On an open question regarding generalized number systems in Euclidean spaces

Jean-Marie De Koninck¹ and Imre Kátai

Édition du 7 juillet 2021

Abstract

We raise an open question regarding generalized number systems in Euclidean spaces and formulate a partial answer.

Subject Classification Number: 11A67 Key words and phrases: generalized number systems

1 Introduction

Given an integer M, let t = |M| and assume that $t \neq 0, 1$. Let

 $\mathcal{A} := \{a_0 = 0, a_1, \dots, a_{t-1}\}$

be a complete residue system modulo M. Further set

$$\mathcal{B} := \mathcal{A} - \mathcal{A} = \{a_i - a_j : a_i, a_j \in \mathcal{A}\}.$$

Michalek [4], [5] proved the following.

Theorem A. Let \mathcal{A} and \mathcal{B} be as above. Any integer *n* can be written in the form

(1.1)
$$n = c_0 + c_1 M + \dots + c_h M^h \text{ with each } c_i \in \mathcal{B}$$

for some positive integer h if and only if $GCD(a_1, a_2, \ldots, a_{t-1}) = 1$.

Why is Theorem A interesting? Consider the sets

$$H := \left\{ \sum_{\nu=1}^{\infty} \frac{c_{\nu}}{M^{\nu}} : c_{\nu} \in \mathcal{A} \right\},$$

$$\Gamma_{\ell} := \left\{ \sum_{\nu=0}^{\ell} c_{\nu} M^{\nu} : c_{\nu} \in \mathcal{A} \right\},$$

$$\Gamma := \bigcup_{\ell=0}^{\infty} \Gamma_{\ell}.$$

The following statements were proved in [1], [2] and [3]:

 $^{^1{\}rm The}$ work of the first author was supported in part by the Natural Sciences and Engineering Research Council of Canada.

- (1) *H* is a compact set and $\lambda(H) > 0$ (here, λ is the Lebesgue measure in \mathbb{R}).
- (2) $\lambda(H + \gamma_1 \cap H + \gamma_2) = 0$ if $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$.

In light of the above setup, we say that (\mathcal{A}, M) is generalized number system if $\Gamma = \mathbb{Z}$, or in other words, if every $n \in \mathbb{Z}$ can be written as $n = \sum_{\nu=0}^{h} c_{\nu} M^{\nu}$ for some positive integer h. In this case,

(1.2)
$$\lambda(H+n_1 \cap H+n_2) = 0 \text{ for all } n_1, n_2 \in \mathbb{Z}, \ n_1 \neq n_2.$$

It may occur that (1.2) holds despite the fact that $\Gamma \neq \mathbb{Z}$. Observe that it was proved earlier that (1.2) holds if and only if

(1.3)
$$\Gamma - \Gamma = \mathbb{Z}$$

that is if every $n \in \mathbb{Z}$ can be written in the form (1.1). In this case, we say that (\mathcal{A}, M) is a *just touching covering system*.

2 Generalized number systems in Euclidean spaces

Given a positive integer k, let \mathbb{R}_k and \mathbb{Z}_k stand respectively for the k-dimensional real Euclidean space and the ring of k-dimensional vectors with integer entries. Fix k and let M be a $k \times k$ matrix with integer elements. Assume that M has k distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ such that $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_k| > 1$. Let $\mathcal{L} := M \mathbb{Z}_k$. Then, \mathcal{L} is a subgroup of \mathbb{Z}_k . Let t stand for the order of \mathbb{Z}_k/\mathcal{L} , so that $t = |\det M|$. Further let $A_0, A_1, \ldots, A_{t-1}$ stand for the residue classes mod \mathcal{L} and let $A_0 = \mathcal{L}$. For each $j \in \{0, 1, \ldots, t-1\}$, choose an arbitrary element $\underline{a}_j \in A_j$ such that the vector \underline{a}_0 is the zero vector $\underline{0} = (0, 0, \ldots, 0)$, and then write

$$\mathcal{A} := \{\underline{a}_0, \underline{a}_1, \dots, \underline{a}_{t-1}\},\$$

so that \mathcal{A} is a k-dimensional complete residue system modulo M.

We now introduce the sets

$$H := \left\{ \sum_{\nu=1}^{\infty} M^{-\nu} \underline{c}_{\nu} : \underline{c}_{\nu} \in \mathcal{A} \right\},$$

$$\Gamma_{\ell} := \left\{ \sum_{\nu=0}^{\ell} M^{\nu} \underline{d}_{\nu} : \underline{d}_{\nu} \in \mathcal{A} \right\},$$

$$\Gamma := \bigcup_{\ell=0}^{\infty} \Gamma_{\ell}.$$

We will say that (\mathcal{A}, M) is just touching covering system (JTCS) if

$$\lambda(H + \underline{n}_1 \cap H + \underline{n}_2) = 0 \text{ for all } \underline{n}_1, \underline{n}_2 \in \mathbb{Z}_k, \ \underline{n}_1 \neq \underline{n}_2.$$

In [3], it was proved that (\mathcal{A}, M) is a JTCS if and only if $\Gamma - \Gamma = \mathbb{Z}_k$, that is if every $\underline{n} \in \mathbb{Z}_k$ can be written as

(2.1)
$$\underline{n} = \sum_{j=0}^{h} M^{j} \underline{d}_{j}$$

where the \underline{d}_j 's belong to the set $\mathcal{B} = \mathcal{A} - \mathcal{A}$.

We now state the following.

Open question. Under what condition is it true that (\mathcal{A}, M) is a JTCS?

Let us consider the special case where $M = \text{diag}(m_1, \ldots, m_k)$, that is the "diagonal matrix", whose elements are all 0 except the elements on the diagonal whose values are m_1, \ldots, m_k . Let $t = |m_1 \cdots m_k|$ and assume that $|m_j| > 1$ for $j = 1, \ldots, k$. Let $\mathcal{A} = \{\underline{a}_0 = 0, \underline{a}_1, \ldots, \underline{a}_{t-1}\}$ be the complete residue system modulo t. If (\mathcal{A}, M) is a JTCS, let $\mathcal{A}^{(j)}$ be the set of the j-th coordinates of \mathcal{A} , then $(\mathcal{A}^{(j)}, m_j)$ should be a JTCS in \mathbb{R} , in which case every $n \in \mathbb{Z}$ can be written as

$$n = \sum_{\nu=0}^{h} b_{\nu} m_j^{\nu} \quad \text{with} \ b_{\nu} \in \mathcal{A}^{(j)} - \mathcal{A}^{(j)}.$$

This means that if (\mathcal{A}, M) is a JTCS, then

$$GCD(a_1^{(j)}, \dots, a_{t-1}^{(j)}) = 1$$
 for each $j = 1, \dots, k$.

The question is: Is this condition sufficient?

References

- I. Kátai, Generalized number systems and fractal geometry, Lecture Notes Janus Pannonius Universitas, Pécs, 1985, 1-40.
- [2] I. Kátai, Generalized number systems in Euclidean spaces, Mathematical and Computer Modelling 38 (2003), 883–892.
- [3] K.-H. Indlekofer, I. Kátai and P. Racskó, Some remarks on generalized number systems, Acta Sci. Math. (Szeged) 57 (1993), no. 1–4, 543–553.
- G.E. Michalek, Base three just touching covering systems, Publ. Math. Debrecen 51 (1997), no. 3-4, 241–263.

[5] G.E. Michalek, Base N just touching covering systems, Publ. Math. Debrecen 58 (2001), 549–557.

Jean-Marie De Koninck Dép. de mathématiques et de statistique Université Laval Québec Québec G1V 0A6 Canada jmdk@mat.ulaval.ca Imre Kátai Computer Algebra Department Eötvös Loránd University 1117 Budapest Pázmány Péter Sétány I/C Hungary katai@inf.elte.hu

JMDK, le 7 juillet 2021; fichier: generalized-number-systems-2021.tex