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A b s t r a c t. We provide a survey of the vast contribution of Aleksandar Ivić to analytic
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1. Introduction

Professor Aleksandar Ivić will be remembered for his vast contribution to the
study of the Riemann zeta-function and for providing a better understanding of the
analytic behaviour of numerous arithmetical functions describing the multiplicative
structure of integers.

I had the privilege of working with Ivić on various problems related to arithmeti-
cal functions. Our research collaboration was very productive, allowing us to write
a book that gathered many of our results and to publish a dozen joint papers on the
fascinating topic of arithmetical functions. In this paper, I will mainly focus on parts
of Ivić’s results on arithmetical functions, some of which were joint work with me.
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I will conclude this paper by briefly mentioning the relevance of Ivić’s tremendous
contribution to the theory of the Riemann zeta-function.

2. On the number of prime divisors of an integer

An arithmetical function f(n), that is, a function f : N→ C, is said to be additive
if f(mn) = f(m) + f(n) for all pairs of positive integers m,n such that (m,n) = 1
(here, (m,n) means GCD(m,n)). The functions

ω(n) :=
∑
p|n

1 and Ω(n) :=
∑
pα‖n

α

(here, pα‖n means that pα divides n, but pα+1 does not), which count, respectively,
the number of distinct prime factors of n and the total number of prime divisors of
n counting their multiplicity, are classical examples of additive functions. Finding
the average value of additive functions is usually simple. For instance, one can easily
establish that ∑

n≤x
ω(n) = x log log x+ C1x+O

(
x

log x

)
, (2.1)

where

C1 = γ +
∑
p

(
log(1− 1

p
) +

1

p

)
(2.2)

(here γ is Euler’s constant). The proof of (2.1) is quite straightforward. Indeed,
letting byc stand for the largest integer ≤ y, we have∑

n≤x
ω(n) =

∑
n≤x

∑
p|n

1 =
∑
p≤x

⌊
x

p

⌋

= x
∑
p≤x

1

p
+
∑
p≤x

(⌊
x

p

⌋
− x

p

)
= x

∑
p≤x

1

p
+O(π(x)), (2.3)

where π(x) stands for the number of primes p ≤ x and where we used the fact
that |byc − y| ≤ 1 for any number y. Now, according to Mertens’ theorem (see for
instance Theorem 10.1 in the book of De Koninck and Doyon [6]),∑

p≤x

1

p
= log log x+ C1 +O

(
1

log x

)
,
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where C1 is defined above in (2.2) as well as the Chebyshev inequality π(x) =
O(x/ log x). Using these two estimates in (2.3), we obtain∑

n≤x
ω(n) = x

(
log log x+ C1 +O

(
1

log x

))
+O

(
x

log x

)
= x log log x+ C1x+O

(
x

log x

)
,

thereby proving our claim (2.1). Finally, combining (2.1) with the easily established
asymptotic formula

∑
n≤x log log n ∼ x log log x (as x → ∞), we may conclude

that the average value of ω(n) is log logn.
Similarly, one can prove that∑

n≤x
Ω(n) = x log log x+ C2x+O

(
x

log x

)
,

where C2 = C1 +
∑
p

1

p(p− 1)
, confirming that the average value of Ω(n) is also

log log n.
The above reasoning can be used to obtain a much more general result. Indeed,

given any additive function f(n) such that f(p) = 1 for all primes p and such that
f(pα)− f(pα−1) = O(1) uniformly for primes p and integers α ≥ 2, one can prove
that there exists a constant D = D(f) such that∑

n≤x
f(n) = x log log x+Dx+O

(
x

log x

)
.

On the other hand, finding an asymptotic estimate for
∑
n≤x

′ 1

f(n)
for some given

additive function f(n) is a totally different challenge. Here the apostrophe on the sum
indicates that the sum runs over those positive integers n ≤ x for which f(n) 6= 0.
For instance, in 1970, using the Turán-Kubilius inequality, Duncan [16] proved that∑

n≤x

′ 1

ω(n)
� x

log log x
, (2.4)

falling short of providing an asymptotic estimate for the sum of the reciprocals of
ω(n). In 1972, I was able to prove [4] that, given any positive integer k, there exist
positive constants a1, . . . , ak such that∑

n≤x

′ 1

ω(n)
= a1

x

log log x
+ · · ·+ ak

x

(log log x)k
+O

(
x

(log log x)k+1

)
. (2.5)
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A few years later, recognizing that a much more accurate and more general estimate
could be obtained, Ivić reached out to me. This first contact marked the beginning of
our collaborative work in number theory. As a starter, we considerably improved and
generalized (2.5) by establishing [8] the following.

Theorem 2.1. Let k ∈ N and let f : N → N ∪ {0} be any additive function
such that f(p) = 1 for all primes p and for which there exists a number B such that
|f(pα)| < B for all prime powers pα. Then, there exist constants b1, b2, . . . , bk such
that∑
n≤x

′ 1

f(n)
= b1xL1(x) + b2x

L2(x)

log x
+ · · ·+ bkx

Lk(x)

logk−1 x
+O

(
x

logk x

)
, (2.6)

where each function Li(x) is a slowly varying function asymptotic to 1/ log log x as
x→∞.

Note that, in general, a function L(x) is said to be slowly varying (or slowly
oscillating) if it is positive, continuous, and for every number c > 0, satisfies

lim
x→∞

L(cx)

L(x)
= 1.

Of course, the set of functions f(n) satisfying (2.6) includes the very simple functions
ω(n) and Ω(n).

Here, we will not prove Theorem 2.1 in its general form. We will only provide
the proof of a particular case, namely the one where f(n) = ω(n), and with an error
term weaker than the one appearing in (2.6). However, to get the general idea of
the method, let us start with any additive function f(n). Given any complex number
t 6= 0, we easily see that the function tf(n) is a multiplicative function. We say
that an arithmetic function h(n) is multiplicative if h(mn) = h(m)h(n) whenever
(m,n) = 1. Now, consider the function

F (x, t) :=
∑
n≤x

′
tf(n), so that

F (x, t)

t
=
∑
n≤x

′
tf(n)−1.

This means that∫ 1

0

F (x, t)

t
dt =

∫ 1

0

∑
n≤x

′
tf(n)−1 dt =

∑
n≤x

′
∫ 1

0
tf(n)−1 dt

=
∑
n≤x

′ tf(n)

f(n)

∣∣∣∣∣∣
1

0

=
∑
n≤x

′ 1

f(n)
. (2.7)
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Hence, providing an estimate for
∑
n≤x

′ 1

f(n)
boils down to finding a way to estimate

the integral
∫ 1

0

F (x, t)

t
dt. However, for most functions f(n), the corresponding

expression F (x, t)/t is unbounded at t = 0. To overcome this obstacle, we choose
to integrate F (x, t)/t between ε(x) and 1 for some function ε(x) which tends to 0 as
x→∞. So, instead of (2.7), we have∫ 1

ε(x)

F (x, t)

t
dt =

∑
n≤x

′ 1

f(n)
−
∑
n≤x

′ ε(x)f(n)

f(n)
. (2.8)

Choosing ε(x) appropriately so that the size of the last sum on the right hand side of
(2.8) is minimal when x is large will normally allow one to obtain a good estimate

for the sum
∑
n≤x

′ 1

f(n)
.

To do the analytic work, we will be using the Riemann zeta-function ζ(s), which,
let us recall, is defined by

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

for <(s) > 1

and otherwise by analytic continuation through the functional equation

ζ(s) = χ(s)ζ(1− s), where χ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) (s ∈ C) (2.9)

(here, Γ stands for the Gamma function).
To handle the function F (x, t) appearing on the left hand side of (2.8), we will

be using an important result of Atle Selberg [37], presented here in a simplified form
that fits our purpose.

Theorem A (Selberg). Let g(s, t) =
∞∑
n=1

bt(n)

ns
for <(s) = σ > 1 and assume

that the series
∞∑
n=1

|bt(n)|
n

log3 2n is uniformly bounded for |t| ≤ 1. Furthermore, let

at(n) be the arithmetical function defined implicitly by

ζ(s)tg(s, t) =
∞∑
n=1

at(n)

ns
(σ > 1).
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Then, for x ≥ 2,∑
n≤x

at(n) =
g(1, t)

Γ(t)
x logt−1 x+O

(
x logt−2 x

)
uniformly for |t| ≤ 1.

Theorem A is the key ingredient in proving (2.6), and the details are contained
in my book with Ivić [9]. From here on, the focus will be on the particular function
f(n) = ω(n), aiming to obtain estimate (2.5).

First, observe that in the case at(n) = tω(n), we have

∞∑
n=1

at(n)

ns
=

∞∑
n=1

tω(n)

ns
=
∏
p

(
1 +

t

ps
+

t

p2s
+ · · ·

)

= ζ(s)t
∏
p

(
1− 1

ps

)t∏
p

(
1 +

t

ps
+

t

p2s
+ · · ·

)
= ζ(s)t g(s, t),

say, so that, having checked that the conditions of Theorem A are satisfied, we obtain∑
2≤n≤x

tω(n) = D(t)x logt−1 x+R(x, t), (2.10)

where D(t) =
g(1, t)

Γ(t)
and R(x, t) = O(x logt−2 x).

For t ∈ (0, 1] and each i = 1, 2, . . . , α + 2, set Bi(t) :=

(
D(t)

t

)(i−1)

, that is

the i−1-th derivative with respect to t ofD(t)/t. Further setAi(t) := (−1)i−1Bi(t)
for each i = 1, 2, . . . , α+ 2.

Dividing relation (2.10) by t, we get∑
2≤n≤x

tω(n)−1 = B1(t)x logt−1 x+
R(x, t)

t
. (2.11)

Choose ε(x) = (log x)−1/2(α+2) and assume that x ≥ 3 (so that ε(x) < 1).
Integrating both sides of (2.11), we obtain

∫ 1

ε(x)

 ∑
2≤n≤x

tω(n)−1

 dt =

∫ 1

ε(x)
B1(t)x logt−1 x dt+

∫ 1

ε(x)

R(x, t)

t
dt
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∑
2≤n≤x

1

ω(n)
−
∑

2≤n≤x

ε(x)ω(n)

ω(n)
=

∫ 1

ε(x)
B1(t)x logt−1 x dt+O

(
x

log log x

log x

)
and therefore∑

2≤n≤x

1

ω(n)
=

∫ 1

ε(x)
B1(t)x logt−1 x dt+O

(
x

(log log x)α+1

)
. (2.12)

Integration by parts yields∫ 1

ε(x)
B1(t)x logt−1 x dt = x

{
α∑
i=1

Ai(t) logt−1 x

(log log x)i

∣∣∣∣1
ε(x)

+
Aα+1(t) logt−1 x

(log log x)α+1

∣∣∣∣1
ε(x)

+
1

(log log x)α+1

∫ 1

ε(x)
Aα+2(t) logt−1 x dt

}
.(2.13)

By the definition of Ai(t) and Bi(t), it is clear that there exists a positive number M
such that

|Ai(t)| = |Bi(t)| ≤
M

tα+2
for each i = 1, 2, . . . , α+ 2. (2.14)

Using (2.14), we have that for 1 ≤ i ≤ α+ 1 and ε(x) ≤ t ≤ 1,∣∣∣∣∣Ai(ε(x)) logε(x)−1 x

(log log x)i

∣∣∣∣∣ ≤ M logε(x)−1 x

ε(x)α+2(log log x)i
= O

(
1

(log log x)α+1

)
. (2.15)

On the other hand, again using (2.14), we have∣∣∣∣∣
∫ 1

ε(x)
Aα+2(t) logt−1 x dt

∣∣∣∣∣ ≤
∫ 1

ε(x)
|Aα+2(t)| logt−1 x dt

< M · max
ε(x)≤t≤1

logt−1 x

tα+2

=
M

log x
· log x = M. (2.16)

Finally, observing that Aα+1(1) = O(1) and using (2.15) and (2.16), we find that
(2.13) can be written as∫ 1

ε(x)
B1(t)x logt−1 x dt = x

{
α∑
i=1

Ai(1)

(log log x)i
+O

(
1

(log log x)α+1

)}
. (2.17)
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Gathering estimates (2.12) and (2.17) completes the proof of (2.5).

We showed earlier in this section that the functions ω(n) and Ω(n) have the same
average value, namely log log n. So, what can one expect for the average value of
Ω(n)/ω(n) ? In 1970, Duncan [16] used his inequality (2.4) to obtain the estimate

∑
n≤x

′Ω(n)

ω(n)
= x+O

(
x

log log x

)
, (2.18)

revealing that the average value of Ω(n)/ω(n) is 1. Can one do better than (2.18) ?

More generally, is it possible to estimate
∑
n≤x

′ g(n)

f(n)
, where g(n) and f(n) are two

given additive functions ? Indeed, as explained in our book [9], Ivić and I were able
to prove the following interesting general result.

Theorem 2.2. Let f(n) and g(n) be two additive functions such that f(p) =
g(p) = 1 for all primes p and such that for all prime powers pr, we have 1 ≤
f(pr) < c1r and 0 ≤ g(pr) < c2r for some constants c1 and c2. Then,

∑
n≤x

′ g(n)

f(n)
= x+

Ax

log log x
+O

(
x

(log log x)2

)
, (2.19)

where

A =
∞∑
r=2

∑
p

(
1− 1

p

)
g(pr)− f(pr)

pr
. (2.20)

PROOF. We only provide a sketch of the proof. Let u ∈ (0, 1) and t ∈ C with
|t| ≤ 1. Because of the conditions imposed on f(pr) and g(pr), one can show that the

series
∞∑
n=1

tg(n)uf(n)

ns
converges uniformly and absolutely for <(s) > 1. Therefore,

∞∑
n=1

tg(n)uf(n)

ns
=

∏
p

(
1 +

tu

ps
+
tg(p

2)uf(p2)

p2s
+ · · ·

)

= (ζ(s))tu
∏
p

(
1− 1

ps

)tu∏
p

(
1 +

tu

ps
+
tg(p

2)uf(p2)

p2s
+ · · ·

)
= (ζ(s))tuH(t, u; s),
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where H(t, u; s) is absolutely and uniformly convergent for <(s) > 1/2. Using
Theorem A, we obtain that, uniformly for |t| ≤ 1 and |u| ≤ 1,

∑
n≤x

tg(n)uf(n) =
H(t, u; 1)

Γ(tu)
x logtu−1 x+O(x log<(tu−2) x)

=
x

log x

(
H(t, u; 1)

Γ(tu)
logtu x+O(1)

)
, (2.21)

where, for some constants e2, e3, . . .,

H(t, u; 1)

Γ(tu)
= tu+ e2t

2u2 + e3t
g(p2)+1uf(p2)+1 + · · · (2.22)

and the remaining powers of u have exponents not less than 2, since by hypothesis,
f(pr) ≥ 1.

Differentiating both sides of (2.21) with respect to t, we obtain∑
n≤x

g(n)tg(n)−1uf(n) =
x

log x

(
logtu x · ∂

∂t

H(t, u; 1)

Γ(tu)

+
uH(t, u; 1)

Γ(tu)
logtu x · log log x+O(1)

)
.(2.23)

Setting t = 1 in (2.23) and dividing by u, we obtain uniformly for u ∈ (0, 1],∑
n≤x

′
g(n)uf(n)−1 =

x

log x
(G(u) logu x+ F (u) logu x · log log x+O(1/u)) ,

(2.24)
where

F (u) =
H(1, u; 1)

Γ(u)
and G(u) =

1

u

∂

∂t

(
H(t, u; 1)

Γ(tu)

)∣∣∣∣
t=1

.

We next integrate the left-hand side of (2.24) with respect to u between ε(x) =
1/
√

log x and 1, assuming that x ≥ 3. We then obtain

∫ 1

ε(x)

∑
n≤x

′
g(n)uf(n)−1

 du =
∑
n≤x

′
g(n)

∫ 1

ε(x)
uf(n)−1 du

=
∑
n≤x

′ g(n)

f(n)
−
∑
n≤x

′ g(n)

f(n)
ε(x)f(n)
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=
∑
n≤x

′ g(n)

f(n)
+O

ε(x)
∑
n≤x

′
g(n)


=

∑
n≤x

′ g(n)

f(n)
+O

(
x log log x√

log x

)
, (2.25)

since f(n) ≥ 1 for n ≥ 1 and since
∑

n≤x g(n)� x log log x.
From (2.22), it is easily seen that F (u) ∈ C2[0, 1] and that G(u) ∈ C1[0, 1].

Using this, we may integrate the individual terms on the right hand side of (2.24).
We then obtain∫ 1

ε(x)
F (u) logu x · log log x du = F (1) log x− F (ε(x)) logε(x) x− F ′(1)

log log x
log x

+
F ′(ε(x))

log log x
logε(x) x+

∫ 1

ε(x)

F ′′(u) logu x

(log log x)2
du

= F (1) log x− F ′(1)

log log x
log x

+O

(
log x

(log log x)2

)
(2.26)

and similarly∫ 1

ε(x)
G(u) logu x du = G(1)

log x

log log x
−G(ε(x))

logε(x) x

log log x
−
∫ 1

ε(x)

G′(u) logu x

log log x
du

= G(1)
log x

log log x
+O

(
log x

(log log x)2

)
, (2.27)

where we used the fact that both F ′′(u) and G′′(u) are bounded on [0, 1].
Gathering relations (2.24) to (2.27) and using the fact that F (1) = 1, estimate

(2.19) follows immediately along with the explicit value of the constant A given in
(2.20), thus completing the proof of Theorem 2.2.

Applying Theorem 2.2 with g(n) = Ω(n) and f(n) = ω(n) leads to an improve-
ment of estimate (2.18), namely∑

2≤n≤x

Ω(n)

ω(n)
= x+A

x

log log x
+O

(
x

(log log x)2

)
,

with A =
∑
p

1

p(p− 1)
≈ 0.773.
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3. The intriguing largest prime factor function

Given an integer n ≥ 2, let P (n) stand for its largest prime factor. For conve-
nience, set P (1) = 1. Establishing an asymptotic estimate for the sum

∑
n≤x P (n)

is not a hard task. In fact, in 1997, K. Alladi and P. Erdős [1] showed that∑
n≤x

P (n) =
π2

12

x2

log x
+O

(
x2

log2 x

)
.

In 1984, Ivić and I [10] improved this estimate by showing the following.

Theorem 3.1. For every fixed k ∈ N, there exist constants c1 = π2/12, c2,. . . ,
ck such that∑

n≤x
P (n) = x2

(
c1

log x
+

c2

log2 x
+ · · ·+ ck

logk x
+O

(
1

logk+1 x

))
(3.1)

and moreover the same formula holds when one replaces P (n) by any of the two
functions

β(n) :=
∑
p|n

p and B(n) :=
∑
pα‖n

αp.

PROOF. We first prove (3.1). Consider the function

Ψ(x, y) := #{n ≤ x : P (n) ≤ y} (2 ≤ y ≤ x),

a function which has been the focus of much research since the 1950’s. We can then
write ∑

n≤x
P (n) =

∑
p≤x

p
∑
n≤x

P (n)=p

1 =
∑
p≤x

p
∑
m≤x/p
P (m≤p

1 =
∑
p≤x

pΨ

(
x

p
, p

)

=
∑
p≤
√
x

pΨ

(
x

p
, p

)
+

∑
√
x<p≤x

pΨ

(
x

p
, p

)
= Σ1 + Σ2,

say. Since Σ1 ≤
∑
p≤
√
x

p
x

p
= xπ(

√
x) ≤ x3/2, we may ignore Σ1 and focus our atten-

tion on the evaluation of Σ2. Observe that the sum in Σ2 runs over primes p >
√
x,

so that in that range, we have Ψ(x/p, p) = bx/pc. This means that

Σ2 =
∑

√
x<p≤x

p

⌊
x

p

⌋
=
∑
p≤x

p

⌊
x

p

⌋
−
∑
p≤
√
x

p

⌊
x

p

⌋
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=
∑
p≤x

∑
n≤x/p

1 +O(x3/2) =
∑
n≤x

∑
p≤x/n

p+O(x3/2)

= Σ3 +O(x3/2),

say. Hence, from here on, we only need to estimate Σ3. We split this sum as

Σ3 =
∑

n≤x1/4

∑
p≤x/n

p+
∑

x1/4<n≤x

∑
p≤x/n

p = Σ4 + Σ5,

say. Since

Σ5 ≤
∑

x1/4<n≤x

x

n

∑
p≤x3/4

1 ≤ x7/4
∑

x1/4<n≤x

1

n
� x7/4 log x,

we only need to estimate Σ4. Now observe that using partial summation and the
prime number theorem, we easily establish that there exist constants d1 = 1/2,
d2, . . . , dk such that∑

p≤y
p = y2

(
d1

log y
+

d2

log2 y
+ · · ·+ dk

logk y
+O

(
1

logk+1 y

))
. (3.2)

Observe also that using standard techniques in real analysis, we easily obtain that for
any positive integer i, there exist constants d0,i, d1,i, . . . , dk,i such that

∑
n≤x1/4

1

n2 logi(x/n)
=

d0,i

logi x
+

d1,i

logi+1 x
+ · · ·+

dk,i

logi+k x
+O

(
1

logi+k+1 x

)
.

(3.3)
Using estimate (3.2), we obtain

Σ4 =
∑

n≤x1/4

{(x
n

)2 ( d1

log(x/n)
+

d2

log2(x/n)

+ · · ·+ dk

logk(x/n)
+O

(
1

logk+1(x/n)

))}
= x2

{
d1

∑
n≤x1/4

1

n2 log(x/n)
+ d2

∑
n≤x1/4

1

n2 log2(x/n)

+ · · ·+ dk
∑

n≤x1/4

1

n2 logk(x/n)
+O

 ∑
n≤x1/4

1

n2 logk+1(x/n)

}.
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Then, making good use of estimate (3.3) in each of the above k + 1 sums, we finally
obtain the desired estimate (3.1).

To see that (3.1) also holds when P (n) is replaced by β(n) or B(n), we only
need to observe that, since ω(n) ≤ 2 log n and Ω(n) ≤ 2 log n for all integers n ≥ 2,

β(n) = P (n) +O((ω(n)− 1) ·
√
n) = P (n) +O(

√
n log n)

and that

B(n) = P (n) +O((Ω(n)− 1) ·
√
n) = P (n) +O(

√
n log n).

Estimate (3.1) tells us that on average the order of the size of P (n) is n/ log n.
From the above proof, one may have noticed that the sum

∑
n≤x P (n) is domi-

nated by those integers n with a large prime factor. What about the average value
of logP (n) ? In that case, we will see that most integers n contribute to the sum∑

n≤x logP (n). But first, we need to better understand the behaviour of the function
Ψ(x, y). For this, we move back in time, more precisely to 1930, that is when the
Swedish actuary Karl Dickman (1861-1947), in studying the distribution of those in-
tegers having no large prime factors, introduced [15] a function which would turn out
to be extremely useful for describing the asymptotic behavior of Ψ(x, y). This func-
tion now called the Dickman function is defined as the unique continuous function
ρ : [0,∞)→ (0, 1] which is differentiable on [1,∞) and satisfies

ρ(u) = 1 for 0 ≤ u ≤ 1,
uρ′(u) + ρ(u− 1) = 0 for u ≥ 1.

A key result connecting the Dickman function with the Ψ(x, y) function is the esti-
mate

Ψ(x, y) = xρ(u) +O

(
x

log y

)
uniformly for 2 ≤ y ≤ x, (3.4)

where u = log x/ log y. For a proof of (3.4), see Theorem 9.14 in my book with
Florian Luca [13]. Using this estimate, we find that∑

n≤x
logP (n) =

∑
p≤x

log pΨ(x/p, p)

=
∑
p≤x

log p

{
x

p
ρ

(
log x

log p
− 1

)
+O

(
x

p log p

)}



14 Jean-Marie De Koninck

= x
∑
p≤x

log p

p
ρ

(
log x

log p
− 1

)
+O

x∑
p≤x

1

p


= x

∫ x

2

1

t
ρ

(
log x

log t
− 1

)
dt+O (x log log x)

= x log x

∫ log x/ log 2

1
ρ (v − 1)

dv

v2
+O (x log log x) . (3.5)

On the one hand,∫ ∞
log x/ log 2

ρ(v − 1)

v2
dv ≤

∫ ∞
log x/ log 2

1

v2
dv � 1

log x
.

We can therefore replace
∫ log x/ log 2

1

ρ(v − 1)

v2
dv in (3.5) by

∫ ∞
1

ρ(v − 1)

v2
dv. On

the other hand, using the relation ρ(v − 1) = −vρ′(v), we have∫ ∞
1

ρ(v − 1)

v2
dv = −

∫ ∞
1

ρ′(v)
dv

v
= −ρ(v)

v

∣∣∣∞
1
−
∫ ∞

1

ρ(v)

v2
dv = 1−

∫ ∞
1

ρ(v)

v2
dv.

Summing up we proved that∑
n≤x

logP (n) = C3x log x+O(x log log x),

where C3 = 1−
∫ ∞

1

ρ(v)

v2
dv ≈ 0.62433.

We have thus established that the average value of logP (n) is C3 log n. What
about the average size of 1/P (n) ? As we will see, finding an accurate estimate for∑

n≤x 1/P (n) is much harder and it has been the focus of many papers in the end
of the 1970’s and through the 1980’s. The study of this sum is closely related to the
behaviour of the Ψ(x, y) function since∑

n≤x

1

P (n)
=
∑
p≤x

1

p

∑
n=mp≤x
P (m)≤p

1 =
∑
p≤x

1

p

∑
m≤x/p
P (m)≤p

1 =
∑
p≤x

1

p
Ψ

(
x

p
, p

)
. (3.6)

A first breakthrough occurred in 1981 as Ivić [27] proved that

S(x) :=
∑
n≤x

1

P (n)
= x exp

{
−
√

2 log x log log x+O
(√

log x log log log x
)}

.

(3.7)



A front row seat to the work of Aleksandar Ivić 15

To obtain estimate (3.7), Ivić used the estimate of Ψ(x, y) obtained in 1951 by Nico-
laas Govert de Bruijn [3] as he proved that, given any small number ε > 0 and setting
u := log x/ log y, we have

Ψ(x, y) = xρ(u)

(
1 +O

(
log(u+ 1)

log y

))
for all y > exp{(log x)5/8+ε}. (3.8)

This estimate, having an error term smaller than the one given in (3.4) is better, even
though it does not hold for all 2 ≤ y ≤ x, but rather only for exp{(log x)5/8+ε} <
y ≤ x. Unfortunately, estimate (3.7) did not meet the highest expectations. The
reason is that it fell short of revealing an asymptotic formula for S(x). Indeed, it
only provided an asymptotic formula for logS(x) but not for S(x). In fact, the
approximation found above by Ivić already indicated that the main contribution to
S(x) came from the primes p ≈ e

√
log x log log x. Indeed, using (3.6), we find that

S(x) =
∑
p≤x

1

p
Ψ

(
x

p
, p

)
=
∑
p≤x

1

p

(
x

p
ρ(u)

(
1 +O

(
log(u+ 1)

log y

)))
,

where u =
log(x/p)

log p
=

log x

log p
− 1, implying that for those p ≈ e

√
log x log log x, we

have

u ≈ log x

log p
=

log x√
log x log log x

=

√
log x

log log x
, (3.9)

which is unfortunately out of the range of validity of de Bruijn’s estimate (3.8)
since in that case, u ≤ (log x)

3
8
−ε which is indeed smaller that

√
log x/ log log x.

Hence, in order to obtain an asymptotic formula for S(x), a more accurate esti-
mate of Ψ(x, y) was required. This came in 1986 when Adolf Hildebrand [26]
increased the range of validity of estimate (3.8) by showing that it holds for all
y > exp{(log log x)5/3+ε}, that is for u ≤ log x

(log log x)5/3
which includes the neces-

sary range of u given in (3.9).
So, the same year, Ivić in a joint paper with Erdős and Pomerance [24] used

Hildebrand’s estimate along with a clever argument to finally obtain a true asymptotic
formula for S(x), namely the following.

Theorem 3.2. (Erdős, Ivić and Pomerance) The function

δ(x) :=

∫ x

2
ρ

(
log x

log t

)
dt

t2

is a slowly varying function and satisfies

δ(x) = exp{−(1 + o(1))
√

2 log x log log x} (x→∞).
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Moreover, ∑
n≤x

1

P (n)
= xδ(x)

(
1 +O

(√
log log x

log x

))
and the same estimate holds if P (n) is replaced by β(n) or B(n).

In closing this section on the largest prime factor function, it is interesting to men-
tion that the sum of the reciprocals of the second largest prime factor function P2(n)
defined for those integers n with at least two prime factors, has a totally different
asymptotic value. In fact, I proved [5] in 1993 that∑

n≤x
Ω(n)≥2

1

P2(n)
= λ2

x

log x
+O

(
x

log2 x

)
,

where λ2 =
∞∑
m=1

1

m

∑
p≥P (m)

1

p2
≈ 1.254. In the same paper, I showed that, if Pk(n)

stands for the k-th largest prime factor of an integer, then∑
n≤x

Ω(n)≥k

1

Pk(n)
= λk

x(log log x)k−2

log x

(
1 +O

(
1

log log x

))
,

where λk = λ2/(k − 2)!.

4. Arithmetic functions defined on sets of primes of positive density

Let Q be a set of primes for which there exists some positive constant δ < 1 such
that

π(x,Q) :=
∑

p≤x, p∈Q
1 = δ Li(x) +O

(
x

logB x

)
,

where B is a constant larger than 2 and Li(x) =

∫ x

2

dt

log t
. We define P (n,Q) as

P (n,Q) =

{
max{p : p | n and p ∈ Q} if (n,Q) > 1,
0 otherwise,

(4.1)

where (n,Q) > 1 (resp. (n,Q) = 1) means that n has a prime factor (resp. has no
prime factor) from Q. Thus P (n,Q) is the largest prime factor of n belonging to Q,
and analogously we define the k-th largest prime factor of n belonging to Q as

Pk(n,Q) =

{
P
(

n
P1(n,Q)···Pk−1(n,Q) , Q

)
if Ω(n,Q) ≥ k,

0 otherwise,
(4.2)
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if k ≥ 2, where P1(n,Q) = P (n,Q) and

Ω(n,Q) =
∑

pα‖n, p∈Q

α

is the total number of prime factors of n (counting multiplicities) belonging to Q,
while

ω(n,Q) =
∑

p|n, p∈Q

1

is the number of distinct prime factors of n belonging to Q. The function defined in
(4.1) is the analogue of the classical function P (n), whereas the one defined in (4.2)
is the analogue of the function Pk(n) mentioned in the previous section.

Likewise, consider the large additive functions

β(n,Q) =
∑

p|n, p∈Q

p and B(n,Q) =
∑

pα‖n, p∈Q

αp, (4.3)

and β(n,Q) = B(n,Q) = 0 if (n,Q) = 1. The functions in (4.3) are the analogues
of the large additive functions β(n) and B(n) defined in Theorem 3.1 and for which
there exists an extensive literature (see for instance our monograph [9] and the more
recent paper of Ivić [30]).

Ivić and I first studied the above functions separately. For instance, in [5], I
proved that ∑

n≤x

′ 1

P (n,Q)
=

(
η(Q) +O

(
1

log log x

))
x

(log x)δ
, (4.4)

where η(Q) is a positive constant depending onQ (that is, on δ) which may be written
in closed form, whereas at the same time, Ivić obtained several results involving
β(n,Q) and B(n,Q). For instance, in [29], he proved that

∑
n≤x

β(n,Q) =

k∑
j=1

δAjx
2

logj x
+O

(
x2

logk+1 x

)
(4.5)

with explicitly given constants Aj , and that the same formula holds if one replaces
β(n,Q) by B(n,Q).

In the same paper [29], Ivić proved that∑
n≤x

′B(n,Q)

β(n,Q)
= x+O

(
x log log x

(log x)δ

)
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and went on to conjecture that∑
n≤x

′ 1

β(n,Q)
=

(
η1(Q) +O

(
1

log log x

))
x

(log x)δ
(4.6)

and ∑
n≤x

′ 1

B(n,Q)
=

(
η2(Q) +O

(
1

log log x

))
x

(log x)δ
, (4.7)

with 0 < η2(Q) ≤ η1(Q) ≤ η(Q), where η(Q) is the constant appearing in (4.4).

In a joint paper [12], Ivić and I addressed these two conjectures and in fact we
proved the next four theorems.

Theorem 4.1. There exist constants 0 < D1(δ) < D2(δ) such that∑
n≤x, (n,Q)>1

β(n,Q)

P (n,Q)
= x+

(
D1(δ) +O

(
1

log log x

))
x

(log x)δ

and ∑
n≤x, (n,Q)>1

B(n,Q)

P (n,Q)
= x+

(
D2(δ) +O

(
1

log log x

))
x

(log x)δ
.

The next result establishes the conjectured asymptotic formulas (4.6) and (4.7).

Theorem 4.2. There exist constants 0 < η2(Q) < η1(Q) such that estimates
(4.6) and (4.7) hold.

By comparing estimates of Theorem 3.1 (in the case of β(n)) and estimate (4.5),
the sums

∑
n≤x β(n) and

∑
n≤x β(n,Q) are of the same order, whereas by compar-

ing Theorem 3.2 (in the case of β(n)) and (4.6), one will notice that the asymptotic
behaviours of

∑
n≤x 1/β(n) and

∑
n≤x 1/β(n,Q) are completely different.

Finally, the difference in behaviour between P (n) and P (n,Q) is also reflected in
the asymptotic behaviour of two further arithmetic sums which contain the logarithms
of these functions, as shown in the next two results.

Theorem 4.3. There exists an effectively computable constant B such that∑
2≤n≤x

1

n logP (n)
= eγ log log x+B +O

(
1

log x

)
,

where γ is Euler’s constant.
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Theorem 4.4. There exists an effectively computable constant B(Q) > 0 such
that ∑

n≤x, (n,Q)>1

1

n logP (n,Q)
=

(
B(Q) +O

(
1

log log x

))
log1−δ x.

Theorem 4.3 sharpens the estimate∑
2≤n≤x

1

n logP (n)
= eγ log log x+O(1)

which I had previously obtained in a joint 1987 paper written with R. Sitaramachan-
drarao [14].

5. Joint papers with Paul Erdős

From 1980 to 1995, Ivić wrote eight papers in collaboration with the legendary
Paul Erdős (in chronological order, [19], [7], [20], [24], [23], [21], [22], [18]). In
the second of these papers, of which I was also a co-author, we studied the functions
β(n) andB(n), proving the next three results. Here, we set `(x) :=

√
log x log log x.

Theorem 5.1. For any given ε > 0, there exists x0 = x0(ε) such that

x

e(2+ε)`(x)
≤

∑
2≤n≤x

1

B(n)
≤

∑
2≤n≤x

1

β(n)
≤ x

e( 1
2
−ε)`(x)

(x ≥ x0). (5.1)

Theorem 5.2. There exist some positive constants D1 and D2 such that∑
2≤n≤x

B(n)

β(n)
= x+O

( x

eD1`(x)

)
and

∑
2≤n≤x

β(n)

B(n)
= x+O

( x

eD2`(x)

)
.

Theorem 5.3. Given any small η > 0, there exists a positive constant D3 such
that ∑

2≤n≤x

′ 1

B(n)− β(n)
= D3x+O

(
x

1
2

+η
)
.

Here, we only prove Theorems 5.1 and 5.3, referring the reader to our paper [7]
for the proof of Theorem 5.2.

PROOF OF THEOREM 5.1. Let x be a large number. For each integer k ≥ 6,
consider the set

Ak := {2 ≤ n ≤ x : µ2(n) = 1 and P (n) ≤ x1/k}
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(here µ(n) stands for the Möbius function). Clearly, if an integer n is the product of
k distinct primes not exceeding x1/k, then n ∈ Ak. Now, since

π(y) >
3

4

y

log y
provided y is large enough,

it follows that

π(x1/k) >
3

4

x1/k

log x1/k
=

3

4

kx1/k

log x
,

provided x is large enough. Therefore, setting

m :=

⌊
3

4

kx1/k

log x

⌋
,

we can say that there are at leastm primes not exceeding x1/k. This means that, since

m− k + 1 ≥ 2

3
m, we have

∑
n∈Ak

1 ≥
(
m

k

)
=

m!

(m− k)!k!
=
m(m− 1) · · · (m− k + 1)

k!
≥
(

2
3m
)k

k!
, (5.2)

provided x is sufficiently large.

It is easily proven by induction that
(
k

2

)k
> k! for each integer k ≥ 6. Using

this inequality, it follows from (5.2) that

∑
2≤n∈Ak

1 ≥ 1

k!

(
2

3
· 3

4
· kx

1/k

log x

)k
=

1

k!

(
k

2
· x

1/k

log x

)k
=

1

k!
(k/2)k · x

logk x
>

x

logk x
. (5.3)

On the other hand, using the fact that ω(n) ≤ 2 log x/ log log x for all n ≤ x, it
follows that for any n ∈ Ak, we have that

B(n) = β(n) ≤ P (n)ω(n)� x1/k log x

log log x
. (5.4)

Combining (5.3) and (5.4) and choosing k =

√
log x

log log x
, we find that

∑
2≤n∈Ak

1

B(n)
=

∑
2≤n∈Ak

1

β(n)
� log log x

x1/k log x

∑
2≤n∈Ak

1 >
log log x

x1/k log x
· x

logk x
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=
x1−1/k

logk+1 x
· log log x >

x1−1/k

logk+1 x
=

x

log x
· 1

logk x · x1/k

=
x

log x
exp

{
−2
√

log x log log x
}
>

x

e(2+ε)`(x)
,

thus proving the lower bound in (5.1).

To prove the upper bound, let y = y(x) be a function which tends to infinity as x
tends to infinity, which is to be determined later. Then, write∑

2≤n≤x

1

β(n)
=

∑
2≤n≤x
P (n)≤y

1

β(n)
+
∑

2≤n≤x
P (n)>y

1

β(n)

≤
∑

2≤n≤x
P (n)≤y

1 +
1

y

∑
2≤n≤x
P (n)>y

1

≤ Ψ(x, y) +
x

y
. (5.5)

Now, observe that in his 1951 paper [3], N.G. de Bruijn established an upper bound
for the Ψ(x, y) function (formula (1.6) in [3]), namely

Ψ(x, y) < r1x log2 y · exp{−u(log u+ log log u− r2)}, (5.6)

where r1 and r2 are some positive absolute constants and where

3 < u :=
log x

log y
< 4

√
y

log y
. (5.7)

At this point, we choose y = e`(x) so that (5.7) is satisfied for x ≥ x0 (for some large
x0), and therefore in light of (5.6), we obtain that

Ψ(x, y)�ε x exp

{
−
(

1

2
− ε
)
`(x)

}
. (5.8)

Using bound (5.8) in (5.5), we find that∑
2≤n≤x

1

β(n)
≤ x

e( 1
2
−ε)`(x)

+
x

e`(x)
� x

e( 1
2
−ε)`(x)

,

thus completing the proof of the upper bound in (5.1).

PROOF OF THEOREM 5.3. For any real t ∈ [0, 1], the corresponding function
tB(n)−β(n) is a multiplicative function. Therefore, for <(s) > 1, we have

∞∑
n=1

tB(n)−β(n)

ns
=

∏
p

(
1 +

1

ps
+

tp

p2s
+
t2p

p3s
+ · · ·

)
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= ζ(s)
∏
p

(
1− 1

ps

)∏
p

(
1 +

1

ps
+

tp

p2s
+
t2p

p3s
+ · · ·

)

= ζ(s)
∏
p

(
1 +

tp − 1

p2s
+
t2p − tp

p3s
+ · · ·

)
= ζ(s)G(s, t), (5.9)

say. Let g(n, t) be the arithmetical function defined implicitly by

G(s, t) =
∞∑
n=1

g(n, t)

ns
.

Because of (5.9), tΩ(n)−ω(n) =
∑

d|n g(d, t). Therefore, we have∑
n≤x

tB(n)−β(n) =
∑
n≤x

∑
d|n

g(d, t) =
∑
d≤x

g(d, t)
⌊x
d

⌋
= x

∑
d≤x

g(d, t)

d
−
∑
d≤x

g(d, t)
(x
d
−
⌊x
d

⌋)

= x
∑
d≤x

g(d, t)

d
+O

∑
d≤x
|g(d, t)|

 . (5.10)

On the one hand,

∑
d≤x

g(d, t)

d
=

∞∑
d=1

g(d, t)

d
−
∑
d>x

g(d, t)

d
= G(1, t)−

∑
d>x

g(d, t)

d
. (5.11)

Now, given any small number δ > 0, we have that, as x→∞,∣∣∣∣∣∑
d>x

g(d, t)

d

∣∣∣∣∣ ≤ ∑
d>x

|g(d, t)|
d

=
∑
d>x

|g(d, t)|
d

1
2
−δd

1
2

+δ

≤ 1

x
1
2
−δ

∑
d>x

|g(d, t)|
d

1
2

+δ
= o

(
1

x
1
2
−δ

)
. (5.12)

Using (5.12) in (5.11), we get∑
d≤x

g(d, t)

d
= G(1, t) + o(x−

1
2

+δ). (5.13)
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Finally,∑
d≤x
|g(d, t)| =

∑
d≤x

|g(d, t)|
d

1
2

+δ
· d

1
2

+δ ≤ x
1
2

+δ ·O(1) = O
(
x

1
2

+δ
)
. (5.14)

Substituting (5.13) and (5.14) in (5.10), we obtain∑
n≤x

tB(n)−β(n) = G(1, t)x+O
(
x

1
2

+δ
)
. (5.15)

Setting F (t) = G(1, t) and observing that F (0) =
∏
p(1 − 1/p2) = 6/π2, it is

easily seen that (F (t) − 6/π2)/t is a continuous function for 0 ≤ t ≤ 1, implying
that the expression (F (t)−6/π2)/t is bounded on the interval [0, 1]. This means that
there exists a positive constant D3 such that∫ 1

0

F (t)− 6/π2

t
dt = D3. (5.16)

SinceB(n) = β(n) if and only if n is a squarefree number and since it is well known
that

∑
n≤x µ

2(n) = (6/π2)x+O(x1/2), dividing both sides of (5.15) by t, we get∑
n≤x

′
tB(n)−β(n)−1 =

∑
n≤x

B(n)6=β(n)

tB(n)−β(n)−1

= x
F (t)

t
+O

(
1

t
x

1
2

+δ

)
− 1

t

∑
n≤x

µ2(n)

= x
F (t)− 6/π2

t
+O

(
1

t
x

1
2

+δ

)
. (5.17)

Choosing ε(x) = x−2/3 and integrating both sides of (5.17) with respect to t between
ε(x) and 1, we obtain∫ 1

ε(x)

∑
n≤x

′
tB(n)−β(n)−1 = x

∫ 1

ε(x)

F (t)− 6/π2

t
dt+O

(
x1/2+δ log t

∣∣∣1
ε(x)

)
. (5.18)

On the one hand,∫ 1

ε(x)

∑
n≤x

′
tB(n)−β(n)−1 =

∑
n≤x

′ 1

B(n)− β(n)
−
∑
n≤x

′ ε(x)B(n)−β(n)

B(n)− β(n)

=
∑
n≤x

′ 1

B(n)− β(n)
+O(x1/3). (5.19)
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On the other hand, in light of (5.16),∫ 1

ε(x)

F (t)− 6/π2

t
dt =

∫ 1

0

F (t)− 6/π2

t
dt−

∫ ε(x)

0

F (t)− 6/π2

t
dt

= D3 +O(ε(x)). (5.20)

Using (5.19) and (5.20) in (5.18), we get∑
n≤x

′ 1

B(n)− β(n)
= D3x+O(x

1
2

+δ log x) = D3x+O(x
1
2

+η),

thus completing the proof of Theorem 5.3. Incidently, numerical evidence seems to
indicate that D3 ≈ 0.1039.

6. On a sum involving the prime counting function

In my book with Ivić [9], we obtained several estimates which left room for
improvements. Not surprisingly, many of such estimates caught the attention of other
mathematicians. One of these was the quest for an accurate estimate for the sum∑

2≤n≤x 1/π(n). In our book, we established that∑
2≤n≤x

1

π(n)
=

1

2
log2 x+O(log x). (6.1)

To obtain (6.1), we simply used the prime number theorem in the form

π(x) =
x

log x
+O

(
x

log2 x

)
and the approximation ∑

n≤x

log n

n
=

1

2
log2 x+O(1).

In 2000, Panaitopol [35] improved (6.1) by establishing that∑
2≤n≤x

1

π(n)
=

1

2
log2 x− log x− log log x+O(1).

In 2002, Ivić [31] tackled the problem once more by proving a much more accurate
estimate, namely that given any integer m ≥ 2,

∑
2≤n≤x

1

π(n)
=

1

2
log2 x− log x− log log x+ C +

m−1∑
j=1

kj+1

j logj x
+O

(
1

logm x

)
,
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where C is an absolute constant with no explicit numerical value and where the con-
stants ki are effectively computable constants.

Due mostly to the unspecified value of the constant C, the story of the quest for a
precise estimate for the sum

∑
2≤n≤x 1/π(n) did not end with Ivić’s 2002 estimate.

In fact, in 2008, Hassani and Moshtagh [25] revisited the problem by providing a
rough estimate of the constant C, and finally, in 2016, Berkane and Dusart [2] used
sharp estimates on the zero-free region of the Riemann zeta-function to obtain a more
precise value of C, namely 6.6840 < C < 6.7830.

7. The Riemann zeta-function

The study of arithmetical functions represents only one area of Ivić’s contribu-
tions to analytic number theory. In fact, throughout his academic life, Ivić worked
relentlessly on the Riemann zeta-function ζ(s).

Besides his popular book [28] on this function (or its 2003 reprint [32]), inci-
dently considered by many as the number one reference in the literature on the Rie-
mann zeta-function, Ivić’s research work on the zeta-function is extensive. For in-
stance, his numerous papers on the Dirichlet divisor problem, the mean values of
ζ(s) on the critical line <(s) = 1/2, the fourth power moment of ζ(s), the Hardy
Z-function (in particular through his book [33] on this function), to only name a few,
are remarkable.

As many who worked on the ζ(s) function, Ivić paid special attention to the
Riemann Hypothesis. A word on this conjecture. From the functional equation (given
above in (2.9)), one can establish that ζ(s) has zeros at s = −2,−4,−6, . . ., which
are traditionally called the trivial zeros of ζ(s). It has been proved that all the other
zeros of ζ(s) are located in the critical strip 0 < σ = <(s) < 1. In his epoch-making
memoir [36], Bernhard Riemann (1826-1866) wrote that “very likely all complex
zeros of ζ(s) have real parts equal to 1/2”. It is precisely this statement that is called
the Riemann Hypothesis (or for short RH). This conjecture is undoubtedly one of
the most celebrated and difficult open problems in mathematics, since its proof (or
disproof) would have far reaching consequences in the distribution of primes and on
the analytic behaviour of various sums involving key arithmetical functions (for more
on this, see Ivić’s book [28]).

Now, those who followed closely Ivić’s work have certainly recognized his con-
stant preoccupation for rigour. This may in part explain why, whereas most mathe-
maticians take for granted the truth of RH, Ivić is one of the few (among which we
find Paul Turán and John Edensor Littlewood) who expressed doubts about the verac-
ity of RH. As Ivić wrote in a 2003 paper [34] on the matter, “Inasmuch the Riemann
Hypothesis is commonly believed to be true, and for several valid reasons, I feel that
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the arguments that disfavour it should also be pointed out.” In fact, in [34], Ivić lists
several arguments against the truth of RH, some of which are closely connected with
his own research.

Let us briefly present here one of Ivić’s arguments against RH, namely one that
goes back to D.H. Lehmer (1905-1991) and is called the Lehmer phenomenon. First,
some background. Consider the Hardy Z-function defined by

Z(t) :=
ζ(1/2 + it)√
χ(1/2 + it)

,

where χ(s) is the function appearing in the functional equation (2.9). Since one can
check that χ(s)χ(1− s) = 1 and Γ(s) = Γ(s), it follows that |Z(t)| = |ζ(1/2 + it)|,
Z(t) is even and

Z(t) = χ−1/2(
1

2
− it)ζ(

1

2
− it) = χ1/2(

1

2
− it)ζ(

1

2
+ it) = Z(t),

implying that Z(t) is real for real values of t and that the zeros of the function Z(t)
coincide with the zeros of ζ(1/2 + it). Hence, one of the nice things about the
Z-function is that it turns out to be computable in fairly efficient ways (the Riemann-
Siegel formula is one of them), and therefore it reduces the problem of finding zeros
of the zeta-function on the critical line to finding sign changes of the Z-function.

t

-4

-3

-2

-1

1

2

3

Z(t)

Figure 1. Graph of Z(t) for 0 ≤ t ≤ 50

As one can see in the graph of Z(t) shown in Figure 1, the function Z(t) has a
negative local maximum −0.52625 . . . at the point t = 2.47575 . . .. This is the only
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known occurrence of a negative local maximum for Z(t), while no positive local
minimum is known.

Lehmer’s phenomenon is the fact that the graph of Z(t) sometimes barely crosses
the t-axis, implying in such cases that the absolute value of the maximum or mini-
mum of Z(t) between its two consecutive zeros is small.

In his paper [34], Ivić provides a detailed proof of the following result.

Theorem B. If RH holds, then there exists a real number t0 such that the graph
of Z ′(t)/Z(t) is monotonically decreasing between the zeros of Z(t) for all t ≥ t0.

So, let 0 < γ1 ≤ γ2 ≤ · · · denote the positive zeros of Z(t) with multiplicities
counted (note that all known zeros are simple) and assume that Z(t) has a negative
local maximum or a positive local minimum between two of its consecutive zeros γn
and γn+1. In that case, Z ′(t) would have at least two distinct zeros x1 and x2 in the
interval (γn, γn+1), that is with Z ′(x1) = Z ′(x2) = 0, in which case

Z ′(x1)

Z(x1)
=
Z ′(x2)

Z(x2)
= 0,

contradicting the fact that Z ′(t)/Z(t) is strictly decreasing between γn and γn+1.
Therefore in light of Theorem B, it is impossible for Z(t) to have a negative local
maximum or a positive local minimum for a “large” t.

D.H. Lehmer did in fact find several values of Z(t) which failed only by very
little to provide a negative local maximum or a positive local minimum for some
large values of t. For example, H.M. Edwards reports in his book [17] that Lehmer
noticed that the numbers γ6707 = 17143.786536 and γ6708 = 17143.821844 are two
consecutive zeros of Z(t) which give rise to a local maximum of Z(t) at the point
(t0, Z(t0), with t0 = 17143.803905 and Z(t0) = 0.002153, slightly above the t axis,
as shown in the two figures below, the second one being simply a zoom on the local
maximum Z(t0).

t

-1.0

-0.5

0.5

Z(t)

Graph of Z(t) for 17143 ≤ t ≤ 17144.5

t

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

Z(t)

Graph of Z(t) for 17143.7 ≤ t ≤ 17143.9

To summarize, if one could find a negative local maximum (other than the one
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occurring at t = 2.47575 . . .) or a positive local minimum for Z(t), one would have
proved that RH is false, thus making legitimate one of the doubts Aleksandar Ivić
had about the truth of the Riemann hypothesis.
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[9] J.M. De Koninck and A. Ivić, Topics in arithmetical functions. Asymptotic formu-
lae for sums of reciprocals of arithmetical functions and related results, Notas de
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[33] A. Ivić, The theory of Hardy’s Z-function, Cambridge Tracts in Mathematics, 196.
Cambridge University Press, Cambridge, 2013. xvii+245 pp.
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Québec G1V 0A6, Canada
e-mail: jmdk@mat.ulaval.ca


