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Notation and the concept of normal number

Throughout this survey, we let ℘ stand for the set of all prime numbers. The letter p, with
or without subscript, stands for a prime number. The letter c, with or without subscript,
stands for an absolute positive constant, but not necessarily the same at each occurrence.
At times, we will be writing x1 for max(1, log x), x2 for max(1, log log x), and so on.

We shall be using the arithmetical functions

ω(n) = the number of distinct prime factors of n,

Ω(n) = the number of prime factors of n counting their multiplicity,

φ(n) = #{m ≤ n : gcd(m,n) = 1}, the Euler totient function,

p(n) = the smallest prime factor of n, with p(1) = 1,

P (n) = the largest prime factor of n, with P (1) = 1

as well as the functions

π(x) = the number of prime numbers p ≤ x,

π(x; k, `) = the number of prime numbers p ≤ x such that p ≡ ` (mod k),

li(x) =

∫ x

2

dt

log t
, the logarithmic integral of x,

π(B) = the number of primes belonging to the set B.

Also, given a set of primes P , we will write N (P) for the semi-group generated by P .
A sequence (xn)n∈N of real numbers is said to be uniformly distributed modulo 1 (or mod

1) if for every interval [a, b) ⊆ [0, 1),

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ [a, b)} = b− a.
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(Here, {y} stands for the fractional part of y.) In other words, a sequence of real numbers is
said to be uniformly distributed mod 1 if every subinterval of the unit interval gets its fair
share of the fractional parts of the elements of this sequence.

Also, given a set of N real numbers x1, . . . , xN , we define the discrepancy of this set as
the quantity

(0.1) D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣∣
1

N

∑
n≤N

{xn}∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ .
It is easily established that a sequence of real numbers (xn)n∈N is uniformly distributed

mod 1 if and only if D(x1, . . . , xN) → 0 as N → ∞ (see Theorem 1.1 in Chapter 2 in the
book of Kuipers and Niederreiter [50]).

The concept of a normal number goes back to 1909: it was first introduced by Émile
Borel [6]. Given an integer q ≥ 2, a q-normal number, or for short a normal number, is a real
number whose q-ary expansion is such that any preassigned sequence, of length k ≥ 1, of base
q digits from this expansion, occurs at the expected frequency, namely 1/qk. Equivalently,
given a positive real number

η = bηc+
∞∑
j=1

aj
qj
,

where each aj ∈ {0, 1, . . . , q − 1}, we say that η is a q-normal number if for every integer
k ≥ 1 and b1b2 . . . bk ∈ {0, 1, . . . , q − 1}k, we have

lim
N→∞

1

N
#{j ≤ N : ajaj+1 . . . aj+k−1 = b1 . . . bk} =

1

qk
.

Also, given an integer q ≥ 2, it can be shown (see Theorem 8.1 of Chapter 1 in the book
of Kuipers and Niederreiter [50]) that a real number η is normal in base q if and only if the
sequence ({qnη})n∈N is uniformly distributed mod 1.

Let q ≥ 2 be a fixed integer and set Aq := {0, 1, 2, . . . , q − 1}. Given an integer t ≥ 1,
an expression of the form i1i2 . . . it, where each ij ∈ Aq, is called a word of length t. Given
a word α, we shall write λ(α) = t to indicate that α is a word of length t. We shall also use
the symbol Λ to denote the empty word and write λ(Λ) = 0.

We will write Akq for the set of words of length k, while A∗q will stand for the set of finite
words over Aq, including the empty word Λ. The operation on A∗q is the concatenation αβ
for α, β ∈ A∗q. It is clear that λ(αβ) = λ(α) + λ(β). Also, we will say that α is a prefix of a
word γ if for some δ, we have γ = αδ.

Given n ∈ N, we shall write its q-ary expansion as

(0.2) n = ε0(n) + ε1(n)q + ε2(n)q2 + · · ·+ εt(n)qt,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate the word
n = ε0(n)ε1(n) . . . εt(n) ∈ At+1

q . For such a word n, given a word β = b1b2 . . . bk ∈ Akq , we let
νβ(n) stand for the number of occurrences of β in the q-ary expansion of the positive integer
n, that is, the number of times that εj(n) . . . εj+k−1(n) = β as j varies from 0 to t− (k− 1).
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Let η∞ = ε1ε2ε3 . . ., where each εi is an element of Aq and, for each positive integer N ,
let ηN = ε1ε2 . . . εN . Moreover, for each β = δ1δ2 . . . δk ∈ Akq and integer N ≥ 2, let M(N, β)
stand for the number of occurrences of β as a subsequence of the consecutive digits of ηN ,
that is,

M(N, β) = #{(α, γ) : ηN = αβγ, α, γ ∈ A∗q}.

We will say that η∞ is a normal sequence if

(0.3) lim
N→∞

M(N, β)

N
=

1

qλ(β)
for all β ∈ A∗q.

Let ξ < 1 be a positive real number whose q-ary expansion is

ξ = 0.ε1ε2ε3 . . .

and, for each integer N ≥ 1, set
ξN = 0.ε1ε2 . . . εN .

With β and M(N, β) as above, we will say that ξ is normal if (0.3) holds.
Given an integer q ≥ 2 and a positive integer n, we let

(0.4) L(n) = Lq(n) =

⌊
log n

log q

⌋
+ 1,

that is, the number of digits of n in base q.

Preliminary results

In 1995 (see [12]), we introduced the notion of a disjoint classification of primes, that is a
collection of q + 1 disjoint sets of primes R, ℘0, ℘1, . . . , ℘q−1, whose union is ℘, where R is a
finite set (perhaps empty) and where the other q sets are of positive densities δ0, δ1, . . . , δq−1

(with clearly
∑q−1

i=0 δi = 1). For instance, the sets ℘0 = {p : p ≡ 1 (mod 4)}, ℘1 = {p : p ≡ 3
(mod 4)} and R = {2} provide a disjoint classification of primes.

We then introduced the function H : N → A∗q defined2 by H(n) = H(pa1
1 · · · parr ) =

`1 . . . `r, where each `j is such that pj ∈ ℘`j , and investigated the size of the set of positive
integers n ≤ x for which H(n) = α for a given word α ∈ Akq . More precisely, we proved the
following result.

Theorem A. Let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification of primes such that, for
some c1 ≥ 5 and each i = 0, 1, . . . , q − 1,

(0.5) π([u, u+ v] ∩ ℘i) = δiπ([u, u+ v]) +O

(
u

logc1 u

)
holds uniformly for 2 ≤ v ≤ u, where δ0, δ1, . . . , δq−1 are positive constants such that∑q−1

i=0 δi = 1. Let limx→∞wx = +∞ with wx = O(x3). Let A be a positive integer such

2Note the distinction between the use of the central dots (· · · ) and that of the lower dots (. . .), the former
being used for the multiplication of real numbers and the later for that of the concatenation of digits.
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that A ≤ x2 and P (A) ≤ wx. Then, for
√
x ≤ Y ≤ x and 1 ≤ k ≤ c2x2, where c2 is an

arbitrary constant, as x→∞,

#{n = An1 ≤ Y : p(n1) > wx, ω(n1) = k, H(n1) = i1 . . . ik}

= (1 + o(1))δi1 · · · δik
Y

A log Y
tk(Y )ϕwx

(
k − 1

x2

)
F

(
k − 1

x2

)
,

where tk(x) =
xk−1

2

(k − 1)!
,

ϕwx(z) :=
∏
p≤wx

(
1 +

z

p

)−1

and F (z) :=
1

Γ(z + 1)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
.

Here are more results which will be used in some of our seventeen papers.

Lemma 0.1. (Brun-Titchmarsh Inequality) If 1 ≤ k < x and (k, `) = 1, then

π(x; k, `) < 3
x

φ(k) log(x/k)
.

Proof. This is essentially Theorem 3.8 in the book of Halberstam and Richert [43].

Lemma 0.2. (Bombieri-Vinogradov Theorem) Given any fixed number A > 0, there
exists a number B = B(A) > 0 such that∑

k≤
√
x/(logB x)

max
(k,`)=1

max
y≤x

∣∣∣∣π(y; k, `)− li(y)

φ(k)

∣∣∣∣ = O

(
x

logA x

)
.

Moreover, an appropriate choice for B(A) is 2A+ 6.

Proof. For a proof, see Theorem 17.1 in the book of Iwaniec and Kowalski [48].

Lemma 0.3. (Siegel-Walfisz Theorem) Let A > 0 be an arbitrary number. Then, there
exists a positive constant c = c(A) such that

π(x; k, `) =
li(x)

φ(k)
+O

( x

ec
√

log x

)
whenever the integers k and ` are coprime and k < logA x.

Proof. This is Theorem 8.17 in the book of Tenenbaum [61].

Lemma 0.4. Given a fixed integer q ≥ 2, let L be defined as in (0.4). Let also F ∈ Z[x] be
a polynomial of positive degree r which takes only positive integral values at positive integral
arguments. Moreover, assume that κu is a function of u such that κu > 1 for all u > ee.
Then, given a word β ∈ Akq , there exists a positive constant c such that

#

{
p ∈ [u, 2u] :

∣∣∣∣νβ(F (p))− L(ur)

qk

∣∣∣∣ > κu
√
L(ur)

}
≤ cu

(log u)κ2
u

.
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The above result is a particular case of Theorem 1 in the 1996 paper of Bassily and Kátai
[2]. The following result is an immediate consequence of Lemma 0.4.

Lemma 0.5. Let q, L, F, κu be as in Lemma 0.4. Given β1, β2 ∈ Akq with β1 6= β2, there
exists a positive constant c such that

#
{
p ∈ [u, 2u] :

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ > κu

√
L(ur)

}
≤ cu

(log u)κ2
u

.

We now introduce the counting function of the y-smooth (or y friable) numbers, namely
those positive integers n such that P (n) ≤ y.

Ψ(x, y) := #{n ≤ x : P (n) ≤ y} (2 ≤ y ≤ x).

Lemma 0.6. There exists an absolute constant c > 0 such that, uniformly for 2 ≤ y ≤ x,

Ψ(x, y) ≤ c x exp

{
−1

2

log x

log y

}
.

Proof. For a proof, see the book of Tenenbaum [61].

Lemma 0.7. Uniformly for 2 ≤ y ≤ x, with u = log x/ log y, we have

Ψ(x, y) = ρ(u)x+O

(
x

log y

)
,

where ρ stands for the Dickman function.

Proof. See for instance Theorem 9.14 in the book of De Koninck and Luca [34].

Lemma 0.8. There exists an absolute constant c > 0 such that, given any δ ∈ (0, 1/2), we
have, for all x ≥ 2,

#{n ∈ [x, 2x] : P (n) < xδ or P (n) > x1−δ} < c δ x.

Proof. This result is an easy consequence of Lemma 0.6.

Lemma 0.9. There exists an absolute constant c > 0 such that, given any δ ∈ (0, 1/2), we
have, for all x ≥ 2,

#{p ∈ [x, 2x] : P (p+ 1) < xδ or P (p+ 1) > x1−δ} < c δ π(x).

Proof. This is an immediate application of Theorem 4.2 in the book of Halberstam and
Richert [43].

The following result will be used repetitively when trying to show that a number is normal
using the known frequency of a given pattern of digits in the q-ary expansion of that number.

Lemma 0.10. Fix an integer q ≥ 2. Let γ = ε1ε2ε3 . . . ∈ AN
q . For each positive integer

T , write γT for the T -digit word ε1ε2 . . . εT . Assume that, for every positive integer k and
arbitrary distinct words β1, β2 ∈ Akq , there exists an infinite sequence of positive integers
T1 < T2 < · · · such that
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(i) lim
n→∞

Tn+1

Tn
= 1,

(ii) lim
n→∞

1

Tn
|νβ1(γTn)− νβ2(γTn)| = 0.

Then, the real number 0.ε1ε2ε3 . . . is q-normal.

Proof. It is easily seen that conditions (i) and (ii) imply that

1

T
|νβ1(γT )− νβ2(γT )| → 0 as T →∞

and consequently that

(0.6)
1

T

∣∣∣∣∣∣qkνβ1(γT )−
∑
β2∈Akq

νβ2(γT )

∣∣∣∣∣∣→ 0 as T →∞.

But since ∑
β2∈Akq

νβ2(γT ) = T +O(1),

it follows from (0.6) that

νβ1(γT )

T
= (1 + o(1))

1

qk
as T →∞,

thereby establishing that γ is a q-normal number and thus completing the proof of the
lemma.

Lemma 0.11. (Elliott) Let f(n) be a real valued non negative arithmetic function. Let
an, n = 1, . . . , N , be a sequence of integers. Let r be a positive real number, and let p1 <
p2 < · · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

(0.7)
N∑
n=1

an≡0 (mod d)

f(n) = κ(d)X +R(N, d),

where X and R are real numbers, X ≥ 0, and κ(d1d2) = κ(d1)κ(d2) whenever d1 and d2 are
co-prime divisors of Q.

Assume that for each prime p, 0 ≤ κ(p) < 1. Then, setting

S =
∑
p|Q

κ(p)

1− κ(p)
log p

and letting z be any real number satisfying log z ≥ 8 max(log r, S), the estimate

(0.8) I(N,Q) :=
N∑
n=1

(an,Q)=1

f(n) = {1 + 2θ1H}X
∏
p|Q

(1− κ(p)) + 2θ2

∑
d|Q
d≤z3

3ω(d)|R(N, d)|
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holds uniformly for r ≥ 2, where |θ1| ≤ 1, |θ2| ≤ 1 and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
.

Moreover, when these conditions are satisfied, there exists an absolute positive constant c
such that 2H ≤ c < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [37].

Lemma 0.12. Given relatively prime polynomials F1, F2 ∈ Z[x], the congruences

F1(m) ≡ 0 (mod a) and F2(m) ≡ 0 (mod a)

have common roots for at most finitely many a’s.

Proof. A proof of this result can be found in Tanaka [60].

Lemma 0.13. Given any r ∈ N and setting πr(x) := #{n ≤ x : ω(n) = r}, there exist
positive absolute constants c1, c2 such that

πr(x) ≤ c1
x

log x

(log log x+ c2)r−1

(r − 1)!
(x ≥ 3).

Proof. For a proof, see Hardy and Ramanujan [44].

Lemma 0.14 (Borel-Cantelli Lemma). Let E1, E2, E3, . . . be an infinite sequence of events
in some probability space. Assuming that the sum of the probabilities of the En’s is finite,

that is,
∞∑
n=1

P (En) < +∞, then the probability that infinitely many of them occur is 0.

Proof. For a proof of this result, see the book of Janos Galambos [39].

Given a probability space (Ω,F , P ), we say that A1, A2, . . . is a list of completely indepen-
dent elements of F if, given any finite increasing sequence of integers, say i1 < i2 < · · · < ik,
we have P (Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik).

The second Borel-Cantelli lemma can be considered as the converse of the classical Borel-
Cantelli lemma. It can be stated as follows.

Lemma 0.15. Let (Ω,F , P ) be a probability space and let A1, A2, . . . be a list of completely
independent elements of F . Letting E be as in Lemma 0.14 and assuming that

∞∑
j=1

P (Aj) =∞,

then P (E) = 1.
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I. Construction of normal numbers by classified prime divisors of integers [14]
(Functiones et Approximatio, 2011)

Fix an integer q ≥ 2 and let

(1.1) ℘ = R∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1,

be a disjoint classification of primes.
Consider the function H : ℘→ Aq defined by

H(p) =

{
j if p ∈ ℘j (j ∈ Aq),
Λ if p ∈ R,

and further extend the domain of the function H to all prime powers pα by simply setting
H(pα) = H(p).

We introduce the function R : N → A∗q defined as follows. If n = pα1
1 · · · pαrr , where

p1 < · · · < pr are primes and each αi ∈ N, we set

(1.2) R(n) = H(p1) . . . H(pr),

where on the right hand side of (1.2), we omit H(pi) = Λ if pi ∈ R. For convenience, we set
R(1) = Λ.

For instance, choosing ℘0 = {p : p ≡ 1 (mod 4)}, ℘1 = {p : p ≡ 3 (mod 4)} and
R = {2}, we get that

{R(1), R(2), . . . , R(15)} = {Λ,Λ, 1,Λ, 0, 1, 1,Λ, 1, 0, 1, 1, 0, 1, 10}.

Now, consider the situation where ℘ = R ∪ ℘0 ∪ . . . ∪ ℘q−1 is a disjoint classification of
primes, and let R be defined as in (1.2). Consider the number

ξ = 0.R(1)R(2)R(3) . . . ,

which represents an infinite sequence over Aq and which in turn, by concatenating the finite
words R(1), R(2), R(3), . . . , can be considered as the q-ary expansion of a real number,
namely the real number ξ. In what follows, we examine what other conditions are required
in order to claim that the above number ξ is indeed a q-normal number.

Main results

Theorem 1.1. Let q ≥ 2 be a fixed integer and let ℘ = R ∪ ℘0 ∪ · · · ∪ ℘q−1 be a disjoint
classification of primes. Assume that, for a certain constant c ≥ 5, for each j = 0, 1, . . . , q−1,

π([u, u+ v] ∩ ℘j) =
1

q
π([u, u+ v]) +O

(
u

logc u

)
uniformly for 2 ≤ v ≤ u as u→∞. Moreover, let R be as in (1.2) and set

(1.3) ξ = 0.R(1)R(2)R(3) . . . ,

where the right hand side of (1.3) stands the q-ary expansion of a real number. Then ξ is a
q-normal number.
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Using the reduced residue class modulo a given integer D ≥ 3, we may also create normal
numbers.

Theorem 1.2. Fix an integer D ≥ 3 and let h0, h1, . . . , hφ(D)−1 be those positive integers
< D which are relatively prime with D. Then, define the function H on prime powers by

H(pa) = H(p) =

{
j if p ≡ hj (mod D),
Λ if p|D

and consider the corresponding arithmetic function T defined by

T (n) = T (pa1
1 · · · parr ) = H(p1) . . . H(pr).

Then, given a positive integer a with (a,D) = 1, the real number ξ whose φ(D)-ary
expansion is given by

ξ = 0.T (2 + a)T (3 + a)T (5 + a) . . . T (p+ a) . . .

is φ(D)-normal.

Given a positive real number Y , then for each integer n ≥ 2, let

A(n|Y ) :=
∏
pα‖n
p≤Y

pα.

Theorem 1.3. Let a be a positive integer. Let εx be a function which tends to 0 as x→∞
in such a way that 1/εx = o(log log x). Let Kx := {K ∈ N : P (K) ≤ xεx}. For each K ∈ Kx,
define

∆K(x) := #{p ≤ x : A(p+ a|xεx) = K}
and, for gcd(a,K) = 1,

κ(K) :=
∏
p<xεx

gcd(p,Ka)=1

(
1− 1

p− 1

)
·
∏
p|K

(
1− 1

p

)
(1.4)

=
∏
p<xεx

gcd(p,Ka)=1

(
1− 1

p− 1

)
· φ(K)

K
.

Let also δx be a function satisfying limx→∞ δx = 0 and limx→∞ δx/εx = +∞. Then, given
any fixed C > 0,
(1.5)∑
K∈Kx, K<xδx

gcd(K,a)=1

∣∣∣∣∆K(x)− κ(K)

φ(K)
li(x)

∣∣∣∣� exp

{
−1

2

δx
εx

log
δx
εx

}
· π(x) +O

(
x

logC x

)
+O(εxπ(x)).

Moreover,

(1.6) lim
x→∞

1

π(x)

∑
K∈Kx

gcd(K,a)=1

∣∣∣∣∆K(x)− κ(K)

φ(K)
li(x)

∣∣∣∣ = 0.

10



We may also use the prime factors of the product of k consecutive integers to create
normal numbers. the result goes as follows.

Let k ≥ 1 be a fixed integer and set E(n) := n(n+ 1) · · · (n+ k− 1). Moreover, for each
positive integer n, consider the function

e(n) :=
∏

qβ‖E(n)
q≤k−1

qβ.

We shall now define the sequence hn on the prime powers qβ dividing E(n) as follows:

hn(qβ) = hn(q) =

{
Λ if q|e(n),
` if q|n+ `, 0 ≤ ` ≤ k − 1, gcd(q, e(n)) = 1.

If E(n) = qβ1

1 q
β2

2 · · · qβrr where q1 < q2 < · · · < qr are primes an each βi ∈ N, then we set

S(E(n)) = hn(q1)hn(q2) . . . hn(qr).

Theorem 1.4. Let k, E and S be as above. Let ξ be the real number whose k-ary expansion
is given by

(1.7) ξ = 0.S(E(1))S(E(2)) . . . S(E(n)) . . .

Then, ξ is a k-normal number.

There is an analogous result for shifted primes.

Theorem 1.5. Let p1 < p2 < · · · be the sequence of all primes, and let k, E and S be as
above. Let ξ be the real number whose k-ary expansion is given by

ξ = 0.S(E(p1 + 1))S(E(p2 + 1)) . . .

Then ξ is a k-normal number.

Here, we will only prove Theorem 1.1. To do so, we need two additional lemmas.

Lemma 1.1. Fix an integer q ≥ 2. Let wx be a nondecreasing function which tends to +∞
as x → ∞. Moreover, let α = i1 . . . ir ∈ Arq be an arbitrary word and let R be as in (1.2),
and define

Nr(Y |wx) := #{pa1
1 · · · parr ≤ Y : wx < p1 < · · · < pr},

Nr(Y |wx;α) := #{pa1
1 · · · parr ≤ Y : wx < p1 < · · · < pr, R(pa1

1 · · · parr ) = α}.

Assume that, uniformly for 2 ≤ v ≤ u, j = 0, . . . , q − 1,

π([u, u+ v]|℘j) =
1

q
π([u, u+ v]) +O

(
u

logc u

)
(u→∞)

holds for some constant c ≥ 5. Further assume that wx � x3. Then, for
√
x ≤ Y ≤ x and

1 ≤ r ≤ c2x2 (for some fixed positive constant c2), as x→∞,

Nr(Y |wx;α) = (1 + o(1))
1

qr
Nr(Y |wx).

11



Proof. This is a special case of Theorem 1 of De Koninck and Kátai [12].

For each n ∈ N, define

e(n) :=
∏
pa‖n
p≤wx

pa and M(n) :=
∏
pa‖n
p>wx

pa.

Lemma 1.2. Assume that the conditions of Lemma 1.1 are met and set

Sr(Y |wx) := #{n = e(n)M(n) ≤ Y : ω(M(n)) = r},
Sr(Y |wx;α) := #{n = e(n)M(n) ≤ Y : ω(M(n)) = r, R(M(n)) = α}.

Then, as x→∞,

Sr(Y |wx;α) = (1 + o(1))
1

qr
Sr(Y |wx).

Proof. To prove Lemma 1.2, it is sufficient to observe that

Sr(Y |wx;α) =
∑
ν≤x

p(ν)≤wx

Nr(
Y

ν
|wx;α),

Sr(Y |wx) =
∑
ν≤x

p(ν)≤wx

Nr(
Y

ν
|wx),

and thereafter to apply Lemma 1.1 and sum over all ν ≤ ewx , say, and then show that the
sum over those ν > ewx is negligible.

Proof of Theorem 1.1.

Let λ(α) stand for the length of the word α over Aq. Let β = b1 . . . bk ∈ Akq and

ω∗(n) :=
∑
p|n
p 6∈R

1, so that ω∗(n) = λ(R(n)).

Since R is a finite set, it is clear that

(1.8) TN :=
∑
n≤N

ω∗(n) = N log logN +O(N) (N →∞).

Now, for each positive integer j, let Yj = 2j and ηj := R(2j) . . . R(2j+1 − 1), so that ξ =
0.η1η2η3 . . . Recall that νβ(α) stands for the number of occurrences of β as a subword in α.

It is clear that given β ∈ Akq , for each positive integer j such that Yj < N , we have

(1.9)

Yj+1−1∑
n=Yj

νβ(R(n)) ≤ νβ(ηj) ≤
Yj+1−1∑
n=Yj

νβ(R(n)) + (k + 1)Yj

12



and

(1.10)
N∑

n=Yj

νβ(R(n)) ≤ νβ(R(Yj) . . . R(N)) ≤
N∑

n=Yj

νβ(R(n)) + (k + 1)(N − Yj + 1).

Assume that wx � x5, let j be fixed and set x = Yj. Then, for any integer n ∈ [Yj, Yj+1],
we clearly have

νβ(R(M(n))) ≤ νβ(R(n)) ≤ ω(e(n)) + k + νβ(R(M(n))).

Observe that
N∑

n=Yj

(ω(e(n)) + k) ≤ (N − Yj)(k + π(wx)).

We shall now provide asymptotic estimates for

(1.11) Kj :=

Yj+1−1∑
n=Yj

νβ(R(M(n))) and KN,Yj :=
N∑

n=Yj

νβ(R(M(n))).

To do so, we shall first find an upper bound for the number of integers n ∈ [Yj, Yj+1 − 1] for
which ω(M(n)) ≥ 2x2. In fact, we will prove that

(1.12) Σ0 :=
∑

Yj≤n<Yj+1
ω(M(n))≥2x2

ω(M(n)) = O(Yj).

Indeed, it follows from Lemma 0.13 that

πr(Yj) ≤
c3Yj

log Yj

(log log Yj + c4)r−1

(r − 1)!
,

so that

Σ0 =
∞∑

r=b2x2c

rπr(Yj) ≤ c3

∑
r≥2x2

rYj
log Yj

(log log Yj + c4)r−1

(r − 1)!
� Yj,

thereby establishing our claim (1.12).
With this result in mind, we now only need to consider those integers n for which r =

ω(M(n)) ≤ 2x2.
So let α = e1 . . . er ∈ Arq, with r ≤ 2x2.
From Lemma 1.2, we have, as x→∞,

Sr(Y |wx;α) = #{n = e(n)M(n) ≤ Y : ω(M(n)) = r, R(M(n)) = α}

= (1 + o(1))
1

qr
Sr(Y |wx),

so that

Sr(Yj+1 − 1|wx;α) − Sr(Yj − 1|wx;α)

13



= (1 + o(1))
1

qr
(Sr(Yj+1 − 1|wx)− Sr(Yj − 1|wx)) .

Similarly,

Sr(N |wx;α)− Sr(Yj − 1|wx, 1) = (1 + o(1))
1

qr
(Sr(N |wx)− Sr(Yj|wx)) .

From these observations and in light of (1.12), it follows that, as x→∞,

(1.13) Kj = (1 + o(1))
∑
r≤2x2

1

qr

∑
α∈Arq

νβ(α)

 (Sr(2Yj|wx)− Sr(Yj|wx)) +O(Yj).

On the other hand, clearly, for any β ∈ Akq ,∑
α∈Arq

νβ(α) =

{
0 if r < k,
(r − k + 1)qr−k if r ≥ k.

Substituting this in (19.7), it follows that, as x→∞,

(1.14) Kj = (1 + o(1))

b2x2c∑
r=k

r − k + 1

qk
(Sr(2Yj|wx)− Sr(Yj|wx)) +O(Yj).

Since the contribution to Kj of those integers r for which |r − x2| ≥ x
3/4
2 is clearly o(x2Yj),

estimate (1.14) becomes

(1.15) Kj = (1 + o(1))
x2

qk

∑
|r−x2|<x3/4

2

(Sr(2Yj|wx)− Sr(Yj|wx)) + o(x2Yj) (x→∞).

On the other hand, since the normal order of ω(n) is log log n, it is clear that

(1.16)
∑

|r−x2|<x3/4
2

(Sr(2Yj|wx)− Sr(Yj|wx)) = (1+o(1))(2Yj−Yj) = (1+o(1))Yj (x→∞).

Substituting (1.16) in (1.15), we obtain

(1.17) Kj = (1 + o(1))
x2

qk
Yj (x→∞).

It remains to estimate KN,Yj (defined in (1.11)) in the case Yj < N < Yj+1.
Let ε1, ε2, . . . be a sequence of positive numbers which tends to 0 very slowly.
If N − Yj ≥ εjYj, then, in light of Lemma 1.1 and proceeding as above, one can prove

that
KN,Yj = (1 + o(1))

x2

qk
(N − Yj) (x→∞),

whereas if N − Yj < εjYj, we have

KN,Yj = O(εjYj log logN) (Yj →∞).
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Hence, in light of these observations and of (1.17), it follows from inequalities (1.9) and
(1.10) that

(1.18) νβ(ηj) = (1 + o(1))(Yj+1 − Yj)
log log Yj

qk
(Yj →∞)

and that

(1.19) νβ(R(Yj) . . . R(N)) = (1+o(1))(N−Yj)
log log Yj

qk
+O(εjYj log log Yj) (Yj →∞).

Now, consider the q-ary expansion of the number ξ, that is ξ = 0.R(1)R(2) . . .. For each
positive integer M , let ξ(M) = R(1)R(2) . . . R(M). We would like to approximate νβ(ξ(M)).
Given a fixed positive integer M , let N be defined implicitly by

λ(R(1) . . . R(N)) ≤M < λ(R(1) . . . R(N + 1)).

Hence, in light of (1.8), M and N are tied by the relation

M = TN +O(N) = N log logN +O(N) (N →∞).

We therefore have that, for Yj ≤ N < Yj+1,

νβ(ξ(M)) = νβ(R(1) . . . R(Yj − 1)) + νβ(R(Yj) . . . R(N)) +O(εjN log logN),

so that

(1.20)
νβ(ξ(M))

M
=
νβ(R(1) . . . R(Yj − 1))

M
+
νβ(R(Yj) . . . R(N))

M
+O

(
εjN log logN

M

)
.

Taking into account estimates (1.18) and (1.19), it follows from (1.20) that

νβ(ξ(M))

M
= (1 + o(1))

1

qk
TYj
M

+ (1 + o(1))
TN − TYj
qkM

+O

(
εjN log logN

M

)
(N →∞),

which implies, since εj → 0 as j →∞, that

lim
M→∞

νβ(ξ(M))

M
=

1

qk
,

thus completing the proof of Theorem 1.1.
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II. On a problem on normal numbers raised by Igor Shparlinski [13]
(Bulletin of the Australian Mathematical Society, 2011)

Theorem 2.1. Let F ∈ Z[x] be a polynomial of positive degree r which takes only positive
integral values at positive integral arguments. Then the number

η = 0.F (P (2 + 1))F (P (3 + 1))F (P (5 + 1)) . . . F (P (p+ 1)) . . .

is a normal number.

Theorem 2.2. Let F be as in Theorem 2.1. Then the number

ξ = 0.F (P (2))F (P (3))F (P (4)) . . . F (P (n)) . . .

is a normal number.

We only give here a sketch of the proof of Theorem 2.2.

Fix an integer q ≥ 2. As usual, we let L(n) := Lq(n) =

⌊
log n

log q

⌋
+ 1, that is, the number

of digits of n in base q. Recall also that given a word θ = i1i2 . . . it ∈ Atq, we write λ(θ) = t
and that we let νβ(θ) stand for the number of times that the subword β occurs in the word
θ.

A key element of the proof of Theorem 2.2 is Lemma 0.5.
Now, given a large number x, let Ix = [x, 2x] and set

θ = F (P (n0))F (P (n1)) . . . F (P (nT )),

where n0 is the smallest integer in Ix, and nT the largest.
It is clear that the proof of Theorem 2.2 will be complete if we can show that, given an

arbitrary word β ∈ Akq , we have

νβ(θ)

λ(θ)
∼ 1

qk
(x→∞).

Since the number of digits of each integer n ∈ Ix is of order log x/ log q, one can easily
see, using the definition of θ, that

(2.1) λ(θ) = rx
log x

log q
+O(x) ≈ x log x,

thus revealing the true size of λ(θ).
Letting δ be a small positive number, it follows from Lemma 0.6 that the number of

integers n ∈ Ix for which either P (n) < xδ or P (n) > x1−δ is ≤ cδx, implying that we may
write

(2.2) νβ(θ) =
∑
n∈Ix

xδ≤P (n)≤x1−δ

νβ(F (P (n))) +O(T ) +O(δx log x).

16



Let us now introduce the finite sequence u0, u1, . . . , uH defined by u0 = xδ and uj = 2uj−1

for each 1 ≤ j ≤ H, where H is the smallest positive integer for which 2Hu0 > x1−δ, so that

H =

⌊
(1− 2δ) log x

log 2

⌋
+ 1.

Now, for each prime p, let R(p) := #{n ∈ Ix : P (n) = p}. We have, in light of (2.2) and
the fact that T = O(x),

(2.3) νβ(θ) =
∑

xδ≤p≤x1−δ

νβ(F (p))R(p) +O(δx log x).

Let β1, β2 ∈ Akq with β1 6= β2. Then, using (2.3), we have

|νβ1(θ)− νβ2(θ)| ≤
∑

xδ≤p≤x1−δ

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣R(p) +O(δx log x)

=
H−1∑
j=0

∑
uj≤p<uj+1

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣R(p) +O(δx log x)

=
H−1∑
j=0

Sj(x) +O(δx log x),(2.4)

say.
Using Lemma 0.7, we have, as x→∞,

R(p) = Ψ

(
2x

p
, p

)
−Ψ

(
x

p
, p

)
= ρ

(
log(2x/p)

log p

)
2x

p
− ρ

(
log(x/p)

log p

)
x

p
+O

(
x

p log p

)
= (1 + o(1))ρ

(
log x

log p
− 1

)
x

p
,

from which it follows that

(2.5) Sj(x) ≤ 2x

uj

∑
uj≤p<uj+1

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ .

Set κu := log log u. We will say that p ∈ [uj, uj+1) is a good prime if∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ ≤ κu

√
L(ur),

and a bad prime otherwise.
Splitting the sum Sj(x) into two sums, one running on the good primes and the other

one running on the bad primes, it follows from (2.5) and Lemma 0.5 that

Sj(x) ≤ 2x

uj
κuj

√
L(urj)

uj
log uj

+
2x

uj

uj log uj+1

(log uj)κ2
uj
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= 2x ·

κuj
√
L(urj)

log uj
+

log uj+1

(log uj)κ2
uj


≤ 4x

{
r log log uj√

log uj
+

1

(log log uj)2

}
.

Summing the above inequalities for j = 0, 1, . . . , H − 1, and taking into account that
H � log x, we obtain that

∑H−1
j=0 Sj(x) = o(x log x) as x → ∞ and thus that, in light of

(2.4), for some constant c > 0,

(2.6) |νβ1(θ)− νβ2(θ)| ≤ cδx log x+ o(x log x).

Now let ξN be the first N digits of the infinite word

F (P (2)) F (P (3)) F (P (4)) . . .

and let m be the unique integer such that

ξ̃N := F (P (2)) F (P (3)) . . . F (P (m)),

where λ(ξ̃N) ≤ N < λ(ξ̃NF (P (m+ 1))), so that λ(F (P (m+ 1))) � logm � logN , imply-

ing in particular that ξN and ξ̃N have the same digits except for at most the last blogNc
ones.

Let 2x = m and consider the intervals Ix, Ix/2, Ix/(22), . . . , Ix/(2L), where L = 2blog log xc,
that is,

Ix/2L Ix/22 Ix/2 Ix
| | · · · · · · | | | | | | 2x = m

and write
τj = F (P (a)) . . . F (P (b)) (j = 0, 1, . . . , L),

where a and b are the smallest and largest integers in Ix/(2j).

Moreover, let
µ = F (P (2)) . . . F (P (s)),

where s is the largest integer which is less than the smallest integer in Ix/(2L).
It is clear that

(2.7)
∣∣∣νβ1(ξ̃N)− νβ2(ξ̃N)

∣∣∣ ≤ |νβ1(µ)− νβ2(µ)|+
L∑
j=0

|νβ1(τj)− νβ2(τj)|

and that

(2.8) νβ(µ) ≤ λ(µ) ≤ x

2L
· r log x = o(x).

Applying estimate (2.6) L + 1 times (with θ = ξ̃N) by replacing successively 2x by x, x/2,
x/22, . . . , x/2L, we obtain from (2.7) and in light of (2.8), that

(2.9)
∣∣∣νβ1(ξ̃N)− νβ2(ξ̃N)

∣∣∣ ≤ cδN + o(N) (N →∞).
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Now, one can easily see that ∑
γ∈Akq

νγ(θ) = λ(θ)− k + 1,

from which it follows that

qkνβ(θ)− λ(θ) =
∑
γ∈Akq

(νβ(θ)− νγ(θ)) +O(1),

implying that, setting θ = ξN and using (2.9),∣∣qkνβ(ξN)− λ(ξN)
∣∣ ≤ ∑

γ∈Akq

|νβ(ξN)− νγ(ξN)|+O(1)

≤ (cδN + o(N))qk,

from which it follows that, observing that λ(ξN) = N ,

lim sup
N→∞

∣∣∣∣νβ(ξN)

N
− 1

qk

∣∣∣∣ ≤ cδ.

Since δ > 0 can be chosen arbitrarily small, it follows that

lim sup
N→∞

νβ(ξN)

N
=

1

qk
,

thus establishing that ξ is q-normal.

III. Normal numbers created from primes and polynomials [16]
(Uniform Distribution Theory, 2012)

In 1995 (see [12]), we observed that one can map the set of positive integers n into the set
of q-ary integers by using the multiplicative structure of the positive integers n. Indeed, we
proved that if we subdivide the set of primes ℘ into q distinct subsets ℘j, j = 0, 1, . . . , q− 1,
of essentially the same size, and if p1 < · · · < pr are the prime divisors of n with pj ∈ ℘`j
for certain `j ∈ {0, 1, . . . , q − 1}, then, for almost all n, the corresponding number `1 . . . `r
appears essentially at the expected frequency, namely 1/qr. Using this result, we recently
constructed (see [14]) large families of normal numbers.

In this paper, we further expand on this approach but this time using the prime factor-
ization of the values taken by primitive irreducible polynomials defined on the set of positive
integers.

Let Q1, Q2, . . . , Qh ∈ Z[x] be distinct irreducible primitive monic polynomials each of
degree no larger than 3. Recall that a polynomial with integer coefficients is said to be
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primitive if the greatest common divisor of its coefficients is 1. For each ν = 0, 1, 2, . . . , D−1,
let c

(ν)
1 , c

(ν)
2 , . . . , c

(ν)
h be distinct integers, Fν(x) =

∏h
j=1Qj(x+ c

(ν)
j ), with Fν(0) 6= 0 for each

ν. Moreover, assume that the integers c
(ν)
i are chosen in such a way that Fν(x) are squarefree

polynomials and gcd(Fν(x), Fµ(x)) = 1 when ν 6= µ.
Let ℘0 be the set of prime numbers p for which there exist µ 6= ν and m ∈ N such that

p|gcd(Fν(m), Fµ(m)). It follows from Lemma 0.12 that ℘0 is a finite set. Now let

U(n) = F0(n)F1(n) · · ·FD−1(n) = ϑ qa1
1 q

a2
2 · · · qarr ,

where ϑ ∈ N (℘0) and q1 < q2 < · · · < qr are primes not belonging to N (℘0) with positive
integers ai. Then, let hn be defined on the prime divisors qa of U(n) by

hn(qa) = hn(q) =

{
Λ if q|ϑ,
` if q|F`(n), q 6∈ ℘0

and further define αn as
αn = hn(qa1

1 )hn(qa2
2 ) . . . hn(qarr ),

where on the right hand side we omit Λ when hn(qaii ) = Λ for some i. Finally, we let η be
the real number whose D-ary expansion is

(3.1) η = 0.α1α2α3 . . .

As a simple example, take h = 1, Q1(x) = x, Fν(x) = x + ν for ν = 0, 1, . . . , D − 1, in
which case we have ℘0 = {p : p ≤ D − 1}. Then,

U(n) = n(n+ 1) · · · (n+D − 1) = e(n)qa1
1 · · · qarr ,

where e(n) :=
∏

qα‖U(n)
q≤D−1

qα, so that

hn(qa) = hn(q) =

{
Λ if q|e(n),
` if q|n+ `, q 6∈ ℘0

and
αn = hn(qa1

1 )hn(qa2
2 ) . . . hn(qarr ),

thus giving rise to the number
η = 0.α1α2α3 . . .

In the particular case D = 5, we get U(n) = n(n+1)(n+2)(n+3)(n+4) so that ℘0 = {2, 3}
and

hn(qa) = hn(q) =

{
Λ if q ∈ {2, 3},
` if q|n+ `, q ≥ 5 where ` ∈ {0, 1, 2, 3, 4}.

In this case, one can check that

η = 0.α1α2α3α4α5 . . . = 0.43241302 . . .
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Main results

Theorem 3.1. The number η defined by (3.1) is a normal number.

Theorem 3.2. With the notations above and assuming that deg(Qj) ≤ 2 for j = 1, 2, . . . , h,
then the number

ξ = 0.α2α3α5 . . . αp . . .

(where the above subscripts run over primes p) is a normal number.

We will only prove Theorem 3.1. However, in order to do so, we need to prove a few
extra lemmas.

We start with the well known result.

Lemma 3.1. Let F (m) be an arbitrary primitive polynomial with integer coefficients and of
degree ν. Let D be the discriminant of F and assume that D 6= 0. Let ρ(m) be the number
of solutions n of F (n) ≡ 0 (mod m). Then ρ is a multiplicative function whose values on
the prime powers pα satisfy

ρ(pα)

{
= ρ(p) if p 6 |D,
≤ 2D2 if p|D.

Moreover, there exists a positive constant c = c(f) such that ρ(pα) ≤ c for all prime powers
pα.

Lemma 3.2. If g ∈ Q[x] is an irreducible polynomial and ρ(m) stands for the number of
residue classes mod m for which g(n) ≡ 0 (mod m), then

(i)
∑
p≤x

ρ(p) =
x

log x
+O

(
x

log2 x

)
;

(ii)
∑
p≤x

ρ(p)

p
= log log x+ C +O

(
1

log x

)
.

Proof. This result is due to Landau [51].

Lemma 3.3. Let F be a squarefree polynomial with integer coefficients and of positive degree
such that the degree of each of its irreducible factors is of degree no larger than 3. Let Y (x)
be a function which tends to +∞ as x→ +∞. Then

lim
x→∞

1

x
#{n ≤ x : p2|F (n) for some p > Y (x)} = 0.

Proof. For a proof, see the book of Hooley [45] (pp. 62-69).

Lemma 3.4. There exists a positive constant c = c(h,D) such that

(3.2)
1

x

∑
n≤x

|ω(U(n))− hD log log x|2 ≤ c log log x,
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(3.3)
1

x

∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n))�
√

log log x

and

(3.4)
1

x

∑
n≤x

ω(U(n))<hDx2−cx
3/4
2

ω(U(n))�
√

log log x.

Proof. First observe that

(3.5) ω(U(n)) =
D−1∑
j=0

ω(Fj(n)) +O(1),

where the term O(1) accounts for the possible common prime divisors of Fν(n) and Fµ(n),
which as we saw are in finite number.

From the Turán-Kubilius inequality,

(3.6)
1

x

∑
n≤x

(
ω(Fν(n))−

∑
p≤x

ρFν (p)

p

)2

< c

(
1 +

∑
p≤x

ρFν (p)

p

)
.

On the other hand, it follows from Lemma 3.2 (ii) that

(3.7)
∑
p≤x

ρFν (p)

p
=

h−1∑
j=0

∑
p≤x

ρ
Qj(x+c

(ν)
j )

(p)

p
= h log log x+O(1).

Combining (3.5), (3.6) and (3.7), inequality (3.2) follows.
Setting

ΣA :=
∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

1

and using the Cauchy-Schwarz inequality, we have∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n))

=
∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

(ω(U(n))− hDx2) + hDx2

∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

1

≤ Σ
1/2
A ×

 ∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

|ω(U(n))− hDx2|2


1/2

+ hDx2 ΣA.(3.8)

Now, it follows from (3.2) that

(3.9) ΣA ≤
x
√
x2

.
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Hence, in light of (3.2) and (3.9), estimate (3.8) yields∑
n≤x

ω(U(n))>hDx2+cx
3/4
2

ω(U(n))� Σ
1/2
A

√
x · x1/2

2 + x2ΣA � x x
1/4
2 + x x

1/2
2 � x x

1/2
2 ,

thereby completing the proof of inequality (3.3). Clearly, (3.4) can be obtained in a similar
way.

Let εx = 1/
√
x2, Yx = exp{xεx1 } and Zx = exp{x1−εx

1 }. Also, let

℘1 = {p : p ≤ Yx, p 6∈ ℘0}, ℘2 = {p : Yx < p < Zx}, ℘3 = {p : p ≥ Zx}.

Finally, for each j = 0, 1, 2, 3, set ωj(n) =
∑
p|n
p∈℘j

1.

Lemma 3.5. With the above notation, we have∑
n≤x

ω1(U(n))� x
∑
p≤Yx

1

p
� xεxx2 = x

√
x2,(3.10)

∑
n≤x

ω3(U(n))� x
∑

Zx≤p<x1/4

1

p
+O(x)� x

√
x2.(3.11)

Proof. These two estimates are straightforward.

Let us write each positive integer n as n = A(n)B(n)C(n), where A(n) ∈ N (℘0 ∪ ℘1),
B(n) ∈ N (℘2) and C(n) ∈ N (℘3).

Lemma 3.6. Let m0,m1, . . . ,mD−1 be squarefree numbers belonging to N (℘2), with M =
m0m1 · · ·mD−1 ≤

√
x. Let T (x|m0,m1, . . . ,mD−1) be the number of those integers n ≤ x for

which B(Fj(n)) = mj for j = 0, 1, . . . , D − 1. Then,
(3.12)∣∣∣∣∣T (x|m0,m1, . . . ,mD−1)− xρ(M)φ(M)

M2

∏
p∈℘2

(
1− DρF (p)

p

)
K(M)

∣∣∣∣∣� xρ(M)

M
exp{−xεx1 },

where

K(M) =
∏
p|M

(
1− DρF (p)

p

)−1

.

Remark 3.1. Observe that K(M) = 1 + o(1) as M →∞.

Proof. First observe that ρFν (n) = ρFµ(n) for every ν and µ, while gcd(mν ,mµ) = 1 whenever
ν 6= µ. Thus, M is squarefree as well. For convenience, let ρ = ρFν . Using these facts, it is
clear that the congruences

B(Fj(m)) ≡ 0 (mod mj) (j = 0, 1, . . . , D − 1)
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hold for n ≡ `i (mod M), i = 1, 2, . . . , ρ(M).
Let us now consider ` = `i for a fixed i ∈ [1, ρ(M)] and define

ϕj(k) =
Fj(`+ kM)

mj

(j = 0, 1, . . . , D − 1),

Φ(k) = ϕ0(k)ϕ1(k) · · ·ϕD−1(k).(3.13)

Finally, let Q =
∏

p∈℘2
p.

We now apply Lemma 0.11 with f(k) = 1, ak = Φ(k) and X = x/M , and obtain an
estimate for each corresponding Ii(X,Q) (to the function I(X,Q) defined in relation (0.8))
for the particular choice ` = `i. With this set up, we have

(3.14) T (x|m0,m1, . . . ,mD−1) =

ρ(M)∑
i=1

Ii(X,Q).

Observe that η(pα) = η(p) = 0 if p ∈ ℘1. On the other hand, for p ∈ ℘2 ∩ ℘3, we have
ρϕj(p

α) = ρϕj(p) and also that if p|mj, then ρϕj(p) = 1 and ρϕ`(p) = 0 for ` 6= j, while on
the other hand if (p,M) = 1, then ρϕj(p) = ρ(p) for j = 0, 1, . . . , D − 1.

Now we denote by η(M) the number of those k mod M such that Φ(k) ≡ 0 (mod M).
Then one can easily show that

(3.15) η(pα) = η(p) =


0 if p ∈ ℘1,
ρϕj(p) = 1 if p|mj,
ρ(p) if p ∈ ℘2 ∩ ℘3, (p,M) = 1.

It is also clear that the error term in (0.7) satisfies

(3.16) |R(X, d)| ≤ Dρ(d).

It follows from Lemma 0.11 that

(3.17) Ii(X,Q) = (1 +O(H))
x

M

∏
p|Q

(
1− η(p)

p

)
+O

∑
d|Q
d≤z3

3ω(d)|R(X, d)|

 .

Using the notation of Lemma 0.11, we have

S =
∑
p|Q

η(p)

p− η(p)
log p,

and one can show that there exist two positive constants c1 < c2 such that

(3.18) c1 <
S

(log x)εx
< c2.

Moreover, we have that log r = (log x)εx . So, we choose log z = (log x)δx , with 0 < εx < δx,
where δx is a function which tends to 0 as x→∞ and which will be determined later.
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We can prove that for z ≥ 2,

(3.19)
∑
d|Q
d≤z3

3ω(d)η(d) ≤ cz3(log z)K ,

for a suitable large constant K. Indeed,∑
d≤Y

3ω(d)η(d)|µ(d)| log d ≤
∑
pu≤Y

3ω(pu)(log p)η(p)η(u)|µ(u)|

≤ 3
∑
u≤Y

3ω(u)η(u)|µ(u)|
∑
p≤Y/u

η(p) log p.(3.20)

Since
∑
p≤Y/u

η(p) log p ≤ c
Y

u
, (3.20) becomes

∑
d≤Y

3ω(d)η(d)|µ(d)| log d ≤ cY
∑
u≤Y

3ω(u)η(u)

u
|µ(u)|

≤ cY
∏
p≤Y

(
1 +

3η(p)

p

)
≤ cY exp

{
3
∑
p≤Y

η(p)

p

}
≤ cY exp(3h log log Y ) = cY (log Y )3h.(3.21)

Let us write

(3.22)
∑
d≤Y

3ω(d)η(d)|µ(d)| =
∑
d≤
√
Y

+
∑

√
Y <d≤Y

= S1 + S2,

say. Clearly we have

(3.23) S1 �
√
Y · Y ε,

where ε > 0 can be taken arbitrarily small. On the other hand, in light of (3.21), we have

(3.24) S2 ≤
2

log Y
· cY (log Y )3h � Y (log Y )3h−1.

Setting Y = z3 and using (3.23) and (3.24) in (3.22) proves (3.19).

Coming back to our choice of z and to the size of S given by (3.18), we have

log z

(log x)εx
= xδx−εx1 ,

log z

S
≈ xδx−εx1 .

Therefore, by choosing δx = 2εx, we obtain

(3.25) H ≤ C exp

{
−1

2
(δx − εx)x2 · xδx−εx1 )

}
= C exp{−1

2
εx · x2 · xεx1 }.
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Moreover, ∏
p|Q

(
1− η(p)

p

)
=

∏
p∈℘2

(p,M)=1

(
1− DρF (p)

p

)∏
p|M

(
1− 1

p

)

=
φ(M)

M
K(M)

∏
p∈℘2

(
1− DρF (p)

p

)
.(3.26)

Using (3.19), (3.25) and (3.26) in (3.17), and then using this in (3.14), we obtain that
inequality (3.12) follows immediately, thus completing the proof of Lemma 3.6.

Proof of Theorem 3.1

Recall that given a word β = b1b2 . . . bk ∈ AkD, νβ(δ) stands for the number of occurrences
of β in δ, that is the number of solutions τ1, τ2 ∈ A∗D such that δ = τ1βτ2. Note that it is
clear that

νβ(γ1) + νβ(γ2) ≤ νβ(γ1γ2) ≤ νβ(γ1) + νβ(γ2) + k.

Let N be a large integer and let θN be the prefix of length N of the infinite sequence
α1α2 . . .. Moreover, let x be the largest integer for which

λ(α1 . . . αx) ≤ N < λ(α1 . . . αxαx+1).

Since λ(αx+1) ≤ ω(U(x+ 1)) ≤ c log x, we have

N +O(log x) =
∑
n≤x

λ(αn) =
∑
n≤x

(ω(U(n)) +O(1)) = O(x) + hDx log log x.

We may therefore write

(3.27) x =
N

hD log logN
+O

(
N

(log logN)2

)
.

Let θN = α1 . . . αx. For each n ∈ [1, x], let αn = γnκnδn, where γn is the word composed
from hn(q) where q runs over those prime divisors of U(n) which belong to the set ℘1 and
similarly δn is composed from those hn(q) where q runs over the prime divisors of U(n) which
belong to ℘3.

We have λ(γn) ≤ ω1(U(n)) and λ(δn) ≤ ω3(U(n)), so that by (3.10) and (3.11), we obtain
that ∑

n≤x

λ(γn)� x
√
x2 and

∑
n≤x

λ(δn)� x
√
x2,

thereby implying that

(3.28) νβ(θN) =
x∑

n=1

νβ(κn) +O(x
√
x2).
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Using estimates (3.3) and (3.4) of Lemma 3.4, it follows from (3.28) that

(3.29) νβ(θN) =
x∑
n=1
n∈J

νβ(κn) +O(x
√
x2),

where
J := {n : |ω(U(n))− hDx2| ≤ cx

3/4
2 }.

Now, let
J ′ := {n ∈ J : q2|U(n) for q ∈ ℘2}.

We claim that we can drop from the sum in (3.29) those n ∈ J ′, since one can show by
Lemma 3.3 that ∑

n≤x
n∈J ′

νβ(κn) = o(x log log x) (x→∞).

For the remaining integers n ≤ x, n ∈ J \ J ′, we have

B(Fν(n)) = mν (ν = 0, 1, . . . , D − 1),

with M = m0m1 · · ·mD−1, M squarefree, |ω(M)− hD log log x| ≤ Cx
3/4
2 . We then have

M ≤ Z2hDx2
x ≤ xεx ,

say.
Now, let M ∈ N (℘2), squarefree, M ≤ xεx , M = q1 · · · qS for primes q1 < · · · < qS,

|S − hDx2| ≤ cx
3/4
2 .

With M = m0m1 · · ·mD−1 being any representation, we have by Lemma 3.6,

T (x|m0,m1, . . . ,mD−1) = x
ρ(M)φ(M)

M

∏
p∈℘2

(
1− DρF (p)

p

)
·K(M)

+ O

(
x
ρ(M)

M
exp{−xεx}

)
.

For a fixed M , consider all those m0,m1, . . . ,mD−1 for which M = m0m1 · · ·mD−1.
Let τD(M) be the number of solutions of M = m0m1 · · ·mD−1. It is clear that τD is a
multiplicative function and that τD(p) = D. If m0,m1, . . . ,mD−1 run over all the possible
choices, then the corresponding βn’s run over all the possible words of length S in AkD.
Indeed, let ε1 . . . εS ∈ ASD and let mj =

∏
ε`=j

q` (j = 0, 1, . . . , S − 1). We then have

νβ(θN) = x
∑
M≤xεx

M squarefree∈N (℘2)

|ω(M)−hDx2|≤cx
3/4
2

ρ(M)φ(M)

M2
K(M)

∏
p∈℘2

(
1− DρF (p)

p

) ∑
ρ∈ASD

νβ(ρ)

+O

( ∑
M≤xεx

x
ρ(M)ω(M)τD(M)

M
exp{−xεx1 }

)
+O

(
x · x3/4

2

)
.(3.30)

27



Letting Σ0 be the first error term above, we have that

Σ0 � x exp{−xεx1 }x2

∏
p∈℘2

(
1 +

ρ(p)τD(p)

p

)
� x exp{−xεx1 }x2 · (log x)κ � x.

From this and observing that
∑
ρ∈ASD

νβ(ρ) = (s− k + 1)Ds−k, it follows that, given arbitrary

distinct words β1, β2 belonging to AkD,

|νβ1(θN)− νβ2(θN)| � x · x3/4
2 .

Since ∑
β∈AkD

νβ(θN) = N +O(logN)

and since by (3.27) we have x ≈ N/(log logN), it follows that∣∣∣∣νβ(θN)− N

Dk

∣∣∣∣ ≤ 1

Dk

∑
β1∈Ek

|νβ(θN)− νβ1(θN)|+O

(
N

(log logN)1/4

)
,

thus establishing that

lim sup
N→∞

νβ(θN)

N
=

1

Dk

and thereby completing the proof of Theorem 3.1.

IV. Some new methods for constructing normal numbers [17]
(Annales des Sciences Mathématiques du Québec, 2012)

First method

Fix an integer q ≥ 2. Let B be an infinite set of positive integers and let B(x) = #{b ≤
x : b ∈ B}. Further, let F : B → N be a function for which, for some positive integer r and
constants 0 < c1 < c2 < +∞,

c1 ≤
F (b)

br
≤ c2 for all b ∈ B.

Let x be a large number and set N =

⌊
log x

log q

⌋
+ 1.

Let 0 ≤ `1 < · · · < `h (≤ rN) be integers and let a1, . . . , ah ∈ Aq. Using the notation
given in (0.2), we further let

BF
(
x

∣∣∣∣ `1, . . . , `h
a1, . . . , ah

)
= {b ≤ x : b ∈ B, ε`j(F (b)) = aj, j = 1, . . . , h}
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and

BF

(
x

∣∣∣∣ `1, . . . , `h
a1, . . . , ah

)
= #BF

(
x

∣∣∣∣ `1, . . . , `h
a1, . . . , ah

)
.

We say that F (B) is a q-ary smooth sequence if there exists a positive constant α < 1
and a function ε(x), which tends to 0 as x tends to infinity, such that for every fixed integer
h ≥ 1,

(4.1) sup
Nα≤`1<···<`h≤rN−Nα

∣∣∣∣∣∣∣∣
qhBF

(
x

∣∣∣∣ `1, . . . , `h
a1, . . . , ah

)
B(x)

− 1

∣∣∣∣∣∣∣∣ ≤ c(h)ε(x)

(where c(h) is a positive constant depending only on h) and also such that B(x)� x

log x
.

Theorem 4.1. Let F (B) be a q-ary smooth sequence. Let b1 < b2 < b3 < · · · stand for the
list of all elements of B. Let also

ξn = F (bn) = ε0(F (bn)) . . . εt(F (bn))

and set
η = 0.ξ1ξ2ξ3 . . . .

Consider η as the real number whose q-ary expansion is the concatenation of the numbers
ξ1, ξ2, ξ3, . . .. Then η is a q-normal number.

Theorem 4.2. Let n1 < n2 < n3 < · · · be a sequence of integers such that #{j ∈ N : nj ≤
x} > ρx provided x > x0, for some positive constant ρ. Then, using the notation of Theorem
4.1, let

µ = 0.ξn1ξn2ξn3 . . .

Then µ is a q-normal number.

Second method

Theorem 4.3. Let q ≥ 2 be a fixed integer. Given a positive integer n = pe11 · · · p
ek+1

k+1

with primes p1 < · · · < pk+1 and positive exponents e1, . . . , ek+1, we introduce the numbers
c1(n), . . . , ck(n) defined by

cj(n) :=

⌊
q log pj
log pj+1

⌋
∈ Aq (j = 1, . . . , k)

and consider the arithmetic function H : N→ A∗q defined by

H(n) =

{
c1(n) . . . ck(n) if ω(n) ≥ 2,
Λ if ω(n) ≤ 1.

Then, the number
ξ = 0.H(1)H(2)H(3) . . .

is a q-normal number.
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Proof. As we will see, this theorem is an easy consequence of a variant of the Turán-Kubilius
inequality.

Let b1, . . . , bk be fixed digits inAq. Then, for each sequence of k+1 primes p1 < · · · < pk+1,
define the function

f(p1, . . . , pk+1) =

{
1 if

⌊
q log pj
log pj+1

⌋
= bj for each j ∈ {1, . . . , k},

0 otherwise.

From this, we define the arithmetic function F as follows. If n = qα1
1 · · · q

αµ
µ , where q1 <

· · · < qµ are prime numbers and α1, . . . , αµ ∈ N, let

F (n) = F (n|b1, . . . , bk) =

µ−k−1∑
j=0

f(qj+1, . . . , qj+k+1).

We will now show that F (n) is close to
1

qk
ω(n) for almost all positive integers n.

Let Yx = exp exp{
√

log log x} and Zx = x/Yx and further set

F0(n) =
∑

qj+1≤Yx

f(qj+1, . . . , qj+k+1),

F1(n) =
∑

Yx<qj+1≤Zx

f(qj+1, . . . , qj+k+1),

F2(n) =
∑

qj+1>Zx

f(qj+1, . . . , qj+k+1),

so that

(4.2) F (n) = F0(n) + F1(n) + F2(n).

It is clear that
F0(n) ≤ ωYx(n) :=

∑
p|n
p≤Yx

1

and that
F2(n) ≤

∑
p|n
p>Zx

1.

Therefore,

(4.3)
∑
n≤x

F0(n) ≤ x
∑
p≤Yx

1

p
≤ cx

√
log log x

and

(4.4)
∑
n≤x

F2(n) ≤ x
∑

Zz<p≤x

1

p
≤ cx log

(
log x

logZx

)
� cx

e
√

log log x

log x
.
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We now move on to estimate
∑
n≤x

(F1(n)− A(x))2 for a suitable expression A(x), which shall

later be given explicitly.
We first write this sum as follows:∑

n≤x

(F1(n)− A(x))2 =
∑
n≤x

F1(n)2 − 2A(x)
∑
n≤x

F1(n) + A(x)2bxc

= S1(x)− 2A(x)S2(x) + A(x)2bxc,(4.5)

say.
Let Yx < p1 < · · · < pk+1. We say that p1, . . . , pk+1 is a chain of prime divisors of n, which

we note as p1 7→ p2 7→ · · · 7→ pk+1|n, if gcd
(

n
p1···pk+1

, p
)

= 1 for all primes p in the interval

[p1, pk+1] with the possible exception of the primes p belonging to the set {p1, . . . , pk+1}.
Observe that the contribution to the sums S1(x) and S2(x) of those positive integers

n ≤ x for which p2|n for some prime p is small, since the contribution of those particular
integers n ≤ x is less than

cxk
∑
p>Yx

1

p2
≤ cxk

Yx
= o(x).

Hence we can assume that the sums S1(x) and S2(x) run only over squarefree integers n.
We now introduce the function

Γ(u, v) :=
∏
p∈℘

u≤p<v

(
1− 1

p

)

and observe that it follows from Theorem 5.3 of Prachar [56] that

(4.6) Γ(u, v) =
log u

log v

(
1 +O

(
exp{−

√
log u}

))
.

Now, using Lemma 0.11, one can establish that

#

ν ≤ x

p1 · · · pk+1

: gcd

ν, ∏
p1≤p≤pk+1

p

 = 1


=

x

p1 · · · pk+1

Γ(p1, pk+1)
(
1 +O

(
log−C p1

))
,(4.7)

where C is an arbitrary but fixed positive constant.
It follows from (4.7) using (4.6) that

S2(x) = x
∑

p1<···<pk+1≤x
Yx<p1≤Zx

f(p1, . . . , pk+1)

p1 · · · pk+1

Γ(p1, pk+1)

+O

 ∑
p1<···<pk+1≤x
Yx<p1≤Zx

f(p1, . . . , pk+1)

p1 · · · pk+1

Γ(p1, pk+1)

logC p1


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= x
∑

p1<···<pk+1≤x
Yx<p1<Zx

f(p1, . . . , pk+1)

p1 · · · pk+1

log p1

log pk+1

+O

 ∑
p1<···<pk+1≤x
Yx<p1<Zx

f(p1, . . . , pk+1)

p1 · · · pk+1

1

logC p1

 .(4.8)

In order to estimate the main term on the right hand side of (4.8), we let

L(x) =
∑

p1<···<pk+1≤x
Yx<p1≤Zx

f(p1, . . . , pk+1)

p1 · · · pk+1

log p1

log pk+1

and we also consider the sum L0(x), that is essentially the same sum as the sum L(x) but
where we drop the condition Yx < p1 ≤ Zx in the summation.

Note that, in light of (4.3), the error L0(x)− L(x) satisfies

(4.9) 0 ≤ L0(x)− L(x) ≤ c
1

x

∑
n≤x

ωYx(n)�
√

log log x.

Now, since, for each j ∈ {1, 2, . . . , k}, we have∑
⌊
q log pj

log pj+1

⌋
=bj

log pj
pj

=
1

q
log pj+1 +O(1),

it follows that, after iteration, we have

(4.10) L0(x) =
1

qk

∑
pk+1≤x

1

pk+1

+O(1) =
1

qk
log log x+O(1).

Now, because of (4.9), we have that L(x)−L0(x) = o(log log x), so that it follows from (4.10)
that

(4.11) L(x) =
1

qk
log log x+O(1).

Substituting (4.11) in (4.8), we get

(4.12) S2(x) =
1

qk
x log log x+O(x).

In order to estimate S1, we proceed as follows. We have

S1 =
∑
n≤x

F1(n)2

= 2
∑
n≤x

∑
p1 7→···7→pk+1|n
q1 7→···7→qk+1|n

pk+1<q1

f(p1, . . . , pk+1)f(q1, . . . , qk+1) + E(x),(4.13)
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where the error term E(x) arises from those k + 1 tuples {p1, . . . , pk+1} and {q1, . . . , qk+1}
which have common elements. One can see that the sum of f(p1, . . . , pk+1)f(q1, . . . , qk+1) on
such k + 1 tuples is less than kω(n), implying that

(4.14) E(x)� x log log x.

Using the fact that

#

ν ≤ x

p1 · · · pk+1q1 · · · qk+1

:

ν, ∏
p1<p<pk+1

p×
∏

q1<p<qk+1

p

 = 1


= x

Γ(p1, pk+1)Γ(q1, qk+1)

p1 · · · pk+1q1 · · · qk+1

(
1 +O

(
1

logC p1

))
,

for some positive constant C. It follows from (4.13) and (4.14), while arguing as we did for
the estimation of S2, that

(4.15) S1(x) = x

 ∑
p1<···<pk+1≤x
Yx<p1<Zx

f(p1, . . . , pk+1)Γ(p1, pk+1)

p1 · · · pk+1


2

+O(x log log x).

Hence, in light of (4.12) and (4.15), we get that

S1(x) = x

(
log log x

qk
+O(1)

)2

= x

(
log log x

qk

)2

+O(x log log x).

Hence, choosing A(x) = 1
qk

log log x, it follows that the left hand side of (4.5) satisfies

(4.16)
∑
n≤x

(
F1(n)− 1

qk
log log x

)2

� 1

qk
x log log x.

Recall that F1(n), as well as F (n), depends on b1, . . . , bk, while A(x) does not. Hence,
setting

G(n) =
∑

{b1,...,bk}∈Akq

F (n|b1, . . . , bk),

a sum containing qk terms, we get that∑
n≤x

(
F (n|b1, . . . , bk)−

G(n)

qk

)2

� x log log x,

so that
G(n)

qk
does not depend on the choice of (b1, . . . , bk) ∈ Akq .

Now, by using the Cauchy-Schwarz inequality along with (4.3) and (4.4), we obtain, in
light of (4.2), that∑

n≤x

∣∣∣∣F (n)− 1

qk
x2

∣∣∣∣ ≤ ∑
n≤x

∣∣∣∣F1(n)− 1

qk
x2

∣∣∣∣+
∑
n≤x

|F0(n)|+
∑
n≤x

|F2(n)|
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≤
√
x

(∑
n≤x

∣∣∣∣F1(n)− 1

qk
x2

∣∣∣∣2
)1/2

+O(x
√

log log x).(4.17)

Hence, it follows from (4.16) and (4.17) that

(4.18)
∑
n≤x

∣∣∣∣F (n)− 1

qk
x2

∣∣∣∣ ≤ Cx
√

log log x.

Hence, given any two k-tuples (b1, . . . , bk) and (b′1, . . . , b
′
k) both belonging to Akq , it follows

from (4.18) that ∑
n≤x

|F (n|b1, . . . , bk)− F (n|b′1, . . . , b′k)| ≤ 2Cx
√

log log x,

thus implying that the probability of the occurrence of b1, . . . , bk in the chain of prime divisors
p1 7→ · · · 7→ pk+1|n is almost the same (that is, essentially of the same order) as that of the
occurrence of b′1, . . . , b

′
k for any (b′1, . . . , b

′
k) ∈ Akq . This final observation proves that ξ is a

normal number and thus completes the proof of Theorem 4.3.

Final remarks

This last method can easily be applied to prove the following more general theorem.

Theorem 4.4. Let R[x] ∈ Z[x], the leading coefficient of which is positive. Let m0 be a
positive integer such that R(m) ≥ 0 for all m ≥ m0. Moreover, let H(n) be defined as in
Theorem 4.3 and set

ξ = 0.H(R(m0))H(R(m0 + 1))H(R(m0 + 2)) . . .

Also, let m0 ≤ p1 < p2 < · · · be the sequence of all primes no smaller than m0 and set

η = 0.H(R(p1))H(R(p2))H(R(p3)) . . .

Then ξ and η are q-normal numbers.

Even more is true, namely the following.

Theorem 4.5. Let (m0 <)n1 < n2 < · · · be a sequence of integers for which #{nj ≤ x} > ρx
provided x > x0, for some positive constant ρ. Then, using the notations of Theorem 4.4, let

τ = 0.H(R(n1))H(R(n2)) . . .

Then τ is a q-normal number.
Moreover, let (m0 <)π1 < π2 < · · · be a sequence of primes for which #{πj ≤ x} > δπ(x)

provided x > x0, for some positive constant δ. Let

κ = 0.H(R(π1))H(R(π2)) . . .

Then κ is a q-normal number.
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V. Construction of normal numbers by classified prime divisors of integers II [18]
(Funct. Approx. Comment. Math., 2013)

In 2011 (see paper I above), we used Theorem A to construct large families of normal
numbers, namely by establishing the following result.

Theorem B. Let q ≥ 2 be an integer and let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification
of primes. Assume that, for a certain constant c1 ≥ 5,

(5.1) π([u, u+ v] ∩ ℘i) =
1

q
π([u, u+ v]) +O

(
u

logc1 u

)
uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, as u → ∞. Furthermore, let H : ℘ → A∗q be
defined by

(5.2) H(p) =

{
Λ if p ∈ R,
` if p ∈ ℘` for some ` ∈ Aq

and further let T : N→ A∗q be defined by T (1) = Λ and for n ≥ 2 by

(5.3) T (n) = T (pa1
1 · · · parr ) = H(p1) . . . H(pr).

Then, the number 0.T (1)T (2)T (3)T (4) . . . is a q-normal number.

As one will notice, Theorem B does not use the full power of Theorem A. Indeed, it is
clear that condition (5.1) is much more restrictive than condition (0.5) since it does not allow
for subsets of primes ℘j of distinct densities. In this paper, we first weaken condition (5.1)
to allow for the construction of even larger families of normal numbers. Then, we extend
our method in order to construct normal numbers using the sequence of shifted primes, and
thereafter using the sequence n2 + 1, n = 1, 2, . . .

Finally, let us mention that throughout this text, unless specified otherwise, the letters
p, p1, p2, . . ., q1, q2, . . ., π0, π1, π2, . . . will always denote primes.

Main results

Theorem 5.1. Assume that R, ℘0, . . . , ℘q−1 are disjoint sets of primes, whose union is ℘,
and assume that there exists a positive number δ < 1 and a real number c1 ≥ 5 such that

(5.4) π([u, u+ v] ∩ ℘i) = δπ([u, u+ v]) +O

(
u

logc1 u

)
holds uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, and similarly

π([u, u+ v] ∩R) = (1− qδ)π([u, u+ v]) +O

(
u

logc1 u

)
.

Let H and T be defined as in (18.24) and (5.3). Then,

ξ = 0.T (1)T (2)T (3) . . .

is a q-normal number.
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Examples

1. Let ℘0 = {p : p ≡ 1 (mod 8)}, ℘1 = {p : p ≡ 7 (mod 8)} and R = {2} ∪ {p : p ≡ 3, 5
(mod 8)}. With H, T and ξ as in the statement of Theorem 5.1, we may conclude
that the corresponding number ξ is a binary normal number.

2. Let P (x) = ekx
k + · · · + e1x ∈ R[x] be a polynomial with at least one irrational

coefficient. Let I0 and I1 be two disjoint intervals in [0, 1) of equal length. Consider
the set of primes ℘0 = {p : {P (p)} ∈ I0}, ℘1 = {p : {P (p)} ∈ I1} and R = ℘\(℘0∪℘1).
(Here, {P (p)} stands for the fractional part of P (p).) With H, T and ξ as in Theorem
5.1, we may conclude that ξ is a binary normal number.

3. It is well known that, given a prime p ≡ 1 (mod 4), there exists a prime ρ ∈ Z[i] (the

set of Gaussian integers) such that
arg ρ

π/2
∈ [0, 1) and p = ρ · ρ. So, let the subsets of

primes ℘0, . . . , ℘q−1 be defined in such a way that p ∈ ℘j if the corresponding Gaussian
prime ρ satisfies

arg ρ

π/2
∈
[
j

q
,
j + 1

q

)
(j = 0, 1, . . . , q − 1)

and let R = {2} ∪ {p : p ≡ 3 (mod 4)}. Then, letting H, T and ξ be defined as in
Theorem 5.1, we may claim that ξ is a normal number in base q.

Theorem 5.2. Let R, ℘0, . . . , ℘q−1, H and T be as in the statement of Theorem 5.1. Then
the number

η = 0.T (1)T (2)T (4)T (6)T (10) . . . T (p− 1) . . . ,

where p runs through the sequence of primes, is a q-normal number.

Theorem 5.3. Let f : N → N be defined by f(n) = n2 + 1. Consider the subset of primes
℘̃ := {p ∈ ℘ : p ≡ 1 (mod 4)}. Assume that the sets ℘0, ℘1, . . . , ℘q−1 ⊆ ℘̃ satisfy (5.4) and
let

R = ℘ \

(
q−1⋃
j=0

℘j

)
.

Let also H and T be defined as in (18.24) and (5.3). Then

τ = 0.T (f(1))T (f(2))T (f(3))T (f(4)) . . .

is a q-normal number.

We will only prove Theorem 5.1. To do so, we will need three additional lemmas. But
first, we introduce important functions. Let Zx be a function tending to infinity but with
the condition logZx

log x
→ 0 as x→∞. Furthermore, let Kx →∞ as x→∞, but also satisfying

Kx logZx
log x

→ 0 as x→∞.

Let Q =
∏
p≤Zx

p. Given an integer m ≥ 2 such that P (m) ≤ Zx, we set

D(x|m) = #{p ≤ x : p ≡ 1 (mod m), gcd

(
p− 1

m
,Q

)
= 1}.
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Further set ν(Q) =
∏
p|Q
p>2

(
1− 1

p− 1

)
.

We now introduce the strongly multiplicative function κ(n) defined on primes p by

(5.5) κ(p) =

{
1 if p = 2,
p−1
p−2

if p > 2.

Lemma 5.1. Let Zx and Kx be defined by logZx = (log x)/x2
2 and Kx = Bx2, where B is a

large constant. Then, given any arbitrarily large constant C,∑
m≤ZKxx
P (m)≤Zx

∣∣∣∣D(x|m)− ν(Q)κ(m)

m
li(x)

∣∣∣∣� x

logC x
.

Proof. For now, we fix an integer m ≤ ZKx
x such that P (m) ≤ Zx. We plan to use Lemma

0.11. For this, we set r = π(Zx) and we let q1 < · · · < qT be the sequence of those primes
qj ≤ x satisfying qj − 1 ≡ 0 (mod m) for j = 1, . . . , T (so that T = π(x;m, 1)); and also we
let an = (qn − 1)/m for n = 1, 2, . . . , T and set f(n) = 1. Now, define R(m, d) implicitly by

(5.6) π(x; dm, 1) =
∑
p≤x

p−1
m ≡0 (mod d)

1 = η(d)π(x;m, 1) +R(m, d),

where η(d) is the strongly multiplicative function defined on primes p by

η(p) =

{ 1
p

if p|m,
1
p−1

if (p,m) = 1.

Hence, as a consequence of Lemma 0.11, we obtain

(5.7) D(x|m) = {1 + 2θ1H}π(x;m, 1)
∏
p|Q

(1− η(p)) + 2θ2

∑
d|Q
d≤z3

3ω(d)|R(m, d)|.

Now, since

S =
∑
p|Q
p>2

log p

p− 2
= (1 + o(1)) logZx (x→∞)

and
r = π(Zx) and log r = logZx +O(log log x),

and since

log z = Kx logZx,
log z

log r
∼ Kx, log

(
log z

S

)
= logKx (x→∞),

we have, for x large,

H = exp {−Kx(logKx − log logKx − z/Kx)} ≤ exp

{
−Kx

2
logKx

}
.
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Hence, it follows from (5.7) that∣∣∣∣D(x|m)− π(x;m, 1)
φ(m)

m
κ(m)ν(Q)

∣∣∣∣
≤ 2Hπ(x;m, 1)ν(Q)κ(m) + 2

∑
d|Q
d≤z3

3ω(d)|R(m, d)|,(5.8)

where R(m, d) satisfies, in light of (5.6),

(5.9) |R(m, d)| ≤ E(dm) +
E(m)

φ(d)
,

where

E(r) :=

∣∣∣∣π(x; r, 1)− li(x)

φ(r)

∣∣∣∣ .
Using (5.9), we have that∑

d|Q
d≤z3

3ω(d)|R(m, d)| ≤
∑
d|Q
d≤z3

3ω(d)

(
E(dm) +

E(m)

φ(d)

)

=
∑
d|Q
d≤z3

3ω(d)E(dm) +
∑
d|Q
d≤z3

3ω(d)E(m)

φ(d)

= Σ1 + Σ2,(5.10)

say. Now, on the one hand,

(5.11) Σ1 =
∑
k≤z4

E(k)
∏
p|k

(1 + 3) =
∑
k≤z4

E(k)22ω(k).

On the other hand, we have

(5.12) Σ2 ≤ E(m)
∑
d|Q

3ω(d)

φ(d)
≤ E(m)

∏
p|Q

(
1 +

3

p− 1

)
≤ cE(m)(logZx)

3.

Thus, using (5.11) and (5.12) in (5.10), we obtain that∑
d|Q
d≤z3

3ω(d)|R(m, d)| ≤ c(logZx)
3E(m) +

∑
k≤z4

E(k)22ω(k)

= T1 + T2,(5.13)

say. Now, because of Lemma 0.2, we have that, given any fixed constant C,

(5.14) T1 �
x

logC x
.
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On the other hand, observe that since a ≤ b+ 1
b
a2 for all a, b ∈ R+, we have

(5.15) T2 ≤ 22Bx2

∑
k≤z4

E(k) + 2−2Bx2

∑
k≤z4

E(k)24ω(k) = U1 + U2,

say. Using Lemmas 0.1 and 0.2 in order to estimate U1 and U2, respectively, it follows that
(5.15) can be replaced by

(5.16) T2 ≤
x

(log x)(A′)(2B log 2)
+

x

log x
(log x)−2B log 2

∑
k≤z4

24ω(k)

φ(k)
,

where B and A′ are arbitrary positive constants. Hence, by an appropriate choice of B and
A′, it follows from (5.16) that

(5.17) T2 �
x

logC x
.

Then, using (5.14) and (5.17) in (5.13), placing the result in (5.8) and then summing the
first term on the right hand side of (5.8) over m, we obtain from Lemma 0.1 that it is
� x/(logC x), thus completing the proof of Lemma 5.1.

Lemma 5.2. Given positive integers k and A, set

Bk(x,A) =
∑

m1≤Z
Kx
x

ω(m1)=k
p(m1)>wx, P (m1)≤Zx

D(x|Am1).

Let ℘0, . . . , ℘q−1 be a disjoint classification of primes with corresponding densities δ0, . . . , δq−1.
Then, given an arbitrary constant C > 0,

∑
A≤wwxx
P (A)≤wx

∑
k≤Bx2

∑
i1...ik∈Akq

∣∣∣∣∣∣∣∣∣∣
∑

m1≤Z
Kx
x

H(m1)=i1...ik
p(m1)>wx, P (m1)≤Zx

D(x|Am1)− δi1 · · · δikBk(x,A)

∣∣∣∣∣∣∣∣∣∣
� x

logC x
.

Moreover,

∑
A≤wwxx
P (A)≤wx

∑
k≤Bx2

∣∣∣∣∣∣∣∣∣∣
Bk(x,A) − ν(Q) li(x)

κ(A)

A

∑
m1≤Z

Kx
x

ω(m1)=k
p(m1)>wx, P (m1)≤Zx

κ(m1)

m1

∣∣∣∣∣∣∣∣∣∣
� x

logC x
.

Proof. The result is a direct consequence of Theorem A and Lemma 5.1.

Recall that νβ(α) stands for the number of occurrences of β as a subword of the word α.
In other words,

νβ(α) = #{(γ1, γ2) : α = γ1βγ2, where γ1, γ2 ∈ A∗q}.

We then have the following.
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Lemma 5.3. Given positive integers h ≥ 2k,

(5.18)
∑
α∈Ahq

(
νβ(α)− h

qk

)2

≤ c
hkqh

qk
,

where c is some absolute constant.

Proof. On the one hand, we have

(5.19) Σ1 :=
∑
α∈Ahq

νβ(α) =
h−k∑
`=0

q`qh−`−k = qh−k(h− k + 1),

while on the other hand

(5.20) Σ2 :=
∑
α∈Ahq

ν2
β(α) = #{(γ1, γ2, γ3, γ4) : α = γ1βγ2 = γ3βγ4}.

Now, write
Σ2 = Σ2,0 + Σ2,1 + Σ2,2,

where in Σ2,0, we impose the condition λ(γ1) = λ(γ3), in Σ2,1, we impose the condition
λ(γ1) > λ(γ3), and finally in Σ2,2, we are restricted to λ(γ1) < λ(γ3). In Σ2,0, we have
γ1 = γ3, so that Σ2,0 = Σ1.

Let Σ2,1,1 be the number of those γ1, γ3 for which λ(γ3) ≤ λ(γ1) + k, and Σ2,1,2 be the
number of those γ1, γ3 for which λ(γ3) > λ(γ1) +k. Since γ3 is a prefix of γ1β, it follows that
it has no more than k distinct values for a fixed γ1, and therefore that Σ2,1,1 ≤ kΣ1. Assume
now that λ(γ3) > λ(γ1) + k. Thus we have the following scheme:

← `1 →← k → ← `2 → ←− `3 −→
(A) γ1 β γ2

(B) γ3 β γ4

←− `1 + k + `2 −→ ← k → ← `3 − k = `4 →

Let us fix the position of β in (A) and in (B), that is the lengths `1 and `2. Then `1+`2+`4

digits can be distributed freely, which yields q`1+`2+`4 = qh−2k integers. Hence the number
of those nonnegative integers `1, `2, `4 for which `1 + `2 + `4 = h− 2k is equal to

h−2k∑
`4=0

(h− 2k − `4 + 1) =
h−2k∑
ν=1

ν =
(h− 2k)(h− 2k + 1)

2
.

Thus

Σ2,1,2 =
(h− 2k)(h− 2k + 1)

2q2k
qh =

h2qh

2q2k
+O

(
khqh

q2k

)
,

so that (5.20) can be written as

(5.21) Σ2 =
h2qh

q2k
+O

(
khqh

q2k

)
,

Therefore, combining (5.19) and (5.21), inequality (5.18) follows, thus completing the proof
of Lemma 5.3.
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Proof of Theorem 5.1

Let ℘∗ =

q−1⋃
j=0

℘j and define

ω℘∗(n) :=
∑
p|n
p∈℘∗

1.

For each real number u ≥ 2, let us set

ρu := T ([u] + 1) . . . T ([2u]).

It is clear that

(5.22) λ(ρu) = u
∑
p≤2u
p∈℘∗

1

p
+O(u) = qδu log log u+O(u).

Now let k be a fixed positive integer and consider the word β = i1 . . . ik ∈ Akq . We shall
prove that

(5.23) max
β∈Akq

∣∣∣∣νβ(ρu)−
λ(ρu)

qk

∣∣∣∣ ≤ ε(u)λ(ρu),

where ε(u) tends to 0 monotonically as u→∞.
Once we will have proven (5.23), Theorem 5.1 will follow. Indeed, let ξN stand for the

q-ary expansion of ξ up to the N -th digit. Now, given N , let u be a real number which
satisfies the inequalities

N1 :=
∑
j≤2u

ω℘∗(j) ≤ N <
∑

j≤2u+1

ω℘∗(j).

Let us further set ξN1 := T (1)T (2) . . . T ([2u]). With this definition, we have that

(5.24) 0 ≤ λ(ξN)− λ(ξN1) = O(logN).

Now, given an arbitrary positive integer ` satisfying 2` < u, let us write

ξN1 = χ(`) ρu/2` ρu/2`−1 . . . ρu,

where
ρv := T ([v] + 1) . . . T ([2v]).

It follows that

νβ(ξN1) = νβ(χ(`)) + νβ(ρu/2`) + · · ·+ νβ(ρu) +O(`+ 1).

Hence, using (5.23) and (5.24), we obtain that

(5.25) νβ(ξN) = νβ(ξN1) +O(logN) =
λ(ξN)

qk
+O

(
ε(u/2`)N + λ(χ(`))

)
.
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Now, choosing ` to be the unique integer satisfying 2` ≤
√
u < 2`+1 and using the fact that

λ(χ(`))/N → 0 as N →∞, we then obtain from (5.25) that

(5.26)
νβ(ξN)

N
→ 1

qk
as N →∞,

thus proving that ξ is a q-normal number.
Thus, it remains to prove (5.23). To do that, we will make repetitive use of (5.22). First

we set wu = log log log u and Zu = exp{(log u)1−εu}, where εu → 0 as u → ∞, and write
each integer n ≥ 2 as

n =
∏
pa‖n
p≤wu

pa ·
∏
pa‖n

wu<p≤Zu

pa ·
∏
pa‖n
p>Zu

pa = A(n) ·B(n) · C(n),

say. Since ∑
u≤n≤2u

ω(A(n)) +
∑

u≤n≤2u

ω(C(n)) = o(u log log u) (u→∞),

it follows that

(5.27) νβ(ρu) =
∑

u≤n≤2u

νβ(T (B(n))) + o(u log log u) (u→∞).

LetMu be the set of those positive integers m for which there exists at least one integer
n ∈ [u, 2u] such that B(n) = m, in which case we let

D(m) = #{n ∈ [u, 2u] : B(n) = m}.

Then, from (5.27), we have

(5.28) νβ(ρu) =
∑
m∈Mu

νβ(T (m))D(m) + o(u log log u) (u→∞).

Further define M(1)
u as the set of those m ∈ Mu for which at least one of the following

conditions holds:

(1) m is not squarefree,

(2) m ≥ ZKu
u , Ku = (log u)εu/2,

(3) there exist p1|m and p2|m such that p1 < p2 < 2p1,

(4) |ω(m)− log log u| > (log log u)3/4.

Let M(0)
u =Mu \M(1)

u . Observing that νβ(T (m)) ≤ ω(m), we easily obtain that

(5.29)
∑

m∈M(1)
u

νβ(T (m))D(m) = o(u log log u) (u→∞).
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By a standard sieve argument, we easily get that, as u→∞,

(5.30) D(m) = (1 + o(1))
u

m

∏
wu≤p≤Zu

(
1− 1

p

)
= (1 + o(1))

u

m

logwu
logZu

(m ∈M(0)
u ).

Thus, using (5.29) and (5.30) in (5.28), we obtain

νβ(ρu) = (1 + o(1))u
logwu
logZu

∑
m∈M(0)

u

νβ(T (m))

m
+ o(u log log u) (u→∞).

Hence, it remains to prove that, given arbitrary distinct words β1 and β2 belonging to Akq ,

(5.31)
∑

m∈M(0)
u

νβ1(T (m))

m
= (1 + o(1))

∑
m∈M(0)

u

νβ2(T (m))

m
(u→∞).

We shall now use a technique we have already used to prove Theorem 1 of our 1995 paper
[12]. We define the sequence `0 < `1 < · · · as follows:

`0 = wu, `j+1 = `j +
`j

(log `j)5
for j = 0, 1, . . . .

Let r be defined implicitly by `r ≤ Zu < `r+1 and set Ij = [`j, `j+1) for each integer j ≥ 0.
Let h be fixed, |h − log log u| ≤ (log log u)3/4, 0 ≤ j1 < j2 < · · · < jh ≤ r − 1 with

j`+1 ≥ 2j`. Further define M(0)
u (j1, . . . , jh) as the set of those m = π1π2 · · · πh for which

πj ∈ I`j for j = 1, . . . , h.

Observe that any m ∈M(0)
u (j1, . . . , jh) satisfies

`j1+1 · `j2+1 · · · `jh+1 ≥ m ≥ `j1 · `j2 · · · `jh

and that

1 ≤ `j1+1 · `j2+1 · · · `jh+1

`j1 · `j2 · · · `jh
≤

h∏
j=1

(
1 +

1

(log `j)5

)

≤ exp

{
h∑
j=1

1

(log `j)5

}
≤ exp

{
h−1∑
j=0

1

(logwu + j log 2)5

}
= 1 + o(1) (u→∞).

This means that instead of proving (5.31), we only need to prove

(5.32)
∑

m∈M(0)
u (`j1 ,...,`jh )

νβ1(T (m))

m
= (1 + o(1))

∑
m∈M(0)

u (`j1 ,...,`jh )

νβ2(T (m))

m
(u→∞).

Now letM(0)
u (`j1 , . . . , `jh |℘ν1 , . . . , ℘νh) be the set of thosem = π1π2 · · · πh ∈M(0)

u (`j1 , . . . , `jh)
for which π` ∈ ℘ν` .
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Then, repeating the computation done in [12], we obtain that

(5.33)
#M(0)

u (`j1 , . . . , `jh|℘ν1 , . . . , ℘νh)

#M(0)
u (`j1 , . . . , `jh)

= (1 + o(1))τ(ν1) · · · τ(νh) (u→∞),

where τ(ν) = δ if ν ∈ {0, 1, . . . , q − 1} and τ(q) = 1 − qδ. Assume that among ν1, . . . , νh,
the value q occurs t1 times. Then, on the right hand side of (5.33), we have τ(ν1) · · · τ(νh) =
(1− qδ)t1 · δh−t1 , which depends only on t1. It is clear that νβ(T (m)) is constant in every set

M(0)
u (`j1 , . . . , `jh|℘ν1 , . . . , ℘νh). So, let e1 < · · · < et1 ≤ h be arbitrary integers and consider

those ℘ν1 , . . . , ℘νh for which νej = q for j = 1, . . . , t1 and ν` 6= q if ` 6= ej. Further let
v0 < v1 < · · · < vh−t1−1 be the sequence of integers defined by

{v0, . . . , vh−t1−1} = {1, . . . , h} \ {e1, . . . , et1}.

Moreover, for j = 0, 1, . . . , h − t1 − 1, let νvj ∈ {0, 1, . . . , q − 1} be arbitrary digits. If

m ∈M(0)
u (`j1 , . . . , `jh|℘ν1 , . . . , ℘νh), then

(5.34) νβ(T (m)) = νβ(νv0νv1 . . . νvh−t1−1
).

Now, one can easily show that the number of those n ∈ [u, 2u] for which h− t1 ≤ k2 is o(u).
Hence, we may assume that h− t1 > k2. Then, in light of (5.33), (5.34) and Lemma 5.3, we
easily obtain (5.32) and thereby (5.23) and (5.26), thus completing the proof of Theorem 5.1.

VI. Construction of normal numbers using the distribution of the k-th largest prime factor [20]
(Bull. Australian Mathematical Society, 2013)

In [13], we showed that if F ∈ Z[x] is a polynomial of positive degree with F (x) > 0 for
x > 0, then the real numbers

0.F (P (2))F (P (3)) . . . F (P (n)) . . .

and
0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . . ,

where p runs through the sequence of primes, are q-normal numbers.
Here, we prove that the same result holds if P (n) is replaced by Pk(n), the k-largest

prime factor of n. The case of Pk(n) relies on the same basic tool we used to study the
case of P (n), namely the 1996 result of Bassily and Kátai [2], stated in Lemma 0.5 above.
However, the Pk(n) case raises new technical challenges and the proof is not straightforward.
Interestingly, the family of normal numbers thus created is much larger. To conclude, we
raise an open question.
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Main results

Given an integer k ≥ 1, for each integer n ≥ 2, we let Pk(n) stand for the k-largest prime
factor of n if ω(n) ≥ k, while we set Pk(n) = 1 if ω(n) ≤ k − 1. Thus, if n = pα1

1 p
α2
2 · · · pαss

stands for the prime factorization of n, where p1 < p2 < · · · < ps, then

P1(n) = P (n) = ps, P2(n) = ps−1, P3(n) = ps−2, . . .

Let F ∈ Z[x] be a polynomial of positive degree satisfying F (x) > 0 for x > 0. Also, let
T ∈ Z[x] be such that T (x) → ∞ as x → ∞ and assume that `0 = degT . Fix an integer
k ≥ `0. We then have the following results.

Theorem 6.1. The number

θ = 0.F (Pk(T (2)))F (Pk(T (3))) . . . F (Pk(T (n))) . . .

is a q-normal number.

Theorem 6.2. Assuming that k ≥ `0 + 1, the number

ρ = 0.F (Pk(T (2 + 1)))F (Pk(T (3 + 1))) . . . F (Pk(T (p+ 1))) . . .

is a q-normal number.

The following lemma will come handy in the proofs of our theorems.

Lemma 6.1. Let ε > 0 be a small number. Given any integer k ≥ `0 + 1, there exists
x0 = x0(ε) such that, for all x ≥ x0,

(6.1) #{p ∈ Ix : Pk(T (p+ 1)) < xε} ≤ cε
x

log x
.

Moreover, for each integer k ≥ `0, there exists x0 = x0(ε) such that, for all x ≥ x0,

(6.2) #{n ∈ Ix : Pk(T (n)) < xε} ≤ cεx.

Proof. For a proof of (6.1) in the case k = 1 and T (n) = n, see the proof of Theorem 1 in
our paper [13]. The more general case k ≥ 2 and T ∈ Z[x] can be handled along the same
lines. The estimate (6.2) also follows easily.

The proof of Theorem 6.1

Let x be a fixed large number. Let Ix = [x, 2x], N0 = dxe, N1 = b2xc and set

θ(x) := F (Pk(T (N0)))F (Pk(T (N0 + 1))) . . . F (Pk(T (N1))).

Given any prime p, we know that

(6.3) #{n ∈ Ix : T (n) ≡ 0 (mod p)} =
ρ(p)

p
x+O(1),

where ρ(p) stands for the number of solutions n of the congruence T (n) ≡ 0 (mod p).
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On the other hand, since we have assumed that k ≥ `0, there exists a constant c > 1
such that Pk(T (n)) < cx for all n ∈ Ix. We then have

(6.4) #{n ∈ Ix : Pk(T (n)) ≥ x} � π([x, cx]) + x
∑

x<p<cx

ρ(p)

p
= O

(
x

log x

)
= o(x).

Finally, given a fixed small positive number δ = δ(k), setting

ωδ(T (n)) :=
∑
p|T (n)

xδ<p<x1/2

1,

one can show, using a type of Turán-Kubilius inequality, that a positive proportion of the
integers n ∈ Ix satisfy the inequality ωδ(T (n)) ≥ k. It follows from this observation and
from (6.4) that

(6.5) νβ(θ(x)) =
∑
n∈Ix

νβ(F (Pk(T (n)))) +O(x) ≈ x log x,

where the constant implied by the ≈ symbol may depend on k as well as on the degrees of
T and F .

In order to complete the proof of the theorem it will be sufficient, in light of (6.5), to
prove that given any two distinct words β1, β2 ∈ A`q, we have

(6.6)
∣∣νβ1(θ(x))− νβ2(θ(x))

∣∣ = o(x log x) as x→∞.

Indeed, since A`q contains exactly q` distinct words and since their respective occurrences are
very close in the sense of (6.6), it will follow that

(6.7)
νβ(θ(x))

x log x
→ 1

q`
as x→∞,

thus establishing that θ is a q-normal number.
In the spirit of Lemma 0.4, we will say that the prime Q ∈ Iu is a bad prime if

(6.8) max
β∈A`q

∣∣∣∣νβ(F (Q))− L(ur)

q`

∣∣∣∣ > κu
√
L(ur)

and a good prime if

(6.9)

∣∣∣∣νβ(F (Q))− L(ur)

q`

∣∣∣∣ ≤ κu
√
L(ur).

First observe that

(6.10)
∣∣νβ1(θ(x))− νβ2(θ(x))

∣∣ ≤ Σ1 + Σ2 + Σ3 +O(x),

where
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• in Σ1, we sum the expression mn :=
∣∣∣νβ1(F (Pk(T (n))))− νβ2(F (Pk(T (n))))

∣∣∣ over those

integers n ∈ Ix for which Pk(T (n)) < xε;

• in Σ2, we sum the expression mn over those integers n ∈ Ix for which p = Pk(T (n)) ≥ xε

with p being a good prime;

• in Σ3, we sum the expression mn over those integers n ∈ Ix for which p = Pk(T (n)) ≥ xε

with p being a bad prime.

It is clear that, in light of estimate (6.2) of Lemma 6.1,

(6.11) Σ1 ≤ cεx log x.

On the other hand, choosing κu = log log u in the range xε < u < x,

(6.12) Σ2 ≤ cx
√

log x log log x.

Finally,

(6.13) Σ3 =
∑
n∈Ix

p=Pk(T (n))≥xε
p bad prime

mn ≤ c log x
∑
n∈Ix

p=Pk(T (n))≥xε
p bad prime

1 = c log xΣ4,

say.
Subdivide the interval [xε,

√
x] into disjoint intervals [u, 2u) as follows. Let j0 be the

smallest positive integer such that 2j0+1xε ≥
√
x, so that

[xε,
√
x] ⊂

j0⋃
j=0

Jj,

where
Jj = [uj, uj+1) := [2jxε, 2j+1xε), j = 0, 1, . . . , j0.

Using (6.3), we get

Σ4 ≤
j0∑
j=0

∑
p∈[uj,2uj)

p bad prime

#{n ∈ Ix : T (n) ≡ 0 (mod p)}

≤ cx

j0∑
j=0

∑
p∈[uj,2uj)

p bad prime

ρ(p)

p

≤ cx

j0∑
j=0

1

(log log uj)2 log uj

� 1

ε

x

(log log x)2
.(6.14)
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Substituting (6.14) in (6.13), we obtain that

(6.15) Σ3 = O

(
x log x

(log log x)2

)
.

Thus, gathering estimates (6.11), (6.12) and (6.15) in (6.10), estimate (6.6) follows immedi-
ately and therefore (6.7) as well, thereby completing the proof of Theorem 6.1.

The proof of Theorem 6.2

First observe that the additional condition k ≥ `0 + 1 guarantees that, for p ≤ x, we
have Q = Pk(T (p+ 1)) < x`0/k, with `0/k < 1. Hence, it follows from the Brun-Titchmarsh
Inequality (Lemma 0.1) that

(6.16)
∑

p∈[x,2x]
T (p+1)≡0 (mod Q)

1� ρ(Q)x

φ(Q) log(x/Q)
� ρ(Q)

Q

x

log x
.

From here on, the proof is somewhat similar to that of Theorem 6.1 but with various ad-
justments. It goes as follows.

Let
ρ(x) := F (Pk(T (ρ1 + 1))) . . . F (Pk(T (ρS + 1))),

where ρ1 < · · · < ρS is the sequence of primes appearing in the interval Ix.

Observe that, since S = π([x, 2x]) ≈ x

log x
, we may write

(6.17) νβ(ρ(x)) =
S∑
i=1

νβ(F (Pk(T (ρi + 1)))) +O

(
x

log x

)
≈ x.

As in the proof of Theorem 6.1, in order to complete the proof of Theorem 6.2, it will be
sufficient, in light of (6.17), to prove that given any two arbitrary distinct words β1, β2 ∈ A`q,
we have

(6.18)
∣∣νβ1(ρ(x))− νβ2(ρ(x))

∣∣ = o(x) as x→∞.

Indeed, since A`q contains exactly q` distinct words and since their respective occurrences
will be proved to be very close in the sense of (6.18), it will follow that

(6.19)
νβ(ρ(x))

x
→ 1

q`
as x→∞,

thus establishing that ρ is a q-normal number.
Hence, our main task will be to prove (6.18). To do so, we once more use the concepts

of bad prime and good prime defined in (19.17) and (6.9), respectively. We first write

∣∣νβ1(ρ(x))− νβ2(ρ(x))
∣∣ ≤ S∑

i=1

∣∣∣νβ1(F (Pk(T (ρi + 1))))− νβ2(F (Pk(T (ρi + 1))))
∣∣∣+O(S)

= Σ1 + Σ2 + Σ3 +O

(
x

log x

)
,(6.20)

where, letting mj := |νβ1 (F (Pk(T (ρj + 1))))− νβ2 (F (Pk(T (ρj + 1))))|,
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• in Σ1, we sum mj over those j for which p = Pk(T (ρj + 1)) < xε,

• in Σ2, we sum mj over those j for which p = Pk(T (ρj + 1)) ≥ xε, when p is a good
prime,

• in Σ3, we sum mj over those j for which p = Pk(T (ρj + 1)) ≥ xε, when p is a bad
prime.

Now observe that

(6.21) νβ(F (Q)) ≤ cL(ur) ≤ c1 log u for all primes Q ∈ Iu.

Thus, using Lemma 6.1, we have, in light of (6.21), that

(6.22) Σ1 � log x · εx

log x
= εx.

Using Lemma 6.1 and estimate (6.21), we also have that

(6.23) Σ2 ≤ c
u

log u
· 1

(log log u)2
· log u = o

(
x

log x
· log x

)
= o(x).

Finally, it is clear, using (6.21), that

(6.24) Σ3 =
∑

p=Pk(T (ρj+1))≥xε
p bad prime

mj ≤ c log x
∑

p=Pk(T (ρj+1))≥xε
p bad prime

1 = c log xΣ4,

say. Since

Σ4 ≤
j0∑
j=0

∑
p∈[uj,2uj)

p bad prime

#{j : T (ρj + 1) ≡ 0 (mod p)},

it follows, by (18.23) and by adopting essentially the same approach used to establish (6.14),
that

Σ4 ≤ c

j0∑
j=0

uj
log uj

∑
p∈[uj,2uj)

p bad prime

ρ(p)

p

≤ c
x

log x

j0∑
j=0

1

(log log uj)2 log uj

� x

log x(log log x)2
.(6.25)

Substituting (6.25) in (6.24), we obtain

(6.26) Σ3 = O

(
x

(log log x)2

)
.
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Substituting (6.22), (6.23) and (6.26) in (6.20), we get that, given any two distinct words
β1, β2 ∈ A`q, ∣∣νβ1(ρ(x))− νβ2(ρ(x))

∣∣ < εx,

which proves (6.18) and in consequence (6.19), thus completing the proof of Theorem 6.2.

A related open problem

Let q be a fixed prime number. Let n be a positive integer such that (n, q) = 1 and
consider its sequence of divisors 1 = d1 < d2 < · · · < dτ(n) = n, where τ(n) stands for the
number of divisors of n. Given any positive integer m, we associate to it its congruence class
modulo q, thus introducing the function fq(m) = `, that is, m ≡ ` (mod q). Let us now
consider the arithmetical function ξ defined by

ξ(n) = fq(d1) . . . fq(dτ(n)) ∈ Aτ(n)
q .

Given β ∈ Akq and α ∈ A∗q, let M(α|β) stand for the number of occurrences of the word β
in the word α.

Is it true that the quantity

Qk(n) := max
β∈Akq

∣∣∣∣M(ξ(n)|β)(q − 1)k

τ(n)
− 1

∣∣∣∣
tends to 0 for almost all positive integers n for which (n, q) = 1 and τ(n)→∞ ?

This seems to be a difficult problem. Even proving the particular case Q2(n)→ 0 appears
to be quite a challenge. But observe that the case k = 1 is easy to establish. Indeed, let χ
stand for a Dirichlet character and let

Sχ(n) =
∑
d|n

χ(d) =
∏
pα‖n

(1 + χ(p) + · · ·+ χ(pα)) .

Then, letting φ stand for the Euler function, we have, letting χ0 stand for the principal
character,

#{d|n : d ≡ ` (mod q)} =
1

φ(q)

∑
χ

χ(`)Sχ(n)

=
1

φ(q)
χ0(`)Sχ0(n) +

1

φ(q)

∑
χ 6=χ0

χ(`)Sχ(n)

=
1

q − 1
τ(n) +

1

q − 1

∑
χ 6=χ0

χ(`)Sχ(n)

=
1

q − 1
τ(n) + o(τ(n)),

for almost all n such that τ(n)→∞, thus establishing the case Q1(n)→ 0.
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VII. Using large prime divisors to construct normal numbers [19]
(Annales Univ. Sci. Budapest, Sect. Comput., 2013)

Let η(x) be a slowly increasing function, that is an increasing function satisfying lim
x→∞

η(cx)

η(x)
= 1

for any fixed constant c > 0. Being slowly increasing, it satisfies in particular the condition
log η(x)

log x
→ 0 as x→∞.

We then let Q(n) be the smallest prime divisor of n which is larger than η(n), while
setting Q(n) = 1 if P (n) < η(n). Then, we show that the real number 0.Q(1)Q(2)Q(3) . . .
is a q-normal number. With various similar constructions, we create large families of normal
numbers in any given base q ≥ 2.

Finally, we consider exponential sums involving the Q(n) function.

Main results

Theorem 7.1. Given an arbitrary base q ≥ 2, the number

ξ1 = 0.Q(1)Q(2)Q(3) . . .

is a q-normal number.

Given an integer q ≥ 2, let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint set of primes such that,
uniformly for 2 ≤ v ≤ u as u→∞,

π([u, u+ v] ∩ ℘j) =
1

q
π([u, u+ v]) +O

(
u

log5 u

)
(j = 0, 1, . . . , q − 1),

so that, in particular,

π([u, u+ v] ∩R) = O

(
u

log5 u

)
.

Then, consider the function κ defined on ℘ as follows:

κ(p) =

{
` if p ∈ ℘`,
Λ if p ∈ R.

With this notation, we have

Theorem 7.2. The number

ξ2 = 0.κ(Q(1))κ(Q(2))κ(Q(3)) . . .

is a q-normal number.

Remark 7.1. In an earlier paper [14], we used such classification of prime numbers to create
normal numbers, but by simply concatenating the numbers κ(1), κ(2), κ(3), . . .

Let a be a fixed positive integer. Then we have the following result.
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Theorem 7.3. The number

ξ3 = 0.κ(Q(2 + a))κ(Q(3 + a))κ(Q(5 + a)) . . . κ(Q(p+ a)) . . . ,

where p runs through the set of primes, is a q-normal number.

Define ℘∗ as the set of all the prime numbers p ≡ 1 (mod 4). Then, letR∗, ℘∗0, ℘∗1, . . . , ℘∗q−1

be disjoint sets of prime numbers such that

℘∗ = R∗ ∪ ℘∗0 ∪ ℘∗1 ∪ · · · ∪ ℘∗q−1,

and such that, uniformly for 2 ≤ v ≤ u as u→∞,

π([u, u+ v] ∩ ℘∗j) =
1

q
π([u, u+ v] ∩ ℘∗) +O

(
u

log5 u

)
(j = 0, 1, . . . , q − 1),

so that, in particular,

π([u, u+ v] ∩R∗) = O

(
u

log5 u

)
.

Then, consider the function ν defined on primes p as follows

ν(p) =

{
` if p ∈ ℘∗` ,
Λ if p 6∈

⋃q−1
`=0 ℘

∗
` .

With this notation, we have the following result.

Theorem 7.4. The number

ξ4 = 0.ν(Q(1))ν((Q(2))ν(Q(3)) . . .

is a q-normal number.

Now, consider the arithmetic function f(n) = n2 + 1. We then have the following result.

Theorem 7.5. The two numbers

ξ5 = 0.κ(Q(f(1)))κ(Q(f(2)))κ(Q(f(3))) . . . ,

ξ6 = 0.κ(Q(f(2)))κ(Q(f(3)))κ(Q(f(5))) . . . κ(Q(f(p))) . . . ,

where p runs through the set of primes, are q-normal numbers.

Remark 7.2. One can show that this last result remains true if f(n) is replaced by another
non constant irreducible polynomial.

We now introduce the product function F (n) = n(n + 1) · · · (n + q − 1). Observe that
if for some positive integer n, we have p = Q(F (n)) > q, then p|n + ` only for one ` ∈
{0, 1, . . . , q− 1}, implying that ` is uniquely determined for all positive integers n such that
Q(F (n)) > q. This allows us to properly define the function

τ(n) =

{
` if p = Q(F (n)) > q and p|n+ `,
Λ otherwise.

Using this notation, we have the following result.
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Theorem 7.6. The number

ξ7 = 0.τ(q + 1)τ(q + 2)τ(q + 3) . . .

is a q-normal number.

We now introduce the product function G(n) = (n + 1)(n + 2) · · · (n + q) and further
define the function

ρ(n) =

{
` if p = Q(G(n)) > q + 1 and p|n+ `+ 1,
Λ otherwise.

Moreover, let (pj)j≥1 be the sequence of all primes larger than q, that is, q < p1 < p2 < · · ·
With this notation, we have the following result.

Theorem 7.7. The number
ξ8 = 0.ρ(p1)ρ(p2)ρ(p3) . . .

is a q-normal number.

Let α be an arbitrary irrational number. We will be using the standard notation e(y) =
exp{2πiy}. We then have the following.

Theorem 7.8. Let
A(x) :=

∑
n≤x

f(n)e(αQ(n)),

where f is any given multiplicative function satisfying |f(n)| = 1 for all positive integers n.
Then,

(7.1) lim
x→∞

A(x)

x
= 0.

We will only prove Theorems 7.1 and 7.2. However, we will first prove Theorem 7.2 since
its content will be useful for the proof of Theorem 7.1.

Proof of Theorem 7.2

Let Ix = [x, 2x] and first observe that, given any fixed small ε > 0, we may assume that
Q(n) ≤ η(x)1/ε. Indeed,

(7.2) #{n ∈ Ix : Q(n) > η(x)1/ε} � x
∏

η(x)<p≤η(x)1/ε

(
1− 1

p

)
� εx.

Now let p0, p1, . . . , pk−1 be any distinct primes belonging to the interval (η(x), η(x)1/ε),
and let p∗0 < p∗1 < · · · < p∗k−1 be the unique permutation of the primes p0, p1, . . . , pk−1, namely
the one such that has all its members appear in increasing order, so that we have

η(x) < p∗0 < p∗1 < · · · < p∗k−1 < η(x)1/ε.

Our first goal will be to estimate the size of

N(x|p0, p1, . . . , pk−1) := #{n ≤ x : Q(n+ j) = pj, j = 0, 1, . . . , k − 1}.
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We must therefore estimate the number of those integers n ∈ Ix for which pj|n + j (j =
0, 1, . . . , k− 1), while at the same time (πj, n+ j) = 1 if η(x) < πj < pj (j = 0, 1, . . . , k− 1).
Before moving on, let us set

Qk = p0p1 · · · pk−1 and Tj =
∏

η(x)<π<pj

π (j = 0, 1, . . . , k − 1),

where this last product runs over primes π. It is then easy to see that, say by using the
Eratosthenian sieve (see for instance Chapter 12 in the book of De Koninck and Luca [34]),
we have

(7.3) N(x|p0, p1, . . . , pk−1) = (1 + o(1))
x

Qk

Σ0 (x→∞),

where

Σ0 =
∑

δ0,...,δk−1
δj |Tj (j=0,1,...,k−1)

(δi,δj)=1 if i 6=j

µ(δ0) · · ·µ(δk−1)

δ0 · · · δk−1

(here µ stands for the Möbius function.) One can see that, as x→∞,

Σ0 =
∏

η(x)<π<p∗0

(
1− k

π

)
·
∏

p∗0<π<p
∗
1

(
1− k − 1

π

)
· · ·

∏
p∗k−2<π<p

∗
k−1

(
1− 1

π

)

= (1 + o(1))

(
log p∗0

log η(x)

)−k (
log p∗1
log p∗0

)−k+1

· · ·
(

log p∗k−1

log p∗k−2

)−1

.(7.4)

Hence, if we set σ(p) :=
log η(x)

log p
, it follows from (7.4) that

(7.5) Σ0 = (1 + o(1))σ(p0) · · ·σ(pk−1) (x→∞).

Substituting (7.5) in (7.3), we obtain

(7.6) N(x|p0, p1, . . . , pk−1) = (1 + o(1))x
k−1∏
j=0

σ(pj)

pj
(x→∞),

an estimate which holds uniformly for η(x) ≤ pj ≤ η(x)1/ε (j = 0, 1, . . . , k − 1).

We will now use a technique which we first used in [12] to study the distribution of subsets
of primes in the prime factorization of integers. We first introduce the sequence

u0 = η(x), uj+1 = uj +
uj

log2 uj
for each j = 0, 1, 2, . . .

and then let T be the unique positive integer satisfying uT−1 < η(x)1/ε ≤ uT . Then, consider
the intervals

J0 := [u0, u1), J1 := [u1, u2), . . . , JT−1 := [uT−1, uT ).
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Choose k arbitrary integers j0, . . . , jk−1 ∈ {0, 1, . . . , T −1}, as well as k arbitrary integers
i0, . . . , ik−1 from the set {0, 1, . . . , q − 1}, and consider the quantity

(7.7) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
:=

∑
p`∈J`∩℘i`

N(x|p0, . . . , pk−1).

Observe that
σ(ph)

ph
= (1 + o(1))

σ(uh)

uh
as x→∞ if p ∈ Jh. It follows from this observa-

tion and using (7.6) and (7.7) that, as x→∞,

(7.8) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
= (1 + o(1))x

∑
p`∈J`∩℘i`

k−1∏
j=0

σ(uj)

uj
.

Using Theorem 1 of our 1995 paper [12] in combination with (7.8), we obtain that

(7.9) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
= (1 + o(1))M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i′0, i
′
1, . . . , i

′
k−1

)
(x→∞),

where (i′0, i
′
1, . . . , i

′
k) is any arbitrary sequence of length k composed of integers from the set

{0, 1, . . . , q − 1}.
Finally, consider the expression

Ax := κ(Q(bxc)) . . . κ(Q(b2xc − 1)).

It follows from (7.9) that, for any given word β ∈ Akq , the number of occurrences of β as a

subword in the word Ax is equal to (1 + o(1))
x

qk
as x → ∞, thus completing the proof of

Theorem 7.2.

Proof of Theorem 7.1

Let
Bx = Q(bxc) . . . Q(b2xc − 1).

Also, let Q∗(n) = min
p|n

p>η(x)

p and observe that Q∗(n) ≤ Q(n), whereas if Q∗(n) 6= Q(n), we have

p|n if η(x) < p < η(2x).
Moreover, let

B∗x = Q∗(bxc) . . . Q∗(b2xc − 1).

Clearly, since η(x) was chosen to be a slowly oscillating function, we have

(7.10) 0 ≤ λ(Bx)− λ(B∗x) ≤ cx
∑

η(x)<p<η(2x)

log p

log q
≤ c1x log

η(2x)

η(x)
= o(x) (x→∞).

It follows from (7.10) that we now only need to estimate λ(B∗x). To do so, we first let δx be
a function tending to 0 very slowly as x → ∞, in a manner specified below. If p < xδx , we
have

Rp(x) := #{n ∈ Ix : Q∗(n) = p} = (1 + o(1))
x

p

∏
η(x)<π<p

(
1− 1

π

)
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= (1 + o(1))
x

p

log η(x)

log p
(x→∞),(7.11)

whereas if xδx ≤ p ≤ 2x, we have

(7.12) Rp(x) < c
x

p

log η(x)

log p
.

Now, observe that, as x→∞,

λ(B∗x) =
∑

η(x)<p≤2x

Rp(x)λ(p) =
∑

η(x)<p≤2x

Rp(x)

⌊
log p

log q

⌋

= (1 + o(1))
x

log q

∑
η(x)<p≤2x

log η(x)

p
+O

x log η(x)
∑

xδx<p≤x

1

p


= (1 + o(1))x

log η(x)

log q
log

log x

log η(x)
+O

(
x log η(x) log

1

δx

)
.(7.13)

Choosing the function δx in such a way that

log
1

δx
= o

(
log

log x

log η(x)

)
allows us to replace (7.13) with

(7.14) λ(B∗x) = (1 + o(1))x
log η(x)

log q
log

log x

log η(x)
(x→∞).

Now, pick any two distinct words β1, β2 ∈ Akq . First write

[η(x), xδx ] =
T⋃
j=0

Iuj ,

where

Iuj = [uj, uj+1), with u0 = η(x), uj = 2jη(x) for j = 1, 2, . . . , T + 1,

where T is defined as the unique positive integer satisfying uT < xδx ≤ uT+1.
In the spirit of Lemma 0.4, we will say that the prime p ∈ Iu is a bad prime if

max
β∈A`q

∣∣∣∣νβ(p)− L(u)

q`

∣∣∣∣ > κu
√
L(u)

and a good prime if ∣∣∣∣νβ(p)− L(u)

q`

∣∣∣∣ ≤ κu
√
L(u).

We will now separate the sum
∑
Rp(x)λ(p) running over the primes p located in the

intervals [uj, uj+1) into two categories, namely the bad primes and the good primes.
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First, using (7.11) and (7.12), we have

(7.15)
∑

p∈[uj,uj+1)

p bad

Rp(x)λ(p) ≤ cκ(uj)
∑

p∈[uj ,uj+1)

x log η(x)

p log p
� x

log η(x)

log η(x) + j log 2
.

On the other hand, if p is a good prime, one can easily establish that the number of occur-
rences of the words β1 and β2 in the word B∗x are close to each other, in the sense that

(7.16) νβ1(B∗x)− νβ2(B∗x) = o(λ(B∗x)).

Hence, proceeding as in [13] (see paper II above – page 16), it follows, considering the
true size of λ(B∗x) given by (7.14) and in light of (7.10), (7.15) and (7.16), that the number

of words β ∈ Akq appearing in Bx is equal to (1 + o(1))
λ(Bx)

qk
as x→∞.

We then proceed in the same manner in order to obtain similar estimates successively for
the intervals Ix/2, Ix/22 , . . . Thus, repeating the argument used in [13], Theorem 7.1 follows
immediately.

VIII. Prime-like sequences leading to the construction of normal numbers [21]
(Funct. Approx. Comment. Math., 2013)

Given an integer q ≥ 3, we consider the sequence of primes reduced modulo q and
examine various possibilities for constructing normal numbers using this sequence. We create
a sequence of independent random variables that mimics the sequence of primes and then
show that for almost all outcomes we obtain a normal number.

Given a fixed integer q ≥ 3, let

fq(n) =

{
Λ if (n, q) 6= 1,
` if n ≡ ` (mod q), (`, q) = 1.

Further, letting φ stand for the Euler function, let

Bφ(q) = {`1, . . . , `φ(q)}

be the set of reduced residues modulo q.
Let ℘ stand for the set of all primes, writing p1 < p2 < · · · for the sequence of consecutive

primes, and consider the infinite word

ξq = fq(p1)fq(p2)fq(p3) . . .

We first state the following conjecture.
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Conjecture 8.1. The word ξq is a normal sequence over Bφ(q) in the sense that given any
integer k ≥ 1 and any word β = r1 . . . rk ∈ Bk

φ(q), then, setting

ξ(N)
q = fq(p1)fq(p2) . . . fq(pN) for each N ∈ N

and
MN(ξq|β) := #{(γ1, γ2)|ξ(N)

q = γ1βγ2},

we have

lim
N→∞

MN(ξq|β)

N
=

1

φ(q)k
.

Recently added comment: See comments on Page 71 regarding progress on this conjec-
ture.

Now, with the above notation, consider the following weaker conjecture.

Conjecture 8.2. For every finite word β, there exists a positive integer N such that MN(ξq|β) >
0.

Remark 8.1. Observe that, in 2000, Shiu [58] provided some hope in the direction of a proof
of this last conjecture by proving that given any positive integer k, there exists a string of
congruent primes of length k, that is a set of consecutive primes pn+1 < pn+2 < · · · < pn+k

(where pi stands for the i-th prime) such that

pn+1 ≡ pn+2 ≡ · · · ≡ pn+k ≡ a (mod q),

for some positive integer n, for any given modulus q and positive integer a relatively prime
with q.

Let εn be a real function which tends monotonically to 0 as n → ∞ but in such a way
that (log log n)εn → ∞ as n → ∞. Letting p(n) stand for the smallest prime factor of n,
consider the set

(8.1) N (εn) := {n ∈ N : p(n) > nεn} = {n1, n2, . . .}.

We then have the following conjecture.

Conjecture 8.3. Let n1 < n2 < · · · be the sequence defined in (8.1). Then the infinite word

ξq := fq(n1)fq(n2) . . .

is a normal sequence over the set {` mod q : (`, q) = 1}.

Although the problem of generating normal numbers using the sequence of primes does
seem inaccessible, we will nevertheless manage to create large families of normal numbers,
in the direction of Conjectures 8.1, 8.2 and 8.3, but this time using prime-like sequences.

Main results
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Theorem 8.1. Let n1 < n2 < · · · be the sequence defined in (8.1). Then the infinite word

ηq := resq(n1)resq(n2) . . . ,

where resq(n) = ` if n ≡ ` (mod q), contains every finite word whose digits belong to Bφ(q)

infinitely often.

Remark 8.2. It is now convenient to recall a famous conjecture concerning the distribution
of primes.

Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with positive leading coeffi-
cients) and assume that the product F := F1 · · ·Fg has no fixed prime divisor. Then the
famous Hypothesis H of Schinzel and Sierpinski [57] states that there exist infinitely many
integers n such that each Fi(n) (i = 1, . . . , g) is a prime number. The following quantitative
form of Hypothesis H was later given by Bateman and Horn ([3],[4]):

(Bateman-Horn Hypothesis) If Q(F1, . . . , Fg;x) stands for the number of
positive integers n ≤ x such that each Fi(n) (i = 1, . . . , g) is a prime number,
then

Q(F1, . . . , Fg;x) = (1 + o(1))
C(F1, . . . , Fg)

h1 · · ·hg
x

logg x
(x→∞),

where hi = degFi and

C(F1, . . . , Fg) =
∏
p

((
1− 1

p

)−g (
1− ρ(p)

p

))
,

with ρ(p) denoting the number of solutions of F1(n) · · ·Fg(n) ≡ 0 (mod p).

Theorem 8.2. Let β be an arbitrary word belonging to Bk
φ(q) and let ξq be defined as in

Conjecture 3. If the Bateman-Horn Hypothesis holds, then

MN(ξq|β)→∞ as N →∞.

Let

λm =

{
0 if m = 1, 2, . . . , 10,
1/ logm if m ≥ 11.

Let ξm be a sequence of independent random variables defined by P (ξm = 1) = λm and
P (ξm = 0) = 1− λm. Let Ω be the set of all possible events ω in this probability space.

Let ω be a particular outcome, say m1,m2, . . ., that is one for which ξmj = 1 for j =
1, 2, . . . and ξ` = 0 if ` 6∈ {m1,m2, . . .}. Now, for a fixed integer q ≥ 3, set resq(m) = ` if
m ≡ ` (mod q), with ` ∈ Aq. Then, let ηq(ω) be the real number whose q-ary expansion is
given by

ηq(ω) = 0.resq(m1)resq(m2) . . .

We then have the following result.

Theorem 8.3. The number ηq(ω) is a q-normal number for almost all outcomes ω.
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We only prove Theorems 8.1 and 8.2. Before doing so, we prove three important lemmas.

Lemma 8.1. Let q ≥ 2, k ≥ 1 and M ≥ 1 be fixed integers. Given any nonnegative integer
n < qM , write its q-ary expansion as

n =
M−1∑
j=0

εj(n)qj, εj(n) ∈ Aq

and, given any word α = b1 . . . bk ∈ Akq , set

Eα(n) := #{j ∈ {0, 1, . . . ,M − k} : εj(n) . . . εj+k−1(n) = α}.

Then, there exists a constant c = c(k, q) such that∑
0≤n<qM

(
Eα(n)− M

qk

)2

≤ c qM M.

Proof. Let

f(c1, . . . , ck) =

{
1 if (c1, . . . , ck) = (b1, . . . , bk),
0 otherwise.

Then,

Σ1 :=
∑

0≤n<qM
Eα(n) =

∑
0≤n<qM

M−k−1∑
j=0

f(εj(n), . . . , εj+k−1(n)) = qM−k(M − k).

Similarly,

Σ2 :=
∑

0≤n<qM
Eα(n)2

=
∑

0≤n<qM

M−k−1∑
j1=0

M−k−1∑
j2=0

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

=
∑

0≤n<qM

∑
|j1−j2|≤k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

+
∑

0≤n<qM

∑
|j1−j2|>k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

= Σ2,1 + Σ2,2,

say.
On the one hand, it is clear that

(8.2) 0 ≤ Σ2,1 ≤ (2k + 1)qM−k(M − k) ≤ cqMM.

On the other hand, to estimate Σ2,2, first observe that for fixed j1, j2 with |j1 − j2| > k, we
have to sum 1 over those n ∈ [0, qM − 1[ for which

εj1(n) . . . εj1+k−1(n) = α = εj2(n) . . . εj2+k−1(n).
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But this occurs exactly for qM−2k many n’s. Thus,

(8.3) Σ2,2 = qM−2k
∑

|j1−j2|>k
0≤j1,j2≤M−k−1

1 = qM−2kM2 +O(qMM).

In light of (8.2) and (8.3), it follows that∑
0≤n<qM

(
Eα(n)− M

qk

)2

= Σ2 − 2
M

qk
Σ1 +

M2

q2k
qM

= qM−2kM2 +O(qMM)− 2
M2

q2k
qM +

M2

q2k
qM

= O(qMM),

thus completing the proof of the lemma.

Lemma 8.2. Given a fixed positive integer R, consider the word κ = c1 . . . cR ∈ ARq . Fix
another word α = b1 . . . bk ∈ Akq , with k ≤ R. Let K1 stand for the number of solutions
(γ1, γ2) of κ = γ1αγ2, that is the number of those j’s for which cj+1 . . . cj+k = α. Then,
given fixed indices i1, . . . , iH , let K2 be the number of solutions of cj+1 . . . cj+k = α for which
{j + 1, . . . , j + k} ∩ {i1, . . . , iH} = ∅ holds. Then,

0 ≤ K1 −K2 ≤ 2kH.

Proof. The proof is obvious.

Lemma 8.3. Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with positive leading
coefficients) and set F := F1 · · ·Fg. Let ρ(p) stand for the number of solutions of F (n) ≡ 0
(mod p) and assume that ρ(p) < p for all primes p. Write p(n) for the smallest prime factor
of the integer n ≥ 2 and assume that u and x are real numbers satisfying u ≥ 1 and x1/u ≥ 2.
Then,

#{n ≤ x : Fi(n) = qi for i = 1, . . . , k}

= x
∏

p<x1/u

(
1− ρ(p)

p

)
×
{

1 +OF (exp(−u(log u− log log 3u− log k − 2))) +OF (exp(−
√

log x))
}
.

Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [43].

Proof of Theorem 8.1

Theorem 8.1 is essentially a consequence of Lemma 8.3. Indeed, letting a1 < · · · < ak be
positive integers coprime to q and considering the product of linear polynomials

(8.4) F (n) := (qn+ a1) · · · (qn+ ak),

we have, by Lemma 8.3, that, as x→∞,

(8.5) #{n ∈ [x, 2x] : p(F (n)) > (2qx+ ak)
εx} = (1 + o(1))x

∏
p<xεx

(
1− ρ(p)

p

)
.
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If n is counted in the set on the left hand side of (8.5), we certainly have that p(qn+ aj) >
(qn+aj)

εqn+aj for j = 1, . . . , k. On the other hand, the desired numbers qn+aj, j = 1, . . . , k,
are consecutive integers with no small prime factors for all but a negligible number of them.
Indeed, if they were not consecutive, then there would be an integer b ∈ (a1, ak) such that
p(qn+ b) > xεx . In this case, set Gb(n) := qn+ b. Then, by (8.5), we would have

(8.6) #{n ∈ [x, 2x] : p(F (n)Gb(n)) > xεx} = (1 + o(1))x
∏
p<xεx

(
1− ρb(p)

p

)
,

where ρb(p) stands for the number of solutions of F (n)Gb(n) ≡ 0 (mod p). Since ρ(p) = k
(recall that each factor on the right hand side of (8.4) is linear) and ρb(p) = k + 1 if p - q
and p > ak, it follows that we have the following two “opposite” inequalities:∏

p<xεx

(
1− ρ(p)

p

)
≥ C(a1, . . . , ak) (εx log x)−k ,

∏
p<xεx

(
1− ρb(p)

p

)
≤ C(a1, . . . , ak) (εx log x)−k−1 .

Now, for the choice of b, we clearly have ak − a1 + 1 − k possible values. We have thus
proved that for every large number x, there is at least one n ∈ [x, 2x] for which the numbers
qn + a1, . . . , qn + ak are consecutive integers without small prime factors, that is for which
p(qn+ aj) > (qn+ aj)

εqn+aj , thus completing the proof of Theorem 8.1.

Proof of Theorem 8.2

The proof of Theorem 8.2 is almost similar to that of Theorem 8.1. Indeed assume that the
Bateman-Horn Hypothesis holds (see Remark 8.2 above). Then, let a1 be a positive integer

such that a1 ≡ b1 (mod q) and a1 ≡ 0 (mod D), where D =
∏
π≤k
π-q

π, where π are primes.

Similarly, let a2 be a positive integer such that a2 ≡ b2 (mod q) and a2 ≡ 0 (mod D), with
a2 > a1. Continuing in this manner, that is if a1, . . . , a`−1 have been chosen, we let a` ≡ b`
(mod q) with D|a` and a` > a`−1. Then, applying the Bateman-Horn Hypothesis, we get
that if 0 < a1 < · · · < ak are k integers satisfying (aj, q) = 1 for j = 1, . . . , k, then for each
positive integer n, setting

F (n) = (qn+ a1) · · · (qn+ ak),

letting
ρ(m) = #{ν (mod m) : F (ν) ≡ 0 (mod m)},

so that ρ(m) = 0 if (m, q) > 1 and ρ(p) < p for each prime p, and further setting

Πx :=
∏
p∈℘

p≤
√
qx+ak

p,

we have that, as x→∞, letting µ stand for the Moebius function,∑
n≤x

(F (n),Πx)=1

1 =
∑
n≤x

∑
δ|(F (n),Πx)

µ(δ) =
∑
δ|Πx

µ(δ)
∑
n≤x

F (n)≡0 (mod δ)

1
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= (1 + o(1))x
∑
δ|Πx

µ(δ)ρ(δ)

δ
= (1 + o(1))x

∏
p≤
√
qx+ak

(
1− ρ(p)

p

)
= (1 + o(1))c

x

logk x
,(8.7)

where c is a positive constant which depends only on a1, . . . , ak.
Now, we can show that almost all prime solutions π1 < · · · < πk represent a chain of

consecutive primes. To see this, assume the contrary, that is that the primes π1 < · · · < πk
are not consecutive, meaning that there exists a prime π satisfying π1 < π < πk and π 6∈
{π2, . . . , πk−1}. Assume that π` < π < π`+1 for some ` ∈ {1, . . . , k − 1}. We then have

π2 = π1 + a2 − a1,

π3 = π1 + a3 − a1,
...

...

π` = π1 + a` − a1,
...

...

πk = π1 + ak − a1,

π = π1 + d, where a` − a1 < d < a`+1 − a1.

We can now find an upper bound for the number of such k + 1 tuples. Indeed, by using
the Brun-Selberg sieve, one can obtain that the number of such solutions up to x is no

larger than c
x

logk+1 x
, which in light of (8.7) proves our claim, thus completing the proof of

Theorem 8.2.

IX. Normal numbers and the middle prime factor of an integer [24]
(Colloquium Mathematicum, 2014)

Given an integer n ≥ 2, consider its prime factorisation n = qa1
1 · · · q

ak
k . We let pm(n)

stand for the middle prime factor of n, that is,

pm(n) =


q1 if k = 1,
q k+1

2
if k is odd,

qk/2 if k is even.

Recently, De Koninck and Luca [34] showed that as x→∞,∑
n≤x

1

pm(n)
=

x

log x
exp

(
(1 + o(1))

√
2 log log x log log log x

)
,

thus answering in part a question raised by Paul Erdős.
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Here, we first establish that the size of log pm(n) is, for almost all n, close to
√

log n,
and then we show how one can use the middle prime factor of an integer to generate a
normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums
involving the middle prime factor function.

Main results

Theorem 9.1. Let g(x) be a function which tends to infinity with x but arbitrarily slowly.
Set x2 = log log x. Then, as x→∞,

1

x
#

{
n ∈ [x, 2x] : e−

√
x2 g(x) ≤ log pm(n)√

log x
≤ e

√
x2 g(x)

}
→ 1,(9.1)

1

x
#

{
n ≤ x : e−

√
x2 g(x) ≤ log pm(n)√

log x
≤ e

√
x2 g(x)

}
→ 1.(9.2)

Analogously, as x→∞,

(9.3)
1

x
#

{
n ≤ x :

∣∣∣∣log log pm(n)− 1

2
x2

∣∣∣∣ ≤ √x2 g(x)

}
→ 1.

Theorem 9.2. The sequence Concat(pm(n) : n ∈ N) is D-normal in every base D ≥ 2.

From here on, we will be using the standard notation e(y) := exp{2πiy}. We now
introduce the sum

T (x) :=
∑
n≤x

log pm(n).

Theorem 9.3. Consider the real valued polynomial Q(x) = αkx
k + · · ·+α1x, where at least

one of the coefficients αk, . . . , α1 is irrational, and set

EQ(x) :=
∑
n≤x

log pm(n) · e(Q(pm(n))).

Then,
EQ(x) = o(T (x)) (x→∞).

Remark 9.1. Observe that Theorem 9.3 includes the interesting case Q(x) = αx, where α
is an arbitrary irrational number.

Proofs of the theorems

We will first prove the following lemmas.

Lemma 9.1. Given a positive integer k, let β1 and β2 be two distinct words belonging to
AkD. Let c0 > 0 be an arbitrary number and consider the intervals

Jw :=

[
w,w +

w

logc0 w

]
(w > 1).

Further let π(Jw) stand for the number of prime numbers belonging to the interval Jw. Then,

1

π(Jw)

∑
p∈Jw

|νβ1(p)− νβ2(p)|
log p

→ 0 as w →∞.
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Proof. This is a reformulation of Lemma 0.5.

Lemma 9.2. Let
Ex :=

∑
n≤x

qpm(n)|n
pm(n)

3 <q<3pm(n)

log pm(n).

Then, there exists a positive constant c such that

Ex ≤ cx log log x.

Proof. We have that

Ex ≤
∑
p≤x

log p
∑
qpr≤x

p/3<q<3p

1 ≤ x
∑
p≤x

log p

p

∑
p/3<q<3p

1

q
≤ c1x

∑
p≤x

1

p
≤ c2x log log x,

thus completing the proof of Lemma 9.2.

Lemma 9.3. Let Q(x) = αkx
k + · · ·+α1x be a real-valued polynomial such that at least one

of its coefficients αk, . . . , α1 is irrational. If p1 < p2 < · · · stands for the sequence of primes,
then ∑

n≤x

e(Q(pn)) = o(x) as x→∞.

Proof. For a proof of this result, see Chapters 7 and 8 in the book of I.M. Vinogradov [63].

Proof of Theorem 9.1

Let

(9.4) y = exp{
√

log x}, so that log log y =
1

2
x2.

Then set
ωy(n) =

∑
p|n
p<y

1, Ry(n) =
∑
p|n
p>y

1, ∆y(n) = ωy(n)−Ry(n).

It is well known that, if εx → 0 arbitrarily slowly as x→∞, then

1

x
#{n ≤ x : |ω(n)− x2| >

1

εx

√
x2} → 0 as x→∞.

On the other hand, from the Turán-Kubilius inequality and in light of our choice of y given
by (9.4), we have∑

n≤x

(
ωy(n)− 1

2
x2

)2

=
∑
n≤x

|ωy(n)− log log y|2 = O(xx2).

Secondly, ∣∣∣∣Ry(n)− 1

2
x2

∣∣∣∣2 ≤ (
|ω(n)− x2|+

∣∣∣∣ωy(n)− 1

2
x2

∣∣∣∣)2
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≤ 2

(
(ω(n)− x2)2 +

(
ωy(n)− 1

2
x2

)2
)
,(9.5)

where we used the basic inequality (a + b)2 ≤ 2(a2 + b2) valid for all real numbers a and b.
Then, summing both sides of (9.5) for n ≤ x, we obtain that for some positive constant C,

(9.6)
∑
n≤x

|∆y(n)|2 ≤
∑
n≤x

2|ωy(n)− 1

2
x2|2 +

∑
n≤x

2|Ry(n)− 1

2
x2|2 ≤ C xx2.

It follows from (9.6) that

(9.7) |∆y(n)| ≤ 1

εx

√
x2 for all but at most o(x) integers n ≤ x.

Let us now choose z and w so that

log z = (log y)e−
√
x2 g(x), logw = (log y)e

√
x2 g(x).

Since ∑
z<p<y

1

p
= log

(
log y

log z

)
+ o(1) =

√
x2 g(x) + o(1) = A(x) + o(1),

say, and similarly,∑
y<p<w

1

p
= log

(
logw

log y

)
+ o(1) =

√
x2 g(x) + o(1) = A(x) + o(1),

then setting

ω[a,b](n) :=
∑
p|n

p∈[a,b]

1,

we have, again using the Turán-Kubilius inequality, that∑
n≤x

(
ω[z,y](n)− A(x)

)2 ≤ C xA(x) and
∑
n≤x

(
ω[y,w](n)− A(x)

)2 ≤ C xA(x).

from which it follows that ∣∣ω[z,y](n)− A(x)
∣∣ ≤ 1

εx

√
A(x),(9.8) ∣∣ω[y,w](n)− A(x)

∣∣ ≤ 1

εx

√
A(x).(9.9)

Now, recall that from (9.7), we only need to consider those n ≤ x for which

|ωy(n)−Ry(n)| ≤ 1

εx

√
x2

and for which (9.8) and (9.9) hold. So, let us choose εx = 2/g(x), in which case we have
A(x) =

√
x2 · g(x) = (2/εx)

√
x2. Thus, assuming first that 0 ≤ Ry(n)− ωy(n) < 1

εx

√
x2, we
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have pm(n) > y and by (9.9), pm(n) < w provided x is large enough. On the other hand, if
− 1
εx

√
x2 ≤ Ry(n)− ωy(n) ≤ 0, then we have pm(n) ≤ y and by (9.8), pm(n) > z provided x

is large enough. Hence, in any case, we get

z ≤ pm(n) ≤ w,

which proves (9.2), from which (9.1) and (9.3) follow as well, thus completing the proof of
Theorem 9.1.

Proof of Theorem 9.2

Let x be a fixed large number. Let Lx := {n ∈ N : bxc ≤ n ≤ b2xc − 1} and set

ρx := Concat(pm(n) : n ∈ Lx).

It is clear that

λ(ρx) =
∑
n∈Lx

λ(pm(n)),(9.10)

νβ(ρx) =
∑
n∈Lx

νβ(pm(n)) +O(x),(9.11)

λ(p) =
log p

logD
+O(1).(9.12)

It follows from (9.10), (9.12) and Theorem 9.1 that there exists c1 > 0 such that

(9.13) λ(ρx) ≥ c1x
√

log x exp {−
√
x2g(x)} .

Given arbitrary distinct words β1, β2 ∈ AkD, we set

∆(α) := νβ1(α)− νβ2(α) (α ∈ A∗D).

Our main task will be to prove that

(9.14) lim
x→∞

∆(ρx)

λ(ρx)
= 0.

This will prove that, for any word β ∈ AkD,

(9.15)
νβ(ρx)

λ(ρx)
− 1

Dk
= o(1) as x→∞

and therefore that the sequence Concat(pm(n) : n ∈ N) is D-normal, thus completing the
proof of Theorem 9.2.

To see how (9.15) follows from (9.14), observe that, in light of the fact that, for k ∈ N
fixed,

(9.16)
∑
γ∈AkD

νγ(ρx) = λ(ρx)− k + 1 = λ(ρx) +O(1),
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we have, as x→∞,

νβ(ρx)−
λ(ρx)

Dk
=

νβ(ρx)D
k − λ(ρx)

Dk

=
νβ(ρx)D

k −
∑

γ∈AkD
νγ(ρx) +O(1)

Dk

=
1

Dk

∑
γ∈AkD

(νβ(ρx)− νγ(ρx)) +O(1)

=
1

Dk
Dk · o(λ(ρx))

= o(λ(ρx)),

thus proving (9.15).
Hence, we only need to prove (9.14).
Now, from (9.11), it follows that

(9.17) ∆(ρx) =
∑
n∈Lx

∆(pm(n)) +O(x).

Let us further introduce the sets

L(0)
x =

{
n ∈ Lx : q pm(n) | n for some prime q ∈

(
pm(n)

3
, 3pm(n)

)}
,

L(1)
x =

{
n ∈ Lx : log pm(n) ≤

√
log x exp{−2

√
x2 g(x)}

}
.

With this notation, we then have, in light of Lemma 9.2 and of (9.13), that∑
n∈L(0)

x ∪L
(1)
x

log pm(n) ≤ cx log log x+ x
√

log x exp{−2
√
x2 g(x)}

= o
(
x
√

log x exp{−
√
x2 g(x)}

)
= o(λ(ρx)).(9.18)

Hence, setting L
(2)
x = Lx \

(
L

(0)
x ∪ L(1)

x

)
, it follows from (9.17) and (9.18) that

(9.19) ∆(ρx) =
∑
n∈L(2)

x

∆(pm(n)) + o(λ(ρx)).

Let us now write each integer n ∈ L(2)
x as n = a pm(n) b, where

P (a) ≤ pm(n) ≤ p(b).

Thus setting M = ab and given an arbitrarily small ε > 0, we have from Theorem 9.1 that

(9.20) M ≤ 2x

e(log x)
1
2−ε

.
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Now, let us fix M = ab. It is clear that we may ignore those integers n ≤ x for which
pm(n)2 | n since they are at most o(x) of them anyway. Once this is done, it is clear that in
the factorization n = apm(n)b, we have P (a) < p(b), so that M determines a and b uniquely.
Then, in light of (9.20), we may consider the set

EM := {n ∈ L(2)
x : n = a pm(n) b = M pm(n)}.

Let n1 < n2 < · · · < nH be the list of all elements of EM and further set πj = pm(nj) for
j = 1, 2, . . . , H. By construction, it is clear that π1 < π2 < · · · < πH , all consecutive primes,
and that, since x/M is large by (9.20), it follows that πH > (3/2)π1.

Then, let K be the set of those M ’s such that the corresponding set EM contains at least
one n ∈ L(2)

x , since the others need not be accounted for. Hence, for those ab = M , we have

that EM contains at least
π1

2 log π1

elements, thus implying that H ≥ π1

2 log π1

, provided x is

chosen to be large enough.
Using Lemma 9.1, it follows that, when M ∈ K, we have

1

H

H∑
j=1

∣∣∣∆(pm(nj))
∣∣∣

log pm(nj)
→ 0 as x→∞.

From this, it follows that, for M ∈ K, there exists a function εx → 0 as x→∞ such that

(9.21)
∑
M∈K

∑
n∈EM

∣∣∣∆(pm(n))
∣∣∣ < εx

∑
M∈K

∑
n∈EM

λ(pm(n)).

Using (9.21), estimate (9.14) follows, thus completing the proof of Theorem 9.2.

Proof of Theorem 9.3

We first write

(9.22) EQ(2x)− EQ(x) =
∑

x≤n≤2x

log pm(n) · e(Q(pm(n))).

Using the notation introduced in the proof of Theorem 9.2, we can, in the above sum, drop
all those n ∈ L(0)

x ∪ L(1)
x . It follows that we only need to consider those M ∈ K. Now for a

fixed M ∈ K, we only need to examine the sum

H∑
j=1

log πj · e(Q(πj)),

where π1, . . . , πH are consecutive primes and πH > (3/2)π1. Using Lemma 9.3, we then
obtain that ∣∣∣∣∣

H∑
j=1

log πj · e(Q(πj))

∣∣∣∣∣ ≤ εx

∣∣∣∣∣
H∑
j=1

log πj

∣∣∣∣∣ .
Using this in (9.22), it follows that, as x→∞,

|EQ(2x)− EQ(x)| =

∣∣∣∣∣∣∣∣
∑

x≤n≤2x

n∈L(2)
x

log pm(n) · e(Q(pm(n)))

∣∣∣∣∣∣∣∣+ o(T (x))
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≤ εxT (x) + o(T (x))

= o(T (x)),

as requested.

Final remarks

Instead of considering the middle prime factor of an integer, that is the prime factor
whose rank amongst the ω(n) distinct prime factors of an integer n is the b1

2
ω(n)c-th one,

we could have also studied the one whose rank is the bαω(n)c-th one, for any given real
number α ∈ (0, 1). In this more general case, say with p(α)(n) in place of pm(n), the same
type of results as above would also hold, meaning in particular that log p(α)(n) would be
close to logα n instead of

√
log n.

X. Constructing normal numbers using residues of selective prime factors of integers [23]
(Annales Univ. Sci. Budapest. Sect. Comp., 2014)

Given an integer N ≥ 1, for each integer n ∈ JN := [eN , eN+1), let qN(n) be the smallest
prime factor of n which is larger than N ; if no such prime factor exists, set qN(n) = 1. Fix an
integer Q ≥ 3 and consider the function f(n) = fQ(n) defined by f(n) = ` if n ≡ ` (mod Q)
with (`,Q) = 1 and by f(n) = Λ otherwise, where Λ stands for the empty word. Then
consider the sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by κ(n) = f(qN(n)) if n ∈ JN with
qN(n) > 1 and by κ(n) = Λ if n ∈ JN with qN(n) = 1. Then, for each integer N ≥ 1, consider
the concanetation of the numbers κ(1), κ(2), . . ., that is define θN := Concat(κ(n) : n ∈ JN).
Then, set αQ := Concat(θN : N = 1, 2, 3, . . .). Finally, let BQ = {`1, `2, . . . , `φ(Q)} be the set
of reduced residues modulo Q, where φ stands for the Euler function. We show that αQ is a
normal sequence over BQ.

In previous papers ([13], [20], [22]), we showed how one could construct normal numbers
by concatenating the digits of the numbers P (2), P (3), P (4), . . ., where P (n) stands for the
largest prime factor of n, then similarly by using the k-th largest prime factor instead of
the largest prime factor and finally by doing the same replacing P (n) by p(n), the smallest
prime factor of n.

Here, we consider a different approach which uses the residue modulo an integer Q ≥ 3
of the smallest element of a particular set of prime factors of an integer n.

Given a fixed integer Q ≥ 3, let

(10.1) fQ(n) :=

{
Λ if (n,Q) 6= 1,
` if n ≡ ` (mod Q), (`,Q) = 1.

Write p1 < p2 < · · · for the sequence of consecutive primes, and consider the infinite
word

ξQ = fQ(p1)fQ(p2)fQ(p3) . . .
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Let
BQ = {`1, `2, . . . , `φ(Q)}

be the set of reduced residues modulo Q, where φ stands for the Euler totient function.
In an earlier paper [21] (see Conjecture 8.1 on Page 58), we conjectured that the word

ξQ is a normal sequence over BQ in the sense that given any integer k ≥ 1 and any word
β = r1 . . . rk ∈ Bk

Q, and further setting

ξ
(N)
Q = fQ(p1)fQ(p2) . . . fQ(pN) for each N ∈ N

and
MN(ξQ|β) := #{(γ1, γ2)|ξ(N)

Q = γ1βγ2},

we have

lim
N→∞

MN(ξQ|β)

N
=

1

φ(Q)k
.

In this paper, we consider a somewhat similar but more simple problem, namely by using
the residue of the smallest prime factor of n (modulo Q) which is larger than a certain
quantity, and this time we obtain an effective result.

Our main result

Given an integer N ≥ 1, for each integer n ∈ JN := [xN , xN+1) := [eN , eN+1), let qN(n)
be the smallest prime factor of n which is larger than N ; if no such prime factor exists, set
qN(n) = 1. Fix an integer Q ≥ 3 and consider the function f(n) = fQ(n) defined by (10.1).
Then consider the sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by κ(n) = f(qN(n)) if n ∈ JN
with qN(n) > 1 and by κ(n) = Λ if n ∈ JN with qN(n) = 1. Then, for each integer N ≥ 1,
consider the concatenation of κ(1), κ(2), κ(3), . . ., that is define

θN := Concat(κ(n) : n ∈ JN).

Then, setting
αQ := Concat(θN : N = 1, 2, 3, . . .),

we will prove the following result.

Theorem 10.1. The sequence αQ is a normal sequence over BQ.

Proof of the main result

We first introduce the notation λN = log logN . Moreover, from here one, the letters p
and π, with or without subscript, always stand for primes. Finally, let ℘ stand for the set of
all primes.

Fix an arbitrary large integer N and consider the interval J := [x, x + y] ⊆ JN . Let
p1, p2, . . . , pk be k distinct primes belonging to the interval (N,NλN ]. Then, set

SJ(p1, p2, . . . , pk) := #{n ∈ J : qN(n+ j) = pj for j = 1, 2, . . . , k}.
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We know by the Chinese Remainder Theorem that the system of congruences

(10.2) n+ j ≡ 0 (mod pj), j = 1, 2, . . . , k

has a unique solution n0 < p1p2 · · · pk and that any solution n ∈ J of (10.2) is of the form

n = n0 +mp1p2 · · · pk for some non negative integer m.

Let us now reorder the primes p1, p2, . . . , pk as

pi1 < pi2 < · · · < pik .

If π ∈ ℘ and N < π < pi1 , it is clear that we will have (n + j, π) = 1 for each
j ∈ {1, 2, . . . , k}. Similarly, if π ∈ ℘ and pi1 < π < pi2 , then (n + j, π) = 1 for each
j ∈ {1, 2, . . . , k} \ {i1}, and so on. Let us now introduce the function ρ : ℘ ∩ (N, pik ] →
{0, 1, 2, . . . , k} defined by

ρ(π) =



k if N < π < pi1 ,
k − 1 if pi1 < π < pi2 ,
...

...
1 if pik−1

< π < pik ,
0 if π ∈ {p1, p2, . . . , pk}.

By using the Eratosthenian sieve, we easily obtain that, as y →∞,

(10.3) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

∏
N<π<pik

(
1− ρ(π)

π

)
.

Setting U :=
∏

N<π<pik

(
1− ρ(π)

π

)
, one can see that, as N →∞,

logU = k log logN − k log log pi1 − (k − 1) log log pi2 + (k − 1) log log pi1
− · · · − log log pik + log log pik−1

+ o(1)

= k log logN − log log pi1 − · · · − log log pik + o(1),

implying that

(10.4) U = (1 + o(1))
k∏
j=1

logN

log pj
(N →∞).

Hence, in light of (10.4), relation (10.3) can be replaced by

(10.5) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

k∏
j=1

logN

log pj
(y →∞).
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Now let r1, . . . , rk be an arbitrary collection of reduced residues modulo Q and let us
define

By(r1, . . . , rk) :=
∑

pj≡rj (mod Q)

N<pj≤N
λN

j=1,...,k

SJ(p1, . . . , pk).

From the Prime Number Theorem in arithmetic progressions, we have that

(10.6)
∑

u≤p≤u+u/(log u)10

p≡` (mod Q)

1

p log p
= (1 + o(1))

1

φ(Q)

∑
u≤p≤u+u/(log u)10

1

p log p
(u→∞).

On the other hand, it is clear that, from the Prime Number Theorem,

(10.7)
∑

N<p≤NλN

1

p log p
= (1 + o(1))

∫ NλN

N

du

u log2 u
=

1 + o(1)

logN
(N →∞).

Combining (10.5), (10.7), and (10.6), it follows that, as y →∞,

By(r1, . . . , rk) = (1 + o(1))y
∑

pj≡rj (mod Q)

N<pj<N
λN

j=1,...,k

k∏
j=1

logN

pj log pj

= (1 + o(1))
y

φ(Q)k
.(10.8)

Observe also that

(10.9)
1

xN
#{n ∈ JN : qN(n) > NλN} → 0 as xN →∞.

Indeed, it is clear that if qN(n) > NλN , then

n, ∏
N<π<NλN

π

 = 1. Therefore, for some

absolute constants C1 > 0 and C2 > 0, we have

(10.10) #{n ∈ JN : qN(n) > NλN} ≤ CxN
∏

N<π≤NλN

(
1− 1

π

)
≤ C

xN
λN

,

which proves (10.9).

We now examine the first M digits of αQ, say α
(M)
Q . Let N be such that xN ≤M < xN+1

and set x := xN , y := M − xN and J0 = [x, x+ y].
It follows from (10.8) and (10.10) that, as y →∞,

(10.11)

#{n ∈ J0 : qN(n+ j) ≡ rj (mod Q) for j = 1, . . . , k} = (1 + o(1))
y

φ(Q)k
+O

(
xN
λN

)
,

where the above error term accounts (as measured by (10.10)) for those integers n ∈ JN for
which qN(n) > NλN . Running the same procedure for each positive integer H < N , each
time choosing JH = [xH , xH+1), we then obtain a formula similar to the one in (10.11).
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Gathering the resulting relations allows us to obtain that, for X = x+ y,

lim
X→∞

1

X
# {n ≤ X : qN(n+ j) ≡ rj (mod Q) for j = 1, 2, . . . , k}

= lim
X→∞

1

X

(N−1∑
H=1

# {n ∈ JH : qN(n+ j) ≡ rj (mod Q) for j = 1, 2, . . . , k}

+ #{n ∈ J0 : qN(n+ j) ≡ rj (mod Q) for j = 1, . . . , k}
)

=
1

φ(Q)k
,

thus completing the proof of Theorem 10.1.

Final remarks

Let Ω(n) :=
∑

pα‖n α stand for the number of prime factors of n counting their multiplic-

ity. Fix an integer Q ≥ 3 and consider the function uQ(m) = `, where ` is the unique non
negative number ≤ Q− 1 such that m ≡ ` (mod Q). Now consider the infinite sequence

ξQ = Concat (uQ(Ω(n)) : n ∈ N) .

We conjecture that ξQ is a normal sequence over {0, 1, . . . , Q− 1}.
Moreover, let ℘̃ ⊂ ℘ be a subset of primes such that

∑
p∈℘̃ 1/p = +∞ and consider the

function Ω℘̃(n) :=
∑
pα‖n
p∈℘̃

α. We conjecture that

ξQ(℘̃) := Concat (uQ(Ω℘̃(n)) : n ∈ N)

is also a normal sequence over {0, 1, . . . , Q− 1}.
Finally, observe that we can also construct normal numbers by first choosing a monoton-

ically growing sequence (wN)N≥1 such that wN > N for each positive integer N and such
that (logwN)/N → 0 as N → ∞, and then defining qN(n) as the smallest prime factor of
n larger than wN if n ∈ JN , setting qN(n) = 1 otherwise. The proof follows along the same
lines as the one of our main result.

XI. The number of prime factors function on shifted primes and normal numbers [25]
(Topics in Mathematical Analysis and Applications, Springer, Volume 94, 2014)

Let ω(n) stand for the number of distinct prime factors of the positive integer n. One
can easily show that the concatenation of the successive values of ω(n), say by considering
the real number ξ := 0.ω(2)ω(3)ω(4)ω(5) . . ., where each m stands for the q-ary expansion
of the integer m, will not yield a normal number. Indeed, since the interval I := [ee

r−1
, ee

r
],

where r := blog log xc, covers most of the interval [1, x] and since

∣∣∣∣ω(n)

r
− 1

∣∣∣∣ < 1

r1/4
, say,
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with the exception of a small number of integers n ∈ I, it follows that ξ cannot be normal
in base q.

Recently, Vandehey [62] used another approach to yet create normal numbers using cer-
tain small additive functions. He considered irrational numbers formed by concatenating
some of the base q digits from additive functions f(n) that closely resemble the prime
counting function Ω(n) :=

∑
pα‖n α. More precisely, he used the concatenation of the last

dy log log logn
log q

e digits of each f(n) in succession and proved that the number thus created turns

out to be normal in base q if and only if 0 < y ≤ 1/2.
In this paper, we show that the concatenation of the successive values of |ω(n)−blog log nc|,

as n runs through the integers n ≥ 3, yields a normal number in any given base q ≥ 2. We
show that the same result holds if we consider the concatenation of the successive values of
|ω(p+ 1)− blog log(p+ 1)c|, as p runs through the prime numbers.

So, let us first introduce the arithmetic function δ(n) := |ω(n)− blog log nc|.

Main results

Theorem 11.1. Let R ∈ Z[x] be a polynomial of positive degree such that R(y) ≥ 0 for all
y ≥ 0. Let

η = Concat(R(δ(n)) : n = 3, 4, 5, . . .).

Then, η is a normal sequence in any given base q ≥ 2.

Theorem 11.2. Let
ξ = Concat(δ(p+ 1) : p ∈ ℘).

Then, ξ is a normal sequence in any given base q ≥ 2.

Remark 11.1. We shall only provide the proof of Theorem 11.2, the reason being that it is
somewhat harder than that of Theorem 11.1. Indeed, for the proof of Theorem 11.1, one can
use the fact that

πk(x) := #{n ≤ x : ω(n) = k} = (1 + o(1))
x

x1

xk−1
2

(k − 1)!

uniformly for |k − x2| ≤
√
x2 x3, say, and also the Hardy-Ramanujan inequality

πk(x) < c1
x

x1

(x2 + c2)k−1

(k − 1)!

which is valid uniformly for 1 ≤ k ≤ 10x2 and x ≥ x0 (see for instance the book of De
Koninck and Luca [34], p. 157). Hence, using these estimates, one can easily prove Theorem
11.1 essentially as we did to prove that Concat(P (m) : m ∈ N) is a normal sequence in
any given base q ≥ 2 (see [13]). Now, since there are no known estimate for the asymptotic
behavior of #{p ≤ x : ω(p + 1) = k}, we need to find another approach for the proof of
Theorem 11.2.

Remark 11.2. It will be clear from our approach that if ω(n) is replaced by Ω(n) or if we
consider the function δ2(n) := |blog τ(n)c − blog log nc| (where τ(n) stands for the number
of positive divisors of n), the same results hold.

75



Preliminary lemmas

For each real number u > 0, let Φ(u) :=
1√
2π

∫ u

−∞
e−t

2/2 dt.

Lemma 11.1. (a) As x→∞,

1

π(x)
#

{
p ≤ x :

δ(p+ 1)√
log log x

< u

}
= (1 + o(1)) (Φ(u)− Φ(−u)) .

(b) Letting εx a function which tends to 0 as x→∞. Then, as x→∞,

1

π(x)
#
{
p ≤ x : δ(p+ 1) ≤ εx

√
log log x

}
→ 0.

Proof. For a proof of part (a), see the book of Elliott [38], page 30. Part (b) is an immediate
consequence of part (a).

Let x be a fixed large number. For each integer n ≥ 2, we now introduce the function

δ∗(n) := |ω(n)− blog log xc| .

Lemma 11.2. For all x ≥ 2,∑
p≤x

(δ∗(p+ 1))2 ≤ cπ(x) log log x.

Proof. To obtain this inequality, we may argue as in the proof of the Turán-Kubilius in-
equality, using the fact that the contribution of those prime divisors which are larger than
x1/6, say, is small.

Lemma 11.3. Given an arbitrary κ ∈ (0, 1/2), then, for all x ≥ 2,

#{p ≤ x : P (p+ 1) < xκ}+ #{p ≤ x : P (p+ 1) > x1−κ} ≤ cκπ(x).

Proof. This is an immediate application of Theorem 4.2 in the book of Halberstam and
Richert [43].

Lemma 11.4. Let a and b be two non zero co-prime integers, one of which is even. Then,
as x→∞, we have, uniformly in a and b,

#{p ≤ x : ap+ b ∈ ℘} ≤ 8
∏
p>2

(
1− 1

(p− 1)2

)∏
p>2
p|ab

p− 1

p− 2

x

log2 x

(
1 +O

(
log log x

log x

))
.

Proof. This is Theorem 3.12 in the book of Halberstam and Richert [43] for the particular
case k = 1.

Lemma 11.5. Let M ≥ 2k, β1, β2 ∈ Akq . Set ∆(α) = |νβ1(α)− νβ2(α)|. Then,∑
α∈AM+1

q

∆2(α) ≤ cMqM .
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Proof. Let β = bk−1 . . . b0 ∈ Akq . Consider the function fβ : Akq → {0, 1} defined by

fβ(uk−1, . . . , u0) =

{
1 if uk−1 . . . u0 = β,
0 otherwise.

Let M ∈ N, M ≥ 2k. Let α = εM . . . ε0 run over elements of AM+1
q . It is clear that

A :=
∑

α∈AM+1
q

νβ(α)

=
M+1−k∑
ν=0

#{α ∈ AM+1
q : εν+k−1 . . . εν = β}

= (M + 1− k)qM+1−k.(11.1)

On the other hand,

B :=
∑

α∈AM+1
q

ν2
β(α)

=
M+1−k∑
ν1=0

M+1−k∑
ν2=0

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2)

= A+ 2
M+1−k∑
ν1,ν2=0
ν1<ν2

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2)

= A+ 2
M+1−k∑
ν1,ν2=0

ν1<ν2≤ν1+k

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2)

+2
M+1−k∑
ν1,ν2=0
ν2>ν1+k

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2).(11.2)

Now, on the one hand we have

(11.3)
M+1−k∑
ν1,ν2=0

ν1<ν2≤ν1+k

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2) ≤ ckMqM+1−k,

while on the other hand,

M+1−k∑
ν1,ν2=0
ν2>ν1+k

∑
ε0,...,εM

fβ(εν1+k−1, . . . , εν1)fβ(εν2+k−1, . . . , εν2)

=
M+1−k∑
ν1,ν2=0
ν1+k<ν2

qM+1−2k = qM+1−2k
(
(M + 1)2 −O(kM)

)
.(11.4)
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Combing (11.1) and (11.2), using estimates (11.3) and (11.4), we conclude that

(11.5)
∑

α=εM ...ε0

(
νβ(α)− M + 1

qk

)2

≤ cMqM .

Note that here we summed over those εM = 0 as well. But (11.5) remains true if we drop
those εM = 0. This allows us to conclude that∑

α∈AM+1
q

(
νβ(α)− M + 1

qk

)2

≤ cMqM ,

thus completing the proof of Lemma 11.5.

Proof of Theorem 11.2

Let
ξx = Concat(δ(p+ 1) : p ≤ x).

Our first goal is to prove that there exist two positive constants c1 and c2 such that

(11.6) c1 ≤
λ(ξx)

π(x)x3

≤ c2,

provided x is sufficiently large, from which it will follow that the order of λ(ξx) is π(x)x3.
We have

(11.7) λ(ξx) =
∑
p≤x

δ(p+1)6=0

⌊
log δ(p+ 1)

log q

⌋
+O(π(x)) = Σ1 + Σ2 +O(π(x)),

say, where the sum in Σ1 runs over the primes p ≤ x/x2, while that of Σ2 runs over the
primes located in the interval Jx := (x/x2, x].

It follows from Lemma 11.1 that, for each u > 0 there exists c(u) > 0 such that

#

{
p ≤ x :

δ(p+ 1)
√
x2

> u

}
> c(u)π(x),

from which it follows that

(11.8) Σ2 ≥ cπ(x)x3

and therefore, from (11.7), that, if x > x0, the inequality
λ(ξx)

π(x)x3

> c holds for some positive

constant c, thereby establishing the first inequality in (11.6).
To obtain the upper bound in (11.6), first observe that

(11.9) Σ1 ≤ 2π(x/x2)x2 = O(π(x)).
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On the other hand, from the definitions of the functions δ and δ∗, it is clear that

|δ∗(p+ 1)− δ(p+ 1)| ≤ 1 for all p ∈ Jx.

Hence,

Σ2 ≤ c
∑

x/x2<p≤x

log δ∗(p+ 1) = c
∑

x/x2<p≤x
δ∗(p+1)≤4

√
x2

log δ∗(p+ 1) + c
∑

x/x2<p≤x
δ∗(p+1)>4

√
x2

log δ∗(p+ 1)

≤
(

2 log 2 +
x3

2

)
π(x) + c

∑
x/x2<p≤x

δ∗(p+1)>4
√
x2

log δ∗(p+ 1)

≤ c3π(x)x3 + Σ3,(11.10)

say.
From Lemma 11.2, we obtain that for every A ≥ 1,

(11.11) #

{
p ∈ Jx :

δ∗(p+ 1)
√
x2

> A

}
≤ cπ(x)

A2
.

We now apply (11.11) successively with A = 2j, j = 2, 3, . . ., thus obtaining

Σ3 ≤ cπ(x)
∑
j≥2

log
(
2j+1√x2

)
22j

≤ cπ(x)
∑
j≥2

(
(j + 1) log 2

4j
+

x3

2 · 4j

)
≤ c4π(x)x3,

from which we may conclude, in light of (11.7), (11.9) and (11.10), that the right hand side
of (11.6) holds as well.

We will now prove that, given any fixed integer k ≥ 1 and distinct words β1, β2 ∈ Akq ,
and setting ∆(α) := νβ1(α)− νβ2(α) for each word α ∈ A∗q,

(11.12) lim
x→∞

|∆(ξx)|
λ(ξx)

= 0.

In order to achieve this, now that we know (from (11.6)) that the true order of λ(ξx) is
π(x)x3, we essentially need to prove that ∆(ξx) is of smaller order than π(x)x3.

Let θx be an arbitrary function which tends monotonically to 0 very slowly. Then consider
the sets

D1 = {p ∈ ℘ : p ≤ x/x2},
D2 = {p ∈ ℘ : p ≤ x and δ(p+ 1) ≤ θx

√
x2},

D3 = {p ∈ ℘ : p ≤ x and δ(p+ 1) >
1

θx

√
x2},

and let D = D1 ∪D2 ∪D3.
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Because ∆(δ(p + 1)) ≤ cx3 if p ∈ D1 and p ≤ cx2, and since (11.11) holds for p ∈ D3, it
follows from Lemma 11.1 and (11.9) that∑
p∈D

|∆(δ(p+ 1))| ≤ cx3π(x) (Φ(θx)− Φ(−θx)) + cπ(x/x2)x2

+
∞∑
j=0

#

{
p ∈ Jx :

δ∗(p+ 1)
√
x2

∈
[

2j

θx
,
2j+1

θx

]}
· log

(
√
x2 ·

2j+1

θx

)
.(11.13)

Since this last sum is less than

π(x)
∑
j≥0

(x3 + j + log(1/θx)) ·
θ2
x

22j
≤ c (log(1/θx) + x3) θ2

xπ(x),

it follows from (11.13) that

(11.14)
∑
p∈D

|∆(δ(p+ 1))| = o(π(x)x3) (x→∞).

Using (11.14), we then have

(11.15) ∆(ξx) =
∑
p 6∈D

∆(δ(p+ 1)) + o(π(x)x3) = ΣA + o(π(x)x3),

say.
Let κ ∈ (0, 1/2). From Lemma 11.3, we obtain, using the fact that p 6∈ D3 (since p 6∈ D),

that

(11.16)
∑
p 6∈D

P (p+1)6∈[xκ,x1−κ]

|∆(δ(p+ 1))| ≤ cκπ(x) log

(
1

θx

√
x2

)
≤ c1κπ(x)x3,

provided that θx is chosen so that 1/θx < x2, say.
Now let K = bx2c and then, for ` satisfying εx

√
K ≤ |`| ≤ 1

εx

√
K, where εx is a function

which tends to infinity very slowly as x → ∞ and which will be chosen appropriately later
on.

Further set

Rκ(`) := #{p ∈ Jx : P (p+ 1) ∈ (xκ, x1−κ) and ω(p+ 1) = K + `}.

Using Lemma 11.4, we obtain that

Rκ(`) ≤ #{p ∈ Jx : p+ 1 = aq, a < x1−κ, q > xκ/x2, ω(a) = K + `− 1}

≤ 1

κ2

x

log2 x

∑
ω(n)=K+`−1

1

a

∏
p>2
p|a

p− 1

p− 2
+O

(
x1−κ) ,(11.17)

where the O(. . .) term accounts for the contribution of those q such that q2 | p+ 1.
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It then follows from (11.17) that

Rκ(`) ≤
c2x

κ2 log2 x

(∑
p≤x

1

p
+ c

)K+`−1
1

(K + `− 1)!
+O

(
x1−κ)

≤ c3x

κ2 log2 x

(K + c)K+`−1

(K + `− 1)!
.(11.18)

Now, observe that, if ω(p + 1) = K + `, p ∈ Jx, then δ(p + 1) ∈ {|`| − 1, |`|, |`| + 1}.
Therefore, recalling (11.16),

|ΣA| ≤
∑

εx
√
K≤|`|≤ 1

εx

√
K

(
∆(|`|) + ∆(|`| − 1) + ∆(|`|+ 1)

)
· (Rκ(−`) +Rκ(`))

+c1κπ(x)x3

= ΣB + c1κπ(x)x3,(11.19)

say.
Using (11.18), we obtain that

(11.20)

ΣB ≤
c4x

κ2 log2 x

∑
εx≤ √̀

K
≤ 1
εx

(
∆(|`|) + ∆(|`| − 1) + ∆(|`|+ 1)

)
·
(

(K + c)K+`−1

(K + `− 1)!
+

(K + c)K−`−1

(K − `− 1)!

)
.

Since we can easily establish that

max
0≤`≤

√
K
εx

(
(K + c)K+`−1

(K + `− 1)!
+

(K + c)K−`−1

(K − `− 1)!

)
<

(K + c)K−1

(K − 1)!
exp

{
c5

(
1

εx

)2
}
,

it follows from (11.20) that

(11.21) ΣB ≤
c4x

κ2 log2 x
exp

{
c5

(
1

εx

)2
}

(K + c)K−1

(K − 1)!
ΣC ,

where

ΣC =
∑

εx≤ √̀
K
≤ 1
εx

(
∆(`) + ∆(`− 1) + ∆(`+ 1)

)
≤ 3

∑
εx≤ √̀

K
≤ 1
εx

∆(`) +O(x3) = 3ΣD +O(x3),(11.22)

say.
To estimate ΣD, we will use Lemma 11.5. Indeed, let M0 be the largest integer for

which qM0 ≤ εx
√
K and let M1 be the smallest integer for which qM1 > 1

εx

√
K. Set KM =

[qM , qM+1 − 1]. With this set up, we clearly have that

(11.23) ΣD ≤
∑

M0≤M≤M1

TM ,
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where TM =
∑
`∈KM

∆(`). Now, it follows from Lemma 11.5 that

(11.24) TM ≤ c(qM+1)1/2(MqM−k)1/2 ≤ c
√
MqM .

Using (11.24) in (11.23), we obtain that

(11.25) ΣD ≤ c
√
M1q

M1

(
1 +

1

q
+

1

q2
+ · · ·

)
<
c6

εx

√
K
√

logK <
c6
√
x2
√
x3

εx
.

Gathering (11.21), (11.22) and (11.25), we have that

(11.26) ΣB ≤
c7x

κ2 log2 x
exp

{
c5

(
1

εx

)2
}

(K + c)K−1

(K − 1)!
·
√
x2
√
x3

εx
.

Setting `K =
(K + c)K−1

(K − 1)!
and using Stirling’s formula n! = nne−n

√
2πn(1 + O(1/n)), we

have that

log `K = (K − 1) log(K + c)− (K − 1) log

(
K − 1

e

)
− 1

2
logK +O(1)

= (K − 1) log
K + c

K − 1
− 1

2
logK +O(1) +K − 1,

from which it follows that
`K ≤ c8

x1√
x2

.

Using this last estimate in (11.26), we obtain that

(11.27) ΣB �
exp {c5/ε

2
x}

κ2εx
π(x)

√
x3.

Choosing εx = x5, say, while using (11.27) and (11.6), we conclude that

(11.28) lim sup
x→∞

ΣB

λ(ξx)
= 0.

Combining (11.28), (11.19) and (11.15), we obtain that

(11.29) lim sup
x→∞

∆(ξx)

λ(ξx)
≤ cκ.

Since κ can be taken arbitrarily small, we may finally conclude that (11.12) holds, thus
completing the proof of Theorem 11.2.
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XII. Normal numbers generated using the smallest prime factor function [22]
(Annales mathématiques du Québec, 2014)

In a series of recent papers, we constructed large families of normal numbers using the
distribution of the values of the largest prime factor function (see for instance [13], [17]
and [20]). What if we consider instead the function p(n), which stands for the smallest
prime factor of an integer n ≥ 2 ? At first, one might think that the (base 10) real number
η1 := 0.p(2)p(3)p(4)p(5) . . . is not a normal number because p(n) = 2 for every even number.
But, on the contrary, as we will show here, η1 is indeed a normal number. In fact, it turns out
that the smallest prime factor of an (odd) integer is often very large with a decimal expansion
which “most of the times” contains all ten digits at essentially the same frequency.

Here,we examine various constructions of real numbers involving the smallest prime factor
function p(n), including ones where the integers n run through the set of shifted primes.

Main results

Theorem 12.1. The expression n1 = Concat(p(n) : n ∈ N) is a normal sequence.

Theorem 12.2. Let R ∈ Z[x] be a polynomial such that R(x) > 0 for all x > 0 and satisfying
limx→∞R(x) =∞. The expression n2 = Concat(R(p(n)) : n ∈ N) is a normal sequence.

Theorem 12.3. Let a ∈ N∪{0} be an even integer. The expression n3 = Concat(p(π + a) :
π ∈ ℘) is a normal sequence.

Remark 12.1. Observe that the particular case a = 0 has been proved by Davenport and
Erdős [11].

Theorem 12.4. Let a ∈ N ∪ {0} be an even integer and let R be as in Theorem 12.2. The
expression n4 = Concat(R(p(π + a)) : π ∈ ℘) is a normal sequence.

We will only provide the proofs of Theorems 12.1 and 12.3, since those of Theorems 12.2
and 12.4 can be obtained along the same lines.

Proof of Theorem 12.1

Let x be a large number, but fixed. Consider the interval

Ix :=
[⌊x

2

⌋
+ 1, bxc

)
and the following two subwords of n1:

ηx := Concat(p(n) : n ≤ x), ρx := Concat(p(n) : n ∈ Ix).

Let β be an arbitrary word in Akq .
Letting `0 be the largest integer such that 2`0 < x, it is clear that

νβ(ηx) =

`0∑
`=0

νβ(ρx/2`) +O(log x),(12.1)
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νβ(ρx/2`) =
∑

n∈I
x/2`

νβ(p(n)) +O
( x

2`

)
,(12.2)

where the error term on the right hand side of (12.1) accounts for the cases where the word
β overlaps two consecutive intervals Ix/2`+1 and Ix/2` . Note that here and throughout this
section, the constants implied by the Landau notation O(· · · ) may depend on the particular
base q and on the particular word β.

Hence, in light of (12.1) and (12.2), in order to prove that n1 is a normal sequence, it
will be sufficient to show that, given any two distinct words β1, β2 ∈ Akq , we have

(12.3)
|νβ1(ρx)− νβ2(ρx)|

λ(ρx)
→ 0 as x→∞.

We first start by establishing the exact order of λ(ρx).
For each Q ∈ ℘, we let

Fx(Q) = #{n ∈ Ix : p(n) = Q}.

Let εx be a function such that limx→∞ εx = 0. Let also Yx < Zx be two positive functions
tending to infinity with x, that we will specify later. It is clear, using Mertens’ formula,
that, as x→∞,

(12.4) Fx(Q) = (1 + o(1))
x

2Q

∏
π<Q
π∈℘

(
1− 1

π

)
= (1 + o(1))

e−γ

2

x

Q logQ

uniformly for Yx < Q ≤ xεx (here γ stands for the Euler-Mascheroni constant). By a sieve
approach, we may say that for some absolute constant c1 > 0, we have

(12.5) Fx(Q)

{
≤ c1

x
Q logQ

for all Q ≤
√
x,

≤ x
Q

for
√
x < Q ≤ x.

We may then write

λ(ρx) =
∑
Q<Yx

Fx(Q)λ(Q) +
∑

Yx≤Q<Zx

Fx(Q)λ(Q) +
∑

Zx≤Q≤x

Fx(Q)λ(Q) +O(x)

= Σ1 + Σ2 + Σ3 +O(x),(12.6)

say. As we will see, the main contribution will come from the term Σ2.
Using (12.4) and (12.5), we easily obtain

Σ1 ≤ c2x
∑
Q<Yx

1

Q logQ
· logQ ≤ c3x log log Yx,(12.7)

Σ3 ≤ c4x
∑

Zx≤Q≤x

1

Q
≤ c5x log

(
log x

logZx

)
.(12.8)
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Choosing Yx so that log Yx = (log x)εx and Zx so that
log x

logZx
= (log x)εx , it follows from

(12.7) and (12.8) that, as x→∞,

Σ1 = o(x log log x),(12.9)

Σ3 = o(x log log x).(12.10)

Now, in light of (12.4), we have, as x→∞,

Σ2 =
∑

Yx≤Q<Zx

Fx(Q)λ(Q)

= (1 + o(1))c6x
∑

Yx≤Q<Zx

λ(Q)

Q logQ
= (1 + o(1))

c7x

log q

∑
Yx≤Q<Zx

1

Q

= (1 + o(1))c7x log

(
logZx
log Yx

)
= (1 + o(1))c7x log log x+O(xεx log log x),(12.11)

for some positive constants c6 and c7.
Hence, gathering estimates (12.9), (12.10) and (12.11) and substituting them into (12.6),

we obtain that
λ(ρx) = c7x log log x+ o(x log log x),

thus establishing that the true order of λ(ρx) is x log log x. Therefore, in light of our ultimate
goal (12.3), we now only need to show that

(12.12) |νβ1(ρx)− νβ2(ρx)| = o(x log log x) (x→∞).

To accomplish this, using the same approach as above, we easily get that

(12.13) |νβ1(ρx)− νβ2(ρx)| ≤
∑

Yx<Q<Zx

∣∣νβ1(Q)− νβ2(Q)
∣∣ Fx(Q) + o(x log log x).

We further set `1 as the largest integer such that 2`1+1 ≤ Yx and `2 as the smallest integer
such that 2`2+1 ≥ Zx. We then write the interval [Yx, Zx] as a subset of the union of a finite
number of intervals, namely as follows:

(12.14) [Yx, Zx] ⊆
`2⋃
`=`1

[ x

2`+1
,
x

2`

]
,

that is the union of a finite number of intervals of the form [u, 2u].
For each of these intervals [u, 2u], we have

(12.15) T (u) :=
∑

u≤Q≤2u

∣∣νβ1(Q)− νβ2(Q)
∣∣ Fx(Q) = S1(u) + S2(u),

where S1(u) is the same as T (u) but with the restriction that the sum runs only over those
primes Q ∈ [u, 2u] for which ∣∣νβ1(Q)− νβ2(Q)

∣∣ ≤ κu
√
L(u),
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while S2(u) accounts for the other primes Q ∈ [u, 2u], namely those for which∣∣νβ1(Q)− νβ2(Q)
∣∣ > κu

√
L(u).

Using Lemma 0.5 and (12.5), we thus have that, for some positive constants c8 and c9,

S1(u) ≤ c8

∑
u≤Q≤2u

κu
√

log u Fx(Q) ≤ c8κu
√

log u x
∑

u≤Q≤2u

1

Q logQ

≤ c9
xκu

(log u)3/2
.(12.16)

On the other hand, using the trivial estimate νβi(Q) ≤ λ(Q) � log u, we easily get, again
using Lemma 0.5 and (12.5), that, for some positive constant c10,

(12.17) S2(u) ≤ c10x

u

u

(log u)κ2
u

=
c10x

(log u)κ2
u

.

Substituting (12.16) and (12.17) in (12.15), we obtain that

(12.18) T (u) ≤ cx

(
κu

(log u)3/2
+

1

(log u) · κ2
u

)
.

We now choose κu = log log log x. Then, in light of (12.14) and using (12.18), we may
conclude that

∑
Yx<Q<Zx

|νβ1(ρx)− νβ2(ρx)| ≤
`2∑
`=`1

T
( x

2`

)
≤ o(x log log x),

which in light of (12.13) proves (12.12), thereby completing the proof of Theorem 12.1.

Proof of Theorem 12.3

We let x be a large number and turn our attention to the truncated word

σx = Concat(p(π + a) : π ∈ Ix),

of which we first plan to estimate the size of λ(σx).
For each prime number U , let

Mx(U) = #{π ∈ Ix : p(π + a) = U}.

This allows us to write

(12.19) λ(σx) =
∑
U∈℘

Mx(U)λ(U) =
∑
U<xεx

U∈℘

+
∑
U≥xεx
U∈℘

= Σ1 + Σ2,

say. Using Theorem 4.2 of Halberstam and Richert [43], we get that

Σ2 ≤ (log x) ·#{π < x : p(π + a) ≥ xεx}
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≤ c
x log x

log x

∏
p<xεx

(
1− 1

p

)
≤ c1

x

εx log x
,(12.20)

by Mertens’ estimate.
Let us choose εx so that 1/εx tends monotonically to infinity, but very slowly. We will

now use Lemma 0.11 and the Bombieri-Vinogradov theorem to estimate Mx(U) for U < xεx

for almost all U . Choose κU = 1/
√
εU .

Following the notation of Lemma 0.11, we have

TU =
∏
p<U

p, p1 < · · · < ps(≤ U), ∆ = π(U)− 1,

(x
2
≤
)
π1 < · · · < πN(≤ x), πj + a ≡ 0 (mod U),

an = πn + a for n = 1, 2, . . . , N, f(n) = 1 for all n ∈ N.

Moreover, for each d|TU ,

π(Ix; dU,−a) =
∑

an≡0 (mod d)

f(n) =
1

φ(d)(U − 1)
(li(x)− li(x/2)) +R(N, dU,−a),

say. We have

|R(N, dU,−a)| ≤
∣∣∣∣π(x; dU,−a)− li(x)

φ(dQ)

∣∣∣∣+

∣∣∣∣π(
x

2
; dU,−a)− li(x/2)

φ(dQ)

∣∣∣∣ .
Let η be the multiplicative function defined on the squarefree integers by

η(p) =

{
1/(p− 1) if p - a,
0 if p | a.

We then have

S =
∑
p|TU
p-a

log p

p− 2
= logU +O(1).

Then, the condition
1

8
log z ≥ max(log π(U), logU)

clearly holds for every large U . Further set

H = HU = exp

{
−κU

(
log κU − log log κU −

2

κU

)}
.

We then have

(12.21) Mx(U) = {1 + 2θ1H}
li(x)− li(x/2)

U − 1

∏
2<p<U
p-a

(
1− 1

p− 1

)
+B(U),
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where
B(U) = 2θ2

∑
d|TU
d≤UκU

3ω(d)|R(N, d)|,

and where |θ1| ≤ 1, |θ2| ≤ 1.
On the one hand, there exists a constant A1 = A1(a) > 0 such that

(12.22)
∏

2<p<U
p-a

(
1− 1

p− 1

)
= (1 + o(1))

A1

logU
(U →∞).

On the other hand,∑
U≤xεx

B(U) ≤
∑
U≤xεx

∑
d|TU
d≤UκU

3ω(d)

∣∣∣∣π(x; dU,−a)− li(x)

φ(dU)

∣∣∣∣
+
∑
U≤xεx

∑
d|TU
d≤UκU

3ω(d)

∣∣∣∣π(x/2; dU,−a)− li(x/2)

φ(dU)

∣∣∣∣
= S1(x) + S2(x),(12.23)

say. We have dU ≤ UκU+1. Set m = dU . Since U = P (m), it follows that m determines d
and U uniquely.

We shall now provide an estimate for S1(x) by using the Brun-Titchmarsh inequality
(Lemma 0.1) and the Bombieri-Vinogradov theorem (Lemma 0.2). So, let B > 0 and E > 0
be arbitrary numbers. We then have

S1(x) �
∑

m≤x
√
εx+εx

ω(m)≤Bx2

3Bx2

∣∣∣∣π(x;m,−a)− li(x)

φ(m)

∣∣∣∣+
∑

m≤x
√
εx+εx

ω(m)>Bx2

3ω(m) li(x)

φ(m)

� x · 3Bx2

xE1
+

li(x)

3Bx2

∑
m≤x1/4

P (m)<xεx

32ω(m)

φ(m)

� x · 3Bx2

xE1
+

li(x)

3Bx2

∏
p<xεx

(
1 +

9p

(p− 1)2

)
.(12.24)

It follows from (12.24) that, given any fixed number A > 0, an appropriate choice of B and
E will lead to

(12.25) S1(x)� li(x)

logA x
.

Proceeding in a similar manner, we easily obtain that

(12.26) S2(x)� li(x)

logA x
.
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Using (12.25) and (12.26) in (12.23), and combining this with (12.22) and (12.21) in our
estimate (12.20), and recalling (12.19), we obtain

(12.27) λ(σx) =
∑
U∈℘

Mx(U)λ(U) = Σ1 + Σ2 � Σ1 +
x

(log x)εx
.

Let us now write

(12.28) Σ1 =
∑

U<log x

+
∑

log x≤U<xεx
= T1 + T2,

say.
First observe that, using (12.21), as x→∞,

T1 =
∑

U<log x

(1 + o(1))
A1(li(x)− li(x/2))

(U − 1) logU
λ(U) +O

(
li(x)

logA x

)
� li(x)

∑
U<log x

1

U
+O

(
li(x)

logA x

)
� li(x) · x3,(12.29)

while

T2 � (li(x)− li(x/2))
∑

log x≤U<xεx

1

(U − 1) logU

⌈
logU

log q

⌉
� 1

log q
(li(x)− li(x/2))

∑
log x≤U<xεx

1

U

= (1 + o(1))
1

log q
(li(x)− li(x/2)) log log x.(12.30)

Gathering (12.29), (12.30) and (12.28) in (12.27), we get

(12.31) λ(σx)�
1

2 log q · log x
(li(x)− li(x/2))x2 �

xx2

log x
.

Let β1, β2 ∈ Akq and set ∆(α) = νβ1(α)− νβ2(α). We will prove that

(12.32) lim
x→∞

|∆(σx)|
λ(σx)

= 0.

First, observe that it is clear that

|∆(σx)| ≤
∑
U∈℘

Mx(U)|∆(U)|+O(1)
∑
U∈℘

Mx(U).

By using (12.20), we obtain that∑
U>xεx

Mx(U) ≤ c
x

εx log2 x
.
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By using (12.25) and (12.26), we obtain that∑
U∈℘
U≤xεx

B(U)|∆(U)| ≤ log x ·
∑
U∈℘
U≤xεx

B(U) ≤ x

log2 x
,

provided x > x0.
Thus, by using (12.21) and (12.29), we obtain that

|∆(σx)| ≤
∑
U∈℘

log x≤U≤xεx

c
x

log x
· ∆(U)

U logU
+O

(
x · x3

log x

)
.

By using Lemma 0.5, it follows that∑
U∈℘

V≤U≤2V

|∆(U)| ≤ cV log V

log V · κ2
V

+
cV

log V
· κV · log V =

cV

κ2
V

+ cV κV .

Thus,

(12.33)
∑
U∈℘

V≤U≤2V

|∆(U)|
U logU

≤ c

log V · κ2
V

+
cκV

log3/2 V
.

Let us apply this with V = Vj for j = 0, 1, . . . , j0, where V0 = log x, Vj = 2jV0, with
Vj0 ≤ xεx < Vj0+1.

Thus, it follows from (12.33) that

∑
U∈℘

log x≤U≤xεx

|∆(U)|
U logU

≤ c

κ2
V0

j0∑
j=0

1

log(V0 · 2j)
+ cκVj0+1

j0∑
j=0

1

log3/2 Vj

= W1 +W2,(12.34)

say. Since

W1 ≤
c1

κ2
V0

log j0 ≤
c1x2

κ2
V0

and noting that κV0 →∞ as x→∞, and since

W2 ≤ cκx
∑
j≥0

1

(log V0 + j)3/2
≤ c2κx

x
1/2
2

,

it follows from (12.34), that if we choose κx ≤
√
x2 say, then∑

U∈℘
log x≤U≤xεx

|∆(U)|
U logU

= o(x2),

which, in light of (12.31), proves (12.32) and thus completes the proof of Theorem 12.3.

Further remarks

Using the same approach, one can also prove the following two theorems.
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Theorem 12.5. Let G(n) = n2 + 1 and set

ξ1 = Concat(p(G(n)) : n ∈ N),

ξ2 = Concat(p(G(π)) : π ∈ ℘).

Then ξ1 and ξ2 are q-normal sequences.

We further let pk(n) stand for the k-th smallest prime factor of n, that is, if n = qα1
1 · · · qαrr ,

where q1 < · · · < qr are primes and each αi an integer, then

pk(n) =

{
qk if k ≤ r,
1 if k > r.

Theorem 12.6. Let G(x) = arx
r + ar−1x

r−1 + · · · + a0 ∈ Z[x] be irreducible and satisfying
(ar, ar−1, . . . , a0) = 1, ar > 0 and G(x) > 0 for x > x0. Then

ηk = Concat
(
pk(G(n)) : x0 < n ∈ N

)
is a q-normal sequence.

Observe that the proof of Theorem 12.6 is very similar to that of Theorem 12.1. Indeed,
we first define

κx := Concat
(
pk(G(n)) : n ∈ Ix

)
,

where Ix = [bx/2c+ 1, bxc). Then, for each prime Q, we set

T (Q) := #{n ∈ Ix : pk(G(n)) = Q},

so that
λ(κx) =

∑
n∈Ix

λ(pk(G(n))) =
∑
Q≤x

λ(Q)T (Q).

As can be shown using sieve methods, the main contribution to the above sum comes from
those primes Q ≤ x1/2k, while that coming from the primes Q > x1/2k can be neglected.
This allows us to establish that the order of λ(κx) is x(log log x)k.

Then, it is enough to prove that, given an arbitrary t ∈ N and any two words β1, β2 ∈ Atq,

|νβ1(κx)− νβ2(κx)|
λ(κx)

→ 0 as x→∞

and this is done by showing that

|νβ1(κx)− νβ2(κx)| = o(x(log log x)k) as x→∞.
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XIII. Complex roots of unity and normal numbers [26]
(Journal of Numbers, 2014)

Given an arbitrary prime number q, set ξ = e2πi/q. We use a clever selection of the values
of ξα, α = 1, 2, . . ., in order to create normal numbers. We also use a famous result of André
Weil concerning Dirichlet characters to construct a family of normal numbers.

Let λ(n) be the Liouville function (defined by λ(n) := (−1)Ω(n) where Ω(n) :=
∑

pα‖n α).

It is well known that the statement “
∑

n≤x λ(n) = o(x) as x → ∞” is equivalent to the
Prime Number Theorem. It is conjectured that if b1 < b2 < · · · < bk are arbitrary positive
integers, then

∑
n≤x λ(n)λ(n + b1) · · ·λ(n + bk) = o(x) as x → ∞. This conjecture seems

presently out of reach since we cannot even prove that
∑

n≤x λ(n)λ(n+1) = o(x) as x→∞.
The Liouville function belongs to a particular class of multiplicative functions, namely the

classM∗ of completely multiplicative functions. Recently, Indlekofer, Kátai and Klesov [47]
considered a very special function f ∈M∗ constructed in the following manner. Let ℘ stand
for the set of all primes. For each q ∈ ℘, let Cq = {ξ ∈ C : ξq = 1} be the group of complex
roots of unity of order q. As p runs through the primes, let ξp be independent random
variables distributed uniformly on Cq. Then, let f ∈ M∗ be defined on ℘ by f(p) = ξp,
so that f(n) yields a random variable. In their 2011 paper, Indlekofer, Kátai and Klesov
proved that, if (Ω,A, ℘) stands for a probability space where ξp (p ∈ ℘) are the independent
random variables, then for almost all ω ∈ Ω, the sequence α = f(1)f(2)f(3) . . . is a normal
sequence over Cq (see Definition 13.1 below).

Let us now consider a somewhat different set up. Let q ≥ 2 be a fixed prime number and
set Aq := {0, 1, . . . , q−1}. Given an integer t ≥ 1, an expression of the form i1i2 . . . it, where
each ij ∈ Aq, is called a word of length t. We use the symbol Λ to denote the empty word.
Then, Atq will stand for the set of words of length t over Aq, while A∗q will stand for the set
of all words over Aq regardless of their length, including the empty word Λ. Similarly, we
define C∗q to be the set of words over Cq regardless of their length.

Given a positive integer n, we write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate the word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1
q .

Definition 13.1. Given a sequence of integers a(1), a(2), a(3), . . ., we will say that the con-
catenation of their q-ary digit expansions a(1) a(2) a(3) . . ., denoted by Concat(a(n) : n ∈ N),
is a normal sequence if the number 0.a(1) a(2) a(3) . . . is a q-normal number.

It can be proved using a theorem of Halász (see [43]) that if f ∈ M∗ is defined on the
primes p by f(p) = ξa (a 6= 0), then

∑
n≤x f(n) = o(x) as x→∞.

Now, given u0, u1, . . . , u`−1 ∈ Aq, let Q(n) :=
∏`−1

j=0(n + j)uj . We believe that if
maxj∈{0,1,...,`−1} uj > 0, then

(13.1)
∑
n≤x

f(Q(n)) = o(x) as x→∞.

92



If this were true, it would follow that

Concat(f(n) : n ∈ N) is a normal sequence over Cq.

We cannot prove (13.1), but we can prove the following. Let q ∈ ℘ and set ξ := e2πi/q.

Further set xk = 2k and yk = x
1/
√
k

k for k = 1, 2, . . . Then, consider the sequence of completely
multiplicative functions fk, k = 1, 2, . . ., defined on the primes p by

(13.2) fk(p) =

{
ξ if k ≤ p ≤ yk,
1 if p < k or p > yk.

Then, set
ηk := fk(xk)fk(xk + 1)fk(xk + 2) . . . fk(xk+1 − 1) (k ∈ N)

and
θ := Concat(ηk : k ∈ N).

Theorem 13.1. The sequence θ is a normal sequence over Cq.

We now use a famous result of André Weil to construct a large family of normal numbers.
Let q be a fixed prime and set ξ := e2πi/q and ξa := e2πia/q = ξa. Recall that Cq stands

for the group of complex roots of unity of order q, that is,

Cq = {ς ∈ C : ςq = 1} = {ξa : a = 0, 1, . . . , q − 1}.

Let p ∈ ℘ be such that q|p − 1. Moreover, let χp be a Dirichlet character modulo p of
order q, meaning that the smallest positive integer t for which χtp = χ0 is q. (Here χ0 stands
for the principal character.)

Let u0, u1, . . . , uk−1 ∈ Aq and consider the polynomial

(13.3) F (z) = Fu0,...,uk−1
(z) =

k−1∏
j=0

(z + j)uj

and assume that its degree is at least 1, that is, that there exists one j ∈ {0, . . . , k − 1} for
which uj 6= 0. Further set

Su0,...,uk−1
(χp) =

∑
n (mod p)

χp
(
Fu0,...,uk−1

(n)
)
.

According to a 1948 result of André Weil [64],

(13.4)
∣∣Su0,...,uk−1

(χp)
∣∣ ≤ (k − 1)

√
p.

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski [48].
We can prove the following.
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Theorem 13.2. Let p1 < p2 < · · · be an infinite set of primes such that q | pj − 1 for all
j ∈ N. For each j ∈ N, let χpj be a character modulo pj of order q. Further set

Γp = χp(1)χp(2) . . . χp(p− 1) (p = p1, p2, . . .)

and

(13.5) η := Γp1Γp2 . . .

Then η is a normal sequence over Cq.

As an immediate consequence of this theorem, we have the following corollary.

Corollary 13.1. Let ϕ : Cq → Aq be defined by ϕ(ξa) = a. Extend the function ϕ to
ϕ : C∗q → A∗q by ϕ(αβ) = ϕ(α)ϕ(β) and let

ϕ(η) = ϕ(Γp1)ϕ(Γp2) . . .

and consider the q-ary expansion of the real number

(13.6) κ = 0.ϕ(Γp1)ϕ(Γp2) . . .

Then κ is a normal number in base q.

Example 13.1. Choosing q = 3 and {p1, p2, p3, . . .} = {7, 13, 19, . . .} as the set of primes
pj ≡ 1 (mod 3), then, the sequence η defined by (13.5) is normal sequence over {0, e2πi/3, e4πi/3},
while κ defined by (13.6) is a ternary normal number.

XIV. The number of large prime factors of integers and normal numbers [27]
(Publications mathématiques de Besançon, 2015)

Letting ω(n) stand for the number of distinct prime factors of the positive integer n, we
have shown in [25] (see paper XI above) that the concatenation of the successive values of
|ω(n) − blog log nc| in a fixed base q ≥ 2, as n runs through the integers n ≥ 3, yields a
normal number.

Given an integer N ≥ 1, for each integer n ∈ JN := (eN , eN+1), let qN(n) be the smallest
prime factor of n which is larger than N ; if no such prime factor exists, set qN(n) = 1.
Fix an integer Q ≥ 3 and consider the function f(n) = fQ(n) defined by f(n) = ` if
n ≡ ` (mod Q) with (`,Q) = 1 and by f(n) = Λ otherwise, where Λ stands for the empty
word. Then consider the sequence (κ(n))n≥3 = (κQ(n))n≥3 defined by κ(n) = f(qN(n)) if
n ∈ JN with qN(n) > 1 and by κ(n) = Λ if n ∈ JN with qN(n) = 1. Then, given an
integer N ≥ 1 and writing JN = {j1, j2, j3, . . .}, consider the concatenation of the numbers
κ(j1), κ(j2), κ(j3), . . ., that is define

θN := Concat(κ(n) : n ∈ JN) = 0.κ(j1)κ(j2)κ(j3) . . . .
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Then, set αQ := Concat(θN : N = 1, 2, 3, . . .) and let BQ = {`1, `2, . . . , `φ(Q)} be the set of
reduced residues modulo Q, where φ stands for the Euler function. In [23], we showed that
αQ is a normal sequence over BQ, that is, the real number 0.αQ is a normal number over
BQ.

Here we prove the following. Let q ≥ 2 be a fixed integer. Given an integer n ≥ n0 =
max(q, 3), let N be the unique positive integer satisfying qN ≤ n < qN+1 and let h(n, q)
stand for the residue modulo q of the number of distinct prime factors of n located in the
interval [logN,N ]. Setting xN := eN , we then create a normal number in base q using the
concatenation of the numbers h(n, q), as n runs through the integers ≥ xn0 .

The main result

Theorem 14.1. Let q ≥ 2 be a fixed integer. Given an integer n ≥ n0 = max(q, 3), let N
be the unique positive integer satisfying qN ≤ n < qN+1 and let h(n, q) stand for the residue
modulo q of the number of distinct prime factors of n located in the interval [logN,N ]. For
each integer N ≥ 1, set xN := eN . Then, Concat(h(n, q) : xn0 ≤ n ∈ N) is a q-ary normal
sequence.

Proof. For each integer N ≥ 1, let JN = (xN , xN+1). Further let SN stand for the set of
primes located in the interval [logN,N ] and TN for the product of the primes in SN . Let
n0 = max(q, 3). Given a large integer N , consider the function

(14.1) f(n) = fN(n) =
∑
p|n

logN≤p≤N

1.

Let us further introduce the following sequences:

UN = Concat (h(n, q) : n ∈ JN) ,

V∞ = Concat (UN : N ≥ n0) = Concat (h(n, q) : n ≥ xn0) ,

Vx = Concat (h(n, q) : xn0 ≤ n ≤ x) .

Let us set Aq := {0, 1, . . . , q− 1}. If we fix an arbitrary integer r, it is sufficient to prove
that given any particular word w ∈ Arq, the number of occurrences Fw(Vx) of w in Vx satisfies

(14.2) Fw(Vx) = (1 + o(1))
x

qr
(x→∞).

For each integer r ≥ 1, considering the polynomial

Qr(u) = u(u+ 1) · · · (u+ r − 1).

and letting
ρr(d) = #{u (mod d) : Qr(u) ≡ 0 (mod d)},

it is clear that, since N is large,

(14.3) ρr(p) = r if p ∈ SN .
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Observe that it follows from the Turán-Kubilius inequality that for some positive con-
stantC,

(14.4)
∑
n∈JN

(f(n)− log logN)2 ≤ CeN log logN.

Letting εN = 1/ log log logN , it follows from (14.4) that

(14.5)
1

xN
#{n ∈ JN : |f(n)− log logN | > 1

εN

√
log logN} → 0 (εN → 0).

This means that in the estimation of Fw(Vx), we may ignore those integers n appearing in
the concatenation h(2, q)h(3, q) . . . h(bxc, q) for which the corresponding f(n) is “far” from
log logN in the sense described in (14.5).

Let X be a large number. Then there exists a large integer N such that
X

e
< xN ≤ X.

Letting L =

]
X

e
,X

]
, we write

L =

]
X

e
, xN

]
∪ ]xN , X] = L1 ∪L2,

say, and λ(Li) for the length of the interval Li for i = 1, 2.
Given an arbitrary function δN which tends to 0 arbitrarily slowly, it is sufficient to

consider those L1 and L2 such that

(14.6) λ(L1) ≥ δNX and λ(L2) ≥ δNX.

The reason for this is that those n ∈ L1 (resp. n ∈ L2) for which λ(L1) < δNX (resp.
λ(L2) < δNX) are o(x) in number and can therefore be ignored in the proof of (14.2).

Let us first consider the set L2. We start by observing that any subword taken in the
concatenation h(n, q)h(n+ 1, q) . . . h(n+ r − 1, q) is made of co-prime divisors of TN (since
no two members of the sequence h(n, q), h(n + 1, q), . . . , h(n + r − 1, q) of r elements may
have a common prime divisor p > logN). So, let d0, d1, . . . , dr−1 be co-prime divisors of TN
and let BN(L2; d0, d1, . . . , dr−1) stand for the number of those n ∈ L2 for which dj | n + j

for j = 0, 1, . . . , r − 1 and such that

(
Qr(n),

TN
d0d1 · · · dr−1

)
= 1. We can assume that each

of the dj’s is squarefree, since the number of those n + j ≤ X for which p2 | n + j for some

p > logN is � X
∑

p>logN

1

p2
= o(X).

In light of (14.4), we may assume that

(14.7) ω(dj) ≤ 2 log logN for j = 0, 1, . . . , r − 1.

By using the Eratosthenian sieve (see for instance the book of De Koninck and Luca [34])
and recalling that condition (14.6) ensures that X−xN is large, we obtain that, as N →∞,

BN(L2; d0, d1, . . . , dr−1) =
X − xN

d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

)
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+o

 xN
d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

) .(14.8)

Letting θN :=
∏
p|TN

(
1− r

p

)
, one can easily see that

(14.9) θN = (1 + o(1))
(log logN)r

(logN)r
(N →∞).

Let us also introduce the strongly multiplicative function κ defined on primes p by κ(p) =
p− r. Then, (14.8) can be written as

(14.10) BN(L2; d0, d1, . . . , dr−1) =
X − xN

κ(d0)κ(d1) · · ·κ(dr−1)
θN+o

(
xN

κ(d0)κ(d1) · · ·κ(dr−1)
θN

)
as N →∞. For each integer N > ee, let

RN :=

[
log logN −

√
log logN

εN
, log logN +

√
log logN

εN

]
.

Let `0, `1, . . . , `r−1 be an arbitrary collection of non negative integers < q. Note that
there are qr such collections. Our goal is to count how many times, amongst the integers
n ∈ L2, we have f(n + j) ≡ `j (mod q) for j = 0, 1, . . . , r − 1. In light of (14.5), we only
need to consider those n ∈ L2 for which

f(n+ j) ∈ RN (j = 0, 1, . . . , r − 1).

Let

(14.11) S (`0, `1, . . . , `r−1) :=
∑∗

f(dj)≡`j (mod q)

dj |TN
j=0,1,...,r−1

1

κ(d0)κ(d1) · · ·κ(dr−1)
,

where the star over the sum indicates that the summation runs only on those dj satisfying
f(dj) ∈ RN for j = 0, 1, . . . , r − 1.

From (14.10), we therefore obtain that

#{n ∈ L2 : f(n+ j) ≡ `j (mod q), j = 0, 1, . . . , r − 1}
= (X − xN)θNS (`0, `1, . . . , `r−1) + o (xNθNS (`0, `1, . . . , `r−1))(14.12)

as N →∞. Let us now introduce the function

η = ηN =
∑
p|TN

1

κ(p)
.

Observe that, as N →∞,

η =
∑

logN≤p≤N

1

p(1− r/p)
=

∑
logN≤p≤N

1

p
+O

( ∑
logN≤p≤N

1

p2

)
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= log logN − log log logN + o(1) +O

(
1

logN

)
= log logN − log log logN + o(1).(14.13)

From the definition (14.11), one easily sees that

(14.14) S (`0, `1, . . . , `r−1) = (1 + o(1))
∑

tj≡`j (mod q)

tj∈RN

ηt0+t1+···+tr−1

t0!t1! · · · tr−1!
(N →∞),

where we ignore in the denominator of the summands the factors κ(p)a (with a ≥ 2) since
their contribution is negligible.

Moreover, for t ∈ RN , one can easily establish that

ηt+1

(t+ 1)!
= (1 + o(1))

ηt

t!
(N →∞)

and consequently that, for each j ∈ {0, 1, . . . , r − 1},

(14.15)
∑

tj≡`j (mod q)

tj∈RN

ηtj

tj!
= (1 + o(1))

1

q

∑
t∈RN

ηt

t!
= (1 + o(1))

eη

q
(N →∞).

Using (14.15) in (14.14), we obtain that

(14.16) S (`0, `1, . . . , `r−1) = (1 + o(1))
eηr

qr
(N →∞).

Combining (14.12) and (14.16), we obtain that

#{n ∈ L2 : f(n+ j) ≡ `j (mod q), j = 0, 1, . . . , r − 1}

= (X − xN)θN
eηr

qr
+ o

(
xNθN

eηr

qr

)
=

X − xN
qr

+ o

(
xN

1

qr

)
(N →∞),(14.17)

where we used (14.9) and (14.13).
Since the first term on the right hand side of (14.17) does not depend on the particular

collection `0, `1, . . . , `r−1, we may conclude that the frequency of those integers n ∈ L2 for
which f(n + j) ≡ `j (mod q) for j = 0, 1, . . . , r − 1 is the same independently of the choice
of `0, `1, . . . , `r−1.

The case of those n ∈ L1 can be handled in a similar way.
We have thus shown that the number of occurrences of any word w ∈ Arq in h(n, q)h(n+

1, q) . . . h(n+ r− 1, q) as n runs over the bX −X/ec elements of L is (1 + o(1))
(X −X/e)

qr
.

Repeating this for each of the intervals]
X

ej+1
,
X

ej

]
(j = 0, 1, . . . , blog xc),
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we obtain that the number of occurrences of w for n ≤ x is (1 + o(1))
x

qr
, as claimed.

The proof of (14.2) is thus complete and the Theorem is proved.

Final remarks

First of all, let us first mention that our main result can most likely be generalized in
order that the following statement will be true:

Let a(n) and b(n) be two monotonically increasing sequences of n for n = 1, 2, . . .
such that n/b(n), b(n)/a(n) and a(n) all tend to infinity monotonically as n→∞.
Let f(n) stand for the number of prime divisors of n located in the interval
[a(n), b(n)] and let h(n, q) be the residue of f(n) modulo q; then, the sequence
h(n, q), n = 1, 2, ..., is a q-ary normal sequence.

Secondly, let us first recall that it was proven by Pillai [55] (with a more general result
by Delange [36]) that the values of ω(n) are equally distributed over the residue classes
modulo q for every integer q ≥ 2, and that the same holds for the function Ω(n), where
Ω(n) :=

∑
pα‖n α. We believe that each of the sequences Concat(ω(n) (mod q) : n ∈ N)

and Concat(Ω(n) (mod q) : n ∈ N) represents a normal sequence for each base q = 2, 3, . . ..
However, the proof of these statements could be very difficult to obtain. Indeed, in the
particular case q = 2, such a result would imply the famous Chowla conjecture

lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0,

where λ(n) := (−1)Ω(n) is known as the Liouville function and where a1, a2, . . . , ak are k
distinct positive integers (see Chowla [9]).

Thirdly, we had previously conjectured that, given any integer q ≥ 2 and letting resq(n)
stand for the residue of n modulo q, it may not be possible to create an infinite sequence of
positive integers n1 < n2 < · · · such that

0.Concat(resq(nj) : j = 1, 2, . . .)

is a q-normal number. However, we now have succeeded in creating such a monotonic
sequence. It goes as follows. Let us define the sequence (mk)k≥1 by

mk = f(k) + k!,

where f is the function defined by

f(n) = fN(n) =
∑
p|n

logN≤p≤N

1.

In this case, we obtain that

mk+1 −mk = k! · k + f(k + 1)− f(k),
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a quantity which is positive for all integers k ≥ 1 provided

(14.18) f(k + 1)− f(k) > −k! · k,

that is if

(14.19) f(k) < k! · k.

But since we trivially have

f(k) ≤ ω(k) ≤ 2 log k ≤ k! · k,

then (14.19) follows and therefore (14.18) as well.
Hence, in light of Theorem 14.1, if we choose nk = mk, our conjecture is disproved.

XV. Multidimensional sequences uniformly distributed modulo 1
created from normal numbers [28]

(Contemporary Mathematics, Vol. 655, AMS, 2015)

Recall that if α is an irrational number, then the sequence (αn)n≥1 is uniformly dis-
tributed modulo 1 (see for instance Example 2.1 in the book of Kuipers and Neiderreiter
[50]). Here, given a prime number q ≥ 3, we construct an infinite sequence of normal num-
bers in base q − 1 which, for any fixed positive integer r, yields an r-dimensional sequence
which is uniformly distributed on [0, 1)r. More precisely, our main result consists in creating
an infinite sequence α1, α2, . . . of normal numbers in base q − 1 such that, for any fixed
positive integer r, the r-dimensional sequence ({α1(q − 1)n}, . . . , {αr(q − 1)n}) is uniformly
distributed on [0, 1)r, where as usual {y} stands for the fractional part of y.

Fix a positive integer r. For each integer j ∈ {1, . . . , r}, write the (q − 1)-ary expansion
of each αj as

αj = 0.aj,1aj,2aj,3 . . .

To prove our claim we only need to prove that for every positive integer k and arbitrary
integers bj,` ∈ Aq−1 := {0, 1, . . . , q − 2} (for 1 ≤ j ≤ r, 1 ≤ ` ≤ k), the proportion of those
positive integers n ≤ x for which aj,n+` = bj,` simultaneously for j = 1, . . . , r and ` = 1, . . . , k
is asymptotically equal to 1/(q − 1)kr.

To do so, we first construct the proper set up. For each positive integer N , consider the
semi-open interval JN := [xN , xN+1), where xN = eN . For each integer N > ee, we introduce
the expression λN = log logN and consider the corresponding interval KN := [N,NλN ].
Given an integer n ∈ JN , we define the function qN(n) as the smallest prime factor of n
which belongs to KN , while we let qN(n) = 1 if (n, p) = 1 for all primes p ∈ KN .

Further let π1 ≤ π2 ≤ · · · ≤ πh(n) be the prime factors of n which belong to KN (written
with multiplicity). With this definition, we clearly have (n/π1 · · · πh(n), p) = 1 for each prime
p ∈ KN .
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For each positive integer i and each n ∈ KN , we let

q
(i)
N (n) =

{
πi if 1 ≤ i ≤ h(n),
1 if i > h(n),

so that in particular q
(1)
N (n) = qN(n).

We further set

fq(m) =

{
`− 1 if m ≡ ` (mod q) and ` 6= 0,
Λ if q | m.

Let r and k be fixed positive integers. Let Qi,`, for i = 1, . . . , r and ` = 1, . . . , k be
distinct primes belonging to KN such that Q1,` < Q2,` < · · · < Qr,`. For a given interval
J = [x, x+ y] ⊆ JN , where y > xN , we let SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k) be the number

of those integers n ∈ J for which q
(i)
N (n+ `) = Qi,`.

For each integer r ≥ 1, let σ(1), . . . , σ(k) be the permutation of the set {1, . . . , k} which
allows us to write

Qr,σ(1) < Qr,σ(2) < · · · < Qr,σ(k).

Using the Eratosthenian sieve, we obtain that, as N →∞,

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k)

= (1 + o(1))
y∏

1≤i≤r
1≤`≤k

Qi,`

·
∏

N≤π<Qr,σ(k)

(
1− ρ(π)

π

)
,(15.1)

where

ρ(π) =



k if N ≤ π < Qr,σ(1),
k − 1 if Qr,σ(1) < π < Qr,σ(2),
...

...
1 if Qr,σ(k−1) < π < Qr,σ(k),
0 if π ∈ {Qi,` : i = 1, . . . , r, ` = 1, . . . , k}.

Let ti,` (i = 1, . . . , r, ` = 1, . . . , k) be any collection of the (non zero) reduced residues
modulo q and set
(15.2)

BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) :=
∑

Qi,`≡ti,` (mod q)

N≤Qi,`<N
λN

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k).

Now, letting π(x; k, `) stand for the number of primes p ≤ x such that p ≡ ` (mod k), it
follows from the Prime Number Theorem in arithmetical progressions that, with 2 ≤ v ≤ u,
as u→∞,

π(u+ v; q, `)− π(u; q, `) = (1 + o(1))
1

q − 1
(π(u+ v)− π(u)) +O

(
u

log10 u

)
,
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from which we obtain that

(15.3)
∑

u<p≤u+v
p≡` (mod q)

1

p log p
= (1 + o(1))

1

q − 1

1

log u
log

log(u+ v)

log u
+O

(
1

log10 u

)

and

(15.4)
∑

u<p≤u+v
p≡` (mod q)

1

p
= (1 + o(1))

1

q − 1
log

log(u+ v)

log u
+O

(
1

log10 u

)

Substituting (15.3) and (15.4) in (15.1), we obtain

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k)

= (1 + o(1))
y∏

1≤i≤r,1≤`≤kQi,`

exp{k log logN − k log logQr,σ(1)

−(k − 1) log logQr,σ(2) + (k − 1) log logQr,σ(1) − . . .− log logQr,σ(k)}

= (1 + o(1))
y∏

1≤i≤r,1≤`≤kQi,`

k∏
`=1

logN

logQr,`

(y →∞).(15.5)

Using (15.5) and definition (15.2), we obtain that, as y →∞,

(15.6) BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) = (1 + o(1))
y

(q − 1)kr

∑
πi,`

1∏
πi,`

k∏
`=1

logN

log πr,`
,

where the summation runs over those subsets of primes πi,` for which

N < π1,` < π2,` < · · · < πr,` < NλN (` = 1, . . . , k).

Now, observe that, as N →∞,∑
N<π1,`<···<πr−1,`<πr,`<N

λN

1

π1,` · · · πr−1,`

· 1

πr,` log πr,`

= (1 + o(1))
∑
πr,`

1

(r − 1)!

 ∑
N<π<πr,`

1

π

r−1

· 1

πr,` log πr,`

= (1 + o(1))
∑
πr,`

1

(r − 1)!

(
log

(
log πr,`
logN

))r−1

· 1

πr,` log πr,`

= (1 + o(1))

∫ NλN

N

1

(r − 1)!

(
log

(
log u

logN

))r−1
du

u log2 u

= (1 + o(1))

∫ λN logN

logN

1

(r − 1)!

(
log

(
v

logN

))r−1
dv

v2
.(15.7)
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Setting v = y logN in this last integral, we obtain that the above expression can be replaced
by

(1 + o(1))

logN

∫ λN

1

1

(r − 1)!

(log y)r−1

y2
dy =

(1 + o(1))

logN

1

(r − 1)!

∫ ∞
1

(log y)r−1

y2
dy,

which in turn, after setting z = log y, becomes

(1 + o(1))

logN

∫ ∞
0

e−zzr−1

(r − 1)!
dz =

(1 + o(1))

logN
,

which substituted in (15.7) yields

(15.8)
∑

N<π1,`<···<πr−1,`<πr,`<N
λN

1

π1,` · · · πr−1,`

· 1

πr,` log πr,`
=

(1 + o(1))

logN
(N →∞).

Using (15.8) in (15.6), we obtain that

(15.9) BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) = (1 + o(1))
y

(q − 1)kr
(y →∞).

We now define, for each integer N ∈ N,

θ
(i)
N = Concat{fq(q(i)

N (n)) : n ∈ JN} (i = 1, 2, . . .).

Then consider the number
θ(i) = θ

(i)
1 θ

(i)
2 . . .

and from these numbers, introduce the number

αi := 0.θ(i),

that is the number whose q-ary expansion is 0.θ(i).
Recall that, for n ∈ JN , we defined h(n) as the number of prime divisors of n located in

the interval [N,NλN ]. Thus, setting

UN :=
∑

N<p<NλN

1

p
= log λN + o(1) (N →∞),

we obtain, using the Turán-Kubilius inequality, that for some absolute constant c > 0,

(15.10)
∑
n∈JN

(h(n)− UN)2 ≤ cxN log λN .

On the one hand, it follows from (15.10) that for each integer r ≥ 1, there exists a constant
cr > 0 such that

(15.11) #{n ∈ JN : h(n) ≤ r} ≤ crxN
log λN

.
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On the other hand, it is easy to see that, as y →∞,

(15.12) #{n ∈ JN : p2|n for some prime p > N} ≤ cxN
∑
p>N

1

p2
= O

(xN
N

)
.

We therefore have, in light of (15.9), keeping in mind (15.11) and (15.12), that, as y →∞
(and thus as N →∞),
(15.13)

#{n ∈ J : fq(q
(i)
N (n+ `)) = ti,`− 1 : i = 1, . . . , r, ` = 1, . . . , k} = (1 + o(1))

y

(q − 1)kr
+ o(xN).

Now, to prove the normality of αi in base q − 1, we need to estimate the quantity

H(x) := #{n ≤ x : fq(q
(i)
N (n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}.

For this, let us set

KN := #{n ∈ JN : fq(q
(i)
N (n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}.

Let x be a large number. Then, x ∈ JN0 for some N0. Hence, applying (15.13), we get

H(x) = O(1) +K3 +K4 + · · ·+KN0−1

+#{JN0−1 ≤ x : fq(q
(i)
N0−1(n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}

=
(1 + o(1))

(q − 1)kr
((x2 − x1) + (x3 − x2) + · · ·+ (xN0 − xN0−1) + (x− xN0)) +O(1)

= (1 + o(1))
x− x1

(q − 1)kr
= (1 + o(1))

x

(q − 1)kr
,

thus completing the proof of our main result.

XVI. On sharp normality [31]
(Uniform Distribution Theory, 2016)

In this paper3, we identify a very special family of normal numbers – that we will call
sharp normal numbers – which are connected with arithmetical functions that have a local

3Our original paper on sharp normality appeared in Uniform Distribution Theory under the title On
strong normality. After its publication, we became aware that the term “strongly normal” had been used by
other authors with a different meaning. For instance, Adrian Belshaw and Peter Borwein [5] call α strongly
normal in base b if every string of digits in the base b expansion of α appears with the frequency expected
for random digits and the discrepancy fluctuates as is expected by the law of the iterated logarithm. With
this concept of “strong normality”, they then showed that almost all numbers are strongly normal (as we
do in the present document, but for different reasons). This being said, in order to avoid confusion, in this
survey and in other papers in which we will further expand on properties regarding this new concept, we
shall always talk about “sharp normal numbers”.
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normal distribution, such as the function ω(n) which counts the number of distinct prime
factors of n.

Let us first recall some definitions already given on Page 2.
A sequence (xn)n∈N of real numbers is said to be uniformly distributed modulo 1 (or mod

1) if for every interval [a, b) ⊆ [0, 1),

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ [a, b)} = b− a.

In other words, a sequence of real numbers is said to be uniformly distributed mod 1 if every
subinterval of the unit interval gets its fair share of the fractional parts of the elements of
this sequence.

Recall also that, given a set of N real numbers x1, . . . , xN , the discrepancy of this set is
defined as the quantity

D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣∣
1

N

∑
n≤N

{xn}∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ .
It is known that a sequence (xn)n∈N of real numbers is uniformly distributed mod 1 if

and only if D(x1, . . . , xN) → 0 as N → ∞ (see Theorem 1.1 in the book of Kuipers and
Niederreiter [50]).

Also, given an integer q ≥ 2, it can be shown (see Theorem 8.1 in the book of Kuipers
and Niederreiter [50]) that a real number α is normal in base q if and only if the sequence
({qnα})n∈N is uniformly distributed mod 1.

We are now ready to introduce the concept of sharp normality. For each positive integer
N , let

(16.1) M = MN := bδN
√
Nc, where δN → 0 and δN logN →∞ as N →∞.

We shall say that an infinite sequence of real numbers (xn)n≥1 is sharply uniformly distributed
mod 1 if

D(xN+1, . . . , xN+M)→ 0 as N →∞
for every choice of δN satisfying (16.1).

Remark 16.1. Observe that if a sequence of real numbers (xn)n∈N is sharply uniformly
distributed mod 1, then it must be uniformly distributed mod 1 as well. The proof goes as
follows. Assume that (xn)n∈N is sharply uniformly distributed mod 1 and define the sequence
(εk)k∈N by

εk =

{
1 if k ≤ e,
1/ log k if k > e.

Also, for each integer k ≥ 1, let Uk = bk2εkc and Vk = Uk+1 − Uk − 1. Moreover, setting
N = Uk and M = MN = Vk, one can verify that (16.1) is satisfied as k → ∞. To see this,
observe that

Vk = (k + 1)2εk+1 − k2εk +O(1) = 2kεk+1 + k2(εk+1 − εk) +O(1)
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= 2kεk+1 +O

(
k

log2 k

)
= (1 + o(1))2kεk as k →∞.(16.2)

Now, for each k ∈ N, define δUk implicitly by Vk = bδUk
√
Ukc. Using this in (16.2), it follows

that
2kεk(1 + o(1)) = δUkk

√
εk(1 + o(1)) (k →∞),

from which we obtain that

δUk = (1 + o(1))2
√
εk (k →∞).

Hence, it follows that

δN = δUk → 0 and δN logN = (1 + o(1))2
√
εk logUk = (1 + o(1))4

√
log k →∞ (k →∞),

implying that condition (16.1) is satisfied and also, using the fact that (xn)n∈N is sharply
uniformly distributed mod 1, that

(16.3) D(xUk , . . . , xUk+1−1) = D(xN , . . . , xN+M)→ 0 (k →∞).

We shall now use this result to prove that

(16.4) D(x1, . . . , xN)→ 0 (N →∞).

To do so, for each N ∈ N, let tN be the unique integer k for which Uk ≤ N < Uk+1, from
which it follows that

(16.5)
N − UtN

N
≤ UtN+1 − UtN

N
→ 0 (N →∞).

With this set up, we have

(16.6) ND(x1, . . . , xN) ≤
tN−1∑
`=1

(U`+1 − U`)D(xU` , . . . , xU`+1−1) + (N − UtN ).

Applying (16.3) successively with k = ` for ` = 1, . . . , tN − 1, it follows, in light of (16.5),
that the right hand side of (16.6) is o(N) as N →∞. From this, (16.4) follows immediately,
thus proving our claim.

Remark 16.2. It follows from the above that if α is a sharp normal number, then it must
also be a normal number. Indeed, by definition, the sequence ({αqn})n∈N is sharply uniformly
distributed mod 1 and therefore, in light of Remark 16.1, it must then be uniformly distributed
mod 1, which in turn (as we saw above) is equivalent to the statement that α is a normal
number.

Given a fixed integer q ≥ 2, we say that an irrational number α is a sharp normal number
in base q (or a sharp q-normal number) if the sequence (xn)n∈N, defined by xn = {qnα}, is
sharply uniformly distributed mod 1. First, observe that there exist normal numbers which
are not sharp normal. For instance, consider the Champernowne number

θ := 0.1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 . . .
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that is the number made up of the concatenation of the positive integers written in base 2.
It is known since Champernowne [8] that θ is normal. However, one can show that θ is not
a sharp normal number. Indeed, given a positive integer n, let Sn = b2n/(

√
n log n)c and

consider the sequence

(16.7) 22n + 1, 22n + 2, 22n + 3, . . . , 22n + Sn,

writing each of the above Sn integers in binary. Each of the resulting binary integers contains
2n + 1 digits, implying that the total number of digits appearing in the sequence (16.7) is
equal to (2n+ 1)Sn.

Now, letting λ(m) stand for the number of digits in the integer m, the total number N
of digits of the concatenated integers preceding the number 22n + 1 is, as n becomes large,

(16.8) N =
∑
m≤22n

λ(m) = 2n+ 1 +
∑
m≤22n

⌈
logm

log 2

⌉
= (1 + o(1))2n · 22n.

We can write the first digits of the Champernowne number as

θ = 0.ε1ε2 . . . εN22n + 1 22n + 2 . . . 22n + Sn . . .

= 0.ε1ε2 . . . εN ρ . . . ,

say, where in fact, ρ = 22n + 1 22n + 2 . . . 22n + Sn = εN+1 . . . εN+λ(ρ). (Here, n1 n2 . . . nr
stands for the concatenation of all the digits appearing successively in the integers n1, n2, . . . , nr.)
We will first show that the proportion of zeros in the word ρ is too large. For this we shall
first count the number of 1’s in ρ. Setting β(m) as the number of 1’s in the integer m, the
total number of 1’s in ρ is equal to∑

m≤Sn

β(m) =
1

2

Sn logSn
log 2

+O(Sn),

from which we can deduce that the total number of zeros in ρ is

(16.9)
Sn∑
m=1

n+
Sn∑
m=1

(n− β(m)) = 2nSn −
1

2

Sn logSn
log 2

+O(Sn).‘

Since λ(ρ) = (2n+ 1)Sn and recalling that Sn = b2n/(
√
n log n)c, it follows from (16.9) that

the proportion of zeros in ρ is equal to, as n→∞,

1

λ(ρ)
× the number of zeros in ρ =

2n

2n+ 1
− 1

2

logSn
(2n+ 1) log 2

+ o(1)

= 1 + o(1)− 1

2

n log 2− 1
2

log n

(2n+ 1) log 2
+ o(1)

= 1− 1

4
+ o(1) =

3

4
+ o(1).

Then, since ∣∣∣∣∣∣∣∣
∑

N+1≤ν≤N+M

{2νθ}< 1
2

1− 1

2
(2n+ 1)Sn

∣∣∣∣∣∣∣∣ ≥
1

4
(2n+ 1)Sn,
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it follows that, setting xn := {2nθ} and choosing

M = MN = (2n+ 1)Sn ≈
√
N/ log logN

(where we used (16.8)), thereby complying with condition (16.1), the discrepancy of the
sequence of numbers xN+1, . . . , xN+M is

D(xN+1, . . . , xN+M)

= sup
[a,b)⊆[0,1)

1

(2n+ 1)Sn

∣∣∣∣∣∣∣
∑

N+1≤ν≤N+M
{2νθ}∈[a,b)

1− (b− a) ((2n+ 1)Sn)

∣∣∣∣∣∣∣
≥

1
4
(2n+ 1)Sn

(2n+ 1)Sn
=

1

4

and therefore does not tend to 0, thereby implying that θ is not sharply normal.

Remark 16.3. Observe that instead of choosing MN = bδN
√
Nc as we did in (16.1), we

could have set MN = bδNNγc, where γ is fixed real number belonging to the interval (0, 1),
and then introduce the corresponding concept of a γ-strongly uniformly distributed sequence
mod 1, with corresponding γ-strong normal numbers. In this case, one could easily show that
if 0 < γ1 < γ2 < 1, then any γ1-strong normal number is also be a γ2-strong normal number.

Remark 16.4. A further discussion on appropriate choices of MN in the definition of sharp
normality is exposed below.

Identifying which real numbers are normal is not an easy task. For instance, no one has
been able to prove that any of the classical constants π, e,

√
2 and log 2 is normal, even though

numerical evidence indicates that all of them are. Even constructing normal numbers is not
an easy task. Hence, one might believe that constructing sharp normal numbers will even be
more difficult. So, here we first show how one can construct large families of sharp normal
numbers. On the other hand, it has been shown by Borel [6] that almost all real numbers are
normal. Although the set of sharp normal numbers is “much smaller” than the whole set of
normal numbers, in this paper, we prove that almost all numbers are sharply normal. After
studying the multidimensional case, we examine the relation between arithmetic functions
with local normal distribution and sharp normality.

Our first two propositions provide a simple criteria for sharp uniform distribution mod 1
and for sharp normality. They are direct consequences of the definition of sharp normality.

Proposition 16.1. Let D be the set of all continuous functions f : [0, 1]→ [0, 1) such that∫ 1

0

f(x) dx = 0. Then, the sequence (xn)n≥1 is sharply uniformly distributed mod 1 if and

only if, for all f ∈ D, letting M = MN be as in (16.1),

1

M

M∑
j=1

f({xN+j})→ 0 as N →∞.
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Given a positive real number α < 1 whose q-ary expansion is written as α = 0.ε1ε2 . . .,
where each εj ∈ Aq := {0, 1, . . . , q − 1}. For an arbitrary word β = δ1 . . . δk ∈ Akq , let
RN,M(β) stand for the number of times that the word β appears as a subword of the word
εN+1 . . . εN+M .

Proposition 16.2. A positive real number α < 1 is sharply q-normal if and only if, given
an arbitrary word β = δ1 . . . δk ∈ Akq and M = MN as in (16.1),

lim
N→∞

RN,M(β)

M
=

1

qk
.

The construction of sharp normal numbers

We first show how one can go about constructing sharp normal numbers. One way is
as follows. First, we start with a normal number in base q ≥ 2, say α = 0.ε1ε2 . . ., and
then for each positive integer T , we consider the corresponding word αT = ε1ε2 . . . εT . One
can show that, if the sequences of integers T1 < T2 < · · · and m1 < m2 < · · · are chosen
appropriately, and if, for short, we write γm for the concatenation of m times the word γ,
that is γm = γ . . . γ︸ ︷︷ ︸

m times

, then the number

β = 0.αm1
T1
αm2
T2
. . .

is a sharp normal number in base q.
We first show that the choice T` = ` and m` = ` is an appropriate one and in fact we

state this as a proposition.

Proposition 16.3. Let α be a q-normal number. Then, using the above notation, the number

β = 0.α1
1α

2
2α

3
3 . . .

is a sharp normal number in base q.

Remark 16.5. Other choices of T` and m` can also lead to the construction of sharp normal
numbers. For instance, let R > 0 be a fixed integer and, for each real number x > 0, define

x1 := log+ x = max(1, log x), x`+1 = log+ x` (` = 1, 2, . . .).

Given a real number
α = 0.ε1ε2 . . . ∈ AN

q ,

set
F (α; β) = #{(γ1, γ2) : α = γ1βγ2},

that is the number of occurrences of the word β in the digits of the word α. One can construct
a real number α such that, for every integer k ≥ 1,

(16.10) max
β∈Akq

∣∣∣∣ 1

MN

F (εN+1 . . . εN+MN
; β)− 1

qk

∣∣∣∣→ 0 as N →∞.
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Indeed, for each integer ` ≥ 1, let us choose T` = ` and m` = 22.
. .

2`

, that is ` =
log2 log2 . . . log2︸ ︷︷ ︸

R+1 times

m`. Now, starting with a q-ary normal number γ = 0.ε1ε2 . . ., and, for each

positive integer T , set γT = 0.ε1ε2 . . . εT . Then, one can show that the number

β = 0.γm1
1 γm2

2 . . .

does indeed satisfy condition (16.10) and is therefore a sharp q-normal number.

Preliminary lemmas

A real number is simply normal in base q if in its base q expansion, every digit 0, 1, . . . , q−1
occurs with the same frequency 1/q. The following lemma offers a simple way of establishing
if a given real number is a normal number.

Lemma 16.1. Let q ≥ 2 be an integer. If a real number α is simply normal in base qr for
each r ∈ N, then α is normal in base q.

Proof. A proof of this result can be found in the book of Kuipers and Niederreiter [50].

In the spirit of Proposition 16.2, we will say that a real number α < 1 is a simply sharp
normal number in base q if for every digit d ∈ Aq,

lim
N→∞

RN,M(d)

M
=

1

q
.

Lemma 16.2. Let q ≥ 2 be an integer. If a real number α is a simply sharp normal in base
qr for each r ∈ N, then α is sharply normal in base q.

Proof. This result can be proved along the same lines as one would use to prove Lemma
16.1.

Lemma 16.3. For each integer k ≥ 1, let

πk(x) := #{n ≤ x : ω(n) = k}.

Then, the relation

πk(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!
(x→∞)

holds uniformly for

(16.11) |k − log log x| ≤ 1

δx

√
log log x,

where δx is some function of x chosen appropriately and which tends to 0 as x→∞.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca [34].
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Lemma 16.4. Letting δx be as in the statement of Lemma 16.3,

max
k satisfying (16.11)

`∈[0,dδ3/2x
√

log log xe]

∣∣∣∣πk+`(x)

πk(x)
− 1

∣∣∣∣→ 0 as x→∞.

Proof. Given k satisfying (16.11), let θk be defined implicitly by k = log log x + θk, and let

` ∈ [0, dδ3/2
x

√
log log xe]. Then, in light of Lemma 16.3, we have, as x→∞,

πk+`(x)

πk(x)
= (1 + o(1))

(log log x)`

k`
∏`−1

ν=0

(
1 + ν

k

)
= (1 + o(1))

(
log log x

k

)`
exp

{
−`(`− 1)

2k
+O

(
`3

k2

)}
= (1 + o(1))

(
1

1 + θk/ log log x

)`
(1 + o(1))

= (1 + o(1)) exp

{
− `θk

log log x
+O

(
`θ2
k

(log log x)2

)}
= 1 + o(1),

thereby completing the proof of Lemma 16.4.

For any particular set of primes P , we introduce the expressions

(16.12) ΩP(n) :=
∑
pa‖n
p∈P

a and E(x) :=
∑
p≤x
p∈P

1

p
.

The following two results, which we also state as lemmas, are due respectively to Halász
[42] and Kátai [49].

Lemma 16.5. (Halász) Let 0 < δ ≤ 1 and let P be a set of primes with corresponding
functions ΩP(n) and E(x) given in (16.12). Then, the estimate

∑
n≤x

ΩP (n)=k

1 =
xE(x)k

k!
e−E(x)

{
1 +O

(
|k − E(x)|
E(x)

)
+O

(
1√
E(x)

)}

holds uniformly for all integers k and real numbers x ≥ 3 satisfying

E(x) ≥ 8

δ3
and δ ≤ k

E(x)
≤ 2− δ.

Lemma 16.6. (Kátai) For 1 ≤ h ≤ x, let

Ak(x, h) :=
∑

x≤n≤x+h
ω(n)=k

1,

δk(x, h) :=
Ak(x, h)

h
− πk(x)

x
,
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E(x, h) :=
∞∑
k=1

δ2
k(x, h).

Letting ε > 0 be an arbitrarily small number and x7/12+ε ≤ h ≤ x, then

E(x, h)� 1

log2 x ·
√

log log x
.

Our main results

Theorem 16.1. The Lebesgue measure of the set of all those real numbers α ∈ [0, 1] which
are not sharply q-normal is equal to 0.

Let r be a fixed positive integer and set E := [0, 1)r. Consider an r dimensional sequence

(xn)n∈N := (x
(n)
1 , . . . , x

(n)
r )n∈N in Rr. This sequence is said to be uniformly distributed mod

E if, for all intervals [aj, bj) ⊆ [0, 1), j = 1, . . . , r, we have

lim
N→∞

1

N
#{n ≤ N : {x(n)

j } ∈ [aj, bj) for j = 1, . . . , r} =
r∏
j=1

(bj − aj).

Accordingly, the discrepancy of the finite sequence x1, . . . , xN in Rr is defined as

D(x1, . . . , xN) = sup
[aj,bj)⊆[0,1)

j=1,...,r

∣∣∣∣∣∣∣∣∣
1

N

∑
{x(n)
j
}∈[aj,bj)

j=1,...,r

1−
r∏
j=1

(bj − aj)

∣∣∣∣∣∣∣∣∣ .
Then, we shall say that an infinite sequence (xn)n∈N is sharply uniformly distributed mod

E if
D(xN , . . . , xN+M)→ 0 as N →∞

for every choice of δN satisfying (16.1).
In what follows, we let q1, . . . , qr be fixed integers ≥ 2.

Theorem 16.2. The Lebesgue measure of the set of all those r-tuples (α1, . . . , αr) ∈ [0, 1)r

for which the sequence (xn)n∈N, where xn := ({α1q
n
1 }, . . . , {αrqnr }), is not sharply uniformly

distributed in [0, 1)r is equal to 0.

Theorem 16.3. Assume that for each i = 1, 2, . . . , r, the number αi is sharply qi-normal.
Let E = [0, 1)r and assume that f is a continuous periodic function mod E and that it

satisfies

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xr) dx1 · · · dxr = 0. Further set

yn = f(α1q
ω(n)
1 , . . . , αrq

ω(n)
r ) (n = 1, 2, . . .).

Then,

(16.13)
1

x

∑
n≤x

yn → 0 as x→∞.
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Moreover, further defining zn :=
(
{α1q

ω(n)
1 }, . . . , {αrqω(n)

r }
)

for n = 1, 2, . . ., we have that

(zn)n∈N is uniformly distributed in E.

The following result is a direct consequence of Theorem 16.3 and is related to the result
stated in Lemma 16.5.

Theorem 16.4. Let g be any one of the arithmetic functions

ω(n) :=
∑
p|n

1, Ω(n) :=
∑
pa‖n

a, ΩP(n) :=
∑
pa‖n
p∈P

a

and let xn := ({α1q
g(n)
1 }, . . . , {αrqg(n)

r }). Then, for almost all (α1, . . . , αr) ∈ [0, 1)r, the
sequence (xn)n≥1 is uniformly distributed in [0, 1)r.

The following result is a consequence of Lemma 16.6 and its proof is essentially along the
same lines as that of Theorem 16.3.

Theorem 16.5. For each integer i = 1, . . . , r, assume that αi is sharply qi-normal and set

xn := ({α1q
ω(n)
1 }, . . . , {αrqω(n)

r }).

Then, with M = MN as in (16.1),

D(xN+1, . . . , xN+M)→ 0 as N →∞.

We only provide here the proof of Theorem 16.1, which will follow essentially from the
following lemma.

Lemma 16.7. Let (Ω,A, P ) be a probability space, where Ω = [0, 1), A is the ring of Borel
sets and P is the Lebesgue measure. Let q ≥ 2 be a fixed integer and set Aq := {0, 1, . . . , q−1}.
Let εn ∈ Aq, n = 1, 2, . . ., be independent random variables such that P (εn = a) = 1/q for
each a ∈ Aq. For each ω ∈ Ω, let

α(ω) := 0.ε1(ω)ε2(ω) . . .

For an arbitrary δ > 0, let

Eδ :=

ω ∈ Ω : lim sup
N→∞

max
d∈Aq

∣∣∣∣∣∣∣
1

M

N+M∑
n=N+1
εn=d

1− 1

q

∣∣∣∣∣∣∣ > δ

 ,

where M satisfies (16.1). Then,

(16.14) P (Eδ) = 0 for every δ > 0.

Moreover, setting

E∗ :=

ω ∈ Ω : lim sup
N→∞

max
d∈Aq

∣∣∣∣∣∣∣
1

M

N+M∑
n=N+1
εn=d

1− 1

q

∣∣∣∣∣∣∣ 6= 0

 ,

we have P (E∗) = 0.
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Proof of Lemma 16.7. Let U ∈ N and given any d ∈ Aq, let

αd(ε1, . . . , εU) =
∑

i∈{1,...,U}
εi=d

1.

It is clear that

P (αd(ε1, . . . , εU) = j) =
1

qU

(
U

j

)
(q − 1)U−j.

For each 0 < δ < 1/q, set

(16.15) S = S(δ) :=

{
ω ∈ Ω : max

d∈Aq

∣∣∣∣αd(ε1, . . . , εU)− U

q

∣∣∣∣ > δU

}
.

If ω ∈ S, then clearly the inequality

αd(ε1, . . . , εU) <
U

q
− δU

q

holds for at least one d ∈ Aq, in which case we have

(16.16) P (S) ≤ q

qU

∑
0≤j≤(1−δ)U/q

(
U

j

)
· (q − 1)U−j = q

(
1− 1

q

)U ∑
0≤j≤V

(
U

j

)
1

(q − 1)j
,

where V = b(1− δ)U/qc.
Now let

tj =

(
U

j

)
1

(q − 1)j
(j = 0, 1, . . . , V ).

Then, for each integer j ≥ 1, we have

tj−1

tj
= (q − 1)

j

U − j + 1
<

(q − 1)(1− δ)U/q
U + 1− (1− δ)U/q

<
(q − 1)(1− δ)
q − (1− δ)

< 1− δ,

so that tj−1 < (1− δ)tj, thus implying that∑
0≤j≤V

tj ≤ tV
{

1 + (1− δ) + (1− δ)2 + . . .
}

=
tV
δ
.

Using the Stirling formula in the form

log n! = n log(n/e) +
1

2
log(2πn) + θn with θn → 0

and setting V = κU , where κ =
b1−δ

q
Uc

U
=

1− δ
q

+O

(
1

U

)
, we then have

log tV = U logU − κU log(κU)− (1− κ)U log((1− κ)U)− κU log(q − 1)

+
1

2
log

1

κ(1− κ)
− 1

2
log(2π) +O(θV )
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= (−κ log κ− (1− κ) log(1− κ)− κ log(q − 1))U

+
1

2
log

1

κ(1− κ)
− 1

2
log(2π)− 1

2
logU +O(θV ).

Letting h(κ) = κ log
1

(q − 1)κ
+ (1− κ) log

1

1− κ
, it follows that

log tV = Uh(κ) +
1

2
log

1

κ(1− κ)
− 1

2
log(2π)− 1

2
logU +O(θV ).

Observe that h(1/q) = log
q

q − 1
and that

h(κ) < (1− c(δ)) log
q

q − 1
,

where c(δ) > 0 provided δ > 0.
Using this in (16.16), we obtain that

(16.17) P (S) ≤ q exp

{
U log(1− 1/q) + log V + U(1− c(δ)) log

q

q − 1

}
< exp{−c1(δ)U},

where c1(δ) > 0 is some constant depending only on δ and q.
For each integer r ≥ 1, let Nr = qr and consider the interval Lr = [Nr, Nr+1 − 1].

Let us cover a given interval Lr by the union of Kr := 1 + b (q−1)qr

r2 c consecutive intervals

T (r)
1 , T (r)

2 , . . . , T (r)
Kr+1, each of length Ur := r2. Now, we define the sets S

(r)
i , for i = 1, . . . , Kr+

1, as we did for the set S in (16.15), but this time with the independent variables

εNr+(i−1)Ur+` (` = 1, 2, . . . , Ur).

For these new independent variables, if we proceed as we did to obtain (16.17), we then have

P (S
(r)
i ) ≤ qr exp{−c1(δ)r2} (i = 1, . . . , Kr + 1),

so that

P

(
Kr+1⋃
i=1

S
(r)
i

)
� Krq

r exp{−c1(δ)r2} ≤ q2r+1

r2
exp{−c1(δ)r2}

= exp{−c1(δ)r2 + (2r + 1) log q − 2 log r} < 1

r3
,

provided r is sufficiently large.
Since the series

∑
1/r3 converges, we may apply Lemma 0.14 and conclude that the set

Eδ := #{ω : ω ∈
Kr+1⋃
i=1

S
(r)
i for infinitely many r}

is such that P (Eδ) = 0. From this result, it then follows also that P (E∗) = 0.
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Final remarks

When we introduced the notion of sharply normal number in base q, we chose for sim-
plicity to consider intervals [N + 1, N + M ] with M = bδN

√
Nc. However, it is interesting

to observe that we could have chosen much smaller intervals, namely with M = blog2Nc,
and nevertheless still preserve the property that almost all real numbers are sharply normal.
Indeed, following the proof used in Lemma 16.7, as we consider an arbitrary sequence of dig-
its εN+1εN+2 . . . εN+M , with M = blog2Nc, and examine the occurrence of an arbitrary digit
d ∈ Aq in this sequence, we could define r as the unique integer such that qr ≤ n < qr+1, in
which case we would have

r2 ≤
(

log n

log q

)2

< (r + 1)2.

In the end, we would see that ∣∣∣∣∣∣∣
1

log2 n

n+blog2 nc∑
ν=n+1
εν=d

1− 1

q

∣∣∣∣∣∣∣ > δ

holds only for finitely many n’s and that this is true for each δ > 0. We can conclude from
this that, for almost all α,

lim
n→∞

max
d∈Aq

∣∣∣∣∣∣∣
1

log2 n

n+blog2 nc∑
ν=n+1
εν=d

1− 1

q

∣∣∣∣∣∣∣ = 0,

thus also establishing that we could have defined the notion of sharply normal numbers with
M = blog2Nc instead of with M = bδN

√
Nc.

Now, could we have chosen M even smaller, say M = blogNc ? Not really ! Indeed,
assume that (εn)n≥1 are independent random variables such that P (εn = a) = 1/q for each

a ∈ Aq. For N ∈ N, let H = HN =

⌊
qN+1 − qN

N

⌋
and set

B
(N)
` := {ω : εqN+`N+ν = 0, ν = 0, 1, . . . , N − 1} (` = 0, 1, . . . , H − 1).

The events B
(N)
` (` = 0, 1, . . . , H − 1) are independent and P

(
B

(N)
`

)
= 1/qN . Hence, with

DN =
⋃H−1
`=0 B

(N)
` , we have

P (DN) =
H

qN
≥ 1

2N
.

On the other hand D1, D2, . . . are independent and
∞∑
N=1

P (DN) =∞. Hence, by the second

Borel-Cantelli lemma (see Lemma 0.15), we may conclude that for almost all events ω, there
exists an infinite sequence of N ’s, say n1, n2, . . . such that

εnν+1 = 0, εnν+2 = 0, . . . , εnν+mν = 0,
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where mν ≥ c
log nν
log q

. We have thus shown that one could encounter a normal number α with

sequences of digits covering intervals of the form [N + 1, N +M ], with M ≈ logN , made up
only of zeros.

XVII. Prime factorization and normal numbers [29]
(Researches in Mathematics and Mechanics, 2015)

In two papers [14], [18], we used the fact that the prime factorization of integers is locally
chaotic but at the same time globally very regular in order to create various families of
normal numbers.

Here, we create a new family of normal numbers again using the factorization of integers
but with a different approach. Write each integer n ≥ 2 as n = p1p2 · · · pr, where p1 ≤ p2 ≤
· · · ≤ pr represent all the prime factors of n. Then, setting `(1) = 1 and, for each integer
n ≥ 2, letting `(n) represent the concatenation of the primes p1, p2, . . . , pr, we show that
by concatenating `(1), `(2), `(3), . . ., we can create a normal number, that is that the real
number 0.`(1)`(2)`(3) . . . is a normal number. Actually, we prove more general results.

Main results

Let q ≥ 2 be a fixed integer. From here on, we let S(x) ∈ Z[x] be an arbitrary polynomial
(of positive degree r0) such that S(n) > 0 for all integers n ≥ 1. Moreover, for each integer
n ≥ 2, we write its prime factorization as n = p1p2 · · · pr, where p1 ≤ p2 ≤ · · · ≤ pr are all
the prime factors of n and set

`(n) := S(p1)S(p2) . . . S(pr),

where each S(pi) is expressed in base q. For convenience, we set `(1) = 1.

Theorem 17.1. The real number

ξ := 0.`(1)`(2)`(3)`(4) . . .

is a q-normal number.

Theorem 17.2. Given an arbitrary positive integer a, the real number

η := 0.`(2 + a)`(3 + a)`(5 + a) . . . `(p+ a) . . . ,

where p runs through all primes, is a q-normal number.

Let 1 = d1 < d2 < · · · < dτ(n) = n be the sequence of divisors of n and let t(n) =

S(d1)S(d2) . . . S(dτ(n)). Then, let

θ := 0.Concat(t(n) : n ∈ N),

κ := 0.Concat(t(p+ a) : p ∈ ℘),

where a is a fixed positive integer.
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Theorem 17.3. The above real numbers θ and κ are q-normal numbers.

Let S(x) be as above and let Q(x) ∈ Z[x] be a polynomial of positive degree such that
Q(n) > 0 for each integer n ≥ 1. Then, consider the expression

Q(n) =
∏

pa‖Q(n)

pa = p1p2 · · · pr,

where p1 ≤ p2 ≤ · · · ≤ pr are all the prime factors of Q(n), so that

`(Q(n)) = S(p1)S(p2) . . . S(pr).

Then, let

α := 0.Concat(`(Q(n)) : n ∈ N),

β := 0.Concat(`(Q(p)) : p ∈ ℘).

Theorem 17.4. The above real number α is a q-normal number and, if Q(0) 6= 0, the real
number β is also a q-normal number.

Let Q(x) be as above. Then, let 1 = e1 < e2 < · · · < eδ(n) be the sequence of all the
divisors of Q(n) which do not exceed n, consider the expression

h(Q(n)) := S(e1)S(e2) . . . S(eδ(n))

and set
ψ := 0.Concat(h(Q(n)) : n ∈ N)

Theorem 17.5. The above real number ψ is a q-normal number.

Here we shall only prove Theorems 17.1, 17.2 and 17.3. For this, we will need the following
two lemmas.

Lemma 17.1. Let S ∈ Z[x] be as above. Given a positive integer k, let β1 and β2 be any two
distinct words belonging to Akq . Let c0 > 0 be an arbitrary number and consider the intervals

Jw :=

[
w,w +

w

logc0 w

]
(w > 1).

Then,
1

π(Jw) · logw

∑
p∈Jw

∣∣∣νβ1(S(p)− νβ2(S(p))
∣∣∣→ 0 as w →∞.

Proof. This result is a consequence of Lemma 0.5.

Given an infinite sequence γ = a1a2 . . . ∈ AN
q and a positive integer T , we write γT for

the word a1a2 . . . aT .

Lemma 17.2. The infinite sequence γ is a q-normal sequence if for every positive integer
k and arbitrary words β1, β2 ∈ Akq , there exists an infinite sequence of positive integers
T1 < T2 < · · · such that
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(i) lim
n→∞

Tn+1

Tn
= 1,

(ii) lim
n→∞

1

Tn

∣∣νβ1(γTn)− νβ2(γTn)
∣∣ = 0.

Proof. It is easily seen that conditions (i) and (ii) imply that

1

T

∣∣νβ1(γT )− νβ2(γT )
∣∣→ 0 as T →∞

and consequently that

(17.1)
1

T

∣∣∣∣∣∣qkνβ1(γT )−
∑
β2∈Akq

νβ2(γT )

∣∣∣∣∣∣→ 0 as T →∞.

But since ∑
β2∈Akq

νβ2(γT ) = T +O(1),

it follows from (17.1) that

νβ1(γT )

T
= (1 + o(1))

1

qk
as T →∞,

thereby establishing that γ is a q-normal number and thus completing the proof of the
lemma.

Proof of Theorem 17.1
Let x be a large number and set

ξ(x) := `(1)`(2)`(3) . . . `(bxc).

Since logS(p) = (1 + o(1))r0 log p as p→∞, we find that

λ(ξ(x)) =
∑
n≤x

(⌊
log `(n)

log q

⌋
+ 1

)
=

1

log q

∑
n≤x

∑
pa‖n

a logS(p) +O(x)

=
1

log q

∑
pa≤x
a≥1

a logS(p)

(
x

pa
+O(1)

)
+O(x)

=
x

log q

∑
p≤x

logS(p)

p
+O(x)

= (1 + o(1))r0
x log x

log q
+O(x),
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thereby establishing that the number of digits of ξ(x) is of order x log x, that is that

(17.2) λ(ξ(x)) ≈ x log x.

Now, we easily obtain that

νβ(ξ(x)) =
∑
pa≤x

νβ(S(p))

⌊
x

pa

⌋
+O(x) = x

∑
p≤x

νβ(S(p))

p
+O(x).

and therefore that, given any two distinct words β1, β2 ∈ Akq , the exists a positive constant
C such that, as x→∞,

(17.3)
1

λ(ξ(x))

∣∣νβ1(ξ(x))− νβ2(ξ(x))
∣∣ ≤ C

log x

∑
p≤x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

p
+ o(1).

On the other hand, it is clear from Lemma 17.1 that

(17.4)
1

π([x, 2x]) log x

∑
x≤p<2x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣→ 0 (x→∞).

Observe that, in light of (17.4), as x→∞,

∑
p≤x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

p
≤

∑
2`≤x
`≥1

1

2`

∑
2`≤p<2`+1

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

=
∑
2`≤x
`≥1

1

2`
o

(
2` log 2`

`

)
= o(log x),

which used in (17.3) along with (17.2) yields

1

λ(ξ(x))

∣∣νβ1(ξ(x))− νβ2(ξ(x))
∣∣ = o

(
1

log x
log x

)
+ o(1) = o(1),

which, in light of Lemma 17.2, completes the proof of Theorem 17.1.

Proof of Theorem 17.2

Let x be a large number and set

η(x) := Concat(`(p+ a) : p ≤ x).

First observe that the number of digits in the word η(x) is of order x, since

(17.5) λ(η(x)) ≈ π(x) log x ≈ x.

On the other hand, letting δ > 0 be an arbitrary small number, it follows from Lemma 0.9
that there exists a positive constant c > 0 such that

(17.6) #{π ≤ x : P (π + a) > x1−δ} ≤ cδπ(x).
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Arguing as in the proof of Theorem 17.1, we have that, given any two distinct words
β1, β2 ∈ Akq , for some positive constant C1,∣∣νβ1(η(x))− νβ2(η(x))

∣∣ ≤ ∑
p≤x1−δ

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣ · π(x; p,−a)

+C1

∑
x1−δ<p≤x

(log p)π(x; p,−a) +O(π(x) log log x).(17.7)

It follows from Lemma 0.1 that

(17.8) π(x; p,−a)� x

p log(x/p)
,

which implies, in light of (17.6), that

(17.9)
∑

x1−δ<p≤x

(log p)π(x; p,−a)� log x · δπ(x)� δx.

Using Lemma 0.5, it follows from (17.7), 17.8) and (17.9) that, for some positive constant
C2,

(17.10) lim
x→∞

∣∣νβ1(η(x))− νβ2(η(x))
∣∣

λ(η(x))
≤ C2δ.

Since δ > 0 was chosen to be arbitrarily small, it follows that the left hand side of (17.10)
must be 0. Combining this with observation (17.5), the result follows.

Proof of Theorem 17.3

The proof that θ is a normal number is somewhat similar to the proof that η is normal
as shown in Theorem 17.2. Hence, we will focus our attention on the proof that κ is normal.

Let x be a large number and set κ(x) := Concat(t(p+ a) : p ≤ x). First we observe that

λ(κ(x)) =
∑
d≤x

λ(S(d))π(x; d,−a) +O(li(x))

=
∑
d≤x

(⌊
logS(d)

log q

⌋
+ 1

)
π(x; d,−a) +O(li(x))

= r0

∑
d≤x

log d

log q
π(x; d,−a) +O

(∑
p≤x

τ(p+ a)

)
+O(li(x))

=
r0

log q

∑
d≤x

(log d)π(x; d,−a) +O(x),(17.11)

where we used the fact that
∑

p≤x τ(p+ a) = O(x).
Let δ > 0 be an arbitrarily small number. On the one hand, for some positive constant

C1, ∑
x1−δ<d≤x

(log d)π(x; d,−a) ≤ (log x)
∑

x1−δ<d≤x
dv=p+a, p≤x

1
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≤ (log x)
∑
v≤xδ

π(x; v,−a)

≤ C1(log x)
∑
v≤xδ

x

φ(v) log(x/v)
≤ δC1x log x.(17.12)

and, for some positive constant C2,

(17.13)
∑

d≤x1−δ

(log d)π(x; d,−a) ≤ (log x)
∑

d≤x1−δ

C2x

φ(d) log(x/d)
≤ C2x.

On the other hand, using Lemmas 0.1 and 0.2, for some positive constant C3,∑
d≤x

(log d)π(x; d,−a) ≥
∑
d≤x1/3

(log d)
li(x)

φ(d)
−
∑
d≤x1/3

(log d)

∣∣∣∣π(x; d,−a)− li(x)

φ(d)

∣∣∣∣
= C3(1 + o(1))x log x+O

(
x

logA x

)
� x log x.(17.14)

Hence combining relations (17.11), (17.12), (17.13) and (17.14), we find that

(17.15) λ(θ(x)) ≈ x log x.

Now, we easily obtain that, for any distinct words β1, β2 ∈ Akq ,∣∣νβ1(θ(x))− νβ2(θ(x))
∣∣ ≤ ∑

d≤x1−δ

∣∣∣νβ1(S(d))− νβ2(S(d))
∣∣∣ π(x; d,−a) + cδx log x

≤ C4

∑
d≤x1−δ

∣∣∣νβ1(S(d))− νβ2(S(d))
∣∣∣

φ(d) log(x/d)
+ cδx log x,(17.16)

where we used Lemma 0.1. Combining (17.16) with Lemma 17.1, we obtain that

lim sup
x→∞

∣∣∣∣νβ1(θ(x))− νβ2(θ(x))

λ(θ(x))

∣∣∣∣ ≤ δ,

thereby implying, arguing as in the previous proofs and in light of (17.15), that

lim sup
x→∞

∣∣∣∣νβ1(θ(x))− νβ2(θ(x))

λ(θ(x))

∣∣∣∣ = 0,

thus completing the proof of Theorem 17.3.
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XVIII. On properties of sharp normal numbers and of non-Liouville numbers
[32]

(Annales mathématiques du Québec, 2018)

We show that some sequences of real numbers involving sharp normal numbers or non-
Liouville numbers are uniformly distributed modulo 1. In particular, we prove that if τ(n)
stands for the number of divisors of n and α is a binary sharp normal number, then the
sequence (ατ(n))n≥1 is uniformly distributed modulo 1 and that if g(x) is a polynomial of
positive degree with real coefficients and whose leading coefficient is a non-Liouville number,
then the sequence (g(τ(τ(n))))n≥1 is also uniformly distributed modulo 1.

Recall the concept of sharp normality introduced by De Koninck, Kátai and Phong [31]
(see paper XVI above). Before we move on, observe that instead of choosing MN = bδN

√
Nc

in (16.1), we could have chosen MN = bδNNγc for some fixed number γ ∈ (0, 1), thereby
introducing the notion of γ-sharp distribution modulo 1 and the corresponding notion of
γ-sharp normal number. With such definitions, it can be shown that, given 0 < γ1 < γ2 < 1,
any γ1-sharp normal number is also a γ2-sharp normal number. One can then show that,
given γ ∈ (0, 1), almost all real numbers are γ-sharp normal numbers. Various alternatives
for the choice of M = MN in (16.1) are discussed in De Koninck, Kátai and Phong [31].

We shall also need the concept of discrepancy of a set of N t-tuples y
1
, y

2
, . . . , y

N
, where

y
n

= (x
(n)
1 , . . . , x

(n)
t ) for n = 1, 2, . . . , N , with each x

(n)
i ∈ R. The discrepancy of a set of N

such vectors y
1
, . . . , y

N
is defined as the quantity

D(y
1
, . . . , y

N
) := sup

I⊆[0,1)t

∣∣∣∣∣∣∣
1

N

N∑
n=1
{y
n
}∈I

1−
t∏
i=1

(βi − αi)

∣∣∣∣∣∣∣ ,
where {y

n
} stands for ({x1}, . . . , {xn}) and where the above supremum runs over all possible

subsets I = [α1, β1)× · · · × [αt, βt) of the t-dimensional unit interval [0, 1)t.
Recall also that an irrational number β is said to be a Liouville number if for each integer

m ≥ 1, there exist two integers t and s > 1 such that

0 <

∣∣∣∣β − t

s

∣∣∣∣ < 1

sm
.

In a sense, one might say that a Liouville number is an irrational number which can be well
approximated by a sequence of rational numbers.

Here, we show that some sequences of real numbers involving sharp normal numbers or
non-Liouville numbers are uniformly distributed modulo 1. We also study the discrepancy
of a sequence of t-tuples of real numbers involving sharp normal numbers.

Throughout this paper, ℘ stands for the set of all primes. Given an integer n ≥ 2, we let
γ(n) (resp. ω(n)) stand for the product (resp. number) of distinct prime factors of n, with
γ(1) = 1 and ω(1) = 0. Moreover, given a set B ⊆ ℘, we let

ωB(n) =
∑
p|n
p∈B

1.
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We also let τ stand for the number of divisors function. More generally, given an integer
` ≥ 2, we let τ`(n) stand for the number of ways of writing n as the product of ` positive
integers. Also, we let ϕ stand for the Euler function and write e(y) for e2πiy. Finally, by
log2 x (resp. log3 x) we mean max(2, log log x) (resp. max(2, log log2 x)).

Main results

If α is an irrational number, it is well known that the sequence (αn)n≥1 is uniformly
distributed modulo 1, while there is no guarantee that the sequence (ατ(n))n≥1 will itself be
uniformly distributed modulo 1. However, if α is a sharp normal number, the situation is
different, as is shown in our first result.

Theorem 18.1. Let q ≥ 2 be a fixed integer. If α is a sharp q-normal number, then the
sequence (ατq(n))n≥1 is uniformly distributed modulo 1.

In an earlier paper [30], we showed that if g(x) = αxk +αk−1x
k−1 + · · ·+α1x+α0 ∈ R[x]

is a polynomial of positive degree, where α is a non-Liouville number, and if h belongs to a
particular set of arithmetic functions, then the sequence (g(h(n))n≥1 is uniformly distributed
modulo 1. Our next result goes along the same lines.

Theorem 18.2. Let g(x) = αxk + αk−1x
k−1 + · · · + α1x + α0 ∈ R[x] be a polynomial of

positive degree, where α is a non-Liouville number. Then, the sequence (g(τ(τ(n))))n≥1 is
uniformly distributed modulo 1.

Now, consider the following (plausible) conjecture.

Conjecture 18.4. Let εx be some function which tends to 0 as x→∞. Then, if |k − `| ≤
εx
√

log2 x, we have, uniformly for |k − log2 x| ≤ 1
εx

√
log2 x and |`− log2 x| ≤ 1

εx

√
log2 x, as

x→∞,

1

x
#{n ≤ x : ω(n) = k and ω(n+ 1) = `}

= (1 + o(1))
1

x
#{n ≤ x : ω(n) = k} · 1

x
#{n ≤ x : ω(n+ 1) = `}

and more generally, if |`i − `j| ≤ εx
√

log2 x for all i 6= j, then, uniformly for |`j − log2 x| ≤
1
εx

√
log2 x, for each j = 0, 1, . . . , t− 1, as x→∞,

1

x
#{n ≤ x : ω(n+ j) = `j, with j = 0, 1, . . . , t− 1}

= (1 + o(1))
t−1∏
j=0

1

x
#{n ≤ x : ω(n+ j) = `j}.

It is interesting to observe that, using the ideas mentioned at the beginning of Theorem
18.3, the following result would follow immediately from Conjecture 18.4.

Let q0, q1, . . . , qt−1 be integers larger than 1 and, for each j = 0, 1, . . . , t−1, let αj
be a sharp qj-normal number. Consider the sequence of t-tuples (xn)n≥1 defined
by

xn :=
(
{α0q

ω(n)
0 }, {α1q

ω(n+1)
1 }, . . . , {αt−1q

ω(n+t−1)
t−1 }

)
∈ [0, 1)t.

Then, the sequence (xn)n≥1 is uniformly distributed modulo [0, 1)t.
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This observation explains the importance of the following result.

Theorem 18.3. Let wx and Yx be two increasing functions both tending to ∞ as x → ∞
and satisfying the conditions

log Yx
log x

→ 0,
Yx

log x
→∞, wx � log2 x (x→∞).

Set B = Bx = {p ∈ ℘ : wx < p < Yx} and let q0, q1 . . . , qt−1 be t integers larger than 1 and for
each i = 0, 1, . . . , t − 1, let αi be a sharp normal number in base qi. Consider the sequence
of t-tuples (y

n
)n≥1 defined by

y
n

:=
(
{α0q

ωB(n)
0 }, {α1q

ωB(n+1)
1 }, . . . , {αt−1q

ωB(n+t−1)
t−1 }

)
∈ [0, 1)t.

If Dbxc stands for the discrepancy of the set {y
1
, . . . , ybxc}, then Dbxc → 0 as x→∞.

Finally, the following result is essentially the case t = 1 of the previous theorem.

Corollary 18.2. Given an integer q ≥ 2, let α be a sharp q-normal number. Let wx, Yx and
B = Bx be as in Theorem 18.3 and consider the sequence (yn)n≥1 defined by yn = {αqωB(n)}.
Then, the discrepancy D(y1, y2, . . . , ybxc) tends to 0 as x→∞.

Preliminary results

Lemma 18.1. If α is a sharp q-normal number and m a positive integer, then mα is also a
sharp q-normal number.

Proof. Let xn ∈ [0, 1) for n = 1, 2, . . . , N and consider the corresponding numbers yn =
{mxn} for n = 1, 2, . . . , N . If we can prove the inequality

(18.1) D(y1, y2, . . . , yN) ≤ mD(x1, x2, . . . , xN),

the proof of Lemma 18.1 will be complete. In order to prove (18.1), first observe that,
for each integer n ∈ {1, 2, . . . , N}, we have that yn ∈ [a, b) ⊆ [0, 1) if and only if mxn ∈⋃m−1
`=0 [`+ a, `+ b), which is equivalent to

xn ∈
m−1⋃
`=0

[
`

m
+
a

m
,
`

m
+

b

m

)
=:

m−1⋃
`=0

J`.

Since ∣∣∣∣∣∣∣
1

N

N∑
n=1
xn∈J`

1− b− a
m

∣∣∣∣∣∣∣ ≤ D(x1, x2, . . . , xN),

it follows that∣∣∣∣∣∣∣
1

N

N∑
n=1

yn∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ ≤
m−1∑
`=0

∣∣∣∣∣∣∣
1

N

N∑
n=1
xn∈J`

1− b− a
m

∣∣∣∣∣∣∣ ≤ mD(x1, x2, . . . , xN).

Taking the supremum of the first two of the above quantities over all possible subintervals
[a, b) of [0, 1), inequality (18.1) follows immediately.
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The following result is Lemma 3 in Spiro [59].

Lemma 18.2. Let B1, B2 and B3 be three fixed positive numbers. Assume that x ≥ 3
and that both y and ` are positive integers satisfying y ≤ B1 log2 x, ` ≤ exp{logB2 x} and
γ(`) ≤ logB3 x. Then, uniformly for y and `,

π`(x, y) := #{n ≤ x : ω(n) = y, µ2(n) = 1, (n, `) = 1}

=
x(log2 x)y−1

(y − 1)! log x

{
F

(
y − 1

log2 x

)
F`

(
y − 1

log2 x

)
+OB1,B3

(
y

(log3(16`))3

(log2 x)2

)}
,

where

F (z) =
1

Γ(z + 1)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
, F`(z) =

∏
p|`

(
1 +

z

p

)−1

.

Lemma 18.3. Let wx, Yx and B = Bx be as in Theorem 18.3 and let N (B) be the semigroup
generated by B. Further let rx be a function which tends to ∞ as x → ∞, while satisfying
the two conditions

(18.2) rx � log3 x and lim
x→∞

rx log Yx
log x

= 0.

Moreover, let Dj ∈ N (B), j = 0, 1, . . . , t− 1, with (Di, Dj) = 1 for i 6= j, and let

(18.3) ND0,D1,...,Dt−1(x) := #

{
n ≤ x : Dj | n+ j, j = 0, 1, . . . , t− 1,

(
n+ j

Dj

,B
)

= 1

}
.

Then, as x→∞,

(18.4)
1

x
#{n ≤ x : Dj | n+ j, j = 0, 1, . . . , t− 1 and max(D0, D1, . . . , Dt−1) > Y rx

x } → 0

and, uniformly for Dj ≤ Y rx
x , j = 0, 1, . . . , t− 1,

ND0,D1,...,Dt−1(x) = (1 + o(1))xκ(D0)κ(D1) · · ·κ(Dt−1)Ltx

as x→∞, where κ is the multiplicative function defined on primes p by

κ(p) =
1

p
· p− t+ 1

p− t

and Lx :=
logwx
log Yx

.

Proof. First observe that (18.4) is easily proved. We may therefore assume that Dj ≤ Y rx
x

for j = 0, 1, . . . , t− 1. In order to use the same notation as in Lemma 0.11, we set

B = {p1, . . . , ps}, Q = p1 · · · ps, E = D0D1 · · ·Dt−1, Dj | Q for j = 0, 1, . . . , t− 1.

Observe that the conditionDj | n+j for (j = 0, 1, . . . , t−1) in the definition ofND0,D1,...,Dt−1(x)
(see (18.3)) holds for exactly one residue class n (mod E). Letting this residue class be `
(mod E), we then have

ND0,D1,...,Dt−1(x) = #

{
m ≤

⌊ x
E

⌋
:

(
`+mE + j

Dj

, Q

)
= 1, j = 0, 1, . . . , t− 1

}
+O(1).
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Choose N =
⌊ x
E

⌋
and f(m) = 1, while further setting am :=

t−1∏
j=0

`+mE + j

Dj

.

Using Lemma 0.11 with X = N , we then get that if d | Q, relation (0.7) can be written
as

N∑
m=1

am≡0 (mod d)

1 = ρ(d)N +R(N, d).

Here, ρ(d) is multiplicative and defined by

ρ(p) =

{
t/p if p | Q/E,
(t− 1)/p if p | E.

On the other hand, |R(N, d)| ≤ τt(d) = (t+ 1)ω(d) (since d is squarefree), which implies that∑
d|Q
d≤z3

3ω(d)|R(N, d)| ≤
∑
d|Q
d≤z3

3ω(d)τt(d) ≤
∑
d≤z3

(3(t+ 1))ω(d) ≤ Cz3 logA z,

where A and C are suitable constants depending only on t. Again, with the notation used
in Lemma 0.11, we have

S =
∑
p|Q

ρ(p)

1− ρ(p)
log p =

∑
p|Q/E

t log p

p(1− t/p)
+
∑
p|E

(t− 1) log p

p(1− (t− 1)/p)

= t
∑
p|Q/E

log p

p
+ (t− 1)

∑
p|E

log p

p
+O(1)

= t
∑
p|Q

log p

p
−
∑
p|E

log p

p
+O(1).(18.5)

Observing that
∑
p|E

log p

p
≤ t

rx log Yx
wx

→ 0 as x→∞ (because of (18.2)), it follows from

(18.5) that

S = t log(Yx/wx) +O

(
rx log Yx
wx

)
.

Choosing r = ps and since

s = π(Yx)− π(wx) = π(Yx)

(
1− π(wx)

π(Yx)

)
,

it follows, since log r = log s+ log log s+O(1), that

log r = log Yx +O(log log Yx).

Finally, choose z = Y 8t νx
x , where νx →∞ very slowly as x→∞. One can then easily check

that the conditions of Lemma 0.11 are satisfied, thus allowing us to conclude that

H = exp (−8tνx (log(8νx)− log log(8νx) +O(1))) ,
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thereby implying, since νx →∞ as x→∞, that

(18.6) H = Hx,νx = o(1) (x→∞).

Now, writing ∏
p|Q

(1− ρ(p)) =
∏
p|Q

(
1− t

p

)
·
∏
p|E

1− t−1
p

1− t/p
=: λ(E),

we may conclude from (18.6) that

(18.7) ND0,D1,...,Dt−1(x) = (1 + o(1))
x

E
λ(E) +O(z3 logA z).

It remains to check that the above error term is not too large compared to the main term
x

E
λ(E). Indeed, if νx tends to∞ slowly enough, this will guarantee that z4 ≤

√
x, say, while

on the other hand, in light of conditions (18.2), we have that, for any small ε > 0,

x

E
≥ x

Y trx
x

=
x

etrx log Yx
≥ x

etε log x
=

x

xt ε
> x3/4,

say. Finally, since λ(E) ≥ C/ log Yx for some constant C > 0, we may conclude that indeed
the error term in (18.7) is of smaller order than the main term of (18.7). Consequently,
uniformly for Dj ≤ Y rx

x , j = 0, 1, . . . , t− 1, we find that

ND0,D1,...,Dt−1(x) = (1 + o(1))
x

D0D1 · · ·Dt−1

∏
p-D0D1···Dt−1

p∈B

(
1− t

p

)
·

∏
p|D0D1···Dt−1

(
1− t− 1

p

)

= (1 + o(1))
x

D0D1 · · ·Dt−1

∏
p|D0D1···Dt−1

1− t−1
p

1− t
p

·
∏
p∈B

(
1− t

p

)
.

Since ∏
p∈B

(
1− t

p

)
= (1 + o(1))Ltx (x→∞),

the proof of Lemma 18.3 is complete.

The following result is Lemma 1 in our paper [30].

Lemma 18.4. Let g(x) = αxk +αk−1x
k−1 + · · ·+α1x+α0 ∈ R[x] be a polynomial of positive

degree, where α be a non-Liouville number. Then,

sup
U≥1

1

N

∣∣∣∣∣
U+N∑
n=U+1

e(g(n))

∣∣∣∣∣→ 0 as N →∞.

Lemma 18.5. Assume that the set of natural integers N is written as a disjoint union of
sets NK, where K runs through the elements of a particular set P of positive integers, that
is, N =

⋃
K∈P NK. Assume that, for each K ∈ P, the counting function NK(x) := #{n ≤

x : n ∈ NK} satisfies

lim
x→∞

NK(x)

x
= cK ,
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where the cK are positive real numbers such that
∑
K∈P

cK = 1. Moreover, let (xn)n≥1 be a

sequence of real numbers which is such that, for each K ∈ P, the corresponding sequence
(xn)n∈NK is uniformly distributed modulo 1, that is, for each integer h ≥ 1,

(18.8) S
(h)
K (x) :=

∑
n≤x
n∈NK

e(hxn) = o(NK(x)) as x→∞.

Then, the sequence (xn)n≥1 is uniformly distributed modulo 1.

Proof. According to an old and very important result of Weyl [65], a sequence (xn)n≥1 is
uniformly distributed modulo 1 if for every non negative integer h,

lim
N→∞

1

N

N∑
n=1

e(hxn) = 0.

Therefore, in light of Weyl’s criteria, we only need to prove that, for each positive integer h,

(18.9) S(h)(x) :=
∑
K∈P

S
(h)
K (x)→ 0 as x→∞.

Given any z > 0 and writing

S(h)(x) =
∑
K∈P
K<z

S
(h)
K (x) +

∑
K∈P
K≥z

S
(h)
K (x),

it follows that

(18.10)

∣∣∣∣S(h)(x)

x

∣∣∣∣ ≤ ∑
K<z,K∈P

NK(x)

x
· 1

NK(x)
|S(h)
K (x)|+ 1

x
#

{
n ≤ x : n ∈

⋃
K∈P,K≥z

NK

}
.

Since, in light of (18.8), we have that 1
NK(x)

|S(h)
K (x)| = o(1) as x→∞, it follows from (18.10)

that, for some C > 0,

lim sup
x→∞

∣∣∣∣S(h)(x)

x

∣∣∣∣ ≤ C · (
∑

K<z,K∈P

cK) · o(1) +
∑

K≥z,K∈P

cK ,

which is as small as we want provided z is chosen large enough, thus proving (18.9).

Proof of Theorem 18.1

An integer n is called squarefull if p | n implies that p2 | n. Let P be the set of all
squarefull numbers. For convenience, we let 1 ∈ P . To each squarefull number K, we
associate the set NK := {n = Km : (m,K) = 1, µ2(m) = 1}, where µ stands for the Möbius
function. Since each positive integer n belongs to one and only one such set NK , we have
that

N =
⋃
K∈P

NK .
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For any n ∈ NK , we have τq(n) = τq(Km) = τq(K)qω(m).
Now, in light of Lemma 18.5, the theorem will follow if we can prove that for each fixed

K ∈ P ,

(18.11) the sequence ({ατq(n)})n∈NK is uniformly distributed modulo 1 over NK .

To prove this last statement, we use Lemma 18.2. First, observe that for ` = K fixed, we
have that γ(`) = γ(K) is bounded and that we can also assume that, given any function δx
which tends to 0 sufficiently slowly as x→∞, say with 1/δx < log3 x,

(18.12) |y − log2 x| ≤
1

δx

√
log2 x,

so that each of the two quantities F

(
y − 1

log2 x

)
and F`

(
y − 1

log2 x

)
is equal to 1+o(1) as x→∞

for y in the range (18.12). From there and the fact that α is a sharp normal number, it is
clear that (18.11) follows.

Proof of Theorem 18.2

Given a squarefull number K, let NK and P be as in the proof of Theorem 18.1. Any
integer n ∈ NK can be written as n = Km, where (K,m) = 1 and µ2(m) = 1. Moreover,
write τ(K) = k1 · 2ρK for some odd positive integer k1 and some non negative integer ρK .
From this set up, it follows that τ(n) = τ(Km) = k1 · 2ρK+ω(m), from which it follows that

(18.13) τ(τ(n)) = τ(k1) (ω(m) + ρK + 1) .

Now, for n ∈ NK with ω(m) = t, we have, using (18.13),

(18.14) g(τ(τ(n))) = ατ(k1)k(t+ ρK + 1)k + · · · = ατ(k1)ktk + Pk−1(t),

where Pk−1(t) stands for some polynomial of degree no larger than k − 1.
We shall now use Weyl’s criteria, already stated in the proof of Lemma 18.5. So, let h

be an arbitrary positive integer. For each K ∈ P , set

SK(x) :=
∑
n≤x
n∈NK

e(hg(τ(τ(n)))).

In light of (18.14), we have, writing t for ω(m),

SK(x) =
∑
t≥1

e(hατ(k1)ktk + Pk−1(t)) · πK(x, t),

were πk(x, t) was defined in Lemma 18.2. Setting R(t) := ατ(k1)ktk +Pk−1(t), we may write
the above as

SK(x) =
∑
t≥1

e(hR(t)) · πK(x, t).

Our goal will be to establish that, given any K ∈ P ,

(18.15) SK(x) = o(x) (x→∞).
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If we can accomplish this, then, in light of Lemma 18.5, the proof of Theorem 18.2 will be
complete.

To prove (18.15), we first observe that

(18.16)
∑
t≥1

|t−log2 x|>
√

log2 x/εx

πK(x, t) = o(x) (x→∞)

and furthermore that

(18.17) max
t1

|t1−log2 x|≤
√

log2 x/εx

max
t2

|t2−t1|≤εx
√

log2 x

∣∣∣∣πK(x, t1)

πK(x, t2)
− 1

∣∣∣∣→ 0 as x→∞.

Now, consider the sequence of real numbers (zn)n≥0 defined by

z0 = log2 x−
√

log2 x

εx
and for each m ≥ 1 by zm = zm−1 + εx

√
log2 x,

and, setting M =

⌊
(2/εx)

√
log2 x

εx
√

log2 x

⌋
=

⌊
2

ε2
x

⌋
, further consider the intervals

Ij := [bzjc, zj+1) (j = 0, 1, . . . ,M).

Now, observe that, uniformly for j ∈ {0, 1, . . . ,M}, as x→∞,

(18.18)

∣∣∣∣∣∣
∑
t∈Ij

e(hR(t))πK(x, t)− πK(x, bzjc)
∑
t∈Ij

e(hR(t))

∣∣∣∣∣∣ ≤ o(1)
∑
t∈Ij

πK(x, t).

Using the fact that the above intervals Ij are all of the same length, say L = Lx, it follows
from Lemma 18.4 that, uniformly for j ∈ {0, 1, . . . ,M},

(18.19)
1

L
∑
t∈Ij

e(hR(t))→ 0 (x→∞).

Combining (18.18) and (18.19) allows us to conclude that∣∣∣∣∣∣
M∑
j=0

∑
t∈Ij

e(hR(t))πK(x, t)

∣∣∣∣∣∣ = o(x).

Using this last estimate and recalling estimates (18.16) and (18.17), it follows that estimate
(18.15) holds, thus completing the proof of Theorem 18.2.

Proof of Theorem 18.3

Given a large number x, let T = Tx :=
∑

wx≤p≤Yx

1

p
, and observe that

(18.20) T = log

(
log Yx
logwx

)
+ o(1) = logL−1

x + o(1) (x→∞).
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Further let δx be a function which tends to 0 as x → ∞, but not too fast in the sense that
1

δx
= O(log2 T ).

We will be using the fact that, as a consequence of Lemma 18.3, as x→∞,

1

x
#{n ≤ x : ωB(n+ j) = kj, j = 0, 1, . . . , t− 1} = (1 + o(1))

t−1∏
j=0

1

x
#{n ≤ x : ωB(n) = kj}

uniformly for positive integers k0, k1, . . . , kt−1 satisfying |kj − T | ≤
1

δx

√
T and also that

1

x
#

{
n ≤ x :

|ωB(n)− T |√
T

>
1

δx

}
→ 0 as x→∞.

We begin by obtaining an upper bound for the sum

S :=
∑

D0,D1,...,Dt−1

Dν∈N (B), Dν≤Y rxx
(Di,Dj)>1 for some i 6=j

κ(D0)κ(D1) · · ·κ(Dt−1)Ltx,

where rx is as in Lemma 18.3, keeping in mind that we allow the above sum to run only over
those Dν ≤ Y rx

x , because, as was shown in (18.4), the total contribution of those terms for
which at least one of the Dν exceeds Y rx

x is negligible. So, let us fix i, j and consider the sum

Si,j :=
∑

Di,Dj∈N (B)

(Di,Dj)>1

Di,Dj≤Y
rx
x

κ(Di)κ(Dj)L
2
x.

Writing Di = UD′i and Dj = V D′j, where U and V have the same prime divisors, (D′i, D
′
j) =

(U,D′i) = (V,D′j) = 1, we then have

κ(Di)κ(Dj) = κ(D′i)κ(D′j)κ(U)κ(V ).

Observe also that, for some positive constant c1, we have

κ(U)κ(V ) < c1

∏
p|U

p2

−1

.

From these observations, it follows that, for some positive constant c2,

Si,j < c2

∞∑
m=2

m∈N (B)

1

m2
·

Lx ∑
D∈N (B)

κ(D)

2

= c2

∞∑
m=2

m∈N (B)

1

m2
·
∏
p∈B

(1 + κ(p))2 · L2
x.(18.21)
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On the other hand, using (18.20),

∏
p∈B

(1 + κ(p)) = exp

(∑
p∈B

log(1 + κ(p))

)

= exp

(∑
p∈B

1

p
+O(1)

)
= exp(T +O(1))

= exp(− logLx +O(1)).

Using this last estimate and the fact that

∞∑
m=2

m∈N (B)

1

m2
<
∑
m>wx

1

m2
<

2

wx
,

say, it follows from (18.21) that, for some positive constant c3,

Si,j ≤
c3

wx
· 1

L2
x

· L2
x =

c3

wx
.

Moreover, in light of the fact that

Lx
∑

Dν∈N (B)

Dν≤Y rxx
for every ν=0,1,...,t−1

κ(Dν) ≤ c4

for some absolute constant c4 > 0, we obtain after gathering our estimates that

(18.22) S = O

(
1

wx

)
.

Now, given arbitrary subsets E0, E1, . . . , Et−1 of {D : D ∈ N (B), D ≤ Y rx
x }, we have, as

x→∞, in light of (18.22),

(18.23)
∑

D0∈E0,...,Dt−1∈Et−1
(Di,Dj)=1 for i 6=j

κ(D0)κ(D1) · · ·κ(Dt−1)Ltx =
t−1∏
j=0

Lx ∑
D∈Ej

κ(D)

+ o(x).

Observe that to the discrepancy DN := D(x1, . . . , xN) of the real numbers x1, . . . , xN (as
defined by (0.1)), one can associate the so-called star discrepancy

D∗N = D∗(x1, . . . , xN) := sup
0≤β<1

∣∣∣∣∣∣∣
1

N

N∑
i=1
{xi}<β

1− β

∣∣∣∣∣∣∣
and establish that D∗N ≤ DN ≤ 2D∗N . In light of this observation, defining the function
Hu : [0, 1)→ {0, 1} by

(18.24) Hu(y) :=

{
1 if 0 ≤ y < u,
0 if u ≤ y < 1,
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one can easily establish that

D∗N = max
u∈[0,1)

(
1

N

N∑
n=1

Hu(xn)− u

)
,

implying that if we can show that this last expression tends to 0 as N →∞, it will allow us
to conclude that DN = Dbxc → 0 as N →∞.

To do so, given real numbers u0, u1, . . . , ut−1 ∈ [0, 1), choose

Ej := {D ∈ N (B) : |ω(D)− T | ≤
√
T/δx, D ≤ Y rx

x , Huj({αjq
ω(D)
j }) = 1}

and apply estimate (18.23).
It follows from this that, if we can prove that

(18.25)
(
{αjqωB(n+j)

j }
)
n≥1

is uniformly distributed modulo 1

for each j = 0, 1, . . . , t− 1, it will imply that, as x→∞,∑
Dj∈N (B)

Dj≤Y
rx
x

Huj({αjq
ω(Dj)
j })κ(Dj)Lx → uj (j = 0, 1, . . . , t− 1),

thus allowing us to conclude that

t−1∏
j=0

 ∑
Dj∈N (B)

Dj≤Y
rx
x

Huj({αjq
ω(Dj)
j })κ(Dj)Lx

 = u0u1 · · ·ut−1 + o(1) (x→∞),

thereby establishing that the sequence (y
n
)n≥1 is uniformly distributed mod [0, 1)t.

Thus, it remains to prove (18.25). To do so, it is enough to prove Corollary 18.2.

Proof of Corollary 18.2

Let

A(n) :=
∏
pa‖n
p∈B

pa and Mx :=
∏
p∈B

(
1− 1

p

)
.

For every D ∈ N (B) with D ≤ Y rx
x , we have

#{n ≤ x : A(n) = D} =

(
1 +O

(
1

logwx

))
x

D
Mx (x→∞),

from which it follows that, as x→∞,

Bk(x) :=
1

x
#{n ≤ x : ωB(n) = k}

= (1 + o(1))Mx

∑
D∈N (B)
ω(D)=k

1

D
+O(Uk(x)),(18.26)

134



where

Uk(x) = Mx

∑
D∈N (B)
ω(D)=k

D>Y
rx
x

1

D
+

1

x
#{n ≤ x : A(n) > Y rx

x , ω(A(n)) = k},

thereby implying that

(18.27)
∑
k≥1

Uk(x)→ 0 as x→∞.

For each positive integer k, let zk = {αqk}. Further, let Hu(y) be the function defined in
the proof of Theorem 18.3 (see (18.24)).

In light of estimate (18.26), we have, as x→∞,

Rx :=
1

x

∑
n≤x

Hu(yn) =
∑
k≥1

Hu(zk)Bk(x)

= (1 + o(1))
∑
k≥1

Hu(zk)Mx

∑
D∈N (B)
ω(D)=k

1

D
+O

(∑
k≥1

Uk(x)

)
.(18.28)

Observing that ∑
a≥1,p∈B

1

apa
=
∑
p∈B

1

p
+O

(
1

wx

)
allows us to write that

(18.29) Mx = exp

{
−
∑
p∈B

1

p
+O

(
1

wx

)}
= exp

{
−T +O

(
1

wx

)}
,

say. Hence, it follows from (18.27), (18.28) and (18.29) that

(18.30) Rx = (1 + o(1))
∑
k≥1

Hu(zk) exp{−T} · T
k

k!
+ o(1) (x→∞).

Now, since, for any function δx which tends to 0 as x→∞,∑
|k−T |√

T
> 1
δx

exp{−T} · T
k

k!
→ 0 as x→∞,

we obtain that (18.30) can be replaced by

(18.31) Rx = (1 + o(1))
∑

|k−T |√
T
≤ 1
δx

Hu(zk)Kk + o(1) (x→∞),

where Kk := exp{−T} · T
k

k!
.
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On the other hand, observe that for any function εx which tends to 0 as x→∞, we have

(18.32) max
k1∣∣∣∣ k1−T√
T

∣∣∣∣≤ 1
δx

max
k2

|k2−k1|<εx
√
T

∣∣∣∣Kk2

Kk1

− 1

∣∣∣∣→ 0 as x→∞.

Let us now subdivide the interval [T −
√
T/δx, T +

√
T/δx] into intervals I1, I2, . . . , Is,

where s = b2/(δxεx)c, each of length εx
√
T . Since, in light of (18.32), we have

(18.33) max
j=1,...,s

max
k1,k2∈Ij

∣∣∣∣Kk2

Kk1

− 1

∣∣∣∣→ 0 as x→∞

and since α is a sharp q-normal number, it follows that, for each j ∈ {1, . . . , s},∑
k∈Ij

Hu(zk) = (1 + o(1))
∑
k∈Ij

1 (x→∞).

Using this last statement in (18.31), recalling (18.33), and writing |Ij| for the length of the
interval Ij, we obtain that, as x→∞,

Rx = (1 + o(1))
s∑
j=1

∑
k∈Ij

Hu(zk)Kk

= (1 + o(1))
s∑
j=1

∑
k∈Ij

Hu(zk)

 1

|Ij|
∑
k1∈Ij

Kk1


= (1 + o(1))

s∑
j=1

 1

|Ij|
∑
k1∈Ij

Kk1

∑
k∈Ij

Hu(zk)

= (1 + o(1))
s∑
j=1

 1

|Ij|
∑
k1∈Ij

Kk1

 (1 + o(1))u|Ij|

= (1 + o(1))u
s∑
j=1

∑
k∈Ij

Kk

= (1 + o(1))u
∑
k

|k−T |≤
√
T/δx

Kk

= (1 + o(1))u.

Since this last estimate holds for every real u ∈ [0, 1), it follows that Rx = o(1) as x→∞
and the proof of Corollary 18.2 is complete.

Final remarks

Using the same techniques as above, one could prove the following result regarding the
discrepancy of a t-tuples sequence.
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Let f1, f2, . . . , ft ∈ R[x] be polynomials of positive degree such that the coefficient
of the leading term of each fj is some non-Liouville number αj. Moreover, let
a1, a2, . . . , at be distinct integers and let B be as in Theorem 18.3. Set

y
n

:= (f1(ωB(n+ a1)), f2(ωB(n+ a2)), . . . , ft(ωB(n+ at))) .

Then,
D(y

1
, y

2
, . . . , ybxc)→ 0 as x→∞

and similarly, if pi and π(x) stand respectively for the i-th prime and the number
of primes not exceeding x,

D(y
2
, y

3
, y

5
, . . . , y

pπ(x)
)→ 0 as x→∞.

XIX. Distinguishing between sharp and non-sharp normal numbers [33]
(Mathematica Pannonica, 2018)

In 2015, De Koninck, Kátai and Phong introduced the concept of sharp normal numbers
and proved that almost all real numbers are sharp normal numbers in the sense of the
Lebesgue measure. They also proved that although the Champernowne number is normal
in base 2, it is not sharp in that base. Here, we prove that various real numbers are sharp
normal numbers, while others are not.

Given an integer q ≥ 2, De Koninck, Kátai and Phong [31] introduced the concept of
base q strong normal number, shortly after called base-q sharp normal number. In particular,
they showed that, given a fixed base q ≥ 2, the Lebesgue measure of the set of all those real
numbers α ∈ [0, 1] which are not sharp q-normal is equal to 0.

In a more recent paper [32], we proved that, given a fixed integer q ≥ 2 and letting τq(n)
stand for the number of ways of writing n as a product of q positive integers, then, if α is
a sharp normal number in base q, the sequence (ατq(n))n≥1 is uniformly distributed modulo
1. In that same paper, other properties of sharp normal numbers were established.

Given an integer q ≥ 2 and a real number γ ∈ (0, 1), we will say that a real number α is
a γ-sharp normal number in base q if, by setting xn = {αqn} for n = 1, 2, . . . and

(19.1) M = MN = bδNNγc, where δN → 0 and δN logN →∞ as N →∞,

we have that
D(xN+1, . . . , xN+M)→ 0 as N →∞

for every choice of δN satisfying (19.1).
Observe that in [31], it was shown that the binary Champernowne number

θ := 0.1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 . . .

137



is not a sharp normal number. Similarly, one can prove that θ is not a γ-sharp normal
number for any γ ∈ (0, 1).

Here, we further explore the topic of γ-sharp normal numbers.

Main results

From here on, we let q stand for a fixed integer ≥ 2. Let ℘ = {p1, p2, . . .} stand for the
set of all primes. Given a positive integer n, we let n stand for the concatenation of the base
q digits of the number n.

In 1946, Copeland and Erdős [10] showed that the now called Copeland-Erdős number

θ := 0.p1 p2 p3 . . .

is q-normal. Here, we will prove the following.

Theorem 19.1. Given any γ ∈ (0, 1), the number θ is not a binary γ-sharp normal number.

In the same 1946 paper, Copeland and Erdős conjectured that if f ∈ Z[x] is a polynomial
of positive degree such that f(x) > 0 for x > 0, then the number β = 0.f(1) f(2) f(3) . . . is
a normal number in base 10. This was proved to be true in 1952 by Davenport and Erdős
[11]. Here we prove the following.

Theorem 19.2. Given a positive integer r, the real number

β = 0.1r 2r 3r . . .

is not a binary sharp normal number.

Fix an integer q ≥ 2. Given an integer n ≥ 2, let p(n) stand for its smallest prime factor
and write p(n) for the concatenation of the digits of p(n) in base q. In 2014, we showed [22]
that the number η = 0.p(2) p(3) p(4) . . . is a q-normal number. Here, we prove the following.

Theorem 19.3. Given an arbitrary real number γ ∈ (0, 1), the real number

η = 0.p(2) p(3) p(4) . . .

is a γ-sharp normal number in base q.

Fix an integer q ≥ 2. Let ℘0, ℘1, . . . , ℘q−1,R be disjoint sets of primes such that

℘ = ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1 ∪R

and such that #R <∞. Assume also that

max
0≤i<j≤q−1

max
x

log5 x
≤y≤x

∣∣∣∣π([x, x+ y] ∩ ℘i)
π([x, x+ y] ∩ ℘j)

− 1

∣∣∣∣→ 0 as x→∞.

More over let Λ stand for the empty word and for each p ∈ ℘, let

H(p) :=

{
` if p ∈ ℘`,
Λ if p ∈ R.
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Given an integer n ≥ 2 written as n = qa1
1 · · · qarr , where q1 < · · · < qr are primes and each

ai ∈ N, let
S(n) := H(q1) . . . H(qr).

Further set S(1) = 1. In 2011, we showed [14] that the number 0.Concat(S(n) : n ∈ N) is a
q-normal number. Here, we prove the following.

Theorem 19.4. Given an arbitrary real number γ ∈ (0, 1), the real number

0.S(1)S(2)S(3) . . .

is a γ-sharp normal number in base q.

We also have the following.

Theorem 19.5. Fix an integer q ≥ 2. Given any pair of prime numbers u < v, let ε(u, v)
stand for the unique integer ` ∈ {0, 1, . . . , q − 1} such that

`

q
≤ log u

log v
<
`+ 1

q
.

For each positive integer n = qa1
1 · · · qarr , let

ξ(n) =

{
ε(q1, q2) ε(q2, q3) . . . ε(qr−1, qr) if ω(n) ≥ 2,
Λ if ω(n) ≤ 1.

Then, given any real number γ ∈ (0, 1), the number

0.Concat(ξ(n) : n ∈ N)

is a γ-sharp normal number in base q.

Let P be a set of primes and set πP(x) := #{p ≤ x : p ∈ P}. Moreover, let N =
{n1, n2, . . .} be the semi-group generated by P . Let F (x) ∈ Z[x] be a monic polynomial of
positive degree t. Assume that there exists a positive constant τ such that

lim
x→∞

πP(x)

li(x)
= τ,

where li(x) :=

∫ x

2

dt

log t
. Fix an integer q ≥ 2. Given a positive integer n, let n stand for the

concatenation of the digits of n in base q and consider the real number

η0 = 0.F (n1)F (n2)F (n3) . . .

It was proved by German and Kátai [40] that η0 is a q-normal number. Their proof uses
essentially the same method as the one used in the paper of Bassily and Kátai [2], along
with other ideas of E. Wirsing, H. Davenport and L.K. Hua. Using these ideas, one could
prove the following.

Theorem 19.6. The q-normal number η0 is not sharp.
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Proof of Theorem 19.1

First observe that it has been proved by Montgomery [53] that, given any small ε > 0,

(19.2) π(x+ y)− π(x) = (1 + o(1))
y

log x
uniformly for x

7
12

+ε ≤ y ≤ x.

Let t ≥ 2 be an integer sufficiently large so that γ ≤ 1− 1

2t
. Moreover, for each integer

k ≥ 1, let xk = 22k and yk = x
1−1/2t

k = 22k−2k−t . Then, let q1 < q2 < · · · < qR be all the
primes located in the interval (xk, xk+yk], where clearly R = R(k). For each j ∈ {1, . . . , R},
let aj be defined implicitly by qj = xk + aj. Then, aj ≤ yk and in light of (19.2), we have

R = π(xk + yk)− π(xk) = (1 + o(1))yk/ log xk (k →∞).

Given an integer n ≥ 1, let α(n) stand for the sum of its binary digits. Adopting the
argument of Erdős and Copeland used in [10], we can say that for every arbitrarily small
δ > 0, there exists a constant κ = κ(δ) > 0 such that

#

{
m ≤ yk : α(m) > (1 + δ)2k−1

(
1− t

2

)}
< y1−κ

k ,

provided k is sufficiently large. It follows from this observation that

T :=
R∑
j=1

α(qj) = R +
R∑
j=1

α(aj)

≤ R + (1 + δ)2k−1

(
1− t

2

)
R + 2ky1−κ

k ≤ (1 + 2δ)2k−1

(
1− t

2

)
R,(19.3)

provided k is large enough.
Letting λ(n) stand for the number of binary digits of n and observing that λ(qj) = 2k +1

for j = 1, . . . , R, it follows from (19.3) that

(19.4) T <

(
1

2
− ε
) R∑

j=1

λ(qj).

However, if θ were to be a binary γ-sharp normal number, we would need to have

T∑R
j=1 λ(qj)

→ 1

2
(k →∞),

which clearly contradicts (19.4). We may therefore conclude that θ is not a binary γ-sharp
normal number.

Proof of Theorem 19.2

Given an integer n ∈ [2k, 2k+1), write its binary expansion as n =
∑k

ν=0 εν(n)2ν . In [2],
the following result was proved.
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Lemma 19.1. Let N =

⌊
log x

log 2

⌋
and let F (x) ∈ Z[x] be a polynomial of positive degree r

such that F (n) > 0 for n ≥ 1. If

N1/3 ≤ ` ≤ rN −N1/3,

then,
1

x
#{n ≤ x : ε`(F (n)) = 1} =

1

2
+O

(
1

logA x

)
,

where A is some positive constant which may depend on the particular polynomial F .

In order to prove Theorem 19.2, we use Lemma 19.1 with F (n) = nr.
Let M = Mk := 2k and let

(19.5) f(m) = (4M2 +m)r = (2M)2r + g(m),

where

g(m) =
r−1∑
j=0

(
r

j

)
(2M)2jmr−j.

Recalling that α(n) stands for the sum of the binary digits of n, whereas λ(n) stands for

the number of binary digits of n, our goal will be to estimate AM :=
M∑
m=1

α(f(m)) and to

compare it with LM :=
M∑
m=1

λ(f(m)).

Now, let

I0 = [0, 2k], I1 = [2k + 1, 4k], . . . , Ir−1 = [2(r − 1)k + 1, 2rk].

Given any I ⊆ N ∪ {0}, we shall be using the function αI(n) :=
∑

ν∈I εν(n).
It follows from (19.5) that

α(f(m)) = 1 + α(g(m)) = 1 +
r−1∑
j=0

αIj(g(m)).

With M fixed, consider the expression

Kj :=
M∑
m=1

αIj(g(m)) (j = 0, 1, . . . , r − 1).

Observing that αI0(g(m)) = αI0(mr) and choosing A = 2/3 in Lemma 19.1, we get that

K0 = kM +O(k1/3M).

Similarly, we obtain that

(19.6) K1 =
M∑
m=1

αI1

(
mr +

(
r

1

)
(2M)2mr−1

)
= kM +O(k1/3M)
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and more generally that

(19.7) Kj = KM +O(k1/3M) (j = 2, . . . , r − 2).

We also get that

(19.8) αIr−1(g(m)) = αIr−1

((
r

r − 1

)
2(k+1)2(r−1)m

)
= α[0,k](m),

implying that

(19.9) Kr−1 =
k

2
M +O(k1/3M).

Therefore, gathering (19.6), (19.7), (19.8) and (19.9), we obtain that

AM = M + (r − 1)kM +
k

2
M +O(k1/3M) =

(
r − 1

2

)
kM +O(k1/3M).

Since λ(f(m)) = 2(k + 1)r + 1 for m = 1, . . . ,M , it follows that

LM =
M∑
m=1

λ(f(m)) = (2(k + 1)r + 1)M.

Combining these last two relations, we find that

(19.10) lim sup
M→∞

AM
LM

=
1

2
− 1

2r
.

However, if β were to be a binary sharp normal number, we would need to have

lim sup
M→∞

AM
LM

=
1

2
,

which is clearly in contradiction with (19.10). We may therefore conclude that β is not a
binary sharp binary normal number.

Proof of Theorem 19.3

Given large numbers x and y = y(x), we set

ηx := p(2) p(3) p(4) . . . p(bxc),
µ = µx,y := p(bxc+ 1) p(bxc+ 2) . . . p(bxc+ byc).

In [22], we proved that there exists an absolute constant c > 0 such that

(19.11) λ(ηx) = (1 + o(1))cx log log x (x→∞).

Pick an arbitrary positive number δ < 1, let y = y(x) = xδ and consider the interval
Jx = [x, x + y]. Using standard sieve methods, given a fixed small number ε > 0, one can
prove that, for any prime Q ≤ xε, for some absolute constants C1 > 0 and C2 > 0,

(19.12)
∑
n∈Jx
p(n)=Q

1 ≤ C1
y

Q

∏
π<Q

(
1− 1

π

)
≤ C2

y

Q logQ
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and that, for some absolute constant C3 > 0,

(19.13) #{n ∈ Jx : p(n) > xε} ≤ C3
y

log x
.

In light of (19.11), it is easily seen that, for some absolute constant c1 > 0,

(19.14) λ(µx,y) = (1 + o(1))c1y log log x (x→∞).

Let Aq := {0, 1, . . . , q − 1}. Moreover, let K be an arbitrary positive integer and let ΥK

be the set of the q-ary words of length K. Here, by a q-ary word of length K, we mean a
block of K base q digits. Choose an arbitrary β ∈ ΥK . Given a word ξ whose digits belong
to Aq, let σ(ξ, β) be the number of times that β appears as a subword of the word ξ. It is
clear that

σ(µ, β) =

bxc+byc∑
n=bxc+1

σ(p(n), β) +O(y K)

and therefore that, if β1, β2 ∈ ΥK with β1 6= β2, then

(19.15) |σ(µ, β1)− σ(µ, β2)| ≤
bxc+byc∑
n=bxc+1

∣∣∣σ(p(n), β1)− σ(p(n), β2)
∣∣∣+O(y K).

Clearly, the theorem will be proved if we can show that

(19.16) max
β1,β2∈ΥK
β1 6=β2

|σ(µ, β1)− σ(µ, β2)|
λ(µ)

→ 0 (x→∞).

Indeed, if (19.16) holds, then, given any β ∈ ΥK ,

max
β∈ΥK

1

λ(µ)

∣∣∣∣σ(µ, β)− λ(µ)

qK

∣∣∣∣→ 0 (x→∞),

thereby implying that µ is a q-normal sequence, as requested.

Arguing as Copeland and Erdős did in their paper [10], we have that, given a fixed ε1 > 0,

(19.17) #

{
Q ∈ ℘ ∩ [U, 2U ] : max

β1,β2∈ΥK
β1 6=β2

|σ(Q, β1)− σ(Q, β2)|
λ(Q)

> ε1

}
≤ c2U

1−κ,

where κ and c2 are positive constants depending on ε1 and K.
Let us now say that Q is a bad prime if

max
β1,β2∈ΥK
β1 6=β2

|σ(Q, β1)− σ(Q, β2)|
λ(Q)

> ε1.

Now, observe that, for each β ∈ ΥK ,

bxc+byc∑
n=bxc+1

σ(p(n), β) =
∑
Q<xε

σ(Q, β) ·#{n ∈ Jx : p(n) = Q}
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+O (#{n ∈ Jx : p(n) > xε} · log x) ,

which in light of (19.13) can be written as

bxc+byc∑
n=bxc+1

σ(p(n), β) =
∑
Q<xε

σ(Q, β) ·#{n ∈ Jx : p(n) = Q}+O(y).

It follows from this last estimate that

S :=

bxc+byc∑
n=bxc+1

∣∣∣σ(p(n), β1)− σ(p(n), β2)
∣∣∣

≤ O(y) + ε1

∑
Q<xε

λ(Q) ·#{n ∈ Jx : p(n) = Q}+B(x),(19.18)

where B(x) stands for the contribution of the bad primes.
Now, since, in light of (19.17), the number of bad primes Q ∈ [2u, 2u+1] is no larger than

c2 · (2u)1−κ, it follows, using (19.12), that there exists a positive constant c3 such that

B(x) ≤ c3

∑
Q<xε

Q bad primes

λ(Q)
y

Q logQ
≤ c3y

∑
Q<xε

Q bad primes

1

Q

≤ c3y
∑

2u≤xε

1

2u
#{Q ∈ [2u, 2u+1] : Q is a bad prime}

≤ c3c2y
∑

2u≤xε

1

2u
2u(1−κ)

= c3c2y
∑

2u≤xε

1

2uκ
≤ c3c2y

∞∑
u=1

1

2uκ
< c4y(19.19)

for some positive constant c4.
Substituting (19.19) in (19.18) and recalling (19.14), it follows from (19.15) that

max
β1,β2∈ΥK
β1 6=β2

|σ(µ, β1)− σ(µ, β2)|
λ(µ)

≤ O(y) + ε1λ(µ) +O(y)

λ(µ)
≤ ε1 + o(1) (x→∞),

which implies (19.16), thereby completing the proof of the theorem.

Proofs of Theorems 19.4, 19.5 and 19.6

The proofs of Theorems 19.4, 19.5 and 19.6 are similar to that of Theorem 19.3 and we
will therefore omit them.
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Open problems and conjectures

1. Consider the Liouville function λ(n) := (−1)Ω(n) and define the sequence (εm)m≥1 as
follows:

εm =

{
0 if λ(m) = −1,
1 if λ(m) = 1

and consider the number
ξ = 0.ε1ε2ε3 . . .

It is not known if ξ is a binary normal number.
Observe that this would be an immediate consequence of the Chowla conjecture, which

can be stated as follows: Given a positive integer k, for every choice of integers 0 < a1 <
a2 < · · · < ak, we have

lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0.

It is clear that if the Chowla conjecture is true, then the number ξ is a binary normal
number. Observe that recently, some partial results concerning the Chowla conjecture have
been obtained (see K. Matom-Aki, M. Radziwi and T. Tao, An average form of Chowla’s
conjecture, arxiv.org/pdf/1503.05121v1.pdf).

2. Given an integer q ≥ 2, let Aq = {0, 1, . . . , q − 1} and Ω(n) =
∑

pα‖n α. Consider the
following generalisation of Chowla’s conjecture: Given arbitrary positive integers a1 < · · · <
ak,

lim
x→∞

1

x
#{n ≤ x : Ω(n+ aj) ≡ `j (mod q), j = 1, . . . , k} =

1

qk

for every choice of (`1, . . . , `k) ∈ Akq . Now, consider the function Rq(m) defined by Rq(m) = `
where ` ∈ Aq is the unique integer such that m ≡ ` (mod q) and the real number

η = 0.Rq(Ω(1))Rq(Ω(2))Rq(Ω(3)) . . .

If the above generalisation of Chowla’s conjecture is true, then the number η is a q-normal
number.

3. Let p1 < p2 < p3 < · · · be the sequence of all primes and consider the set Bq =
{`0, . . . , `φ(q)−1} of reduced residues modulo q. With the function Rq(m) defined above (in
2), consider the function

Rq(m) =

{
Rq(m) if Rq(m) ∈ Bq,
Λ if (m, q) 6= 1

and the corresponding real number

ρ = 0.Rq(p1)Rq(p2)Rq(p3) . . .
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We make the conjecture that ρ is a q-normal number, although we are not absolutely sure
that it is true.

The following conjecture of Rényi is somewhat simpler: Let t1, t2, . . . , th be arbitrary
integers belonging to Bq. Then, there exist infinitely many positive integers n such that
pn+j ≡ tj (mod q) for j = 1, 2, . . . , h. Interestingly, this conjecture has been solved in the
particular case t1 = t2 = · · · = th (see Shiu [58] and Remark 8.1 on Page 58).

4. Let M be the semi-group generated by the integers 2 and 3. Let m1 < m2 < · · · be
the list of all the elements of M. Is it possible to construct a real number α such that
the sequence (yn)n∈N, where yn = {mnα} (here {x} stands for the fractional part of x), is
uniformly distributed in the interval [0, 1) ?

5. Is it possible to construct a real number β for which the corresponding sequence (sn)n∈N,
where sn = {(

√
2)nβ}, is uniformly distributed in the interval [0, 1) ?

6. Given a fixed integer q ≥ 2, let 1 = `0 < `1 < · · · < `φ(q)−1 be the list of reduced residues
modulo q. Further let p1 < p2 < · · · be all those prime numbers which do not divide q.
Denote by ℘q the set of these primes. For each p ∈ ℘q, let h(p) = ν if p ≡ `ν (mod q) and
consider the real number α whose φ(q)-ary expansion is given by α = 0.h(p1)h(p2)h(p3) . . .
Concerning this number, we state three conjectures:

• Conjecture 1: α is a φ(q)-ary normal number.

• Conjecture 2 (somewhat weaker): α is a φ(q)-ary normal number with weight 1/n,
in the following sense: For every positive integer k, given e1 . . . ek, an arbitrary block
of k digits in {0, 1, . . . , φ(q)− 1}, we have

lim
N→∞

1

logN

∑
n≤N

h(pn+1)...h(pn+k)=e1...ek

1

n
=

1

φ(q)k
.

• Conjecture 3: The sequence ({φ(q)nα})n∈N is everywhere dense in the interval [0, 1).

7. Given a fixed integer q ≥ 2, consider the two sequences (εn)n∈N and (δn)n∈N defined
by εn = ω(n) (mod q) and δn = Ω(n) (mod q), where ω(n) =

∑
p|n 1 and Ω(n) =

∑
pa‖n a.

Then, let αq := 0.ε1ε2 . . . and βq := 0.δ1δ2 . . .Moreover, consider the sequence (κn)n∈N defined
by κn = Ω(pn + 1) (mod q), where pn stands for the n-th prime, and let γq := 0.κ1κ2 . . . We
state the following conjecture:

Conjecture: The numbers αq, βq and γq are all q-ary normal numbers.

Observe that the case of δ2 is essentially Chowla’s conjecture, which we already stated
on Page 99.
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[13] J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shpar-
linski, Bulletin of the Austr. Math. Soc. 84 (2011), 337–349.
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[16] J.M. De Koninck and I. Kátai, Normal numbers created from primes and polynomials,
Uniform Distribution Theory 7 (2012), no.2, 1–20.
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[31] J.M. De Koninck, I. Kátai and B.M. Phong, On strong normality, Uniform Distribution
Theory 11 (2016), no. 1, 59–78.
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