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Abstract

Paul Erdős, Janos Galambos and others have studied the relative size of the con-
secutive prime divisors of an integer. Here, we further extend this study by exam-
ining the distribution of the consecutive neighbour spacings between the prime divi-
sors p1(n) < p2(n) < · · · < pr(n) of a typical integer n ≥ 2. In particular, setting
γj(n) := log pj(n)/ log pj+1(n) for j = 1, 2, . . . , r−1 and, for any λ ∈ (0, 1], introducing
Uλ(n) := #{j ∈ {1, 2, . . . , r − 1} : γj(n) < λ}, we establish the mean value of Uλ(n)
and prove that Uλ(n)/r ∼ λ for almost all integers n ≥ 2. We also examine the shifted
prime version of these two results and study other related functions.

AMS subject classification numbers: 11N37, 11A05
Key words and phrases: prime divisors

1 Introduction

Given an integer n ≥ 2, let ω(n) stand for the number of distinct prime divisors of n ≥ 2
(setting ω(1) = 0) and let

(1.1) p1(n) < p2(n) < · · · < pω(n)(n) or for short p1 < p2 < · · · < pω(n)

be these prime divisors. Many have shown interest for the relative size of these prime factors
pj(n).

Let ξ(n) → ∞ as n → ∞. In 1946, P. Erdős [4] proved that given any small number
ε > 0,

ee
k(1−ε)

< pk(n) < ee
k(1+ε)

(ξ(n) ≤ k ≤ ω(n)) for almost all n ≤ x.

In 1976, J. Galambos [5] strengthened this result by showing that, given any small ε > 0
and a function k = k(x) which tends to infinity with x in such a manner that k(x) =
o(log log x) as x→∞, then

lim
x→∞

1

x
#{n ≤ x : e−(1+ε)k log x < log pω(n)−k(n) < e−(1−ε)k log x} = 1.

Galambos also established that, given any small ε > 0 and a function j = j(x) which tends
to infinity with x in such a manner that j(x) ≤ (1 − ε) log log x, then, for any fixed real
number z > 1,

lim
x→∞

1

x
#

{
n ≤ x :

log pj+1(n)

log pj(n)
< z

}
= 1− 1

z
.

In 1987, De Koninck and Galambos [2] showed that for almost all n (with the prime
factors of n written as in (1.1)) and for any fixed positive integer k, the corresponding

(log log pj+1 − log log pj, log log pj+2 − log log pj+1, . . . , log log pj+k − log log pj+k−1))
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is distributed as a k-tuple of independent exponential random variables with parameter 1.
Finally, in 2007, Granville [6], [7] proved that if Sk(x) stands for the number of positive

integers n ≤ x such that ω(n) = k, then for all but o(S`(x)) of the integers n ∈ S`(x), the
sets {

log log p
1
`

log log(n1/`)
: p | n, p ≤ n1/`

}
are Poisson distributed.

Here, we further expand on the above results by examining the distribution of the con-
secutive neighbour spacings between the prime divisors of a typical integer n.

2 Setting the table

Writing the distinct prime factors of an integer n as in (1.1), we introduce the functions

(2.1) γj(n) :=
log pj(n)

log pj+1(n)
(j = 1, . . . , r − 1).

From here on, the letters p, q, π and at times P will denote primes. Given positive real
numbers u < v, we set

Q(u, v) :=
∏

u<p<v

p.

Also, given an integer n > 1 and a prime divisor p of n which is smaller than P (n), the
largest prime divisor of n, we set

(2.2) νp = νp(n) := min{q | n : q > p}.

In light of these notation, we have

GCD

(
n

p νp
, Q(p, νp)

)
= 1.

When the context is clear, we shall write (a, b) instead of GCD(a, b). Given a real number
λ ∈ (0, 1], we introduce the function

Uλ(n) :=
∑
p|n

log p
log νp(n)

<λ

1,

or equivalently

Uλ(n) :=
∑
p|n

log log νp(n)−log log p>− log λ

1.

One expects an exponential distribution for the gaps log log νp(n) − log log p, meaning that
for a typical integer n, one should expect to have

Uλ(n) ≈ log log n

∫ ∞
− log λ

e−s ds = λ log log n,
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which is essentially what we obtain in the first part of Theorem 1 below.
In what follows, φ and µ will denote the Euler totient function and the Möbius function.

We also let φ0(n) := φ(n)/n and introduce the strongly multiplicative function φ̃0(n) defined
on primes by

φ̃0(p) = 1− 1

p− 1
,

so that in particular

(2.3) φ̃0(n) = φ0(n)
∏
p|n

(
1− 1

(p− 1)2

)
.

Also, at times, given primes p < q, we will use the notation Λ(p, q) :=
log p

log q
.

We shall use the letters c and C with or without subscripts to denote positive constants,
not necessarily the same at each occurrence. As usual we write π(x) for the number of primes

not exceeding x and we will be using the logarithmic integral li(x) :=

∫ x

2

dt

log t
.

3 Main results

Theorem 1. Given an arbitrary real number λ ∈ (0, 1],

(3.1)
∑
n≤x

Uλ(n) = (1 + o(1))λx log log x (x→∞).

Moreover, for every ε > 0,

(3.2) lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Uλ(n)

ω(n)
− λ
∣∣∣∣ > ε

}
= 0.

Remark. Although we will provide complete proofs of both statements in Theorem 1, we
should mention that the second statement does follow from Theorem 1 in Granville’s paper
[6], as he showed that for almost all n and for all L > 0, one has

1

log log n

∫ log logn

t=0
#{p|n:p∈[t,t+L)}=0

1 dt = e−L(1 + o(1)),

from which the distribution function for Uλ(n) can be obtained by taking differences of the
left-hand side of the above expression at L+ δ and L, and taking the limit as δ → 0 suitably
slowly.

The following is essentially the analogue of Theorem 1 for the shifted primes.

Theorem 2. Given an arbitrary real number λ ∈ (0, 1],

(3.3)
∑
p≤x

Uλ(p+ 1) = (1 + o(1))λ li(x) log log x (x→∞).

Moreover, for every ε > 0,

(3.4) lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣Uλ(p+ 1)

ω(p+ 1)
− λ
∣∣∣∣ > ε

}
= 0.
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Let k1, k2, . . . , kr be non-negative integers and recall the definition of νp(n) given in (2.2).
Consider the linear expressions `j(n) := ajn + bj (j = 0, 1, . . . , r), where aj, bj ∈ Z satisfy
aibj 6= ajbi whenever i 6= j. Further let Uk1,...,kr(`0(n)) be the number of those prime divisors
p of `0(n) for which each `j(n), j = 1, . . . , r, has exactly kj prime divisors in the interval
[p, νp(`0(n))]. Finally, let

C(k1, . . . , kr) :=
s!

(r + 1)s+1 k1! · · · kr!
, where s = k1 + · · ·+ kr.

We then have the following two results.

Theorem 3. As x→∞,

(3.5)
∑
n≤x

Uk1,...,kr(`0(n)) = (1 + o(1))C(k1, . . . , kr)x log log x

and, given any small number ε > 0,

(3.6) lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Uk1,...,kr(`0(n))

ω(n)
− C(k1, . . . , kr)

∣∣∣∣ > ε

}
= 0.

Theorem 4. As x→∞,

(3.7)
∑
p≤x

Uk1,...,kr(`0(p+ 1)) = (1 + o(1))C(k1, . . . , kr)li(x) log log x

and, given any small number ε > 0,

(3.8) lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣Uk1,...,kr(`0(p+ 1))

ω(p+ 1)
− C(k1, . . . , kr)

∣∣∣∣ > ε

}
= 0.

Now, let δ0, . . . , δk−1 ∈ (0, 1) and set H := δ0 · · · δk−1. Let F be the set of prime k + 1-
tuples (p0, p1, . . . , pk) which satisfy

p0 < p1 < · · · < pk and 1− δj < Λ(pj, pj+1) < 1 for j = 0, 1, . . . , k − 1.

Given an integer n ≥ 2, let Vδ0,...,δk−1
(n) be the number of those prime divisors p0 of n for

which
νp0(n) = p1, . . . , νpk−1

(n) = pk

for some element (p0, p1, . . . , pk) ∈ F .
We then have the following two results.

Theorem 5. As x→∞,

(3.9) S1(x) :=
∑
n≤x

Vδ0,...,δk−1
(n) = (H + o(1))x log log x
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and

(3.10) S2(x) :=
∑
n≤x

Vδ0,...,δk−1
(n)2 = (H2 + o(1))x (log log x)2.

Consequently, given any small number ε > 0,

(3.11) lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Vδ0,...,δk−1
(n)

ω(n)
−H

∣∣∣∣ > ε

}
= 0.

Theorem 6. As x→∞, we have

(3.12) S3(x) :=
∑
p≤x

Vδ0,...,δk−1
(p+ 1) = (H + o(1))li(x) log log x

and

(3.13) S4(x) :=
∑
p≤x

Vδ0,...,δk−1
(p+ 1)2 = (H2 + o(1))li(x) (log log x)2.

Consequently, given any small number ε > 0,

(3.14) lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣Vδ0,...,δk−1
(p+ 1)

ω(p+ 1)
−H

∣∣∣∣ > ε

}
= 0.

4 Preliminary results

We first recall the Brun-Titchmarsh inequality and the Bombieri-Vinogradov theorem which
we state as follows.

Theorem A. (Brun-Titchmarsh) Given ` ∈ Z and a positive integerD such that (`,D) =
1, there exists an absolute constant C > 0 such that for all x ≥ 2,

π(x;D, `) < C
li(x)

φ(D)

uniformly for D ≤
√
x.

For a proof of Theorem A, see Iwaniec [8].

Let us now define

(4.1) K(x | k) := max
(k,`)=1

max
y≤x

∣∣∣∣π(y; k, `)− li(y)

φ(k)

∣∣∣∣ .
We then have the following.

Theorem B. (Bombieri-Vinogradov) Given any fixed number A > 0, there exists a
number B = B(A) > 0 such that∑

k≤
√
x/(logB x)

K(x | k) = O

(
x

logA x

)
.

For a proof of Theorem B, see Theorem 17.1 in the book of Iwaniec and Kowalski [9].

We now move to state and prove eight lemmas.
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Lemma 1. Given real numbers u < v, then, for any fixed number A > 1,∑
u<p<v

log p

p
= log v − log u+O

(
1

logA u

)
.

Proof. This is an immediate consequence of the prime number theorem.

From here on, we will be using the function

(4.2) ε(x) :=
1

2

log log log x

log log x
.

Lemma 2. Let ε(x) be as above. Given a large number x, set

Y1 := Y1(x) = exp
{

(log x)ε(x)
}

and Y2 := Y2(x) = exp
{

(log x)1−ε(x)
}
.

Then,

(4.3)
∑
p<Y1

1

p
+

∑
Y2<p≤

√
x

1

p
= O (ε(x) log log x) ,

so that

(4.4)
∑
p|n
p<Y1

1 +
∑
p|n
p>Y2

1 = o(log log x) for almost all n ≤ x.

Proof. Using the well known estimate∑
p≤x

1

p
= log log x+ C + o(1) for some absolute constant C (x→∞),

we obtain∑
p<Y1

1

p
+

∑
Y2<p≤

√
x

1

p
= ε(x) log log x+ log log x− (1− ε(x)) log log x+O(1)

� ε(x) log log x,

from which (4.3) follows immediately. Estimate (4.4) is an obvious consequence of (4.3).

Setting π(x; k, `) := #{p ≤ x : p ≡ ` (mod k)}, we also have the following.

Lemma 3. There exists a positive constant C such that

∑
p<Y1

π(x; p,−1) +
∑

Y2<p≤
√
x

π(x; p,−1) ≤ C li(x)

∑
p<Y1

1

p
+

∑
Y2<p≤

√
x

1

p


� ε(x) li(x) log log x,(4.5)

so that

(4.6)
∑
p|q+1

p 6∈(Y1,Y2)

1 = o(log log x) for almost all primes q ≤ x.
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Proof. Estimates (4.5) and (4.6) follow from the Brun-Titchmarsh inequality (see Theorem
A) and Lemma 2.

The following provides an easily obtained upper bound for Uε(n).

Lemma 4. For every ε > 0 and every integer n > e2,

Uε(n) ≤ log log n

log(1/ε)
.

Proof. Let p1(n) < · · · < pω(n)(n) be the distinct prime factors of n and let γj(n) be the

function defined in (2.1). Further, let j1, . . . , jk be those indices for which
1

γj(n)
>

1

ε
. Since

log pjk+1

log p1

≥
(

1

ε

)k
,

it follows that
log log n ≥ k log(1/ε),

thereby completing the proof of Lemma 4.

The following two lemmas can be derived from Lemma 2.1 in the book of Elliott [3].
Nevertheless, for the sake of completeness, we do provide here a proof for each of these
lemmas.

Lemma 5. Let x ≥ ee
100

and let Y1 = Y1(x) and Y2 = Y2(x) be as in Lemma 2. Let
π1 < · · · < πs be s primes located in the interval (Y1, Y2). Write their product as B = π1 · · · πs.
Further set

η :=
s∑
i=1

1

πi

and
SB(x) :=

∑
n≤x

(n,B)=1

1.

Assume that η ≤ K, where K is an arbitrary number, and let h be a positive integer satisfying
h ≥ 3e2K. Then,

(4.7) |SB(x)− φ0(B)x| ≤ x (3e)−h + 2Y h
2 ,

so that in particular, choosing h = blog log log xc, there exists a positive constant c such that

(4.8) |SB(x)− φ0(B)x| ≤ c x

(log log x)2
.

7



Proof. First set

(4.9) T
(h)
B (x) :=

∑
d|B

ω(d)≤h

µ(d)
⌊x
d

⌋
.

As is well known,

(4.10) SB(x)− T (h)
B (x) is

{
≥ 0 if h is odd,
≤ 0 if h is even.

We have from (4.9) that

(4.11) T
(h)
B (x) = x

∑
d|B

ω(d)≤h

µ(d)

d
+ θh,

where

(4.12) |θh| ≤
∑
d|B

ω(d)≤h

1 ≤ 2ω(B)h = 2sh < 2Y h
2 .

On the other hand, since
η

h+ 1
<

1

2
, one can easily establish that

(4.13)

∣∣∣∣∣∣∣φ0(B)−
∑
d|B

ω(d)≤h

µ(d)

d

∣∣∣∣∣∣∣ ≤
ηh+1

(h+ 1)!
+

ηh+2

(h+ 2)!
+ · · · < ηh

h!
.

Moreover, using the inequality h! > hhe−h valid for all integers h ≥ 1, we have

(4.14)
ηh

h!
<

ηh

hhe−h
=
(eη
h

)h
<

(
1

3e

)h
,

where we used the fact that η ≤ K ≤ h/(3e2).
Gathering estimates (4.10) to (4.14) completes the proof of (4.7).
To see why (4.8) holds, we proceed as follows. First observe that

(4.15) (3e)h = exp{blog log log xc · log(3e)} > exp{2 log log log x} = (log log x)2.

On the other hand, we can show that, given any arbitrarily small number δ > 0,

(4.16) Y h
2 < xδ for x sufficiently large.

This inequality follows from the fact that, recalling the definition of ε(x) given in (4.2), we
have

log Y h
2 = h log Y2 = h(log x)1−ε(x) =

h · log x

(log x)ε(x)

8



= exp{log h+ log log x− ε(x) log log x} = exp{log h+ log log x− 1

2
log log log x}

≤ exp{log log log log x+ log log x− 1

2
log log log x}

< exp{log log x− 1

4
log log log x}

= exp

{
log

(
log x

(log log x)1/4

)}
=

log x

(log log x)1/4
< δ log x,

provided x is sufficiently large.
Using (4.15) and (4.16) in (4.7) completes the proof of (4.8).

Lemma 6. Let x, B, h, η and K be as in Lemma 5. Let D be a positive integer ≤ Y c0
2 ,

where c0 is an arbitrary positive constant, and assume that (B,D) = 1. Consider the sum

(4.17) SB,D(x) :=
∑
p≤x

p+1≡0 (mod D)
(p+1,B)=1

1.

Then, for some positive constant c1, we have

(4.18)

∣∣∣∣SB,D(x)− φ̃0(B)
li(x)

φ(D)

∣∣∣∣ ≤ c1
li(x) (3e)−h

φ(D)
+ Y h

2 ,

so that in particular, by choosing h = blog log log xc, we have that for some positive constant
c2,

(4.19)

∣∣∣∣SB,D(x)− φ̃0(B)
li(x)

φ(D)

∣∣∣∣ ≤ c2
li(x)

φ(D) (log log x)2
.

Proof. Making use of Theorem A and proceeding as in the proof of Lemma 5, estimates
(4.18) and (4.19) are easily obtained.

Lemma 7. Given real numbers 1 < A < B and ` > 0 satisfying `/A < 1/2, then∫ B

A

t`e−t dt < 2A`e−A.

Proof. Using integration by parts, we have

(4.20)

∫ B

A

t`e−t dt = −t`e−t
∣∣B
A

+ `

∫ B

A

t`−1e−t dt ≤ A`e−A + `

∫ B

A

t`−1e−t dt.

Using integration by parts repetitively in this last integral, one can deduct from (4.20) that

(4.21)

∫ B

A

t`e−t dt ≤ A`e−A
(

1 +
`

A
+
`(`− 1)

A2
+ · · ·

)
< 2A`e−A,

where, for this last inequality, we used the hypothesis `/A < 1/2.
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Lemma 8. Given positive real numbers A < B and non-negative integers s and r, set

Ls(A,B) :=

∫ B

A

(B − t)set(r+1) dt.

Then,

L0(A,B) =
eB(r+1) − eA(r+1)

r + 1

and for each s ≥ 1,

Ls(A,B) = −(B − A)s

s+ 1
eA(r+1) +

s

r + 1
Ls−1(A,B).

Consequently, for all integers s ≥ 0, we have

Ls(A,B) =
s!

(r + 1)s+1
eB(r+1) + eA(r+1)Ps(B − A),

where Ps(y) is some polynomial of degree s.

Proof. The proof is quite straightforward using repetitive integration by parts.

5 Proof of Theorem 1

Set
Sλ(x) :=

∑
n≤x

Uλ(n).

Instead of working directly with Uλ(n), it will be more convenient to first study the function

U ε0
λ (n) :=

∑
p|n

Y1<p<Y2

ε0≤
log p

log νp(n)
<λ

1,

where ε0 > 0 is a fixed small number, and set

Sε0λ (x) :=
∑
n≤x

U ε0
λ (n).

Using estimate (4.8) of Lemma 5, we have

Sε0λ (x) =
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

∑
n=pqm≤x

(m,Q(p,q))=1

1

=
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

SQ(p,q)

(
x

pq

)

=
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

(
x

pq
φ0(Q(p, q)) +O

(
x

pq

1

(log log x)2

))
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= x
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

1

pq
Λ(p, q)

(
1 +O

(
1

log p

))
+O

(
x

(log log x)2

∑
p<q<x

1

pq

)

= x
∑

Y1<q<Y2

1

q log q

∑
ε0≤Λ(p,q)<λ

log p

p
+O

(
x
∑
p<q<x

1

pq log q

)

+O

(
x

(log log x)2

∑
p<q<x

1

pq

)
.(5.1)

Since ∑
p<q<x

1

pq log q
=
∑
q<x

1

q log q

∑
p<q

1

p
�
∑
q<x

1

q log q
log log q �

∫ x

2

log log t

t log2 t
dt = O(1)

and ∑
p<q<x

1

pq
� (log log x)2,

it follows from (5.1) that

(5.2) Sε0λ (x) = x
∑

Y1<q<Y2

1

q log q
(λ− ε0) log q +O(x) = (λ− ε0)x log log x+O(x),

where we used Lemma 2 and the definition of ε(x) given in (4.2).
We now need to estimate how much Sλ(x) differs from Sε0λ (x). For this, we set

(5.3) ξ(n) := Uλ(n)− U ε0
λ (n).

Then, using the same development as the one used to obtain (5.1) and (5.2), we find that

Sλ(x)− Sε0λ (x) =
∑
n≤x

ξ(n) =
∑
n≤x

∑
p|n

Y1<p<Y2
log p

log νp(n)
<ε0

1� x
∑

Y1<q<Y2

1

q log q

∑
p<qε0

log p

p

� xε0

∑
Y1<q<Y2

1

q
= O(ε0x log log x).(5.4)

Hence, (5.4) allows us to replace (5.2) by

Sλ(x) = (λ− ε0)x log log x+O(x) +O(ε0x log log x) = (λ− ε0)x log log x+O(ε0x log log x).

Since ε0 can be chosen arbitrarily small, estimate (3.1) follows.
It remains to prove (3.2). We have∑

n≤x

U ε0
λ (n)2 = Sε0λ (x) + 2

∑
Y1<p1<q1<p2<q2<Y2
ε0≤Λ(pi,qi)<λ (i=1,2)

Λ(q1,q2)<ε0

SQ(p1,q1)Q(p2,q2)

(
x

p1q1p2q2

)
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+2
∑

Y1<p1<q1=p2<q2<Y2
ε0≤Λ(pi,qi)<λ (i=1,2)

SQ(p1,q2)

(
x

p1p2q2

)

+2
∑

Y1<p1<q1<p2<q2<Y2
ε0≤Λ(pi,qi)<λ (i=1,2)

ε0≤Λ(q1,q2)<1

SQ(p1,q2)

(
x

p1q1p2q2

)

= Sε0λ (x) + 2Σ1 + 2Σ2 + 2Σ3,(5.5)

say.
On the one hand, using estimate (4.8) of Lemma 5 as we did in the first part of the proof

and making repetitive use of the prime number theorem in the form
∑
p≤y

log p

p
= log y +O(1),

we have

Σ1 =
∑

Y1<p1<q1<p2<q2<Y2
ε0≤Λ(pi,qi)<λ (i=1,2)

Λ(q1,q2)<ε0

x

p1q1p2q2

log p1 log p2

log q1 log q2

+O

 ∑
Y1<p1<q1<p2<q2<Y2
ε0≤Λ(pi,qi)<λ (i=1,2)

1

p1q1p2q2

· x

(log log x)2


= x

∑
Y1<q1<q2<Y2
Λ(q1,q2)<ε0

(λ− ε0)2

q1q2

(
1 +O

(
1

log q1

))(
1 +O

(
1

log q2

))

+O

(
x

(log log x)2
log log x log(1/ε0)

)
= (λ− ε0)2x

∑
Y1<q1<q2<Y2
Λ(q1,q2)<ε0

1

q1q2

+O(x log log x)

= (λ− ε0)2x

2

(∑
q<x

1

q

)2

+O(x log log x) +O

x ∑
ε0≤Λ(q1,q2)<1

q1,q2<x

1

q1q2

 .(5.6)

Since ∑
ε0≤Λ(q1,q2)<1

q1,q2<x

1

q1q2

� log log x log(1/ε0),

we can replace (5.6) by

Σ1 = (λ− ε0)2x

2
(log log x)2 +O(x log log x log(1/ε0))

= (λ− ε0)2x

2
(log log x)2 +O(x log log x log log log x),(5.7)

provided x ≥ ee
1/ε0 .
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On the other hand, using repetitively the estimate
∑
p≤y

log p

p
� log y, we have

Σ2 � x
∑

Y1<p1<q1<q2<Y2

log p1

p1

1

q1q2 log q2

� x
∑

Y1<q1<q2<Y2

log q1

q1

1

q2 log q2

< x
∑
q2<Y2

1

q2

� x log log x.(5.8)

Finally,

(5.9) Σ3 � x
∑

ε0≤Λ(q1,q2)<1

1

q1q2

� x log log x log(1/ε0) = O(x log log x log log log x),

since we assumed that x ≥ ee
1/ε0 .

Substituting (5.2), (5.7), (5.8) and (5.9) in (5.5), we obtain∑
n≤x

U ε0
λ (n)2 = (λ− ε0)2x(log log x)2 +O(x log log x log log log x).

Using this last formula along with estimate (3.1), we obtain∑
n≤x

(U ε0
λ (n)− (λ− ε0) log log x)2 = o

(
x(log log x)2

)
(x→∞)

and therefore

(5.10)
∑
n≤x

(U ε0
λ (n)− λ log log x)2 = O

(
ε2

0x(log log x)2
)

+ o
(
x(log log x)2

)
(x→∞).

Recall that through (5.4), we could show that the error caused by replacing
∑

n≤x U
ε0
λ (n)

by
∑

n≤x Uλ(n) was “small”. Using essentially the same technique, one can show that (5.10)
can be replaced by∑

n≤x

(Uλ(n)− λ log log x)2 = O
(
ε2

0x(log log x)2
)

+ o
(
x(log log x)2

)
(x→∞),

which in turn implies that there exists a positive constant C such that

1

x

∑
n≤x

(
Uλ(n)

log log x
− λ
)2

≤ Cε2
0 + o(1) (x→∞),

so that since ε0 can be chosen arbitrarily small, we may conclude that

lim
x→∞

1

x

∑
n≤x

(
Uλ(n)

log log x
− λ
)2

= 0,

from which (3.2) follows, thus concluding the proof of Theorem 1.
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6 Proof of Theorem 2

The proof of Theorem 2 follows essentially along the lines of the proof of Theorem 1. There-
fore, we will not provide all the details of its proof.

Recall the notation used in the proof of Theorem 1 and let

Kλ(x) :=
∑
P≤x

Uλ(P + 1) and Kε0λ (x) :=
∑
P≤x

U ε0
λ (P + 1).

Using estimate (4.19) of Lemma 6 with D = pq and B = Q(p, q), we have

Kε0λ (x) =
∑
P≤x

∑
pq|P+1

ε0≤Λ(p,q)<λ
(P+1,Q(p,q))=1

1 =
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

SQ(p,q)

(
x

pq

)

= li(x)
∑

Y1<p<q<Y2
ε0≤Λ(p,q)<λ

φ̃0(Q(p, q))

φ(pq)
+O

 li(x)

(log log x)2

∑
Y1<p<q<Y2
ε0≤Λ(p,q)<λ

1

φ(pq)


= li(x)

∑
Y1<p<q<Y2
ε0≤Λ(p,q)<λ

φ̃0(Q(p, q))

φ(pq)
+O (li(x)) .(6.1)

Regarding the main sum on the right-hand side of (6.1), recall that, as already mentioned
in identity (2.3), we may write that

φ̃0(Q(p, q)) = φ0(Q(p, q))
∏

π|Q(p,q)

(
1− 1

(π − 1)2

)
= φ0(Q(p, q))

(
1−O

(
1

p

))
.

Using this last estimate in the sum appearing on the right-hand side of (6.1) and proceeding
as in the proof of Theorem 1, we can replace (6.1) by

(6.2) Kε0λ (x) = (λ− ε0) li(x) log log x+O(li(x)).

Recalling the definition of ξ(n) given in (5.3), we need to show that
∑

p≤x ξ(p+1) is so small
that it allows us to replace Kε0λ (x) by Kλ(x) in estimate (6.2). In fact, proceeding as we did
to obtain (5.4), one can prove that∑

p≤x

ξ(p+ 1) = O(ε0 li(x) log log x).

Using this last estimate we can replace (6.2) by

(6.3) Kλ(x) = (λ− ε0) li(x) log log x+O(li(x)) +O(ε0 li(x) log log x) (x→∞).

Since ε0 can be chosen arbitrarily small, estimate (6.3) proves (3.3).
We now move on to estimate the sum of U ε0

λ (P + 1)2 as P runs over the primes not
exceeding x. We separate this sum in four smaller sums, essentially as we did in (5.5), as we
write

(6.4)
∑
P≤x

U ε0
λ (P + 1)2 = Kε0λ (x) + 2Σ1 + 2Σ2 + 2Σ3,

where

14



• in Σ1, recalling the definition of SB,D(x) given in (4.17), we sum SB,D(x) over those
pairs (B,D) = (Q(p1, q1)Q(p2, q2), p1q1p2q2) satisfying the three conditions

(i) Y1 < p1 < q1 < p2 < q2 < Y2,

(ii) Λ(pi, qi) ∈ (ε0, λ) for i = 1, 2,

(iii) Λ(q1, q2) ≤ ε0;

• in Σ3, we sum SB,D(x) over those pairs (B,D) = (Q(p1, q1)Q(p2, q2), p1q1p2q2) satisfy-
ing the above conditions (i) and (ii) as well as the condition ε0 < Λ(q1, q2) < 1;

• in Σ2, we sum SB,D(x) over those pairs (B,D) = (Q(p1, q1)Q(p2, q2), p1q1p2q2) for which
q1 = p2 and Λ(q1, q2) ≤ ε0.

In Σ1 amd Σ3, we have, using estimate (4.19) of Lemma 6,

(6.5)

∣∣∣∣SB,D(x)− φ̃0(B)
li(x)

φ(D)

∣∣∣∣ ≤ c2
li(x)

φ(D)(log log x)2
.

First observe that

(6.6)
∑
D≤x

li(x)

φ(D)(log log x)2
� li(x).

Moreover, observe that given any odd integer n ≥ 3 and letting rn stand for the smallest
prime divisor of n, we have

1 ≥ φ̃0(n)

φ(n)
=
∏
π|n

π2 − 2π

π2 − 2π + 1
≥ 1− 1

rn
.

A consequence of this is that

φ̃0(B) =
φ(B)

B

(
1 +O

(
1

p1

))
.

Using this relation, we may write that

φ̃0(B) = φ0(Q(p1, q1))φ0(Q(p2, q2))

(
1 +O

(
1

p1

))
= Λ(p1, q1)Λ(p2, q2)

(
1 +O

(
1

log p1

))(
1 +O

(
1

log p2

))(
1 +O

(
1

p1

))
.

Using this relation and repeating the argument used in the proof of Theorem 1, taking into
account estimates (6.5) and (6.6), we obtain that

Σ1 = li(x)
∑′Λ(p1, q1)Λ(p2, q2)

φ(p1q1)φ(p2q2)
+O

(
li(x)

(log log x)2

∑′ 1

p1q1p2q2

)
+O (li(x)) ,

where the dash on each of the above two sums indicates that the sums run over those primes
p1, q1, p2, q2 satisfying the conditions described earlier for the sum Σ1.
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Proceeding in a similar way to estimate Σ2 and Σ3, and gathering the corresponding
estimates for Σ1, Σ2 and Σ3, we finally obtain from (6.4) that

(6.7)
∑
P≤x

U ε0
λ (P + 1)2 = (λ− ε0)2 li(x)

2
(log log x)2 +O (li(x) log log x) .

Reasoning as above, we can replace U ε0
λ (P +1)2 by Uλ(P +1)2 in relation (6.7) and conclude

that

(6.8)
∑
P≤x

Uλ(P + 1)2 = (λ− ε0)2 li(x)

2
(log log x)2 +O (li(x) log log x) .

Combining estimates (6.3) and (6.8), we easily obtain that

1

π(x)

∑
P≤x

(
Uλ(P + 1)

log log x
− λ
)2

→ 0 as x→∞,

from which (3.4) follows, thus completing the proof of Theorem 2.

7 The proofs of Theorems 3 and 4

Let us write

(7.1)
∑
n≤x

Uk1,...,kr(`0(n)) =
∑
p<q

W (x; p, q),

where W (x; p, q) stands for the number of positive integers n ≤ x such that pq | `0(n),(
`0(n)

pq
,Q(p, q)

)
= 1 and for which there exist

Rj | Q(p, q), ω(Rj) = kj and

(
`j(n),

Q(p, q)

Rj

)
= 1 for j = 1, . . . , r.

Observe that the contribution to the sum (7.1) of those primes p, q for which p < Y1 or
q > Y2 is o(x log log x) and can therefore be ignored.

So for now, let p < q (with p, q ∈ (Y1, Y2)) be fixed. Given fixedR1, . . . , Rr with (Ri, Rj) =
1 for i 6= j, let Σp,q(R1, . . . , Rr) be the number of those positive integers n ≤ x satisfying
the above conditions. Using standard sieve techniques similar to what we did in the proof
of Lemma 5 and due to the coprimality of the numbers Ri, we then have

(7.2) Σp,q(R1, . . . , Rr) = (1 + o(1))
x

pqR1 · · ·Rr

∏
p<π<q

(
1− κ(π)

π

)
(x→∞),

where

κ(π) =

{
r if π | R1 · · ·Rr,
r + 1 if π - R1 · · ·Rr.
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Since

∑
p<π<q

log

(
1− κ(π)

π

)
= −

∑
p<π<q

r + 1

π
+O

 ∑
π|R1···Rr

1

π

+O

(
1

p

)

= (r + 1) log Λ(p, q) +O

(
1

p

)
,

we have that

(7.3)
∏

p<π<q

(
1− κ(π)

π

)
= (1 + o(1))Λ(p, q)r+1.

We now need to estimate how many ways we can choose R1, . . . , Rr such that

Rj | `j(n), Rj | Q(p, q) for j = 1, . . . , r, with (Ri, Rj) = 1 for i 6= j,

or written differently, how many solutions are there of

R1 · · ·Rr = m with m | Q(p, q) and ω(m) = k1 + · · ·+ kr.

One can see that this number of solutions is equal to
s!

k1! · · · kr!
, where s = k1 + · · ·+ kr.

It follows from this that

(7.4) Tp,q :=
∑

R1···Rr=m
m|Q(p,q)
ω(m)=s

1

R1 · · ·Rr

=
s!

k1! · · · kr!
∑

m|Q(p,q)
ω(m)=s

1

m
.

Now, as x→∞,

(7.5)
∑

m|Q(p,q)
ω(m)=s

1

m
= (1 + o(1))

1

s!

( ∑
p<π<q

1

π

)s

= (1 + o(1))
1

s!

(
log

1

Λ(p, q)

)s
.

Using (7.5) in (7.4), we obtain

(7.6) Tp,q =
(1 + o(1))

k1! · · · kr!

(
log

1

Λ(p, q)

)s
.

Combining (7.3) and (7.6) in (7.2), we obtain that

(7.7) W (x; p, q) =
(1 + o(1))

pqk1! · · · kr!
x

(
log

1

Λ(p, q)

)s
Λ(p, q)r+1.

On the other hand, we have

Φ(Y1, Y2) :=
∑

Y1<p<q<Y2

1

pq

(
log

log q

log p

)s
Λ(p, q)r+1
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=
∑

Y1<q<Y2

1

q(log q)r+1

∑
Y1<p<q

1

p
(log log q − log log p)s (log p)r+1

=
∑

Y1<q<Y2

1

q(log q)r+1
· Zq,(7.8)

say. In order to evaluate Zq, we will make use of the prime number theorem with a “good
error term”, namely in the form

(7.9) π(x) = li(x) +R(x), with |R(x)| ≤ x exp{−
√

log x} provided x is sufficiently large

(see for instance pages 61-62 in the book of De Koninck and Doyon [1]).
We write

Zq =

∫ q

Y1

(log u)r+1

u
(log log q − log log u)s d π(u)

=

∫ q

Y1

(log u)r+1

u
(log log q − log log u)s d li(u)

+

∫ q

Y1

(log u)r+1

u
(log log q − log log u)s dR(u)

=

∫ q

Y1

H(u) d li(u) +

∫ q

Y1

H(u) dR(u)

= Iq + Eq,(7.10)

say. We will now evaluate Iq and Eq separately. We start by bounding Eq using (7.9). More
precisely, we will prove that

(7.11) Eq � (log log q)s logr+3/2 Y1 exp{−
√

log Y1}.

In order to prove (7.11), we first use partial integration to write Eq as

(7.12) Eq = H(q)R(q)−H(Y1)R(Y1)−
∫ q

Y1

R(u)H ′(u) du = J1(q) + J2(q),

say.
On the one hand, using (7.9) and since H(q) = 0, we have that

(7.13) J1(q) = H(Y1)R(Y1)� logr+1 Y1

Y1

(log log q)s · Y1 exp{−
√

log Y1} � (log log q)s,

provided Y1 = Y1(x) is large enough.
On the other hand, regarding the function H(u) defined implicity in (7.10), it is straigth-

forward that

H ′(u) =
(r + 1)(log u)r − (log u)r+1

u2
(log log q − log log u)s

+
(log u)r+1

u
s(log log q − log log u)s−1 ·

(
− 1

u log u

)
18



� (log u)r+1

u2
(log log q)s.(7.14)

Combining estimates (7.9) and (7.14), and then using the change of variables v = log u and
t =
√
v in the coming integrals, we obtain

J2(q) � (log log q)s
∫ q

Y1

(log u)r+1

u2
· ue−

√
log u du

= (log log q)s
∫ log q

log Y1

vr+1e−
√
v dv

= 2(log log q)s
∫ √log q

√
log Y1

t
r+3

2 e−t dt

< 4(log log q)s
(√

log Y1

) r+3
2
e−
√

log Y1 ,(7.15)

where, in order to obtain the last inequality, we made use of Lemma 7 after having observed
that the hypothesis ((r+ 3)/2)/Y1 < 1/2 is indeed satisfied, provided Y1 is sufficiently large.

Hence, combining estimates (7.13) and (7.15) in (7.12), our claim (7.11) follows immedi-
ately.

Now, integrating and using the change of variables v = log u and thereafter t = log v, we
get that

Iq =

∫ q

Y1

(log u)r+1

u log u
(log log q − log log u)s du

=

∫ log q

log Y1

vr(log log q − log v)sdv

=

∫ log log q

log log Y1

(log log q − t)se(r+1)t dt

=
s!

(r + 1)s+1
(log q)r+1 +O

(
(log Y1)r+1(log log q)s

)
,(7.16)

where we used Lemma 8 with A = log log Y1 and B = log log q.
Combining estimates (7.16) and (7.11) in (7.10), we get that

(7.17) Zq =
s!

(r + 1)s+1
(log q)r+1 +O

(
(log Y1)r+1(log log q)s

)
.

Using (7.17) in (7.8), we obtain that, as x→∞,

Φ(Y1, Y2) = (1 + o(1))
∑

Y1<q<Y2

s!

(r + 1)s+1
(log q)r+1 · 1

q(log q)r+1

= (1 + o(1))
s!

(r + 1)s+1
log log x.(7.18)
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Finally, using (7.18) and (7.7) in (7.1), we obtain that∑
n≤x

Uk1,...,kr(`0(n)) = (1 + o(1))
s!

(r + 1)s+1k1! · · · kr!
x log log x (x→∞),

thereby completing the proof of (3.5).
In order to prove (3.6), it is clear that one only needs to prove

(7.19)
∑
n≤x

Uk1,...,kr(`0(n))2 = (1 + o(1))x (C(k1, . . . , kr) (log log x))2 (x→∞).

To estimate the left-hand side of (7.19), we need to count the number of those

(7.20) p1 < q1, p2 < q2, R
(1)
1 , . . . , R(1)

r , R
(2)
1 , . . . , R(2)

r

satisfying the three conditions

(i) pjqj | `0(n), (`0(n), Q(pj, qj)) = 1 for j = 1, 2,

(ii) ω(R
(j)
h ) = kh (h = 1, . . . , r) for j = 1, 2,

(iii) R
(j)
h | `h(n) (h = 1, . . . , r) for j = 1, 2.

Then, for each n ≤ x, we need to count those numbers in (7.20) which satisfy conditions (i),
(ii) and (iii). This can be done in three steps, namely by showing that

1. The contribution of those numbers in (7.20) also satisfying min(p1, q1) < Y1 or min(p2, q2) >
Y2 is o(x(log log x)2) as x→∞.

2. The contribution of those numbers in (7.20) for which the intervals [p1, q1] and [p2, q2]
are not disjoint is o(x(log log x)2) as x→∞.

3. Finally, the number of those n ≤ x with corresponding numbers pi, qi, R
(i)
1 , . . . , R

(i)
r ,

i = 1, 2, satisfying properties (i), (ii) and (iii) is equal to

(1 + o(1))

(
1

x
Σ∗p1,q1

)(
1

x
Σ∗p2,q2

)
(x→∞),

where in the sum Σ∗p1,q1
, we sum over those pj, qj, R

(j)
h with j = 1 and h = 1, . . . , r

satisfying conditions (i), (ii) and (iii), whereas in the sum Σ∗p2,q2
, we do the same but

this time with j = 2.

From steps 1, 2 and 3, we may then conclude that (7.19) holds, from which formula (3.6)
follows, thus completing the proof of Theorem 3.

The proof of Theorem 4 is very similar to that of Theorem 3. The only difference is
that, not only do we use standard sieve technique, but we also make use of the Bombieri-
Vinogradov theorem (Theorem B). We only give the highlights of the proof. We start as we
did in (7.1) but this time for shifted primes, namely by writing

(7.21)
∑
P≤x

Uk1,...,kr(`0(P + 1)) =
∑
p<q

W ∗(x; p, q),
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where W ∗(x; p, q) stands for the number of those primes P ≤ x such that

pq | `0(P + 1),

(
`0(P + 1)

pq
,Q(p, q)

)
= 1

and for which there exist Rj | Q(p, q), ω(Rj) = kj and

(
`j(P + 1),

Q(p, q)

Rj

)
= 1 for j =

1, . . . , r. We first observe that
(7.22)∑

p<q
p<Y1

W ∗(x; p, q) = o(x log log x) and
∑
p<q
q>Y2

W ∗(x; p, q) = o(x log log x) (x→∞).

We then proceed as in the proof of Theorem 3 and obtain that

(7.23)
∑
p<q

W ∗(x; p, q) = (1 + o(1))
li(x)

φ(pq)R1 · · ·Rr

∏
p<π<q

(
1− κ(π)

π − 1

)
+ Ep,q,

where the error term Ep,q is such that

(7.24) Ep,q �
∑

δ|Q(p,q)
ω(δ)≤h

K(x | pqδ),

where as previously, we chose h = blog log log xc. Using Theorem B, it follows from (7.24)
that, for any given A > 1,

(7.25)
∑

Y1<p<q<Y2

Ep,q �
x

logA x
.

Gathering estimates (7.22), (7.23) and (7.25) in (7.21), estimate (3.7) follows, from which
(3.8) is an immediate consequence. This completes the proof of Theorem 4.

8 The proof of Theorem 5

Let F be the set defined in Section 3, before the statement of Theorem 5.
Now, consider the subset F∗ of F made up of those prime k + 1-tuples (p0, p1, . . . , pk)

with the additional condition p0, p1, . . . , pk ∈ (Y1, Y2).
It is clear that

(8.1) S1(x) =
∑

(p0,...,pk)∈F

#

{
m ≤ x

p0 · · · pk
:

(
m,

Q(p0, pk)

p1 · · · pk−1

)
= 1

}
+ o(x log log x),

where the error term accounts for the contribution of those k + 1-tuples (p0, p1, . . . , pk) ∈
F \ F∗, that is, those k + 1-tuples (p0, p1, . . . , pk) ∈ F for which p0 < Y1 or pk > Y2.

Given a fixed element (p0, p1, . . . , pk) ∈ F , using a standard sieve technique, one can
establish that, as x→∞,

#

{
m ≤ x

p0 · · · pk
:

(
m,

Q(p0, pk)

p1 · · · pk−1

)
= 1

}
= (1 + o(1))

x

p0 · · · pk

∏
π|Q(p0,pk)

π 6=p1,...,pk−1

(
1− 1

π

)
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= (1 + o(1))
x

p0 · · · pk
log p0

log pk
.(8.2)

On the one hand,∑
(p0,...,pk)∈F

1

p0 · · · pk
log p0

log pk
=

∑
p1,...,pk

′ 1

p1 · · · pk log pk

∑
p0∈(p

1−δ0
1 ,p1)

log p0

p0

= δ0

∑
p1,...,pk

′ log p1

p1 · · · pk log pk

(
1 +O

(
1

log p1

))
,(8.3)

where the dash on the above sums indicates that the primes p1, . . . , pk are the last k coordi-
nates of an element (p0, p1, . . . , pk) ∈ F and where we used Lemma 1 to obtain that∑

p0∈(p
1−δ0
1 ,p1)

log p0

p0

= log p1 − log p1−δ0
1 +O

(
1

log p1

)
= δ0 log p1 +O

(
1

log p1

)
.

Repeating k− 2 times the reasoning which led to (8.3), we obtain from (8.1), (8.2) and (8.3)
that, as x→∞,

S1(x) =
∑

(p0,...,pk)∈F

1

p0 · · · pk
log p0

log pk
= (1 + o(1))δ0 · · · δk−1

∑
Y1<pk<Y2

log pk
pk log pk

= (H + o(1)) log log x,(8.4)

thereby completing the proof of (3.9).

To prove (3.10), we first observe that Vδ0,...,δk−1
(n)2 is equal to the number of prime

k + 1-tuples (p0, . . . , pk) and (q0, . . . , qk) that belong to F and satisfy the conditions

p0 · · · pk | n, q0 · · · qk | n,
(

n

p0 · · · pk
, Q(p0, pk)

)
= 1,

(
n

q0 · · · qk
, Q(q0, qk)

)
= 1.

As we sum over n ≤ x, two possibilities may occur regarding the prime k + 1-tuples
(p0, . . . , pk) and (q0, . . . , qk):

(i) p0, . . . , pk, q0, . . . , qk are disjoint primes,

(ii) (p0, . . . , pk) ∩ (q0, . . . , qk) 6= ∅.

In case (i), the contribution of these k+1-tuples to the sum S2(x) is equal to
∑
n≤x

Vδ0,...,δk−1
(n)

which, we know from (3.9) is O(x log log x).
In case (ii), if p0 = q0, then clearly pj = qj for each j = 1, . . . , k, which brings us back to

case (i). We can therefore assume that p0 6= q0, say with p0 < q0 (the case when p0 > q0 can
be handled in a similar manner). Since νpj(n) = pj+1 for j = 0, . . . , k−1, the only possibility
is that pk = q0, in which case the contribution to the sum S2(x) is

�
∑

(p0,...,pk),(q0,...,qk)∈F∗
(p0,...,pk)∩(q0,...,qk)6=∅

x

p0 . . . pkq1 · · · qk
log p0

log qk
� x log log x.
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The contribution to S2(x) of the remaining cases is therefore

(1 + o(1))x
∑

(p0,...,pk),(q0,...,qk)∈F∗
(p0,...,pk)∩(q0,...,qk)6=∅

log p0

p0 · · · pk log pk
· log q0

q0 · · · qk log qk

= (1 + o(1))x

 ∑
(p0,...,pk)∈F∗

log p0

p0 · · · pk log pk


2

+ o(x(log log x)2),(8.5)

The last sum in (8.5) is precisely the sum we estimated in (8.4), allowing us to conclude that

S2(x) = (1 + o(1))H2x(log log x)2 (x→∞),

thus proving (3.10). Finally, (3.11) follows as a consequence of (3.10).

9 The proof of Theorem 6

We follow essentially the same approach as the one used in Theorem 5. For this reason, we
will only provide a sketch of the proof.

We first fix an element (p0, . . . , pk) ∈ F∗. Then, using standard sieve methods, we obtain
that

#

{
P ≤ x : P + 1 ≡ 0 (mod p0 · · · pk),

(
P + 1

p0 · · · pk
,
Q(p0, pk)

p1 · · · pk−1

)
= 1

}
=

li(x)

(p0 − 1) · · · (pk − 1)

∏
π|Q(p0,pk)

π 6=p1,...,pk−1

(
1− 1

π − 1

)(
1 +O

(
1

log p1

))
+O(Ep0,...,pk),(9.1)

where for the error term, we have

Ep0,...,pk =
∑

δ|Q(p0,pk)

ω(δ)≤h

K(x | δp0 · · · pk),

where as previously, we chose h = blog log log xc.
Adding those error terms for each (p0, . . . , pk) ∈ F∗, we get, using Theorem B,∑

(p0,...,pk)∈F∗
Ep0,...,pk ≤

∑
(p0,...,pk)∈F∗

K(x | m)#{m = δp0 · · · pk}

≤
∑

(p0,...,pk)∈F∗
K(x | m)ω(m)k+1

<
∑

(p0,...,pk)∈F∗
K(x | m)(log x)k+1

≤ (log x)k+1 x

logA x
� x

log2 x
,(9.2)
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provided we choose A sufficiently large. Now proceeding as in the proof of Theorem 2, we
easily obtain that summing the main term on the right-hand side of (9.1) over all those k+1-
tuples (p0, . . . , pk) ∈ F∗, we obtain, as x→∞, the main expression (1+o(1))Hli(x) log log x.
Gathering this result with (9.1) snd (9.2), formula (3.12) follows.

We now move to prove formula (3.13). For this, first let (p0, . . . , pk) and (q0, . . . , qk) be
two k + 1-tuples in F∗. Our goal is to count the number N(x) of those primes p ≤ x for
which p + 1 ≡ 0 (mod GCD(p0, . . . , pk, q0, . . . , qk)). The contribution to N(x) of the cases
when (p0, . . . , pk)∩(q0, . . . , qk) 6= ∅ is clearly o(li(x)(log log x)2) as x→∞. For the remaining
cases, we either have pk < q0 or qk < p0. Thus, given two fixed k + 1-tuples (p0, . . . , pk) and
(q0, . . . , qk) with pk < q0, we need to estimate

H(x) := #

{
P ≤ x : P + 1 ≡ 0 (mod p0 · · · pkq0 · · · qk),

(
P + 1

p0 · · · pkq0 · · · qk
, Q(p0, pk)Q(q0, qk)

)
= 1

}
.

Using the prime number theorem for arithmetic progressions, we obtain that, as x→∞,

H(x) = (1 + o(1))
li(x)

(p0 − 1) · · · (pk − 1)(q0 − 1) · · · (qk − 1)

×
∏

π|Q(p0,pk)

π-p1···pk−1

(
1− 1

π − 1

) ∏
π|Q(q0,qk)

π-q1···qk−1

(
1− 1

π − 1

)
+Ep0,...,pk,q0,...,qk ,(9.3)

where the last term accounts for the error term. Proceeding as in the proof of Theorem 4,
we find that

(9.4) Ep0,...,pk,q0,...,qk =
∑

δ1|Q(p0,pk), δ2|Q(q0,qk)

ω(δ1)≤h, ω(δ2)≤h

K(x | p0 · · · pkq0 · · · qk).

As before, using Theorem B, we easily establish from (9.4) that, for any large number A,

(9.5)
∑

(p0,...,pk),(q0,...,qk)∈F∗
Ep0,...,pk,q0,...,qk �

x

logA x
.

Finally, if H̃(x) stands for the main term on the right-hand side of (9.3), we find that

(9.6)
∑

(p0,...,pk),(q0,...,qk)∈F∗
H̃(x) = (H + o(1))li(x)(log log x)2.

Gathering estimates (9.3), (9.5) and (9.6), we obtain (3.13), from which as before (3.14)
follows immediately.
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Dép. math. et statistique Computer Algebra Department
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