hu
Bui Minh Phong
Computer Algebra Department, Eötvös Loránd University, 1117 Budapest, Hungary bui@inf.elte.hu

Dedicated to the memory of Professor János Aczél

Abstract

We focus on the class \mathcal{M}_{1}^{*} of completely multiplicative functions f whose set of values belong to the unit circle and their related function $\Delta f(n):=f(n+$ $1)-f(n)$. For such functions f, we study the higher iterations $\Delta^{m} f(n)$ for fixed integers $m \in\{2,3, \ldots, 7\}$, and for each of these we establish an absolute bound for $\left|\Delta^{m} f(n)\right|$. We also characterise those triplets of multiplicative functions f, g, h with unusually small gaps between their consecutive values. All our characterisations and bounds are obtained following new results of O . Klurman and A.P. Mangerel in the context of their proof of an old conjecture of Kátai characterising subclasses of \mathcal{M}_{1}^{*}.

AMS Subject Classification Codes: 11N64, 11K65
Keywords: multiplicative functions

1 Introduction

Let $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ stand for the set of points on the unit circle and let \mathcal{M}_{1}^{*} stand for the set of completely multiplicative functions $f: \mathbb{N} \rightarrow \mathbb{T}$. Given $f \in \mathcal{M}_{1}^{*}$, we let $\Delta f(n):=f(n+1)-f(n)$.

[^0]In 2017, Klurman [3] proved a 1983 conjecture of the second author [1], namely that given $f \in \mathcal{M}_{1}^{*}$ such that $\sum_{n \leq x}|\Delta f(n)|=o(x)$ as $x \rightarrow \infty$ (or such that $\sum_{n \leq x} \frac{|\Delta f(n)|}{n}=o(\log x)$ as $\left.x \rightarrow \infty\right)$, then there exists some real number t such that $f(n)=n^{i t}$ for all $n \in \mathbb{N}$.

Given $f \in \mathcal{M}_{1}^{*}$, we shall denote by $S(f)$ the set of limit points of the set $\{f(n)$: $n \in \mathbb{N}\}$ and by $R(f)$ the set $\{p \in \wp: f(p) \neq 1\}$, where \wp stands for the set of all primes. Also, given $k \in \mathbb{N}$, we set $W_{k}:=\{e(a / k): a=0,1, \ldots, k-1\}=\{\omega \in \mathbb{C}$: $\left.\omega^{k}=1\right\}$, where $e(y):=e^{2 \pi i y}$. Finally, given a set of complex numbers $\left\{a_{n}: n \in \mathbb{N}\right\}$, we denote its closure by $\overline{\left\{a_{n}: n \in \mathbb{N}\right\}}$.

In 2018, Klurman and Mangerel [4] proved the following.
Theorem A. Assume that $f, g \in \mathcal{M}_{1}^{*}$ are such that $S(f)=S(g)=\mathbb{T}$ and also that $\overline{\{(f(n), g(n+1)): n \in \mathbb{N}\}} \neq \mathbb{T} \times \mathbb{T}$. Further assume that for infinitely many $j \in \mathbb{N}$, either $\left|R\left(f^{j}\right)\right| \cdot\left|R\left(g^{j}\right)\right|>1$ or $R\left(f^{j}\right) \neq R\left(g^{j}\right)$. Then, for some real number t and positive integers k and ℓ, we have $f(n)=n^{i t / k} F(n)$ and $g(n)=n^{i t / \ell} G(n)$, where $F(\mathbb{N}) \in W_{k}$ and $G(\mathbb{N}) \in W_{\ell}$.

This last theorem motivates the introduction of the set \mathcal{H}, namely the set made up of those pairs (f, g) of functions in \mathcal{M}_{1}^{*} for which there exist infinitely many $j \in \mathbb{N}$ for which either $\left|R\left(f^{j}\right)\right| \cdot\left|R\left(g^{j}\right)\right|>1$ or $R\left(f^{j}\right) \neq R\left(g^{j}\right)$.

Here, we apply the above results of Klurman and Mangerel to characterise those triplets of multiplicative functions f, g, h with unusually small gaps between their consecutive values. We also consider the higher iterations $\Delta^{m} f(n)$ for each of the integers $m=2,3,4,5,6,7$ and obtain bounds for $\left|\Delta^{m} f(n)\right|$.

2 Consequences of Klurman's result

Shortly after Klurman's 2017 result became known, Kátai and Phong [2] used his result to prove that if $f, g \in \mathcal{M}_{1}^{*}$ are such that $\sum_{n \leq x} \frac{|g(2 n+1)-A f(n)|}{n}=o(\log x)$ as $x \rightarrow \infty$ for some constant A, then there exists a real number t such that $f(n)=$ $g(n)=n^{i t}$ for all $n \in \mathbb{N}$ and moreover $A=f(2)$. They also proved that the same result holds if $\sum_{n \leq x}|g(2 n+1)-A f(n)|=o(x)$ as $x \rightarrow \infty$.

As a consequence of this result, we have the following.
Theorem B. If $f, g \in \mathcal{M}_{1}^{*}$ are such that $\sum_{n \leq x}|g(n+1)-f(n)|=o(x)$ as $x \rightarrow \infty$ or such that $\sum_{n \leq x} \frac{|g(n+1)-f(n)|}{n}=o(\log x)$ as $x \rightarrow \infty$, then there exists a real number t such that $f(n)=g(n)=n^{i t}$ for all $n \in \mathbb{N}$.

Proof. By hypothesis, the sequence $g(n+1)-f(n)$ tends to 0 for almost all n. Hence, the same is true for the sequence $g(2 n+1)-f(2) f(n)$, in which case Theorem B
follows as a direct consequence of the above result of Kátai and Phong.

3 The case of three functions

We can prove the following.
Theorem 1. Let $f, g, h \in \mathcal{M}_{1}^{*}$ be such that the function $s(n):=g(n+2)-2 h(n+$ $1)+f(n)$ satisfies

$$
\sum_{n \leq x} \frac{|s(n)|}{n}=o(\log x) \quad(x \rightarrow \infty)
$$

Then, there exists a real number t such that $f(n)=g(n)=h(n)=n^{i t}$ for all $n \in \mathbb{N}$.
Proof. It follows from the definition of $s(n)$ that

$$
-\frac{s(n)}{h(n+1)}=\left(1-\frac{g(n+2)}{h(n+1)}\right)+\left(1-\frac{f(n)}{h(n+1)}\right)=\gamma(n)+\delta(n),
$$

say. Since $\Re(\gamma(n)) \geq 0$ with $2 \Re(\gamma(n))=|\gamma(n)|^{2}$ and also $\Re(\delta(n)) \geq 0$ with $2 \Re(\delta(n))=|\delta(n)|^{2}$ for all $n \in \mathbb{N}$, and since $|1-z|^{2}=2(1-\Re(z))$ for all $z \in \mathbb{T}$, one easily obtains that

$$
\begin{equation*}
\sum_{n \leq x} \frac{|\gamma(n)|^{2}}{n}=o(\log x) \quad \text { and } \quad \sum_{n \leq x} \frac{|\delta(n)|^{2}}{n}=o(\log x) \quad(x \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

Now, in general, given a bounded sequence of complex numbers $\left(a_{n}\right)_{n \geq 1}$, one can easily show that the statement $\sum_{n \leq x} \frac{\left|a_{n}\right|^{2}}{n}=o(\log x)$ as $x \rightarrow \infty$ is equivalent to the statement $\sum_{n \leq x} \frac{\left|a_{n}\right|}{n}=o(\log x)$ as $x \rightarrow \infty$. Similarly, one can show that the statement $\sum_{n \leq x}\left|a_{n}\right|^{2}=o(x)$ as $x \rightarrow \infty$ is equivalent to the statement $\sum_{n \leq x}\left|a_{n}\right|=o(x)$ as $x \rightarrow \infty$.

In light of these observations, it follows from (3.1) that

$$
\sum_{n \leq x} \frac{|\gamma(n)|}{n}=o(\log x) \quad \text { and } \quad \sum_{n \leq x} \frac{|\delta(n)|}{n}=o(\log x) \quad(x \rightarrow \infty)
$$

and therefore that
$\sum_{n \leq x} \frac{|g(n+1)-h(n)|}{n}=o(\log x)$ and $\sum_{n \leq x} \frac{|h(n+1)-f(n)|}{n}=o(\log x) \quad(x \rightarrow \infty)$.
Using Theorem B completes the proof of Theorem 1.

Theorem 2. Let $f, g, h \in \mathcal{M}_{1}^{*}$ be such that $S(f)=S(g)=S(h)=\mathbb{T}$. Assume also that

$$
\overline{\{(g(n+1), h(n)): n \in \mathbb{N}\}} \neq \mathbb{T} \times \mathbb{T} \quad \text { and } \quad \overline{\{(h(n+1), f(n)): n \in \mathbb{N}\}} \neq \mathbb{T} \times \mathbb{T}
$$

and that $(f, h),(h, g) \in \mathcal{H}$. Finally, let $\omega, \kappa \in \mathbb{T}$ be such that

$$
\begin{equation*}
s(n):=g(n+2) \omega-2 h(n+1)+f(n) \kappa \tag{3.2}
\end{equation*}
$$

satisfies

$$
\lim _{n \rightarrow \infty} s(n)=0
$$

Then, there exists a real number t such that $f(n)=g(n)=h(n)=n^{i t}$ for all $n \in \mathbb{N}$ and moreover $\omega=\kappa=1$.

Proof. As in the proof of Theorem 1, we write

$$
-\frac{s(n)}{h(n+1)}=\left(1-\frac{g(n+2) \omega}{h(n+1)}\right)+\left(1-\frac{f(n) \kappa}{h(n+1)}\right)=\gamma(n)+\delta(n)
$$

say. Since $\Re(\gamma(n)) \geq 0, \Re(\delta(n)) \geq 0,|\gamma(n)|^{2}=2 \Re(\gamma(n))$ and $|\delta(n)|^{2}=2 \Re(\delta(n))$ for all $n \in \mathbb{N}$, it follows that $\lim _{n \rightarrow \infty} \gamma(n)=0$ and $\lim _{n \rightarrow \infty} \delta(n)=0$. From Theorem A, we then obtain that

$$
f(n)=n^{i t_{1}} F(n), \quad h(n)=n^{i t_{2}} H(n), \quad g(n)=n^{i t_{3}} G(n),
$$

where $F \in W_{k_{1}}, H \in W_{k_{2}}$ and $G \in W_{k_{3}}$ for some positive integers k_{1}, k_{2}, k_{3}. Setting $\tau_{1}=t_{1}-t_{2}$ and $\tau_{3}=t_{3}-t_{2}$, we write

$$
f_{1}(n):=n^{-i t_{2}} f(n), \quad g_{1}(n):=n^{-i t_{2}} g(n), \quad h_{1}(n)=H(n) .
$$

Using the estimate $(n+2)^{i \tau_{3}}=n^{i \tau_{3}}+o(1)$ as $n \rightarrow \infty$, we then have

$$
\begin{equation*}
2^{k_{2}}=(2 H(n+1))^{k_{2}}=\left(n^{i \tau_{1}} \kappa F(n)+n^{i \tau_{3}} \omega G(n+2)\right)^{k_{2}}+o(1) \quad(n \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

Let us now introduce the function

$$
\rho(n):=\frac{n^{i \tau_{1}} \kappa F(n)+n^{i \tau_{3}} \omega G(n+2)}{2} .
$$

It clearly follows from (3.3) that $\rho(n)^{k_{2}} \rightarrow 1$ as $n \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\left(n^{i \tau_{1}} \kappa F(n)\right)^{j} \cdot\left(n^{i \tau_{3}} \omega G(n+2)\right)^{k_{2}-j} \rightarrow 1 \quad \text { as } n \rightarrow \infty \quad\left(j=0,1, \ldots, k_{2}\right) \tag{3.4}
\end{equation*}
$$

Then, in particular,

$$
\left(n^{i \tau_{1}} \kappa F(n)\right)^{k_{2}}=n^{i k_{2} \tau_{1}} \kappa^{k_{2}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

which is impossible if $\tau_{1} \neq 0$. Hence, $\tau_{1}=0$. Proceeding in a similar manner, we obtain that $\tau_{3}=0$. In light of (3.4), we have thus established that

$$
(\kappa F(n))^{j} \cdot(\omega G(n+2))^{k_{2}-j}=1 \quad\left(j=0,1, \ldots, k_{2}\right)
$$

We conclude from this that $(\omega G(n+2))^{k_{2}}=1$ and therefore that

$$
\frac{\kappa F(n)}{\omega G(n+2)}=1 .
$$

This implies that if we set

$$
\widetilde{\rho}(n):=\kappa F(n)-H(n+1),
$$

we have $\widetilde{\rho}(n)=0$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, we obtain $H\left(n^{2}\right)=\kappa F\left(n^{2}-1\right)$ and $H(n)=\kappa F(n-1)$. From this it follows that for some $n_{0} \in \mathbb{N}$, we have $H(n)=F(n+1)$ for all $n \geq n_{0}$. Thus, $F(n+1) \bar{F}(n-1)=\bar{\kappa}$. This allows us to write

$$
\begin{aligned}
\bar{\kappa} & =F(m+1) \bar{F}(m)=F(2 m+2) \bar{F}(2 m) \\
& =F(2 m+2) \bar{F}(2 m+1) F(2 m+1) \bar{F}(2 m) \\
& =\bar{\kappa}^{2} \quad \text { if } n \geq n_{0},
\end{aligned}
$$

which clearly implies that $\kappa=1$ and therefore that $F(n)=F(n+1)$ if $n \geq n_{0}$.
This obviously means that, for each $k \in \mathbb{N}, F(n)=F(n+k)$ if $n \geq n_{0}$. Therefore, $F(m n)=F(n)$ for $n \geq n_{0}$, from which we may conclude that $F(m)=1$ for every positive integer m.

Now, since $\bar{\rho}(n)=0$ for all $n \geq n_{0}$, we have that $H(n+1)=1$ if $n \geq n_{0}$, and proceeding as above we may conclude that $H(n)=1$ for every $n \in \mathbb{N}$.

Similarly, we can prove that $\omega=1$ and that $G(n)=1$ for every $n \in \mathbb{N}$, thereby completing the proof of Theorem 2.

Interestingly, the situation is much simpler if at least one of the three sets $S(f)$, $S(g), S(h)$ is not equal to \mathbb{T}, as can be seen in the following theorem.

Theorem 3. Let $f, g, h \in \mathcal{M}_{1}^{*}$, where at least one of the three sets $S(f), S(g), S(h)$ is not equal to \mathbb{T}. Letting $s(n)$ be as in Theorem 2 and assuming that relation (3.2) of Theorem 2 holds, then

$$
\omega=\kappa=1 \quad \text { and } \quad f(n)=g(n)=h(n)=1 \quad \text { for all } n \in \mathbb{N} .
$$

Essential for the proof of Theorem 3 are the following four lemmas.
Lemma 1. Let $u \in \mathcal{M}_{1}^{*}$ and assume that this function is such that

$$
\# \overline{\{u(n+1) \bar{u}(n): n \in \mathbb{N}\}}<\infty
$$

Then there exist $t \in \mathbb{R}, k \in \mathbb{N}$ and a function $U(n)$ with $U(\mathbb{N}) \in W_{k}$ such that $u(n)=n^{i t} U(n)$ for all $n \in \mathbb{N}$.

Proof. Thus result is due to E. Wirsing [6].
As a consequence of Lemma 1, we have the following.
Lemma 2. Let $u, v \in \mathcal{M}_{1}^{*}$ and let $\lambda_{n}:=v(n+1) \bar{u}(n)$ for $n=1,2, \ldots$ Assuming that $\#\left\{\lambda_{n}: n \in \mathbb{N}\right\}<\infty$, then there exist $t \in \mathbb{R}, k_{1}, k_{2} \in \mathbb{N}$ and two functions $U(n)$ and $V(n)$ with $U(\mathbb{N}) \in W_{k_{1}}$ and $V(\mathbb{N}) \in W_{k_{2}}$ such that $u(n)=n^{i t} U(n)$ and $v(n)=n^{i t} V(n)$ for all $n \in \mathbb{N}$.

Proof. By hypothesis, we have

$$
\lambda_{n^{2}-1}{\overline{\lambda_{n-1}}}^{2}=u(n-1) \bar{u}(n+1)
$$

and

$$
\lambda_{(2 k+1)^{2}-1}{\overline{\lambda_{2 m}}}^{2}=u(2 m) \bar{u}(2 m+2)=u(m) \bar{u}(m+1) .
$$

Hence, since the set of limit points of the sequence λ_{n} is finite, then the same is true for the sequence $u(m) \bar{u}(m+1)$. From Lemma 1, we then get that there exist $t_{1} \in \mathbb{R}, k_{1} \in \mathbb{N}$ and a function $U(n)$ with $U(\mathbb{N}) \in W_{k_{1}}$ such that $u(n)=n^{i t_{1}} U(n)$ for all $n \in \mathbb{N}$. Similarly we can prove that the set of limit points of the sequence $v(n+1) \bar{v}(n)$ is finite and therefore that there exist $t_{2} \in \mathbb{R}, k_{2} \in \mathbb{N}$ and a function $V(n)$ with $V(\mathbb{N}) \in W_{k_{2}}$ such that $v(n)=n^{i t_{2}} V(n)$ for all $n \in \mathbb{N}$. It follows from this that

$$
\lambda_{n}=(n+1)^{i t_{2}} n^{-i t_{1}} V(n+1) \bar{U}(n)=n^{i\left(t_{2}-t_{1}\right)} V(n+1) \bar{U}(n)+o(1) \quad(n \rightarrow \infty) .
$$

Since the set of limit points of the sequence λ_{n} is finite, we may conclude that $t_{1}=t_{2}(=t)$.

Lemma 3. Given $u, v \in \mathcal{M}_{1}^{*}$, set $t(n):=A v(n+1)-B u(n)$, where $A B \neq 0$, and assume that $\# \overline{\{t(n): n \in \mathbb{N}\}}<\infty$. Then, letting $\lambda_{n}:=v(n+1) \bar{u}(n)$, we have $\# \overline{\left\{\lambda_{n}: n \in \mathbb{N}\right\}}<\infty$.

Proof. Let the set of limit points of $t(n)$ be $\left\{c_{1}, \ldots, c_{r}\right\}$. Let $f \in \mathcal{M}_{1}^{*}$ and assume that $S(f) \neq \mathbb{T}$. Then the set of limit points of the sequence

$$
\left|\frac{t(n)}{A}\right|=\left|\frac{t(n)}{A f(n)}\right|=\left|\lambda_{n}-\frac{B}{A}\right|
$$

is

$$
\left\{d_{j}:=\frac{\left|c_{j}\right|}{|A|}: j=1, \ldots, r\right\} .
$$

Let $\alpha=\lim _{j \rightarrow \infty} \lambda_{n_{j}}$, where $n_{1}<n_{2}<\cdots$ Then $\left|\alpha-\frac{B}{A}\right| \in\left\{d_{1}, \ldots, d_{r}\right\}$. No more than two numbers α may exist for which $|\alpha-B / A|=d_{j}$ and $|\alpha|=1$ since $B / A \neq 0$, thereby completing the proof of Lemma 3.

Lemma 4. Given $f, g, h \in \mathcal{M}_{1}^{*}$, set $\sigma(n):=A g(n+2)+B h(n+1)+C f(n)$, where $A B C \neq 0$. Assuming that $S(f) \neq \mathbb{T}$ and that $\lim _{n \rightarrow \infty} \sigma(n)=0$. Then there exist $t \in \mathbb{R}$ and $k_{1}, k_{2}, k_{3} \in \mathbb{N}$ and functions $F(n), G(n), H(n)$ with $F(\mathbb{N}) \in W_{k_{1}}$, $G(\mathbb{N}) \in W_{k_{2}}, H(\mathbb{N}) \in W_{k_{3}}$ such that

$$
f(n)=F(n), \quad g(n)=n^{i t} G(n), \quad h(n)=n^{i t} H(n)
$$

and, for some $n_{0} \in \mathbb{N}$,

$$
\begin{equation*}
A G(n+2)+B H(n+1)+C F(n)=0 \quad \text { for all } n \geq n_{0} \tag{3.5}
\end{equation*}
$$

Proof. Since the set of limit points of the sequence $\sigma(n)-C f(n)$ is finite, it follows from Lemma 3 that

$$
\sigma(n)=n^{i t}(A G(n+2)+B H(n+1))+C F(n)
$$

Since the number of possible values of $F(n), G(n)$ and $H(n)$ is finite and since the sequence $n^{i t}$ is dense on \mathbb{T}, provided $t \neq 0$, we may conclude that $\sigma(n)$ does not tend to 0 as $n \rightarrow \infty$ provided $t \neq 0$. Thus, the set of possible values of $\sigma(n)=A G(n+2)+B H(n+1)+C F(n)$ is finite and since $\lim _{n \rightarrow \infty} \sigma(n)=0$, we may conclude that $t=0$ and that (3.5) holds.

We are now ready to prove Theorem 3 .
Proof of Theorem 3. Without any loss in generality, let us assume $S(f) \neq \mathbb{T}$. Let us use Lemma 4 with $B=-2, C=\kappa$ and $D=\omega$. Repeating the argument used in the proof of Theorem 2, we find that $\kappa=\omega=1, A=C=1, B=-2$ and $G(n+2)-2 H(n+1)+F(n)=0$ provided $n \geq n_{0}$. We also obtain that $F(n)=G(n)=H(n)=1$ if $n \geq n_{0}$. Then, similarly as above, we may conclude that $F(n)=G(n)=H(n)=1$ for all $n \in \mathbb{N}$, thus completing the proof of Theorem 3.

4 Iterations of $\Delta f(n)$

From here on we will always assume that $f \in \mathcal{M}_{1}^{*}, S(f)=\mathbb{T}$ and also that $\left|R\left(f^{m}\right)\right|=$ ∞ for infinitely many positive integers m. These conditions will allow us to freely use Theorem A. Moreover, we set

$$
\xi(n):=f(n+1) \overline{f(n)} .
$$

We then have the following result.
Theorem 4. Assume that there exist $\delta>0, \omega \in \mathbb{T}$ and some $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
|\xi(n) \omega-1|<2-\delta \quad\left(n \geq n_{0}\right) \tag{4.1}
\end{equation*}
$$

Then, there exists a real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F(\mathbb{N}) \subseteq W_{k}$ and $\omega \in W_{k}$ for some positive integer k.

Proof. It follows from (4.1) that $|\xi(n)(-\omega)-1| \geq \delta$ for all $n \geq n_{0}$. Therefore

$$
\overline{\{(f(n+1), f(n)): n \in \mathbb{N}\}} \neq \mathbb{T} \times \mathbb{T} .
$$

Hence, applying Theorem A, the result follows.
We now consider iterations of $\Delta f(n)$. For this, we let $\Delta^{2} f(n):=\Delta \Delta f(n)=$ $\Delta(f(n+1)-f(n))=f(n+2)-2 f(n+1)+f(n)$, and for an arbitrary integer $k \geq 3$, we let $\Delta^{k} f(n):=\Delta \Delta^{k-1} f(n)$. Observe that we have the trivial bound $\left|\Delta^{k} f(n)\right| \leq 2^{k}$, with equality achieved in the case of the multiplicative function $f(n)=(-1)^{n+1}$.

In each of the following theorems, the real numbers $\varepsilon>0$ and $\delta>0$ are arbitrary but fixed.

Theorem 5. Assume that $\left|\Delta^{2} f(n)\right| \leq K:=2-\delta$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, there exists a real number t and some positive integer k such that $f(n)=n^{i t / k} F(n)$ for all $n \in \mathbb{N}$, where $F^{k}(n)=1$ for all $n \geq 1$. Moreover, setting $E(n):=F(n+2)-2 F(n+1)+F(n)$, we have $|E(n)| \leq K+\varepsilon$ for all $n \geq n_{0}$.
Proof. Observing that $\Delta^{2} f(n)=f(n+2)-2 f(n+1)+f(n)$ and setting $\lambda_{n}:=$ $1+\xi(n+1)$ and $\mu_{n}:=\overline{\xi(n)}-3$, we have

$$
\frac{\Delta^{2} f(n)}{f(n+1)}=\lambda_{n}+\mu_{n}
$$

Since $\left|\frac{\Delta^{2} f(n)}{f(n+1)}\right| \leq K$ for all $n \geq n_{0}$, it follows that $2 \leq\left|\mu_{n}\right| \leq K+\left|\lambda_{n}\right|$, implying that $\left|\lambda_{n}\right|>\delta$. From this it follows that $|\xi(n+1)(-1)-1| \geq \delta>0$ provided n is sufficiently large. Now, using Theorem A, we may conclude that there exists a real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$ and therefore that, as $n \rightarrow \infty$,

$$
|E(n)|=\left|\left(\Delta^{2} f(n)\right) n^{-i t}+o(1)\right|<K+\varepsilon \quad \text { provided } n \geq n_{0}
$$

thus completing the proof of Theorem 5.
Theorem 6. Assume that $\left|\Delta^{3} f(n)\right| \leq K:=4-\delta$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, there exists some real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F^{\ell}(n)=1$ for all $n \in \mathbb{N}$ and $\left|\Delta^{3} F(n)\right| \leq K+\varepsilon$ provided $n \geq n_{1}(\varepsilon)$.

Proof. Set $s(n):=\Delta^{3} f(n)$ and observe that $s(n)=f(n+3)-3 f(n+2)+3 f(n+$ $1)-f(n)$. It follows that $3(\Delta f(n+1))=f(n+3)-f(n)-s(n)$ and therefore that

$$
3|\Delta f(n+1)| \leq K+2 \text { and therefore }|\Delta f(n+1)| \leq \frac{K+2}{3}=2-\frac{\delta}{3}
$$

Applying Theorem 4, the result follows.
Theorem 7. Assume that $\left|\Delta^{4} f(n)\right| \leq K:=4-\delta$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, there exists some real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F^{k}(n)=1$ for all $n \in \mathbb{N}$, and $\left|\Delta^{4} F(n)\right| \leq K+\varepsilon$ provided $n \geq n_{0}(\varepsilon)$.

Proof. Set $s(n):=\Delta^{4} f(n)$ and let $t(n):=f(n+4)-2 f(n+2)+f(n)$. Clearly, $s(n)=t(n)-4 \Delta^{2} f(n+1)$. It follows that

$$
4\left|\Delta^{2} f(n+1)\right| \leq|t(n)|+|s(n)| \leq 8-\delta
$$

so that

$$
\left|\Delta^{2} f(n+1)\right| \leq 2-\frac{\delta}{4}
$$

Applying Theorem 6, the result follows.
Theorem 8. Assume that $\left|\Delta^{5} f(n)\right| \leq K:=8-\delta$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, there exists some real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F^{k}(n)=1$ for all $n \in \mathbb{N}$, and $\left|\Delta^{5} F(n)\right| \leq K+\varepsilon$ provided $n \geq n_{0}(\varepsilon)$.

Proof. Set $s(n):=\Delta^{5} f(n)$. Observing that $s(n)=f(n+5)-f(n)-5(f(n+4)-$ $f(n+1))+10 \Delta f(n+2)$, we have that

$$
10|\Delta f(n+2)| \leq|s(n)|+10+2 \leq K+12
$$

Therefore,

$$
|\Delta f(n+2)| \leq \frac{K+12}{10}=2-\frac{\delta}{10}
$$

This implies that $|f(n+2)+f(n+1)| \geq \delta / 10$ and therefore

$$
|f(n+1) \overline{f(n)}(-1)-1| \geq \frac{\delta}{10}
$$

Applying Theorem A, the result follows.
Theorem 9. Assume that $\left|\Delta^{6} f(n)\right| \leq K:=6-\delta$ for all $n \geq n_{0}$ for some positive integer n_{0}. Then, there exists some real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F^{k}(n)=1$ for all $n \in \mathbb{N}$, and $\left|\Delta^{6} F(n)\right| \leq K+\varepsilon$ provided $n \geq n_{0}(\varepsilon)$.

Proof. Set $s(n):=\Delta^{6} f(n)$. Observing that $s(n)=(f(n)+f(n+6))-6(f(n+1)+$ $f(n+5))+15 \Delta^{2} f(n+2)-10 \Delta f(n+3)$. Therefore,

$$
\left|15 \Delta^{2} f(n+2)\right| \leq 24+|s(n)| \leq K+24=30-\delta
$$

implying that

$$
\left|\Delta^{2} f(n+2)\right| \leq 2-\frac{\delta}{15}
$$

Applying Theorem 5, the result follows.
Theorem 10. Assume that $\left|\Delta^{7} f(n)\right| \leq K:=12-\delta$. Then, there exists some real number t such that $f(n)=n^{i t} F(n)$ for all $n \in \mathbb{N}$, where $F^{k}(n)=1$ for all $n \in \mathbb{N}$, and $\left|\Delta^{7} F(n)\right| \leq K+\varepsilon$ provided $n \geq n_{0}(\varepsilon)$.

Proof. Set $s(n):=\Delta^{7} f(n)$. Observing that $(x-1)^{7}=\left(x^{7}-1\right)-7\left(x^{6}-x\right)+21\left(x^{5}-\right.$ $\left.x^{2}\right)-35\left(x^{4}-x^{3}\right)$, it follows that
$s(n)=-35 \Delta f(n+9)+21(f(n+5)-f(n+2))-7(f(n+6)-f(n+1))+(f(n+7)-f(n))$,
implying that

$$
|\Delta f(n+3)| \leq \frac{K+58}{35} \leq 2-\frac{\delta}{35}
$$

Applying Theorem A, the result follows.
Remark 1. We are unable to obtain similar results for $\Delta^{m} f(n)$ for any of the integers $m \geq 8$.

5 Final remarks

We believe that the following holds.
Conjecture 1. Theorem A remains true if the condition $\overline{\{(f(n), g(n+1)): n \in \mathbb{N}\}} \neq$ $\mathbb{T} \times \mathbb{T}$ is weakened and replaced by the following: there exists a pair of points ξ, η located on the unit circle for which $\sum_{\substack{n \leq x \\ \mid f(n-\xi|<\varepsilon\\| g(n+1)-\eta \mid<\varepsilon}} \frac{1}{n}=o(\log x)$ as $x \rightarrow \infty$, provided $\varepsilon>0$ is sufficiently small.

Observe that, perhaps a modification of the proof of Theorem A could lead to a proof of Conjecture 1. However, we could not find the right approach to reach that goal.

Finally, it is interesting to observe that if Conjecture 1 is true, then the theorems of the previous section remain true under a weaker condition, that is, instead of assuming that $\left|\Delta^{m} f(n)\right| \leq K$ for all $n \geq n_{0}$, one can only assume that $\left|\Delta^{m} f(n)\right| \leq$ K for all $n \in \mathbb{N}$ with the exception of some integers $n_{1}<n_{2}<\cdots$ for which $\sum_{n_{j} \leq x} \frac{1}{n_{j}}=o(\log x)$ as $x \rightarrow \infty$.

References

[1] I. Kátai, Some problems in number theory, Studia Sci. Math. Hungar. 16 (1983), no. 3-4, 289-295.
[2] I. Kátai and B.M. Phong, On the pairs of completely multiplicative functions satisfying satisfying some relations, Acta Sci. Math. Szeged 85 (2019), 139-145.
[3] O. Klurman, Correlations of multiplicative functions and applications, Compos. Math. 153 (2017), no. 8, 1622-1657.
[4] O. Klurman and A.P. Mangerel, Rigidity theorems of multiplicative functions, Math. Ann. 372 (2018), no. 1-2, 651-697.
[5] O. Klurman and A.P. Mangerel, On the orbits of multiplicative pairs, Algebra \& Number Theory 14 (2020), 155-189.
[6] E. Wirsing, On a problem of Kátai and Subbarao, Ann. Univ. Sci. Budapest. Sect. Comput. 24 (2004), 69-78.

File: characterisation-completely-multiplicative-functions-debrecen-3.tex
Document dated June 7, 2020

[^0]: ${ }^{1}$ Research supported in part by a grant from NSREC.

