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Abstract. We introduce the concepts of almost-additive and almost-multiplicative

functions. We then prove some results concerning such functions which satisfy certain

regularity conditions.

1. Introduction

Let, as usual, P, N, R, C stand for the set of prime numbers, positive

integers, real numbers and complex numbers, respectively.

In 1985, M. V. Subbarao [10] introduced the concept of weakly multiplicative

arithmetic function (later renamed quasi-multiplicative) as those functions f for

which

f(np) = f(n)f(p)

for every p ∈ P and n ∈ N coprime to p.

Similarly, g is said to be quasi-additive if

g(np) = g(n) + g(p)

for every p ∈ P and n ∈ N coprime to p.
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Clearly, multiplicative (resp. additive) functions are quasi-multiplicative

(resp. quasi-additive) functions.

Many interesting papers have been published on this topic, in particular those

of J. Fabrykowski and M. V. Subbarao [2], J. Fehér and B. M. Phong [3], as well

as B. M. Phong [9].

2. Some known results

The following is an old result proved independently by I. Kátai [4] and E.

Wirsing [12].

Proposition 1. Let f be an additive function satisfying

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x→∞,

Then there exists a constant c such that f(n) = c log n for all positive integers n.

In 2000, I. Kátai and M. V. Subbarao [5] proved the following four results

regarding wider classes of arithmetical functions.

Theorem A. If a quasi-additive function f is monotonic, then it is a con-

stant multiple of log n.

Theorem B. If f is a quasi-additive function and

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x→∞,

then there exists a constant C such that f(n) = C log n.

Theorem C. If g is a quasi-multiplicative function, |g(n)| = 1 and

∆g(n) := g(n+ 1)− g(n)→ 0 as n→∞,
then g(n) = niτ for some τ ∈ R.

Theorem D. If g is a quasi-multiplicative function, |g(n)| = 1 and

1

x

∑
n≤x

|g(n+ 1)− g(n)| → 0 as x→∞,

then g is a completely multiplicative function.

Observe that Theorem C and Theorem D also hold for multiplicative func-

tions (see [13], [14] and [8]).
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3. Almost-additive and almost-multiplicative functions

Let B be a subset of primes for which∑
p∈B

1

p
<∞

and let B∗ be the multiplicative semigroup generated by B. Moreover, let M be

the set of squarefree numbers coprime to B∗. It is clear that every integer n can

be uniquely written in the form n = Km, (K,m) = 1, where m is the largest

divisor of n that belongs to M and for which (n/m,m) = 1.

Definition. Let f : N → R7. We say that f is almost-additive if for every

p ∈ P and n ∈ N with (p, n) = 1 and (p,B) = 1, we have

f(np) = f(n) + f(p).

Definition. Let g : N → C. We say that g is almost-multiplicative if for

every p ∈ P and n ∈ N with (p, n) = 1 and (p,B) = 1, we have

g(np) = g(n)g(p).

Our purpose in this paper is to generalize Theorems A–D of I. Kátai and M.

V. Subbarao [5] by proving the following results.

Theorem 1. If some given almost-additive function f is monotonic, then

f = C log n for some C ∈ R.

Theorem 2. If f is an almost-additive function and

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x→∞, (1)

then f = C log n for some C ∈ R.

Theorem 3. If g is an almost-multiplicative function, |g(n)| = 1 and

1

x

∑
n≤x

|g(n+ 1)− g(n)| → 0 as x→∞, (2)

then g(n) = niτ for some τ ∈ R.

Corollary 1. If g is an almost-multiplicative function, |g(n)| = 1 and

∆g(n) := g(n+ 1)− g(n)→ 0 as n→∞,
then g(n) = niτ for some τ ∈ R.
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4. Lemmas

Lemma 1. (P. Erdős) Assume that f is additive and that there are positive

constants c1, c2 and a sequence xν → ∞ (ν → ∞), such that for all ν one can

find suitable integers 1 ≤ a1 ≤ · · · ≤ at ≤ xν such that t > c1xν and

|f(aj)− f(ak)| ≤ c2

for every j, k ≤ t. Then f is finitely distributed, i.e. f(n) = c log n+ t(n), where

∑
p

min(1, t2(p))

p
<∞.

Proof. Thsi result is Lemma V in the 1946 paper of P. Erdős [1]. �

Lemma 2. Let h be an additive function defined on M and let R0 be a

subset of primes for which ∑
p∈R0

1

p
<∞.

Moreover, letMR0
:= {m ∈M : (m,R0) = 1} and assume that 1 ≤ Y0, x ≥ eY0 .

Finally, letting p(m) stand for the smallest prime factor of m, set

S(x|Y0) :=
∑
m≤x

m∈MR0
,p(m)>Y0

1.

Then

S(x|Y0) =
c0

log Y0
(1 + o(1))x (x→∞),

where c0 is a positive constant which may depend on B and R0.

Proof. The proof uses standard techniques from analytic number theory,

and we therefore omit it. �

Lemma 3. (Turán-Kubilius) Let h and R0 be as in Lemma 2. Further let

a(x) =
∑

Y0<p≤x
p∈MR0

h(p)

p
, b21(x) =

∑
Y0<p≤x
p∈MR0

h2(p)

p

and

b22(x) =
∑

x
1
4≤p<x

h2(p)

p
,
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and assume that |h(p)| ≤ 1 if p ∈MR0 . Then

∑
m≤x

m∈MR0
,p(m)>Y0

(
h(m)− a(x)

)2
≤ c1S(x|Y0)b21(x) + c2xb

2
2(x),

where c1 and c2 are absolute constants.

Proof. This a generalisation of the well-known Turán-Kubilius inequality.

The proof is on the same lines as the standard proof of this famous inequality,

which can be found for instance in the book of G. Tenenbaum [11]. �

5. Proof of Theorem 1

Let F (m) = f(m) if m ∈ M, and F (pα) = 0 if p ∈ B and α ≥ 1, as well

as for every p if α ≥ 2. Then F is an additive function which satisfies Lemma

1. Indeed, let a be a positive integer coprime with B and let m be a positive

integer coprime with aB. Further let Im be the set of positive integers coprime

to B and belonging to the interval [m, am]. Then #Im > cm for some positive

constant c. Now it follows from the monotonicity of the function F on Im that

F (n) ∈ [F (m), F (am)] for each n ∈ Im, thereby establishing that the conditions

of Lemma 1 are satisfied.

Hence, we have

F (n) = c log n+ t(n)

where ∑
p

min(1, t2(p))

p
<∞. (3)

Let R = {p ∈ P : |t(p)| ≥ 1}. Then, from (3) we have

∑
p∈R

1

p
<∞.

Let us now consider S(x|Y0) with R instead of R0.

Let N and M be arbitrary positive integers and let ε1, ε2, δ1, δ2 be arbitrary

positive numbers. Let us choose Y0 > max(N,M) and set

L1 :=
(x(1− δ)

N
,
x

N

)
and L2 :=

(x(1 + δ)

M
,
x

M

)
.
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Also, let J be the set of those integers m ∈MR with p(m) > Y0 and m ≤ x, and

set

ã(x) :=
∑

Y0<p≤x
p 6∈R

t(p)

p
.

We then let ν run over L1 ∩ J and µ run over L2 ∩ J . Assuming that x is

large, it follows from Lemmas 2 and 3 that with the possible exception of at most

εS( xN , Y0) integers ν ∈ L1 ∩ J , and at most εS( xM , Y0) integers µ ∈ L2 ∩ J , we

have

t(ν)− ã
( x
N

)
∈ [−ε, ε] and t(µ)− ã

( x
M

)
∈ [−ε, ε],

since
∑

Y0<p≤x
p6∈R

t2(p)

p
→ 0 as x→∞.

Here,

ã
( x
N

)
− ã
( x
M

)
→ 0 as x→∞. (4)

Indeed, using the Cauchy-Schwarz inequality, we have

∣∣∣ã( x
N

)
− ã
( x
M

)∣∣∣ =

∣∣∣∣∣∣∣
∑

x
N
<p≤ x

M
p 6∈R

t(p)

p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

x
N
<p≤ x

M
p 6∈R

1
√
p

t(p)
√
p

∣∣∣∣∣∣∣
≤

 ∑
x
N
<p≤ x

M
p 6∈R

1

p


1/2

·

 ∑
x
N
<p≤ x

M
p 6∈R

t2(p)

p


1/2

→ 0 as x→∞,

thereby justifying why (4) is true.

We can therefore find a pair (ν∗, µ∗) ∈ L1 × L2 for which

t(ν∗)− t(µ∗) ∈ [−2ε, 2ε].

Since ν∗N < µ∗M , we have f(ν∗N) < f(µ∗M), and so f(N) + f(ν∗) < f(M) +

f(µ∗), that is,

f(N)− f(M) < f(µ∗)− f(ν∗) = F (µ∗)− F (ν∗) =

= c log
(µ∗
ν∗

)
+ t(µ∗)− t(ν∗) ≤ c log

( x(1 + δ)N

Mx(1− δ)

)
+ 2ε =

= c log
(N
M

)
+ c log

(1 + δ

1− δ

)
+ 2ε.
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Since ε and δ can be chosen arbitrarily small, it follows that f(N) − f(M) <

c log
(
N
M

)
. Interchanging the values N and M , the inequality f(M) − f(N) <

c log
(
M
N

)
holds as well, implying that

f(N)− f(M) = c log
(M
N

)
,

and therefore that f(N) = c logN , thus completing the proof of Theorem 1.

6. Proof of Theorem 2

Since Theorem 2 is true for additive functions, it is enough to prove that (1)

implies that f is additive. The proof is very similar to the proof of Theorem 2 in

[5].

Let K = K1K2, 2|K2, (K1,K2) = 1. Let H be the set of those m ∈ M for

which

(1) (m,K) = 1,

(2) (mK2 + 1,K1) = 1, mK2 + 1 is squarefree and belongs to M.

Let us first prove that there exists a positive constant C0 such that

lim
x→∞

1

x

∑
m≤x
m∈H

1 = C0. (5)

To do so, first consider the arithmetic function

u(n) :=

{
1 if n ∈M with (n,K) = 1,

0 otherwise.

Since u(n) is a multiplicative function, we have that

h(s) :=

∞∑
n=1

u(n)

ns
=
∏
p-KB

(
1 +

1

ps

)

= ζ(s) ·
∏
p

(
1− 1

ps

)
·
∏
p-KB

(
1 +

1

ps

)

= ζ(s) ·
∏
p

(
1− 1

ps

)
·

∏
p

(
1 + 1

ps

)
∏
p|KB

(
1 + 1

ps

)
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= ζ(s) ·
∏
p

(
1− 1

p2s

)
1∏

p|KB

(
1 + 1

ps

)
= ζ(s)

∏
p|KB

(
1− 1

ps

) ∏
p-KB

(
1− 1

p2s

)
= ζ(s)H(s),

say. Let U(n) be defined implicitly by the relation

H(s) =

∞∑
n=1

U(n)

ns
.

Observe that U(n) is a multiplicative function defined at prime powers pα as

follows:

• If p | KB, then U(p) = −1 and U(pα) = 0 for each α ≥ 2.

• If p - KB, then U(p2) = −1 and U(pα) = 0 if α 6= 2.

On the other hand, it easily follows from the definition of B that

∞∑
d=1

|U(d)|
d

<∞. (6)

Moreover,

S(x) :=
∑
n≤x
n∈H

1 =
∑
n≤x

u(n)u(K2n+ 1)

=
∑

(d,δ)=1

U(d)U(δ)
∑
n≤x

d|n, δ|K2n+1

1. (7)

For fixed d, δ, assuming that (δ,K2) = 1, we have that∑
n≤x

d|n, δ|K2n+1

1 =
x

dδ
+ o(x) (x→∞).

Using this in (7) and taking into account (6), we may conclude that

lim
x→∞

S(x)

x
= C0,

where

C0 =
∏
p|K2

(
1− 1

p

) ∏
p|KB
p-K2

(
1− 2

p

) ∏
p-KB

(
1− 1

p2

)
,
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thus completing the proof of (5).

Now, given m ∈ H, we have that

f(Km+K1)− f(Km) = f(K1) + f(K2m+ 1)− f(K)− f(m)

= [f(K1) + f(K2)− f(K)] + f(K2m+ 1)− f(K2m),

so that

|f(K1) + f(K2)− f(K)| ≤ |f(Km+K1)− f(Km)|+ |f(K2m+ 1)− f(K2m)|.

Letting

δK(n) = max
j=1,...,K

|f(n+ j)− f(n)|,

from the assumption (1) of Theorem 2, we find that

1

x

∑
n≤x

δK(n)→ 0 as x→∞.

Therefore

|f(K1) + f(K2)− f(K)| ·
∑
m≤x
m∈H

1 = o(x) (x→∞).

Now, in light of (5), we obtain that

f(K1) + f(K2) = f(K),

from which it follows that

f(2αm) + f(n) = f(2αmn)

if (n,m) = 1. Consequently,

f(nm) = f(n) + f(m)

if (n,m) = 1, thus establishing that f is an additive function. Theorem 2 then

follows from Proposition 1.
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7. Proofs of Theorem 3 and Corollary 1

Repeating the argument used in the proof of Theorem 2, we can deduce that

if (2) holds, then g is multiplicative, and by a result of J.-L. Mauclaire and L.

Murata [8], we can conclude that g is completely multiplicative. According to the

famous theorem of O. Klurman [6] and of O. Klurman and A. Mangerel [7], we

have that g(n) = niτ for some τ ∈ R.

Thus, Theorem 3 is true. On the other hand, it is clear that Corollary 1 is

an immediate consequence of Theorem 3.
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