On the middle divisors of an integer

Jean-Marie De Koninck and A Arthur Bonkli Razafindrasoanaivolala
Dedicated to the memory of Professor János Galambos

Édition du 1er janvier 2020

Abstract

Given a positive integer n, let $\rho_{1}(n)=\max \{d \mid n: d \leq \sqrt{n}\}$ and $\rho_{2}(n)=\min \{d \mid n$: $d \geq \sqrt{n}\}$ stand for the middle divisors of n. We obtain improvements and new estimates for sums involving these two functions.

AMS subject classification numbers: 11N25, 11N37
Key words and phrases: middle divisors of an integer

1 Introduction

Given a positive integer n, we define the numbers $\rho_{1}(n)$ and $\rho_{2}(n)$ as

$$
\begin{aligned}
\rho_{1}(n) & :=\max \{d \mid n: d \leq \sqrt{n}\} \\
\rho_{2}(n) & :=\min \{d \mid n: d \geq \sqrt{n}\}
\end{aligned}
$$

and call them the middle divisors of n. It is clear that $\rho_{1}(n) \rho_{2}(n)=n$ and also that if n is not a perfect square, then $\rho_{1}(n)<\rho_{2}(n)$.

In 1976, Tenenbaum [5] proved that

$$
\begin{equation*}
\sum_{n \leq x} \rho_{2}(n)=\frac{\pi^{2}}{12} \frac{x^{2}}{\log x}\left(1+O\left(\frac{1}{\log x}\right)\right) \tag{1.1}
\end{equation*}
$$

and that, given any $\varepsilon>0$, there exists $x_{0}=x_{0}(\varepsilon)$ such that for all $x \geq x_{0}$,

$$
\frac{x^{3 / 2}}{(\log x)^{\delta+\varepsilon}}<\sum_{n \leq x} \rho_{1}(n) \ll \frac{x^{3 / 2}}{(\log x)^{\delta}(\log \log x)^{1 / 2}},
$$

where

$$
\begin{equation*}
\delta=1-\frac{1+\log \log 2}{\log 2} \approx 0.086071 \tag{1.2}
\end{equation*}
$$

More recently, Ford [1] showed that

$$
\begin{equation*}
\sum_{n \leq x} \rho_{1}(n) \asymp \frac{x^{3 / 2}}{(\log x)^{\delta}(\log \log x)^{3 / 2}} \tag{1.3}
\end{equation*}
$$

Here, we provide a refinement and a generalisation of (1.1) as well as a generalisation of (1.3), and we then use these results to obtain estimates for $\sum_{n \leq x} \rho_{2}(n) / \rho_{1}(n)^{r}$, for every fixed real $r>-1$, and for $\sum_{n \leq x} \rho_{1}(n) / \rho_{2}(n)$, thereby improving an earlier estimate by Roesler [4] in the case of the second sum.

2 Main theorems

Theorem 1. Let $a>0$ be a real number. Then, for each positive integer k,

$$
\sum_{n \leq x} \rho_{2}(n)^{a}=c_{0} \frac{x^{a+1}}{\log x}+c_{1} \frac{x^{a+1}}{\log ^{2} x}+\cdots+c_{k-1} \frac{x^{a+1}}{\log ^{k} x}+O\left(\frac{x^{a+1}}{\log ^{k+1} x}\right)
$$

where, for $\ell=0,1, \ldots, k-1, c_{\ell}=c_{\ell}(a)=\frac{\ell!}{(a+1)^{\ell+1}} \sum_{j=0}^{\ell} \frac{(a+1)^{j}(-1)^{j} \zeta^{(j)}(a+1)}{j!}$ with ζ standing for the Riemann zeta function.

Theorem 2. Let $a>0$ be a real number and let δ be as in (1.2). Then,

$$
\begin{equation*}
\sum_{n \leq x} \rho_{1}(n)^{a} \asymp \frac{x^{\frac{a+2}{2}}}{(\log x)^{\delta}(\log \log x)^{3 / 2}} \tag{2.1}
\end{equation*}
$$

Theorem 3. Given any integer $k \geq 1$ and any real number $r>-1$, we have

$$
\sum_{n \leq x} \frac{\rho_{2}(n)}{\rho_{1}(n)^{r}}=e_{0} \frac{x^{2}}{\log x}+e_{1} \frac{x^{2}}{\log ^{2} x}+\cdots+e_{k-1} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

where $e_{0}=\frac{\zeta(r+2)}{2}$ and for each $1 \leq \ell \leq k-1$,

$$
e_{\ell}=\left(\frac{r+2}{2}\right) c_{\ell}+\sum_{\nu=0}^{\ell-1} \frac{r c_{\nu}}{2} \prod_{m=\nu}^{\ell-1}\left(\frac{m+1}{2}\right)
$$

with, for each $\nu=0,1, \ldots, \ell$,

$$
c_{\nu}=\frac{\nu!}{(r+2)^{\nu+1}} \sum_{j=0}^{\nu} \frac{(r+2)^{j}(-1)^{j} \zeta^{(j)}(r+2)}{j!}
$$

Remark. Interestingly, as a consequence of Theorem 3,

$$
T_{r}(x):=\sum_{n \leq x} \frac{\rho_{2}(n)}{\rho_{1}(n)^{r}} \sim \frac{\zeta(r+2)}{2} \frac{x^{2}}{\log x} \quad \text { as } x \rightarrow \infty
$$

implying that all sums $T_{r}(x)$ are of the same order, independently of the chosen number $r>-1$. For instance, although it may at first appear counterintuitive, we do have that $\sum_{n \leq x} \rho_{2}(n) \sqrt{\rho_{1}(n)} \asymp \sum_{n \leq x} \frac{\rho_{2}(n)}{\sqrt{\rho_{1}(n)}}$.

Theorem 4. With δ as in (1.2), we have

$$
\sum_{n \leq x} \frac{\rho_{1}(n)}{\rho_{2}(n)} \asymp \frac{x}{(\log x)^{\delta}(\log \log x)^{3 / 2}}
$$

3 Preliminary results

Let $\pi(x)$ stand for the number of primes not exceeding x and let $\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}$. We will be using the prime number theorem with an error term which is sufficient for our purposes, namely the original one found by de la Vallée Poussin [6] in 1899.

Proposition 1. (Prime number theorem) There exists a positive constant C such that

$$
\pi(x)-\operatorname{Li}(x)=O(x \exp \{-C \sqrt{\log x}\})
$$

Lemma 1. Assume that $n \leq x$ with $\rho_{2}(n)>x^{2 / 3}$. Then, $\rho_{2}(n)$ is a prime.
Proof. Since $\rho_{2}(n)>x^{2 / 3}$, we have that $\rho_{1}(n)<x^{1 / 3}$. Set $m=\rho_{2}(n)$. It is clear that both $\rho_{1}(m)$ and $\rho_{2}(m)$ are divisors of n. Hence, in order to prove that $\rho_{2}(n)$ is prime, it is sufficient to prove that $\rho_{2}(m)=m$. Now, since $\rho_{2}(m) \geq \sqrt{m}=\sqrt{\rho_{2}(n)}>x^{1 / 3}>\rho_{1}(n)$, it follows that $\rho_{1}(n)<\rho_{2}(m) \leq \rho_{2}(n)$, which implies, by the definition of $\rho_{1}(n)$ and $\rho_{2}(n)$ that $\rho_{2}(m)=\rho_{2}(n)=m$, thus proving our claim.

The following result is not new. We include it here for the sake of completeness.
Lemma 2. Given any fixed real number $a>0$,

$$
\begin{equation*}
S(x)=S_{a}(x):=\sum_{p \leq x} p^{a}=\int_{2}^{x} \frac{t^{a}}{\log t} d t+O\left(\frac{x^{a+1}}{e^{C \sqrt{\log x}}}\right) . \tag{3.1}
\end{equation*}
$$

Proof. Using partial summation with $A(x)=\sum_{n \leq x} a(n)=\pi(x)$ and $\varphi(t)=t^{a}$, we have

$$
\begin{equation*}
S(x)=x^{a} \pi(x)-\int_{2}^{x} a t^{a-1} \pi(t) d t \tag{3.2}
\end{equation*}
$$

Using Proposition 1, it follows from (3.2) and integration by parts that

$$
\begin{align*}
S(x) & =x^{a} \pi(x)-a \int_{2}^{x} t^{a-1}\left(\operatorname{Li}(t)+O\left(t e^{-C \sqrt{\log t}}\right)\right) d t \\
& =x^{a} \pi(x)-a \int_{2}^{x} t^{a-1} \operatorname{Li}(t) d t+O\left(\int_{2}^{x} t^{a} e^{-C \sqrt{\log t}} d t\right) \\
& =x^{a} \pi(x)-a\left(\left.\frac{t^{a}}{a} \operatorname{Li}(t)\right|_{2} ^{x}-\int_{2}^{x} \frac{t^{a}}{a} \frac{1}{\log t} d t\right)+O\left(\frac{x^{a+1}}{e^{C \sqrt{\log x}}}\right) \\
& =x^{a} \pi(x)-x^{a} \operatorname{Li}(x)+\int_{2}^{x} \frac{t^{a}}{\log t} d t+O\left(\frac{x^{a+1}}{e^{C \sqrt{\log x}}}\right) . \tag{3.3}
\end{align*}
$$

Using Proposition 1 one more time, we have that

$$
x^{a} \pi(x)-x^{a} \operatorname{Li}(x)=x^{a}(\pi(x)-\operatorname{Li}(x))=O\left(\frac{x^{a+1}}{e^{C \sqrt{\log x}}}\right),
$$

which substituted in (3.3) completes the proof of (3.1).

Lemma 3. Let $a>0$ be an arbitrary real number. Then,

$$
\begin{equation*}
\sum_{\sqrt{x}<p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor=\int_{\sqrt{x}}^{x} \frac{t^{a}}{\log t}\left\lfloor\frac{x}{t}\right\rfloor d t+O\left(\frac{x^{a+1}}{e^{\frac{C}{2} \sqrt{\log x}}}\right) . \tag{3.4}
\end{equation*}
$$

Proof. We follow an approach used by Naslund [3] to estimate a similar sum. Let B be a positive integer. Then,

$$
\begin{aligned}
\sum_{x / B<p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor & =\sum_{n \leq B-1} n \sum_{x /(n+1)<p \leq x / n} p^{a} \\
& =\sum_{n \leq B-1} n(S(x / n)-S(x /(n+1))) \\
& =S(x)+S(x / 2)+\cdots+S(x /(B-1))-(B-1) S(x / B) \\
& =\sum_{n \leq B-1}(S(x / n)-S(x / B)) .
\end{aligned}
$$

Using Lemma 2 in this last estimate, we obtain, provided that $B \geq x^{1 / 4}$,

$$
\begin{aligned}
\sum_{x / B<p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor & =\sum_{n \leq B-1} \int_{x / B}^{x / n} \frac{t^{a}}{\log t} d t+O\left(\sum_{n \leq B-1} \frac{(x / n)^{a+1}}{e^{C \sqrt{\log (x / n)}}}\right) \\
& =\int_{x / B}^{x} \frac{t^{a}}{\log t}\left\lfloor\frac{x}{t}\right\rfloor d t+O\left(\frac{x^{a+1}}{e^{C \frac{1}{2} \sqrt{\log x}}} \sum_{n=1}^{\infty} \frac{1}{n^{a+1}}\right) .
\end{aligned}
$$

Choosing $B=\lfloor\sqrt{x}\rfloor$ allows us to write this last equation as

$$
\begin{equation*}
\sum_{\sqrt{x}<p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor=\int_{\sqrt{x}}^{x} \frac{t^{a}}{\log t}\left\lfloor\frac{x}{t}\right\rfloor d t+O\left(\frac{x^{a+1}}{e^{\frac{C}{2} \sqrt{\log x}}}\right), \tag{3.5}
\end{equation*}
$$

thereby completing the proof of (3.4).
Lemma 4. Let $a>0$ be an arbitrary real number. Then,

$$
\begin{equation*}
\sum_{p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor=\int_{2}^{x} \frac{t^{a}}{\log t}\left\lfloor\frac{x}{t}\right\rfloor d t+O\left(\frac{x^{a+1}}{e^{\frac{C}{2} \sqrt{\log x}}}\right) \tag{3.6}
\end{equation*}
$$

Proof. Since the two quantities $\sum_{p \leq \sqrt{x}} p^{a}\left\lfloor\frac{x}{p}\right\rfloor$ and $\int_{2}^{\sqrt{x}} \frac{t^{a}}{\log t}\left\lfloor\frac{x}{t}\right\rfloor d t$ are each of smaller order than the error term appearing in (3.5), we may indeed conclude from (3.5) that (3.6) holds.

Lemma 5. For all $s>1$ and for each integer $k \geq 1$,

$$
\zeta^{(k)}(s)=(-1)^{k} \sum_{n=1}^{\infty} \frac{\log ^{k} n}{n^{s}}
$$

Proof. Differentiating k times with respect to s both sides of equation $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ yields the result.

Lemma 6. Let $a>0$ be an arbitrary real number. Then, for each integer $k \geq 1$,

$$
\int_{2}^{x} \frac{t^{a}\lfloor x / t\rfloor}{\log t} d t=c_{0} \frac{x^{a+1}}{\log x}+c_{1} \frac{x^{a+1}}{\log ^{2} x}+\cdots+c_{k-1} \frac{x^{a+1}}{\log ^{k} x}+O\left(\frac{x^{a+1}}{\log ^{k+1} x}\right)
$$

where

$$
c_{\ell}=c_{\ell}(a)=\frac{\ell!}{(a+1)^{\ell+1}} \sum_{j=0}^{\ell} \frac{(a+1)^{j}(-1)^{j} \zeta^{(j)}(a+1)}{j!} .
$$

Proof. We use the same technique that Naslund [2] used to estimate a similar integral. With the change of variable $t=x / u$, we obtain

$$
\begin{aligned}
\nu_{a}(x) & :=\int_{2}^{x} \frac{t^{a}\lfloor x / t\rfloor}{\log t} d t=x^{a+1} \int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2} \log \left(\frac{x}{u}\right)} d u \\
& =\frac{x^{a+1}}{\log x} \int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2}}\left(1-\frac{\log u}{\log x}\right)^{-1} d u .
\end{aligned}
$$

Since $1 \leq u \leq x / 2$, we have $\frac{\log u}{\log x}<1$. We can therefore write that for each integer $k \geq 1$,

$$
\left(1-\frac{\log u}{\log x}\right)^{-1}=1+\frac{\log u}{\log x}+\cdots+\left(\frac{\log u}{\log x}\right)^{k-1}+\left(\frac{\log u}{\log x}\right)^{k}\left(1-\frac{\log u}{\log x}\right)^{-1} .
$$

From this, it follows that

$$
\begin{aligned}
\nu_{a}(x)= & \frac{x^{a+1}}{\log x} \sum_{\ell=0}^{k-1} \frac{1}{\log ^{\ell} x} \int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u \\
& +\frac{x^{a+1}}{\log ^{k+1} x} \int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{k+1} u\left(1-\frac{\log u}{\log x}\right)^{-1} d u .
\end{aligned}
$$

Since the integral $\int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{k+1} u\left(1-\frac{\log u}{\log x}\right)^{-1} d u \quad$ converges, we have that

$$
\begin{align*}
\nu_{a}(x) & =\frac{x^{a+1}}{\log x} \sum_{\ell=0}^{k-1} \frac{1}{\log ^{\ell} x} \int_{1}^{x / 2} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u+O\left(\frac{x^{a+1}}{\log ^{k+1} x}\right) \\
3.7) & =\frac{x^{a+1}}{\log x} \sum_{\ell=0}^{k-1} \frac{1}{\log ^{\ell} x}\left(\int_{1}^{\infty} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u-\int_{x / 2}^{\infty} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u\right)+O\left(\frac{x^{a+1}}{\log ^{k+1} x}\right) . \tag{3.7}
\end{align*}
$$

On the other hand, since

$$
\int_{x / 2}^{\infty} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u \leq \int_{x / 2}^{\infty} \frac{\log ^{\ell} u}{u^{a+1}} d u=O\left(\frac{\log ^{\ell} x}{x^{a}}\right),
$$

it follows from (3.7) that

$$
\nu_{a}(x)=\frac{x^{a+1}}{\log x} \sum_{\ell=0}^{k-1} \frac{c_{\ell}}{\log ^{\ell} x}+O\left(\frac{x^{a+1}}{\log ^{k+1} x}\right)
$$

where $c_{\ell}=\int_{1}^{\infty} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u$.
It remains to obtain explicit expressions for the constants c_{ℓ}. We have

$$
c_{\ell}=\int_{1}^{\infty} \frac{\lfloor u\rfloor}{u^{a+2}} \log ^{\ell} u d u=\sum_{s=1}^{\infty} s \int_{s}^{s+1} \frac{\log ^{\ell} u}{u^{a+2}} d u
$$

Performing integration by parts k times yields

$$
\int_{s}^{s+1} \frac{\log ^{\ell} u}{u^{a+2}} d u=\sum_{i=0}^{\ell} \frac{\ell!}{(\ell-i)!(a+1)^{i+1}}\left(\frac{\log ^{\ell-i} s}{s^{a+1}}-\frac{\log ^{\ell-i}(s+1)}{(s+1)^{a+1}}\right),
$$

so that, using Lemma 5, we get

$$
\begin{aligned}
\sum_{s=1}^{\infty} s \int_{s}^{s+1} \frac{\log ^{\ell} u}{u^{a+2}} d u & =\sum_{s=1}^{\infty}\left(s \sum_{i=0}^{\ell} \frac{\ell!}{(\ell-i)!(a+1)^{i+1}}\left(\frac{\log ^{\ell-i} s}{s^{a+1}}-\frac{\log ^{\ell-i}(s+1)}{(s+1)^{a+1}}\right)\right) \\
& =\sum_{i=0}^{\ell} \frac{\ell!}{(\ell-i)!(a+1)^{i+1}}\left(\sum_{s=1}^{\infty} s\left(\frac{\log ^{\ell-i} s}{s^{a+1}}-\frac{\log ^{\ell-i}(s+1)}{(s+1)^{a+1}}\right)\right) \\
& =\sum_{i=0}^{\ell} \frac{\ell!}{(\ell-i)!(a+1)^{i+1}}\left(\sum_{s=1}^{\infty} \frac{\log ^{\ell-i} s}{s^{a+1}}\right) \\
& =\sum_{i=0}^{\ell} \frac{\ell!}{(\ell-i)!} \frac{(-1)^{\ell-i} \zeta^{\ell-i}(a+1)}{(a+1)^{i+1}} .
\end{aligned}
$$

Setting $j=\ell-i$, we conclude that

$$
c_{\ell}=\frac{\ell!}{(a+1)^{\ell+1}} \sum_{j=0}^{\ell} \frac{(a+1)^{j}(-1)^{j} \zeta^{(j)}(a+1)}{j!},
$$

thus completing the proof of Lemma 6.
Let $H(x, y, z)$ stand for the number of positive integers $n \leq x$ having a divisor in the interval $(y, z]$.
Theorem A. (Ford [1], ThÉOrème $1(v)$) Let x, y, z be real numbers all strictly positive. If $x>100000,100 \leq y \leq z-1, y \leq \sqrt{x}$ and $2 y \leq z \leq y^{2}$, then

$$
H(x, y, z) \asymp x u^{\delta}\left(\log \frac{2}{u}\right)^{-3 / 2}
$$

where u is defined implicitly by $z=y^{1+u}$ and where δ is the constant defined in (1.2).

Theorem B. (Ford [1], Théorème 2) For $y_{0} \leq y \leq \sqrt{x}, z \geq y+1$ and $\frac{x}{\log ^{10} z} \leq \Delta \leq x$, we have

$$
H(x, y, z)-H(x-\Delta, y, z) \asymp \frac{\Delta}{x} H(x, y, z) .
$$

4 Proof of Theorem 1

Using Lemma 1, we easily obtain that

$$
\begin{align*}
\sum_{n \leq x} \rho_{2}(n)^{a} & =\sum_{\substack{n \leq x \\
\rho_{2}(n)>x^{2 / 3}}} \rho_{2}(n)^{a}+O\left(x^{\frac{2 a+3}{3}}\right)=\sum_{x^{2 / 3}<p \leq x} p^{a} \sum_{\substack{n \leq x \\
\rho_{2}(n)=p}} 1+O\left(x^{\frac{2 a+3}{3}}\right) \\
& =\sum_{x^{2 / 3}<p \leq x} p^{a} \sum_{m p \leq x} 1+O\left(x^{\frac{2 a+3}{3}}\right)=\sum_{x^{2 / 3}<p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor+O\left(x^{\frac{2 a+3}{3}}\right) \\
& =\sum_{p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor-\sum_{p \leq x^{2 / 3}} p^{a}\left\lfloor\frac{x}{p}\right\rfloor+O\left(x^{\frac{2 a+3}{3}}\right) \\
& =\Sigma_{1}-\Sigma_{2}+O\left(x^{\frac{2 a+3}{3}}\right), \tag{4.1}
\end{align*}
$$

say. From Lemma 2, we obtain that

$$
\begin{equation*}
\Sigma_{2}=\sum_{p \leq x^{2 / 3}} p^{a}\left\lfloor\frac{x}{p}\right\rfloor \leq x \sum_{p \leq x^{2 / 3}} p^{a-1} \ll x \int_{2}^{x^{2 / 3}} \frac{t^{a-1}}{\log t} d t \ll \frac{x^{\frac{2 a+3}{3}}}{\log x} \tag{4.2}
\end{equation*}
$$

Hence, it follows from (4.1) and (4.2) that

$$
\begin{equation*}
\sum_{n \leq x} \rho_{2}(n)^{a}=\sum_{p \leq x} p^{a}\left\lfloor\frac{x}{p}\right\rfloor+O\left(x^{\frac{2 a+3}{3}}\right) \tag{4.3}
\end{equation*}
$$

Finally, combining the results of Lemmas 4 and 6 in (4.3), the proof of Theorem 1 is complete.

5 Proof of Theorem 2

Observe that the relation (2.1) we need to prove is equivalent to

$$
\begin{equation*}
\frac{x^{\frac{a+2}{2}}}{(\log x)^{\delta}(\log \log x)^{3 / 2}} \ll \sum_{n \leq x} \rho_{1}(n)^{a} \ll \frac{x^{\frac{a+2}{2}}}{(\log x)^{\delta}(\log \log x)^{3 / 2}} . \tag{5.1}
\end{equation*}
$$

We will first show the first inequality in relation (5.1). We start by observing that if $x / 2<$ $n \leq x$, then n has a divisor d_{1} satisfying $\frac{\sqrt{x}}{2}<d_{1} \leq \sqrt{x}$ if and only if $\rho_{1}(n)>\frac{\sqrt{x}}{2}$. It follows from this that

$$
\sum_{n \leq x} \rho_{1}(n)^{a} \geq \sum_{\substack{x / 2<n \leq x \\ \rho_{1}(n)>\sqrt{x} / 2}} \rho_{1}(n)^{a}>\left(\frac{\sqrt{x}}{2}\right)^{a} \sum_{\substack{x / 2<n \leq x \\ \rho_{1}(n)>\sqrt{x} / 2}} 1
$$

$$
\begin{aligned}
& \geq\left(\frac{\sqrt{x}}{2}\right)^{a} \sum_{\substack{x / 2<n \leq x \\
\exists \\
d_{1} \mid n \\
d_{1} \in(\sqrt{x} / 2, \sqrt{x}]}} \geq\left(\frac{\sqrt{x}}{2}\right)^{a}\left(H\left(x, \frac{\sqrt{x}}{2}, \sqrt{x}\right)-H\left(\frac{x}{2}, \frac{\sqrt{x}}{2}, \sqrt{x}\right)\right) \\
& \geq
\end{aligned}
$$

Using Theorem B followed by Theorem A (with $\Delta=x / 2$), we find that

$$
\begin{aligned}
H\left(x, \frac{\sqrt{x}}{2}, \sqrt{x}\right)-H\left(\frac{x}{2}, \frac{\sqrt{x}}{2}, \sqrt{x}\right) & \asymp \frac{x / 2}{x} \cdot H\left(x, \frac{\sqrt{x}}{2}, \sqrt{x}\right) \\
& \asymp x \cdot\left(\frac{2 \log 2}{\log x}\right)^{\delta} \cdot(\log \log x)^{-3 / 2} \\
& \asymp \frac{x}{(\log x)^{\delta}(\log \log x)^{3 / 2}} .
\end{aligned}
$$

Combining these last two estimates, it follows that

$$
\sum_{n \leq x} \rho_{1}(n)^{a} \gg \frac{x^{\frac{a+2}{2}}}{(\log x)^{\delta}(\log \log x)^{3 / 2}},
$$

thus establishing the first inequality in (5.1).
In order to prove the second inequality in (5.1), first observe that if $n \leq x$, then it is obvious that $\frac{\sqrt{x}}{2^{k}}<\rho_{1}(n) \leq \frac{\sqrt{x}}{2^{k-1}}$ for some integer $k \geq 1$, and therefore that

$$
\begin{equation*}
\sum_{n \leq x} \rho_{1}(n)^{a} \leq \sum_{k \geq 1}\left(\frac{\sqrt{x}}{2^{k-1}}\right)^{a} H\left(x, \frac{\sqrt{x}}{2^{k}}, \frac{\sqrt{x}}{2^{k-1}}\right) . \tag{5.2}
\end{equation*}
$$

Then, using Theorem A, we find that

$$
\begin{align*}
\sum_{k \geq 1}\left(\frac{\sqrt{x}}{2^{k-1}}\right)^{a} H\left(x, \frac{\sqrt{x}}{2^{k}}, \frac{\sqrt{x}}{2^{k-1}}\right) & \ll \sum_{k \geq 1}\left(\frac{\sqrt{x}}{2^{k-1}}\right)^{a} x \cdot \frac{1}{(\log x)^{\delta}} \frac{1}{(\log \log x)^{3 / 2}} \\
& \ll \frac{x^{\frac{a+2}{2}}}{(\log x)^{\delta}(\log \log x)^{3 / 2}} \tag{5.3}
\end{align*}
$$

Combining estimates (5.2) and (5.3), the second inequality in (5.1) is proved.

6 Proof of Theorem 3

First observe that for each positive integer n, we have $\frac{\rho_{2}(n)}{\rho_{1}(n)^{r}}=\frac{\rho_{2}(n)^{r+1}}{n^{r}}$. On the other hand, it follows from Theorem 1 that for each positive integer k,

$$
\begin{equation*}
A(x):=\sum_{n \leq x} \rho_{2}(n)^{r+1}=\frac{x^{r+2}}{\log x} \sum_{\ell=0}^{k-1} \frac{c_{\ell}}{\log ^{\ell} x}+\vartheta(x), \tag{6.1}
\end{equation*}
$$

where

$$
\vartheta(x)=O\left(\frac{x^{r+2}}{\log ^{k+1} x}\right) \quad \text { and } \quad c_{\ell}=\frac{\ell!}{(r+2)^{\ell+1}} \sum_{j=0}^{\ell} \frac{(r+2)^{j}(-1)^{j} \zeta^{(j)}(r+2)}{j!} .
$$

Hence, using (6.1) and partial summation, we obtain

$$
\begin{aligned}
\sum_{n \leq x} \frac{\rho_{2}(n)}{\rho_{1}(n)^{r}} & =\sum_{n \leq x} \frac{\rho_{2}(n)^{r+1}}{n^{r}}=1+\sum_{2 \leq n \leq x} \frac{\rho_{2}(n)^{r+1}}{n^{r}} \\
& =1+\frac{A(x)-1}{x^{r}}+\int_{2}^{x} \frac{r}{t^{r+1}}(A(t)-1) d t \\
& =\frac{A(x)}{x^{r}}+O(1)+\int_{2}^{x} \frac{r}{t^{r+1}} A(t) d t \\
& =\frac{x^{2}}{\log x} \sum_{\ell=0}^{k-1} \frac{c_{\ell}}{\log ^{\ell} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)+r \sum_{\ell=0}^{k-1} c_{\ell} \int_{2}^{x} \frac{t}{\log ^{\ell+1} t} d t+r \int_{2}^{x} \frac{\vartheta(t)}{t^{r+1}} d t .
\end{aligned}
$$

It is easily seen that

$$
\begin{equation*}
r \int_{2}^{x} \frac{\vartheta(t)}{t^{r+1}} d t \ll \int_{2}^{x} \frac{t}{\log ^{k+1} t} d t \ll \frac{x^{2}}{\log ^{k+1} x} . \tag{6.3}
\end{equation*}
$$

Moreover, integrating by parts, we have

$$
c_{k-1} \int_{2}^{x} \frac{t}{\log ^{k} t} d t=\frac{c_{k-1}}{2} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

and for $0 \leq \ell \leq k-2$,

$$
c_{\ell} \int_{2}^{x} \frac{t}{\log ^{\ell+1} t} d t=\frac{c_{\ell}}{2} \frac{x^{2}}{\log ^{\ell+1} x}+\frac{c_{\ell}}{2} \sum_{i=\ell}^{k-2} \frac{x^{2}}{\log ^{i+2} x} \prod_{m=\ell}^{i}\left(\frac{m+1}{2}\right)+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) .
$$

Summing on ℓ from 0 to $k-1$, we then obtain that

$$
\begin{equation*}
r \sum_{\ell=0}^{k-1} c_{\ell} \int_{2}^{x} \frac{t}{\log ^{\ell+1} t} d t=\frac{x^{2}}{\log x} \sum_{\ell=0}^{k-1} \frac{d_{\ell}}{\log ^{\ell} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) \tag{6.4}
\end{equation*}
$$

where $d_{0}=\frac{r c_{0}}{2}$, and for $1 \leq \ell \leq k-1$,

$$
\begin{equation*}
d_{\ell}=\frac{r c_{\ell}}{2}+\sum_{\nu=0}^{\ell-1} \frac{r c_{\nu}}{2} \prod_{m=\nu}^{\ell-1}\left(\frac{m+1}{2}\right) \tag{6.5}
\end{equation*}
$$

This is why, combining estimates (6.2), (6.3), (6.4), (6.5), we may conclude that

$$
\sum_{n \leq x} \frac{\rho_{2}(n)}{\rho_{1}(n)^{r}}=\frac{x^{2}}{\log x} \sum_{\ell=0}^{k-1} \frac{e_{\ell}}{\log ^{\ell} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

with $e_{0}=\frac{(r+2) c_{0}}{2}$ and for $1 \leq \ell \leq k-1$,

$$
e_{\ell}=\left(\frac{r+2}{2}\right) c_{\ell}+\sum_{\nu=0}^{\ell-1} \frac{r c_{\nu}}{2} \prod_{m=\nu}^{\ell-1}\left(\frac{m+1}{2}\right) .
$$

7 Proof of Theorem 4

First observe that for each positive integer n, we have $\frac{\rho_{1}(n)}{\rho_{2}(n)}=\frac{\rho_{1}(n)^{2}}{n}$. Set

$$
A(x):=\sum_{n \leq x} \rho_{1}(n)^{2} \quad \text { and } \quad \alpha:=\sum_{n<e^{e}} \rho_{1}(n)^{2} .
$$

Then, using Theorem 1 along with partial summation, we obtain that

$$
\begin{aligned}
\sum_{n \leq x} \frac{\rho_{1}(n)}{\rho_{2}(n)} & =\sum_{n \leq x} \frac{\rho_{1}(n)^{2}}{n}=O(1)+\sum_{e^{e} \leq n \leq x} \frac{\rho_{1}(n)^{2}}{n} \\
& =O(1)+\frac{A(x)-\alpha}{x}+\int_{e^{e}}^{x} \frac{1}{t^{2}}(A(t)-\alpha) d t \\
& =\frac{A(x)}{x}+O(1)+\int_{e^{e}}^{x} \frac{A(t)}{t^{2}} d t \\
& \asymp \frac{x}{(\log x)^{\delta}(\log \log x)^{3 / 2}}+\int_{e^{e}}^{x} \frac{d t}{(\log t)^{\delta}(\log \log t)^{3 / 2}}
\end{aligned}
$$

Since

$$
\int_{e^{e}}^{x} \frac{d t}{(\log t)^{\delta}(\log \log t)^{3 / 2}} \ll \frac{x}{(\log x)^{\delta}(\log \log x)^{3 / 2}}
$$

the proof of Theorem 4 is complete.

References

[1] K. Ford, The distribution of integers with a divisor in a given interval, Annals of Mathematics 168 (2008), 367-433.
[2] E. Naslund, The average largest prime factor, Integers 13 (2013), 5 pages.
[3] E. Naslund, The median largest prime factor, J. Number Theory 141 (2014), 109-118.
[4] F. Roesler, How quadratic are the natural numbers?, Arch. Math. (Basel) 73 (1999), no. 3, 193-198.
[5] G. Tenenbaum, Sur deux fonctions de diviseurs, J. London Math. Soc. 14 (1976), 521526; Corrigendum: J. London Math. Soc. 17 (1978), 212.
[6] C.J. de la Vallée Poussin, Sur la fonction $\zeta(s)$ de Riemann et le nombre de nombres premiers inférieurs à une suite donnée, Acad. Royale Sci. Lettres Beaux-Arts Belgique 59 (1899); reprinted in Colloque sur la Théorie des Nombres, Bruxelles, 1955, pp. 9-66. Georges Thone, Liège; Masson and Cie, Paris, 1956.

