Almost-additive and almost-multiplicative functions with regularity properties

By Jean-Marie De Koninck, Imre Kátai and Bui Minh Phong

Dedicated to Professor M. V. Subbarao on the occasion of the centenary of his birth

Abstract

We introduce the concepts of almost-additive and almost-multiplicative functions. We then prove some results concerning such functions which satisfy certain regularity conditions.

1. Introduction

Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{R}, \mathbb{C}$ stand for the set of prime numbers, positive integers, real numbers and complex numbers, respectively.

In 1985, M. V. Subbarao [10] introduced the concept of weakly multiplicative arithmetic function (later renamed quasi-multiplicative) as those functions f for which

$$
f(n p)=f(n) f(p)
$$

for every $p \in \mathcal{P}$ and $n \in \mathbb{N}$ coprime to p.
Similarly, g is said to be quasi-additive if

$$
g(n p)=g(n)+g(p)
$$

for every $p \in \mathcal{P}$ and $n \in \mathbb{N}$ coprime to p.

[^0]Clearly, multiplicative (resp. additive) functions are quasi-multiplicative (resp. quasi-additive) functions.

Many interesting papers have been published on this topic, in particular those of J. Fabrykowski and M. V. Subbarao [2], J. Fehér and B. M. Phong [3], as well as B. M. Phong [9].

2. Some known results

The following is an old result proved independently by I. Kátai [4] and E. Wirsing [12].

Proposition 1. Let f be an additive function satisfying

$$
\frac{1}{x} \sum_{n \leq x}|f(n+1)-f(n)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

Then there exists a constant c such that $f(n)=c \log n$ for all positive integers n.
In 2000, I. Kátai and M. V. Subbarao [5] proved the following four results regarding wider classes of arithmetical functions.

Theorem A. If a quasi-additive function f is monotonic, then it is a constant multiple of $\log n$.

Theorem B. If f is a quasi-additive function and

$$
\frac{1}{x} \sum_{n \leq x}|f(n+1)-f(n)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

then there exists a constant C such that $f(n)=C \log n$.
Theorem C. If g is a quasi-multiplicative function, $|g(n)|=1$ and

$$
\Delta g(n):=g(n+1)-g(n) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

then $g(n)=n^{i \tau}$ for some $\tau \in \mathbb{R}$.
Theorem D. If g is a quasi-multiplicative function, $|g(n)|=1$ and

$$
\frac{1}{x} \sum_{n \leq x}|g(n+1)-g(n)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

then g is a completely multiplicative function.
Observe that Theorem C and Theorem D also hold for multiplicative functions (see [13], [14] and [8]).

3. Almost-additive and almost-multiplicative functions

Let \mathcal{B} be a subset of primes for which

$$
\sum_{p \in \mathcal{B}} \frac{1}{p}<\infty
$$

and let \mathcal{B}^{*} be the multiplicative semigroup generated by \mathcal{B}. Moreover, let \mathcal{M} be the set of squarefree numbers coprime to \mathcal{B}^{*}. It is clear that every integer n can be uniquely written in the form $n=K m,(K, m)=1$, where m is the largest divisor of n that belongs to \mathcal{M} and for which $(n / m, m)=1$.

Definition. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ 7. We say that f is almost-additive if for every $p \in \mathcal{P}$ and $n \in \mathbb{N}$ with $(p, n)=1$ and $(p, \mathcal{B})=1$, we have

$$
f(n p)=f(n)+f(p)
$$

Definition. Let $g: \mathbb{N} \rightarrow \mathbb{C}$. We say that g is almost-multiplicative if for every $p \in \mathcal{P}$ and $n \in \mathbb{N}$ with $(p, n)=1$ and $(p, \mathcal{B})=1$, we have

$$
g(n p)=g(n) g(p)
$$

Our purpose in this paper is to generalize Theorems A-D of I. Kátai and M. V. Subbarao [5] by proving the following results.

Theorem 1. If some given almost-additive function f is monotonic, then $f=C \log n$ for some $C \in \mathbb{R}$.

Theorem 2. If f is an almost-additive function and

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x}|f(n+1)-f(n)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{1}
\end{equation*}
$$

then $f=C \log n$ for some $C \in \mathbb{R}$.
Theorem 3. If g is an almost-multiplicative function, $|g(n)|=1$ and

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x}|g(n+1)-g(n)| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

then $g(n)=n^{i \tau}$ for some $\tau \in \mathbb{R}$.

Corollary 1. If g is an almost-multiplicative function, $|g(n)|=1$ and

$$
\Delta g(n):=g(n+1)-g(n) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

then $g(n)=n^{i \tau}$ for some $\tau \in \mathbb{R}$.

4. Lemmas

Lemma 1. (P. Erdős) Assume that f is additive and that there are positive constants c_{1}, c_{2} and a sequence $x_{\nu} \rightarrow \infty(\nu \rightarrow \infty)$, such that for all ν one can find suitable integers $1 \leq a_{1} \leq \cdots \leq a_{t} \leq x_{\nu}$ such that $t>c_{1} x_{\nu}$ and

$$
\left|f\left(a_{j}\right)-f\left(a_{k}\right)\right| \leq c_{2}
$$

for every $j, k \leq t$. Then f is finitely distributed, i.e. $f(n)=c \log n+t(n)$, where

$$
\sum_{p} \frac{\min \left(1, t^{2}(p)\right)}{p}<\infty
$$

Proof. Thsi result is Lemma V in the 1946 paper of P. Erdős [1].
Lemma 2. Let h be an additive function defined on \mathcal{M} and let \mathcal{R}_{0} be a subset of primes for which

$$
\sum_{p \in \mathcal{R}_{0}} \frac{1}{p}<\infty
$$

Moreover, let $\mathcal{M}_{\mathcal{R}_{0}}:=\left\{m \in \mathcal{M}:\left(m, \mathcal{R}_{0}\right)=1\right\}$ and assume that $1 \leq Y_{0}, x \geq e^{Y_{0}}$. Finally, letting $p(m)$ stand for the smallest prime factor of m, set

$$
S\left(x \mid Y_{0}\right):=\sum_{\substack{m \leq x \\ m \in \mathcal{M}_{\mathcal{R}_{0}}, p(m)>Y_{0}}} 1
$$

Then

$$
S\left(x \mid Y_{0}\right)=\frac{c_{0}}{\log Y_{0}}(1+o(1)) x \quad(x \rightarrow \infty)
$$

where c_{0} is a positive constant which may depend on \mathcal{B} and \mathcal{R}_{0}.
Proof. The proof uses standard techniques from analytic number theory, and we therefore omit it.

Lemma 3. (Turán-Kubilius) Let h and \mathcal{R}_{0} be as in Lemma 2. Further let

$$
a(x)=\sum_{\substack{Y_{0}<p \leq x \\ p \in \mathcal{M} \mathcal{R}_{0}}} \frac{h(p)}{p}, \quad b_{1}^{2}(x)=\sum_{\substack{Y_{0}<p \leq x \\ p \in \mathcal{M}_{0}}} \frac{h^{2}(p)}{p}
$$

and

$$
b_{2}^{2}(x)=\sum_{x^{\frac{1}{4}} \leq p<x} \frac{h^{2}(p)}{p}
$$

and assume that $|h(p)| \leq 1$ if $p \in \mathcal{M}_{\mathcal{R}_{0}}$. Then

$$
\sum_{\substack{m \leq x \\ m \in \mathcal{M}_{\mathcal{R}_{0}}, p(m)>Y_{0}}}(h(m)-a(x))^{2} \leq c_{1} S\left(x \mid Y_{0}\right) b_{1}^{2}(x)+c_{2} x b_{2}^{2}(x),
$$

where c_{1} and c_{2} are absolute constants.
Proof. This a generalisation of the well-known Turán-Kubilius inequality. The proof is on the same lines as the standard proof of this famous inequality, which can be found for instance in the book of G. Tenenbaum [11].

5. Proof of Theorem 1

Let $F(m)=f(m)$ if $m \in \mathcal{M}$, and $F\left(p^{\alpha}\right)=0$ if $p \in \mathcal{B}$ and $\alpha \geq 1$, as well as for every p if $\alpha \geq 2$. Then F is an additive function which satisfies Lemma 1. Indeed, let a be a positive integer coprime with \mathcal{B} and let m be a positive integer coprime with $a \mathcal{B}$. Further let I_{m} be the set of positive integers coprime to \mathcal{B} and belonging to the interval $[m, a m]$. Then $\# I_{m}>c m$ for some positive constant c. Now it follows from the monotonicity of the function F on I_{m} that $F(n) \in[F(m), F(a m)]$ for each $n \in I_{m}$, thereby establishing that the conditions of Lemma 1 are satisfied.

Hence, we have

$$
F(n)=c \log n+t(n)
$$

where

$$
\begin{equation*}
\sum_{p} \frac{\min \left(1, t^{2}(p)\right)}{p}<\infty \tag{3}
\end{equation*}
$$

Let $\mathcal{R}=\{p \in \mathcal{P}:|t(p)| \geq 1\}$. Then, from (3) we have

$$
\sum_{p \in \mathcal{R}} \frac{1}{p}<\infty .
$$

Let us now consider $S\left(x \mid Y_{0}\right)$ with \mathcal{R} instead of \mathcal{R}_{0}.
Let N and M be arbitrary positive integers and let $\epsilon_{1}, \epsilon_{2}, \delta_{1}, \delta_{2}$ be arbitrary positive numbers. Let us choose $Y_{0}>\max (N, M)$ and set

$$
\mathcal{L}_{1}:=\left(\frac{x(1-\delta)}{N}, \frac{x}{N}\right) \quad \text { and } \quad \mathcal{L}_{2}:=\left(\frac{x(1+\delta)}{M}, \frac{x}{M}\right)
$$

Also, let J be the set of those integers $m \in \mathcal{M}_{\mathcal{R}}$ with $p(m)>Y_{0}$ and $m \leq x$, and set

$$
\tilde{a}(x):=\sum_{\substack{Y_{0}<p \leq x \\ p \notin \mathcal{R}}} \frac{t(p)}{p} .
$$

We then let ν run over $\mathcal{L}_{1} \cap J$ and μ run over $\mathcal{L}_{2} \cap J$. Assuming that x is large, it follows from Lemmas 2 and 3 that with the possible exception of at most $\epsilon S\left(\frac{x}{N}, Y_{0}\right)$ integers $\nu \in \mathcal{L}_{1} \cap J$, and at most $\epsilon S\left(\frac{x}{M}, Y_{0}\right)$ integers $\mu \in \mathcal{L}_{2} \cap J$, we have

$$
t(\nu)-\tilde{a}\left(\frac{x}{N}\right) \in[-\epsilon, \epsilon] \quad \text { and } \quad t(\mu)-\tilde{a}\left(\frac{x}{M}\right) \in[-\epsilon, \epsilon]
$$

since $\sum_{\substack{Y_{0}<p \leq x \\ p \notin \mathcal{R}}} \frac{t^{2}(p)}{p} \rightarrow 0$ as $x \rightarrow \infty$.
Here,

$$
\begin{equation*}
\tilde{a}\left(\frac{x}{N}\right)-\tilde{a}\left(\frac{x}{M}\right) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{4}
\end{equation*}
$$

Indeed, using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left|\tilde{a}\left(\frac{x}{N}\right)-\tilde{a}\left(\frac{x}{M}\right)\right| & =\left|\sum_{\frac{x}{N}<p \leq \frac{x}{M}}^{p \notin \mathcal{R}}\right| \\
& \frac{t(p)}{p}\left|=\left|\sum_{\substack{\frac{x}{N}<p \leq \frac{x}{M} \\
p \notin \mathcal{R}}} \frac{1}{\sqrt{p}} \frac{t(p)}{\sqrt{p}}\right|\right. \\
& \leq\left(\sum_{\substack{x \\
N<p \leq \frac{x}{M} \\
p \notin \mathcal{R}}} \frac{1}{p}\right)^{1 / 2} \cdot\left(\sum_{\substack{x \\
N<p \leq \frac{x}{N} \\
p \notin \mathcal{R}}} \frac{t^{2}(p)}{p}\right)^{1 / 2} \rightarrow 0 \quad \text { as } x \rightarrow \infty,
\end{aligned}
$$

thereby justifying why (4) is true.
We can therefore find a pair $\left(\nu^{*}, \mu^{*}\right) \in \mathcal{L}_{1} \times \mathcal{L}_{2}$ for which

$$
t\left(\nu^{*}\right)-t\left(\mu^{*}\right) \in[-2 \epsilon, 2 \epsilon]
$$

Since $\nu^{*} N<\mu^{*} M$, we have $f\left(\nu^{*} N\right)<f\left(\mu^{*} M\right)$, and so $f(N)+f\left(\nu^{*}\right)<f(M)+$ $f\left(\mu^{*}\right)$, that is,

$$
\begin{aligned}
& f(N)-f(M)<f\left(\mu^{*}\right)-f\left(\nu^{*}\right)=F\left(\mu^{*}\right)-F\left(\nu^{*}\right)= \\
& =c \log \left(\frac{\mu^{*}}{\nu^{*}}\right)+t\left(\mu^{*}\right)-t\left(\nu^{*}\right) \leq c \log \left(\frac{x(1+\delta) N}{M x(1-\delta)}\right)+2 \epsilon= \\
& =c \log \left(\frac{N}{M}\right)+c \log \left(\frac{1+\delta}{1-\delta}\right)+2 \epsilon
\end{aligned}
$$

Since ϵ and δ can be chosen arbitrarily small, it follows that $f(N)-f(M)<$ $c \log \left(\frac{N}{M}\right)$. Interchanging the values N and M, the inequality $f(M)-f(N)<$ $c \log \left(\frac{M}{N}\right)$ holds as well, implying that

$$
f(N)-f(M)=c \log \left(\frac{M}{N}\right)
$$

and therefore that $f(N)=c \log N$, thus completing the proof of Theorem 1 .

6. Proof of Theorem 2

Since Theorem 2 is true for additive functions, it is enough to prove that (1) implies that f is additive. The proof is very similar to the proof of Theorem 2 in [5].

Let $K=K_{1} K_{2}, 2 \mid K_{2},\left(K_{1}, K_{2}\right)=1$. Let \mathcal{H} be the set of those $m \in \mathcal{M}$ for which
(1) $(m, K)=1$,
(2) $\left(m K_{2}+1, K_{1}\right)=1, m K_{2}+1$ is squarefree and belongs to \mathcal{M}.

Let us first prove that there exists a positive constant C_{0} such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{m \leq x \\ m \in \mathcal{H}}} 1=C_{0} \tag{5}
\end{equation*}
$$

To do so, first consider the arithmetic function

$$
u(n):= \begin{cases}1 & \text { if } n \in \mathcal{M} \text { with }(n, K)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Since $u(n)$ is a multiplicative function, we have that

$$
\begin{aligned}
h(s) & :=\sum_{n=1}^{\infty} \frac{u(n)}{n^{s}}=\prod_{p \nmid K \mathcal{B}}\left(1+\frac{1}{p^{s}}\right) \\
& =\zeta(s) \cdot \prod_{p}\left(1-\frac{1}{p^{s}}\right) \cdot \prod_{p \nmid K \mathcal{B}}\left(1+\frac{1}{p^{s}}\right) \\
& =\zeta(s) \cdot \prod_{p}\left(1-\frac{1}{p^{s}}\right) \cdot \frac{\prod_{p}\left(1+\frac{1}{p^{s}}\right)}{\prod_{p \mid K \mathcal{B}}\left(1+\frac{1}{p^{s}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \zeta(s) \cdot \prod_{p}\left(1-\frac{1}{p^{2 s}}\right) \frac{1}{\prod_{p \mid K \mathcal{B}}\left(1+\frac{1}{p^{s}}\right)} \\
& =\zeta(s) \prod_{p \mid K \mathcal{B}}\left(1-\frac{1}{p^{s}}\right) \prod_{p \nmid K \mathcal{B}}\left(1-\frac{1}{p^{2 s}}\right) \\
& =\zeta(s) H(s)
\end{aligned}
$$

say. Let $U(n)$ be defined implicitly by the relation

$$
H(s)=\sum_{n=1}^{\infty} \frac{U(n)}{n^{s}}
$$

Observe that $U(n)$ is a multiplicative function defined at prime powers p^{α} as follows:

- If $p \mid K \mathcal{B}$, then $U(p)=-1$ and $U\left(p^{\alpha}\right)=0$ for each $\alpha \geq 2$.
- If $p \nmid K \mathcal{B}$, then $U\left(p^{2}\right)=-1$ and $U\left(p^{\alpha}\right)=0$ if $\alpha \neq 2$.

On the other hand, it easily follows from the definition of \mathcal{B} that

$$
\begin{equation*}
\sum_{d=1}^{\infty} \frac{|U(d)|}{d}<\infty \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
S(x) & :=\sum_{\substack{n \leq x \\
n \in \mathcal{H}}} 1=\sum_{n \leq x} u(n) u\left(K_{2} n+1\right) \\
& =\sum_{(d, \delta)=1} U(d) U(\delta) \sum_{\substack{n \leq x \\
d|n, \delta| K_{2} n+1}} 1 . \tag{7}
\end{align*}
$$

For fixed d, δ, assuming that $\left(\delta, K_{2}\right)=1$, we have that

$$
\sum_{\substack{n \leq x \\ d|n, \delta| K_{2} n+1}} 1=\frac{x}{d \delta}+o(x) \quad(x \rightarrow \infty)
$$

Using this in (7) and taking into account (6), we may conclude that

$$
\lim _{x \rightarrow \infty} \frac{S(x)}{x}=C_{0}
$$

where

$$
C_{0}=\prod_{p \mid K_{2}}\left(1-\frac{1}{p}\right) \prod_{\substack{p \nmid \mathcal{K} \\ p \nmid K_{2}}}\left(1-\frac{2}{p}\right) \prod_{p \nmid K \mathcal{B}}\left(1-\frac{1}{p^{2}}\right),
$$

thus completing the proof of (5).
Now, given $m \in \mathcal{H}$, we have that

$$
\begin{aligned}
& f\left(K m+K_{1}\right)-f(K m)=f\left(K_{1}\right)+f\left(K_{2} m+1\right)-f(K)-f(m) \\
& =\left[f\left(K_{1}\right)+f\left(K_{2}\right)-f(K)\right]+f\left(K_{2} m+1\right)-f\left(K_{2} m\right),
\end{aligned}
$$

so that

$$
\left|f\left(K_{1}\right)+f\left(K_{2}\right)-f(K)\right| \leq\left|f\left(K m+K_{1}\right)-f(K m)\right|+\left|f\left(K_{2} m+1\right)-f\left(K_{2} m\right)\right|
$$

Letting

$$
\delta_{K}(n)=\max _{j=1, \ldots, K}|f(n+j)-f(n)|,
$$

from the assumption (1) of Theorem 2, we find that

$$
\frac{1}{x} \sum_{n \leq x} \delta_{K}(n) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty
$$

Therefore

$$
\left|f\left(K_{1}\right)+f\left(K_{2}\right)-f(K)\right| \cdot \sum_{\substack{m \leq x \\ m \in \mathcal{H}}} 1=o(x) \quad(x \rightarrow \infty)
$$

Now, in light of (5), we obtain that

$$
f\left(K_{1}\right)+f\left(K_{2}\right)=f(K)
$$

from which it follows that

$$
f\left(2^{\alpha} m\right)+f(n)=f\left(2^{\alpha} m n\right)
$$

if $(n, m)=1$. Consequently,

$$
f(n m)=f(n)+f(m)
$$

if $(n, m)=1$, thus establishing that f is an additive function. Theorem 2 then follows from Proposition 1.

7. Proofs of Theorem 3 and Corollary 1

Repeating the argument used in the proof of Theorem 2, we can deduce that if (2) holds, then g is multiplicative, and by a result of J.-L. Mauclaire and L. Murata [8], we can conclude that g is completely multiplicative. According to the famous theorem of O. Klurman [6] and of O. Klurman and A. Mangerel [7], we have that $g(n)=n^{i \tau}$ for some $\tau \in \mathbb{R}$.

Thus, Theorem 3 is true. On the other hand, it is clear that Corollary 1 is an immediate consequence of Theorem 3.

Acknowledgement

The authors wish to thank the referee for pointing out some flaws and making constructive suggestions which greatly improved the final version of this paper.

References

[1] P. Erdős, On the distribution function of additive functions, Annals Math. 47 (1946), 1-20.
[2] J. Fabrykowski and M. V. Subbarao, A class of arithmetic functions satisfying a congruence property, Journal Madras University, Section B 51 (1988), 48-51.
[3] J. Fehér and B. M. Phong, On a problem of Fabrykowski and Subbarao concerning quasi multiplicative functions satisfying a congruence property, Acta Math. Hungar. $\mathbf{8 9}$ (2000), 149-159.
[4] I. KÁtai, On a problem of P. Erdős, J. Number Theory 2 (1970), 1-6.
[5] I. Kátai and M. V. Subbarao, Quasi-additive and quasi-multiplicative functions with regularity properties, Publ. Math. Debrecen 56 (2000), 43-52.
[6] O. Klurman, Correlations of multiplicative functions and applications, Compositio Math. 153 (2017), 1620-1657.
[7] O. Klurman and A. Mangerel, Rigidity theorems for multiplicative functions, Math. Annalen 372 (2018), 651-697.
[8] J.-L. Mauclaire and L. Murata, On the regularity of arithmetic multiplicative functions, l, Proc. Japan Acad. 56 (1980), 438-440.
[9] B. M. Phong, Quasi multiplicative functions with congruence property, Acta Acad. Paedagog Agriensis Sect. Math. (N.S.) 25 (1998), 55-59.
[10] M. V. Subbarao, On some arithmetic functions satisfying a congruence property, Abstracts Amer. Math. Soc. 86, 324.
[11] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge studies in advanced mathematics, Cambridge University Press, 1995.
[12] E. Wirsing, Characterisation of the logarithm as an additive function, Proc. Sympos. Pure Math. 20 (1969), 375-381.
[13] E. Wirsing, Tang Yuansheng and Shao Pintsung, On a conjecture of Kátai for additive functions, J. Number Theory 56 (1996), 391-395.
[14] E. Wirsing and D. Zagier, Multiplicative functions with difference tending to zero, Acta Arith. 100 (2001), 75-78.

DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE
UNIVERSITÉ LAVAL
QUÉBEC, QUÉBEC G1V 0A6
CANADA
E-mail: jmdk@mat.ulaval.ca
URL: http://www.jeanmariedekoninck.mat.ulaval.ca
COMPUTER ALGEBRA DEPARTMENT, FACULTY OF INFORMATICS EÖTVÖS LORÁND UNIVERSITY
H-1117 BUDAPEST, PÁZMANY PÉTER SÉTANY 1/C
HUNGARY
E-mail: katai@inf.elte.hu
COMPUTER ALGEBRA DEPARTMENT, FACULTY OF INFORMATICS
EÖTVÖS LORÁND UNIVERSITY
H-1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C
HUNGARY
E-mail: bui@inf.elte.hu

[^0]: Mathematics Subject Classification: 11N37, 11N64.
 Key words and phrases: Additive function, multiplicative function.
 The work of the first author was supported by a grant from NSERC.

