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Abstract
Given a positive integer n, let p;(n) = max{d | n:d < y/n} and p2(n) = min{d | n :
d > \/n} stand for the middle divisors of n. We obtain improvements and new estimates
for sums involving these two functions.
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1 Introduction

Given a positive integer n, we define the numbers p;(n) and pa(n) as
pi(n) :=max{d | n:d < +/n}
po(n) :=min{d | n:d > +/n}

and call them the middle divisors of n. It is clear that p;(n)ps(n) = n and also that if n is
not a perfect square, then p;(n) < pa(n).
In 1976, Tenenbaum [5] proved that
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and that, given any € > 0, there exists o = x¢(g) such that for all z > z,
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More recently, Ford [1] showed that
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Here, we provide a refinement and a generalisation of (1.1) as well as a generalisation of
(1.3), and we then use these results to obtain estimates for ) .. pa(n)/p1(n)", for every fixed
real 7 > —1, and for > __p1(n)/p2(n), thereby improving an earlier estimate by Roesler [4]
in the case of the second sum.



2 Main theorems

Theorem 1. Let a > 0 be a real number. Then, for each positive integer k,
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standing for the Riemann zeta function.

Theorem 2. Let a > 0 be a real number and let 0 be as in (1.2). Then,
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Theorem 3. Given any integer k > 1 and any real number r > —1, we have
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with, for each v =0,1,... ¢,
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Remark. Interestingly, as a consequence of Theorem 3,
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implying that all sums 7,.(z) are of the same order, independently of the chosen number
r > —1. For instance, although it may at first appear counterintuitive, we do have that
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Theorem 4. With 0 as in (1.2), we have
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3 Preliminary results

Todt
Let m(x) stand for the number of primes not exceeding x and let Li(x) := / Tat’ We will
o logt

be using the prime number theorem with an error term which is sufficient for our purposes,
namely the original one found by de la Vallée Poussin [6] in 1899.

Proposition 1. (PRIME NUMBER THEOREM) There exists a positive constant C' such that
m(z) — Li(z) = O <x exp{—C'y/log x}) .

Lemma 1. Assume that n < x with py(n) > 2%/3. Then, pa(n) is a prime.

Proof. Since py(n) > 2?3, we have that p;(n) < z'/3. Set m = po(n). It is clear that
both p;(m) and ps(m) are divisors of n. Hence, in order to prove that py(n) is prime, it is
sufficient to prove that py(m) = m. Now, since pa(m) > /m = \/pa(n) > '3 > pi(n), it
follows that pi(n) < pa(m) < pa(n), which implies, by the definition of p;(n) and ps(n) that
p2(m) = pa(n) = m, thus proving our claim. O

The following result is not new. We include it here for the sake of completeness.

Lemma 2. Given any fixed real number a > 0,
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Proof. Using partial summation with A(x) = _ a(n) = 7(z) and ¢(t) = t*, we have
(3.2) S(x) = xn(x) —/ at® 'r(t) dt.
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Using Proposition 1, it follows from (3.2) and integration by parts that
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Using Proposition 1 one more time, we have that

a af : a : x !
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which substituted in (3.3) completes the proof of (3.1). O
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Lemma 3. Let a > 0 be an arbitrary real number. Then,
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Proof. We follow an approach used by Naslund [3] to estimate a similar sum. Let B be a
positive integer. Then,
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Using Lemma 2 in this last estimate, we obtain, provided that B > z'/4,
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Choosing B = | /x| allows us to write this last equation as
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thereby completing the proof of (3.4). O
Lemma 4. Let a > 0 be an arbitrary real number. Then,
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Proof. Since the two quantities E p* | —| and {—J dt are each of smaller order
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than the error term appearing in (3.5), we may indeed conclude from (3.5) that (3.6) holds.
O

Lemma 5. For all s > 1 and for each integer k > 1,
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Proof. Differentiating k times with respect to s both sides of equation ((s) = Z — vyields
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the result. n

Lemma 6. Let a > 0 be an arbitrary real number. Then, for each integer k > 1,
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Proof. We use the same technique that Naslund [2] used to estimate a similar integral. With
the change of variable ¢t = x/u, we obtain
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From this, it follows that
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< 1. We can therefore write that for each integer k > 1,
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On the other hand, since




it follows from (3.7) that
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It remains to obtain explicit expressions for the constants ¢,. We have
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Performing integration by parts k times yields
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Setting j = ¢ — 7, we conclude that
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thus completing the proof of Lemma 6. n

Let H(x,y,z) stand for the number of positive integers n < z having a divisor in the
interval (y, z]|.

Theorem A. (FORD [1], THEOREME 1(v)) Let x,y, z be real numbers all strictly positive.
If z > 100000, 100 < y < 2z — 1,y < v/ and 2y < z < y?, then

9\ ~3/2
H(z,y,z) =< zu’ (log —) ,
u

where u is defined implicitly by z = y'** and where § is the constant defined in (1.2).
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Theorem B. (FORD [1], THEOREME 2) For yo <y < \/x, 2z > y+1 and 1 fo <A<uz,
og "z

we have

A
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4 Proof of Theorem 1

Using Lemma 1, we easily obtain that
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Hence, it follows from (4.1) and (4.2) that
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Finally, combining the results of Lemmas 4 and 6 in (4.3), the proof of Theorem 1 is complete.

5 Proof of Theorem 2

Observe that the relation (2.1) we need to prove is equivalent to
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We will first show the first inequality in relation (5.1). We start by observing that if z/2 <

n < x, then n has a divisor d; satisfying ‘/75 < dy < y/z if and only if p;(n) > ‘/75 It follows

from this that
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Using Theorem B followed by Theorem A (with A = z/2), we find that
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Combining these last two estimates, it follows that
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thus establishing the first inequality in (5.1).
In order to prove the second inequality in (5.1), first observe that if n < x, then it is

obvious that \2/—,? < p1(n) < some integer k > 1, and therefore that
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Combining estimates (5.2) and (5.3), the second inequality in (5.1) is proved.

6 Proof of Theorem 3

n n/r+l
First observe that for each positive integer n, we have p(n) = pa( 2 . On the other
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where
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Hence, using (6.1) and partial summation, we obtain
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This is why, combining estimates (6.2), (6.3), (6.4), (6.5), we may conclude that
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7 Proof of Theorem 4
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First observe that for each positive integer n, we have . Set
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Then, using Theorem 1 along with partial summation, we obtain that
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the proof of Theorem 4 is complete.
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