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NOTATION AND THE CONCEPT OF NORMAL NUMBER

Throughout this survey, we let g stand for the set of all prime numbers. The letter p, with
or without subscript, stands for a prime number. The letter ¢, with or without subscript,
stands for an absolute positive constant, but not necessarily the same at each occurrence.
At times, we will be writing x; for max(1,logx), x5 for max(1,loglogx), and so on.

We shall be using the arithmetical functions

w(n) the number of distinct prime factors of n,

Q(n) = the number of prime factors of n counting their multiplicity,
o(n) = #{m <n:ged(m,n) =1}, the Euler totient function,

p(n) = the smallest prime factor of n, with p(1) =1,

P(n) = the largest prime factor of n, with P(1) =1

as well as the functions

m(x) = the number of prime numbers p < z,
m(x;k,¢) = the number of prime numbers p < x such that p=/¢ (mod k),
Todt
li(z) = / ——, the logarithmic integral of x,
5 logt
m(B) = the number of primes belonging to the set B.

Also, given a set of primes P, we will write N'(P) for the semi-group generated by P.
A sequence (x,,)nen of real numbers is said to be uniformly distributed modulo 1 (or mod
1) if for every interval [a,b) C [0, 1),

]\}gr(l)o %#{n <N :{z,} €la,b)} =b—a.
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(Here, {y} stands for the fractional part of y.) In other words, a sequence of real numbers is
said to be uniformly distributed mod 1 if every subinterval of the unit interval gets its fair
share of the fractional parts of the elements of this sequence.

Also, given a set of N real numbers z1,...,zy, we define the discrepancy of this set as
the quantity

1
(0.1) D(xy,...,zx) = sup |— E 1—(b—a)l.
arcon | NI
{zn)Elab)

It is easily established that a sequence of real numbers (x,),en is uniformly distributed
mod 1 if and only if D(z1,...,25) — 0 as N — oo (see Theorem 1.1 in Chapter 2 in the
book of Kuipers and Niederreiter [50]).

The concept of a normal number goes back to 1909: it was first introduced by Emile
Borel [6]. Given an integer g > 2, a g-normal number, or for short a normal number, is a real
number whose g-ary expansion is such that any preassigned sequence, of length £ > 1, of base
q digits from this expansion, occurs at the expected frequency, namely 1/¢*. Equivalently,

given a positive real number
e}

a0
n=Inl+) =
= 4
where each a; € {0,1,...,¢ — 1}, we say that 1 is a g-normal number if for every integer

k>1and biby... by € {0,1,...,q— 1} we have

N 1
]\ll—{noo N#{j < N : Q41 - Qjpk—1 = bl ce bk} = q_k

Also, given an integer ¢ > 2, it can be shown (see Theorem 8.1 of Chapter 1 in the book
of Kuipers and Niederreiter [50]) that a real number 7 is normal in base ¢ if and only if the
sequence ({¢"n})nen is uniformly distributed mod 1.

Let ¢ > 2 be a fixed integer and set A, := {0,1,2,...,¢ — 1}. Given an integer t > 1,
an expression of the form 145 ...%;, where each i; € A, is called a word of length ¢t. Given
a word «, we shall write A(a) = ¢ to indicate that « is a word of length ¢. We shall also use
the symbol A to denote the empty word and write A(A) = 0.

We will write Af; for the set of words of length k, while A7 will stand for the set of finite
words over Ay, including the empty word A. The operation on A7 is the concatenation o3
for o, B € A:. Tt is clear that A(af) = Ma) + A(B). Also, we will say that « is a prefix of a
word -y if for some §, we have v = «d.

Given n € N, we shall write its g-ary expansion as

(0.2) n = eo(n) +e1(n)g+ex(n)g® + -+ &(n)g’,

where ¢;(n) € A, for 0 <i <t and ,(n) # 0. To this representation, we associate the word
n = eo(n)ei(n)...&(n) € ALt!. For such a word 7, given a word 8 = byby ... by € A}, we let
vg(m) stand for the number of occurrences of 3 in the g-ary expansion of the positive integer
n, that is, the number of times that €;(n)...cj4x-1(n) = B as j varies from 0 to t — (k —1).



Let 7o = €162€3 . .., where each ¢; is an element of A, and, for each positive integer N,
let ny = e165...en. Moreover, for each 5 = 165 ...0; € A’; and integer N > 2, let M (N, )
stand for the number of occurrences of 3 as a subsequence of the consecutive digits of ny,
that is,

M(Nv 5) = #{(a,')/) CNN = O‘B’% o,y € A;}

We will say that 1. is a normal sequence if

. M(N,B)
(0.3) NN T o®

for all 3 € A;.

Let £ < 1 be a positive real number whose g-ary expansion is
f = 0.618283 .

and, for each integer N > 1, set
£N = O.€1€2 ...EN.

With 8 and M (N, ) as above, we will say that £ is normal if (0.3]) holds.

Given an integer ¢ > 2 and a positive integer n, we let

(0.4) um:me:H§ﬁ+L

that is, the number of digits of n in base ¢.
PRELIMINARY RESULTS

In 1995 (see [12]), we introduced the notion of a disjoint classification of primes, that is a
collection of g + 1 disjoint sets of primes R, o, 91, - - -, 94—1, Whose union is p, where R is a
finite set (perhaps empty) and where the other ¢ sets are of positive densities do, 01, ..., 04-1
(with clearly 32970 §; = 1). For instance, the sets o = {p:p=1 (mod 4)}, o1 = {p:p=3
(mod 4)} and R = {2} provide a disjoint classification of primes.

We then introduced the function H : N — A7 deﬁnedﬂ by H(n) = H(p{*---pir) =
¢y... L., where each /; is such that p; € g, and investigated the size of the set of positive
integers n < x for which H(n) = « for a given word « € A'; . More precisely, we proved the
following result.

Theorem A. Let R, o, 01,...,041 be a disjoint classification of primes such that, for
some ¢y > 5 and each i =0,1,...,q— 1,

(0.5) ﬂmm+ﬂmpg:@ﬂmm+mn+o<b;u)
holds uniformly for 2 < v < wu, where 0g,01,...,0,_1 are positive constants such that

Z;’:—Ol 0; = 1. Let lim, ,o w, = +o0 with w, = O(x3). Let A be a positive integer such

2Note the distinction between the use of the central dots (- - - ) and that of the lower dots (...), the former
being used for the multiplication of real numbers and the later for that of the concatenation of digits.



that A < x5 and P(A) < w,. Then, for \/x <Y <z and 1 < k < cowy, where ¢ is an
arbitrary constant, as x — 0o,

#{n=Any <Y :p(n1) > wy, w(ny) =k, H(ny) =idy.. .0}

Y kE—1 kE—1
_(1+0(1))5i1"'5ikmtk(y)90wz( o )F( o ),

where t(x) = | lfg__i)!,
o (2) = p];u[z <1 + g) T and P = ﬁ 1;[ (1 + g) <1 - %)

Here are more results which will be used in some of our seventeen papers.

Lemma 0.1. (BRUN-TITCHMARSH INEQUALITY) If 1 < k <z and (k,() =1, then

T
¢(k)log(z/k)
Proof. This is essentially Theorem 3.8 in the book of Halberstam and Richert [43]. O

m(z;k,0) < 3

Lemma 0.2. (BOMBIERI-VINOGRADOV THEOREM) Given any fized number A > 0, there
exists a number B = B(A) > 0 such that
T
=0 .
<10gA frr)

Proof. For a proof, see Theorem 17.1 in the book of Iwaniec and Kowalski [4§]. n

()
w0~ |

E max max
(k,0)=1 y<z
k<z/(log” )

Moreover, an appropriate choice for B(A) is 2A + 6.

Lemma 0.3. (SIEGEL-WALFISZ THEOREM) Let A > 0 be an arbitrary number. Then, there
exists a positive constant ¢ = ¢(A) such that

w(xsk, f) = zgg +0(—7=)

whenever the integers k and ¢ are coprime and k < logA x.

Proof. This is Theorem 8.17 in the book of Tenenbaum [61]. O
Lemma 0.4. Given a fized integer q > 2, let L be defined as in . Let also F € Z[x] be

a polynomaual of positive degree r which takes only positive integral values at positive integral
arquments. Moreover, assume that k, is a function of u such that k, > 1 for all u > e°.
Then, given a word 3 € A’;, there exists a positive constant ¢ such that

cu

L(u")

Vﬁ(%) - C]k

# {p € [u,2u] :

= W)} < logwy
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The above result is a particular case of Theorem 1 in the 1996 paper of Bassily and Katai
[2]. The following result is an immediate consequence of Lemma [0.4]

Lemma 0.5. Let q, L, F,k, be as in Lemma . Given By, Py € A’; with B1 # Pa, there

exists a positive constant ¢ such that

cu

#{p € lu.20]: [y (FB)) = v (F)| > mu/ T} < s

We now introduce the counting function of the y-smooth (or y friable) numbers, namely
those positive integers n such that P(n) <.

U(z,y) =#{n<z:Pln) <y} (@2<y<a).

Lemma 0.6. There exists an absolute constant ¢ > 0 such that, uniformly for 2 <y < x,

11
U(z,y) <cx exp{—— oga:}.

2logy
Proof. For a proof, see the book of Tenenbaum [61]. O

Lemma 0.7. Uniformly for 2 <y <z, with u = logz/logy, we have

¥og) = pt)a+ 0 (2.

logy

where p stands for the Dickman function.
Proof. See for instance Theorem 9.14 in the book of De Koninck and Luca [34]. O

Lemma 0.8. There ezists an absolute constant ¢ > 0 such that, given any § € (0,1/2), we
have, for all x > 2,

#{n € [z,22] : P(n) <2’ or P(n) > 2'°} < coux.
Proof. This result is an easy consequence of Lemma [0.6] O

Lemma 0.9. There exists an absolute constant ¢ > 0 such that, given any § € (0,1/2), we
have, for all x > 2,

#{p € [x,22] : P(p+1) <2’ or P(p+1) > 2"} <cén(x)

Proof. This is an immediate application of Theorem 4.2 in the book of Halberstam and
Richert [43]. O

The following result will be used repetitively when trying to show that a number is normal
using the known frequency of a given pattern of digits in the g-ary expansion of that number.

Lemma 0.10. Fix an integer ¢ > 2. Let v = €1€€3... € .AE]. For each positive integer
T, write vyp for the T-digit word €i€q...ep. Assume that, for every positive integer k and
arbitrary distinct words 31, By € .A';, there exists an infinite sequence of positive integers
T, < Ty < --- such that



T,
(i) lim —=

n—oo T},

=1,

=0.

N |
(ZZ) T}L)rglo Tn |V51 (’yTn) - VﬁQ (’yTn)
Then, the real number 0.€1€€3 . .. 1S g-normal.

Proof. 1t is easily seen that conditions (i) and (ii) imply that

1
f|V51<fYT>_V52(7T>’—>O as 1T — oo

and consequently that

1

(0.6) = ¢ va () = D e, ()| 20 asT — oo
Bae Ak
But since
> va(vr) =T +0(1),
B2E AL
it follows from that

1
@z(leo(l))q—k as T — oo,

thereby establishing that + is a ¢-normal number and thus completing the proof of the
lemma. O

Lemma 0.11. (ELL1OTT) Let f(n) be a real valued non negative arithmetic function. Let
an, n = 1,...,N, be a sequence of integers. Let r be a positive real number, and let p; <
po < .-+ < ps <1 be prime numbers. Set QQ = py---ps. If d|Q, then let

N

(0.7) Y f(n) =kK(d)X + R(N,d),

n=1
an=0 (mod d)

where X and R are real numbers, X >0, and r(dydy) = k(dy)k(ds) whenever dy and dy are
co-prime divisors of Q).
Assume that for each prime p, 0 < k(p) < 1. Then, setting

_ K(p)
S = % 1_—/43(17) log p

and letting z be any real number satisfying log z > 8 max(logr, S), the estimate

08)  I(N,Q:= > f(n)={1+20H}X[](1-r(p)+26; Y 3*“|R(N,d)|

= 4IQ
(an.Q)=1 PlQ d4<23



holds uniformly for r > 2, where |01] <1, |fs] <1 and

H = exp _logz log log = ~Joglog logz) 25
log r S S logz | /)~

Moreover, when these conditions are satisfied, there exists an absolute positive constant c
such that 2H < c¢ < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [37]. O

Lemma 0.12. Given relatively prime polynomials Fy, Fy € Z[x|, the congruences
Fi(m)=0 (moda) and Fy(m)=0 (mod a)

have common roots for at most finitely many a’s.

Proof. A proof of this result can be found in Tanaka [60]. O

Lemma 0.13. Given any r € N and setting m.(z) := #{n < z : w(n) = r}, there exist
positive absolute constants cq,cy such that

z (loglogx + co)" !

(2) < > 3).
() _Clloga: (r—1)! (v >3)
Proof. For a proof, see Hardy and Ramanujan [44]. O
Lemma 0.14 (Borel-Cantelli Lemma). Let Ey, Ey, Es, ... be an infinite sequence of events

in some probability space. Assuming that the sum of the probabilities of the E,’s is finite,

that s, Z P(E,) < 400, then the probability that infinitely many of them occur is 0.
n=1

Proof. For a proof of this result, see the book of Janos Galambos [39]. [

Given a probability space (2, F, P), we say that Ay, Ay, ... is a list of completely indepen-
dent elements of F if, given any finite increasing sequence of integers, say 1; < 1o < -+ - < i,

The second Borel-Cantelli lemma can be considered as the converse of the classical Borel-
Cantelli lemma. It can be stated as follows.

Lemma 0.15. Let (2, F, P) be a probability space and let Ay, As, ... be a list of completely
independent elements of F. Letting E be as in Lemma[0.14] and assuming that

o

ZP(A]) = 00,

then P(E) =1.



I. Construction of normal numbers by classified prime divisors of integers [14]
(Functiones et Approximatio, 2011)

Fix an integer ¢ > 2 and let
(1.1) p=RUgpoUpiU- -Ugpqg1,

be a disjoint classification of primes.
Consider the function H : p — A, defined by

_JJ ifpegp; (JEA,
H(p){A it peR,

and further extend the domain of the function H to all prime powers p® by simply setting
H(p®) = H(p).

We introduce the function R : N — Ay defined as follows. If n = pi*---p, where
p1 < --- < p, are primes and each «; € N, we set

(1.2) R(n)=H(p1)...H(p,),

where on the right hand side of (1.2)), we omit H(p;) = A if p; € R. For convenience, we set
R(1) = A.

For instance, choosing g = {p : p = 1 (mod 4)}, o1 = {p : p = 3 (mod 4)} and
R = {2}, we get that

{R(1),R(2),...,R(15)} = {A,A,1,A,0,1,1,A,1,0,1,1,0,1,10}.

Now, consider the situation where p = R U po U ... U p,_1 is a disjoint classification of
primes, and let R be defined as in (1.2)). Consider the number

¢ =0.R(1)R(2)R(3)...,

which represents an infinite sequence over A, and which in turn, by concatenating the finite
words R(1), R(2), R(3), ..., can be considered as the g-ary expansion of a real number,
namely the real number £. In what follows, we examine what other conditions are required
in order to claim that the above number ¢ is indeed a g-normal number.

MAIN RESULTS

Theorem 1.1. Let ¢ > 2 be a fized integer and let p = R U poU---U g,1 be a disjoint
classification of primes. Assume that, for a certain constantc > 5, for each 7 =0,1,...,q—1,

(a1 01 67) = (s ut o]) + 0 (1ogcu)

uniformly for 2 < v < wu as u — oo. Moreover, let R be as in and set
(1.3) £=0.R(1)R(2)R(3)...,

where the right hand side of stands the q-ary expansion of a real number. Then & is a
q-normal number.



Using the reduced residue class modulo a given integer D > 3, we may also create normal
numbers.

Theorem 1.2. Fiz an integer D > 3 and let ho, hy, ..., hgpy—1 be those positive integers
< D which are relatively prime with D. Then, define the function H on prime powers by

(mod D),

H(p") = H(p) = { ‘Z\ ZZZ;“_:) &

and consider the corresponding arithmetic function T defined by

T(n) =T - pir) =H(p) ... H(pr).

Then, given a positive integer a with (a,D) = 1, the real number & whose ¢(D)-ary
expansion is given by

E=0T2+a)T34+a)T(5+a).. T(p+a)...
is ¢(D)-normal.

Given a positive real number Y, then for each integer n > 2, let

An|Y) = H pe.
p%|In
p<Y

Theorem 1.3. Let a be a positive integer. Let €, be a function which tends to 0 as x — oo
in such a way that 1/e, = o(loglogx). Let K, := {K € N: P(K) < x*}. For each K € I,
define

Ag(z) :=#{p <z : Alp+ ala™) = K}
and, for ged(a, K) =1,

R AL

p<zfw p|K
ged(p,Ka)=1
- 11 (1 1 > O(K)
et p—1 K
ged(p,Ka)=1

Let also 6, be a function satisfying lim, o, 0, = 0 and lim,_, 6,/e, = +00. Then, given
any fixed C > 0,
(1.5)

2

KeKg, K<zdz
ged(K,a)=1

Ag(z) — gg; li(z)

<<exp{—%g—xlog—}-7r(x)+0( a )—l—O(exﬁ(aj)).

log™ x

Moreover,

(1.6) lim —— D ’AK(m)— AE) | =

KeKg
ged(K,a)=1




We may also use the prime factors of the product of k consecutive integers to create
normal numbers. the result goes as follows.

Let k > 1 be a fixed integer and set E(n) :==n(n+1)---(n+k —1). Moreover, for each
positive integer n, consider the function

e(n) := H ¢’

aBllE(n)
q<k—1

We shall now define the sequence h,, on the prime powers ¢° dividing F(n) as follows:
A if gle(n)
8y — _ q ;
in(07) = hn(q) = { ¢ ifgn+t, 0<l<k-—1, ged(q,e(n)) = 1.
If E(n) = qlﬁlqg2 -+ g% where q; < go < -++ < ¢, are primes an each 3; € N, then we set

Theorem 1.4. Let k, E and S be as above. Let & be the real number whose k-ary expansion
1S given by

(1.7) £ = 0.S(E(1))S(E(2))...S(E(n)). ..

Then, £ is a k-normal number.

There is an analogous result for shifted primes.

Theorem 1.5. Let p1 < py < --- be the sequence of all primes, and let k, E and S be as
above. Let & be the real number whose k-ary expansion is given by

§E=0.5(E(p1+1)S(E(p2+1))...
Then & 1s a k-normal number.
Here, we will only prove Theorem To do so, we need two additional lemmas.

Lemma 1.1. Fix an integer ¢ > 2. Let w, be a nondecreasing function which tends to +oo
as x — oo. Moreover, let a« = iy...1, € AZ be an arbitrary word and let R be as in ,
and define

N.(Yw,) = #{pP - p" <Y :iw, <p <-<py}
NT(Y|1UJ;,CY) = #{p?l o 'pfr S Y : Wy < P1 <0+ < Py, R(p(lll o 'pgr) = OZ}.

Assume that, uniformly for 2 <v <wu, j=0,...,q—1,

1 U
m([u, u+ vl]|p;) = EW([U,U—FU])—FO <logcu) (u — o0)

holds for some constant ¢ > 5. Further assume that w, < x3. Then, for \/x <Y <z and
1 <r < cxg (for some fized positive constant cy), as x — 00,

N, (Y|wg; ) = (1 + 0(1))q—1rN,»(Y|wx).

11



Proof. This is a special case of Theorem 1 of De Koninck and Katai [12]. O

For each n € N, define

e(n) == H p° and  M(n):= H p°.

p%|n p%|In
pSwg p>wg

Lemma 1.2. Assume that the conditions of Lemma|1.1 are met and set

S, (Ywg) = #{n=en)M(n) <Y :w(M(n)) =r},
Sy(Ywg; o) = #{n=em)M(n) <Y :w(Mn))=r, R(M(n))=a}l.

Then, as © — oo,
1
Sr(Ywg; ) = (1 +0(1))EST(Y|wm)-

Proof. To prove Lemma [1.2] it is sufficient to observe that

Y

ST(Y|wac;O~/) - Z NT(;|wxaa/)7
P('If/)gﬁzwx
Y
Sr(Yw,) = Z NT(;|ww)’
v<wz
p(v)Swg

and thereafter to apply Lemma [I.T] and sum over all v < e*=, say, and then show that the
sum over those v > e"* is negligible. ]

PRrROOF OF THEOREM [L.]l
Let A() stand for the length of the word o over A,. Let 3 = by...b, € AF and
w*(n) :== Z 1, so that w*(n) = A(R(n)).
pln
PER

Since R is a finite set, it is clear that

(1.8) Ty = Z w*(n) = Nloglog N + O(N) (N — 00).

n<N

Now, for each positive integer j, let Y; = 27 and n; := R(27)... R(2/t! — 1), so that { =
0.71m273 - . . Recall that vg(a) stands for the number of occurrences of § as a subword in .
It is clear that given [ € .A'; , for each positive integer j such that Y; < NV, we have

(1.9) D vs(R(n) <wvs(my) < Y vs(R(n)) + (k+1)Y;

12



and

N

(1L10) 3 ws(R(n)) < vp(R(Y;) ... R(N)) <

n=Y., n

WE

vg(R(n)) + (k+1)(N =Y, +1).

<
Il
[

Assume that w, < x5, let j be fixed and set © =Y. Then, for any integer n € [V}, Yj41],
we clearly have

va(R(M(n))) < vs(R(n)) < w(e(n)) +k + vg(R(M(n))).

Observe that
N

Y (wle(n) + k) < (N = Y))(k +m(w,)).

n=yYj

We shall now provide asymptotic estimates for

(1.11) K= JZ ve(R(M(n)))  and  Kyy = > vs(R(M(n))).

To do so, we shall first find an upper bound for the number of integers n € [Y}, Y;11 — 1] for
which w(M(n)) > 2xs. In fact, we will prove that

(1.12) o= Y w(M(n)=0(Y)).

Yj §n<Yj+1
w(M(n)) =2z

Indeed, it follows from Lemma that

c3Y; (loglogV; + cq)" !
(V) < =7 . ’
log Y (r—1)!

so that

- rY; (loglog; + c4)" !
Yo = g rm(Y;) <ecs E B ;/ v _j ol <Y;,
r=|2x2] r>2xo &1 )

thereby establishing our claim ((1.12)).

With this result in mind, we now only need to consider those integers n for which r =
w(M(n)) < 2.

Solet a=ey...e, € Ap, with r < 2x,.

From Lemma (1.2, we have, as z — oo,

Sy (Ywg;a) = #{n=en)M(n) <Y :w(Mn))=r R(M(n)) =a}

1
= (1+ 0(1))?5r(Y|wx),
so that

Sp(Yipr — Hwey ) — Sp(Yj — 1wy )

13



= (1 o1) (S (Vi1 = L) = 5% — ).
Similarly,
Sp(Nwe; @) = Sp(V; = 1wy, 1) = (1 4 0(1))% (Sr(N|w) = 5 (Yj|wa)) -
From these observations and in light of , it follows that, as z — oo,

(1.13) Kj=(1+o(1) ) l > vs(a) | (S:(2Yjlwy) = Sp(Yilws)) + O(Y;):

r<2xo a€Ay

On the other hand, clearly, for any g € A'g,

Z ()_ 0 if r <k,
PRYTY r—k+ D@ F i r >k

ac Al
Substituting this in ((19.7)), it follows that, as * — oo,

[2z2 ]

(1.14) Kj=(140(1) )

r=~k

r—k+1

7 (Sr(2Yjwy) — Sp(Yj|w,)) + O(Y5).

/

Since the contribution to K; of those integers r for which |rr — x,| > 23" is clearly o(x,Y;),

estimate (|1.14]) becomes

(115) K =(1+01) > (S,2¥|w) = S:(Yjwa)) +o(:Y;) (x> o0).

k
\r—w2\<m‘;’/4

On the other hand, since the normal order of w(n) is loglogn, it is clear that

L16) 3 (S2 ) — S.(¥lw,)) = (14+0(1)(2Y; ~Y) = (1+0(1)Y; (2 - o0).

3/4
|rfx2\<12/

Substituting (1.16]) in (1.15)), we obtain
o))

(1.17) K;=(1+ 0(1))?1/} (x — o).

It remains to estimate Ky, (defined in (1.11])) in the case Y; < N < Yj ;.

Let €1,¢65,... be a sequence of positive numbers which tends to 0 very slowly.

If N =Y, > ¢;Y}, then, in light of Lemma and proceeding as above, one can prove
that .

2
Koy, = (LHo(D) (N -Y) (&= %),

whereas if N —Y) < ¢,Y;, we have

Kny, = O(g;Y;loglog N) (Y; = 00).

14



Hence, in light of these observations and of ((1.17), it follows from inequalities ((1.9) and
(L.10) that

loglogY;

(1.18) vs(n;) = (1+0(1))(Yj11 = Yj) 7

(¥; = )

and that

log log Y;

(1.19) vg(R(Y;)... R(N)) = (1+0(1))(N —Yj) " +0(g;YloglogY;) (Y — 00).

Now, consider the g-ary expansion of the number ¢, that is £ = 0.R(1)R(2) .. .. For each
positive integer M, let €M) = R(1)R(2) ... R(M). We would like to approximate vz(¢()).
Given a fixed positive integer M, let N be defined implicitly by

AMR(1)...R(N)) <M < XMR(1)...R(N +1)).
Hence, in light of (1.8]), M and N are tied by the relation
M =Ty + O(N) = Nloglog N + O(N) (N — 0).
We therefore have that, for Y; < N < Y4,
va(€0) = vs(R(1) ... R(Y; = 1)) + v(R(Y;) ... R(V)) + O(e;N log log N),

so that

ve(™) _ wp(R() ... R(Y; — 1)) L U -

1.2 =
(1.20) M M M

R(N)) e;N loglog N
o|Lt——m————).
ro (SN
Taking into account estimates ([1.18]) and ((1.19)), it follows from ([1.20]) that

vg(E4D)
M

1 Tyj TN — Tyj quoglogN

which implies, since €; — 0 as j — oo, that

(M)
lim L) (€7)

thus completing the proof of Theorem [1.1]

1
Y

?
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II. On a problem on normal numbers raised by Igor Shparlinski [13]
(Bulletin of the Australian Mathematical Society, 2011)

Theorem 2.1. Let F' € Z[zx] be a polynomial of positive degree r which takes only positive
integral values at positive integral arguments. Then the number

n=0F(P2+1)F(PB+1)F(PbB+1)...F(P(p+1))...
18 a normal number.

Theorem 2.2. Let F be as in Theorem [2.1. Then the number

§=0.F(P(2) F(P(3)) F(P(4))...F(P(n))...
18 a normal number.

We only give here a sketch of the proof of Theorem
1
Fix an integer ¢ > 2. As usual, we let L(n) := L,(n) = Logn
0gq

J + 1, that is, the number

of digits of n in base ¢q. Recall also that given a word 6 = iyiy...1; € AZ, we write A(0) =t
and that we let v4() stand for the number of times that the subword 3 occurs in the word
0.

A key element of the proof of Theorem [2.2]is Lemma, [0.5]

Now, given a large number z, let [, = [z,2z] and set

0 = F(P(no)) F(P(n)) ... F(P(nr)),

where ng is the smallest integer in [, and ny the largest.
It is clear that the proof of Theorem will be complete if we can show that, given an
arbitrary word (8 € A';, we have

~ — (x — 00).

Since the number of digits of each integer n € I, is of order logx/log g, one can easily
see, using the definition of #, that

log

(2.1) AO) =rx

=T + O(z) =~ z log x,

thus revealing the true size of A(6).

Letting 0 be a small positive number, it follows from Lemma that the number of
integers n € I, for which either P(n) < 2° or P(n) > x'7% is < cdz, implying that we may
write

(2.2) va(0) = D va(F(P(n))) +O(T) + O(6xlog ).

nely
20<P(n)<z1-9
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Let us now introduce the finite sequence g, u1, . . ., uy defined by ug = 2° and uj = 2u;j_q
for each 1 < j < H, where H is the smallest positive integer for which 2w, > 2179, so that

1—-26)1
H= L—( Jlogz| .
log 2
Now, for each prime p, let R(p) := #{n € I, : P(n) = p}. We have, in light of (2.2]) and
the fact that 7' = O(x),

(2.3) vg(0) = Z vs(F(p))R(p) + O(dxlog ).

@d <p<azl-?

Let 81,82 € A’; with 67 # 2. Then, using |D we have

v, 0) = vs @) <> |va(FB) — vau(F))| R(p) + 00 log )

@ <p<z1-¢

- 2_: Z ‘Vﬁl (F(p)) — vs, (W)‘ R(p) + O(0x log )

7=0 Uj §p<uj~+1

T

(2.4) = Sj(x) + O(dzlog x),

<.
I
o

say.
Using Lemma [0.7] we have, as © — oo,

R(p) = W(%’p>_qj<%’p)
() () o)

— (o (2 -1) 2,

log p

from which it follows that

(25) S <2 Y v FO) - v (F))|

Ui Sp<ujy1

Set Ky := loglogu. We will say that p € [u;,uj41) is a good prime if

v, (FTp)) — v (FGp))| < /2w,

and a bad prime otherwise.
Splitting the sum S;(x) into two sums, one running on the good primes and the other
one running on the bad primes, it follows from ([2.5) and Lemma |0.5| that

Sj(x) < 2—$/fuj\/L(u§) i 2w ulog s
uj Uj

. N 2
log u; (log uj)ks,
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log w1
log u; (log uy)kz,

< 4z Tlogloguj_i_ 1 e
V10ogu; (loglogu;)
Summing the above mequahtles for j = 0,1,...,H — 1, and taking into account that

H < logx, we obtain that Z Sj(x) = o(xlogz) as © — oo and thus that, in light of
. for some constant ¢ > 0,

(2.6) |vg, (0) — v, (0)| < cdxlogx + o(zlog x).
Now let &y be the first N digits of the infinite word

F(P(2)) F(P(3)) F(P))...
and let m be the unique integer such that

& = F(P(2)) F(P(3))... F(P(m)),

where M&y) < N < AExF(P(m + 1)), so that A(F(P(m + 1)) < logm < log N, imply-
ing in particular that £y and E; have the same digits except for at most the last |log NV |
ones.
Let 22 = m and consider the intervals I, I, /2, I /22y, - - -, 1y2r), where L = 2|loglog x|,
that is,
L or Ly L./o I,
- | | | | 2z=m

and write

vy = F(P@)... F(P®)  (j=0,1,...,L),
where a and b are the smallest and largest integers in I, /(2.

Moreover, let

p=F(P(2))...F(P(s)),

where s is the largest integer which is less than the smallest integer in I or).
It is clear that

(2.7) Vg (En) — a(Ex)| < [V, (1) — v, (1 |+Z|% 7;) — Vg, (7)]
and that
(2.8) vs() < () < 5 - rlog = ofx).

Applymg estimate (| L+ 1 times (with 6 = ¢ N) by replacing successively 2x by z, x/2,
x/2% ..., x/2L, we obtam from (2.7) and in light of (2.8)), that

(2:9) V8, (€) = v (Ew)| S N +0(N) (N = o).

18



Now, one can easily see that

> v (0) = M0) -k +1,

k
yEAL

from which it follows that

¢"vs(0) = A(0) = Y (vs(6) —15(6)) + O(1),

yeAk
implying that, setting § = &y and using ([2.9)),

" vs(En) = AEN)| < D Iwslén) — v (En)] +O(1)

k
vEAL

< (eSN + o(N))d",
from which it follows that, observing that A(x) = N,

vp(€n) 1

N qk

lim sup < ¢d.

N—o0

Since 6 > 0 can be chosen arbitrarily small, it follows that

vs(€n)

li L
msup ——— = —,
N%oop N qk

thus establishing that £ is g-normal.

ITII. Normal numbers created from primes and polynomials [16]
(Uniform Distribution Theory, 2012)

In 1995 (see [12]), we observed that one can map the set of positive integers n into the set
of g-ary integers by using the multiplicative structure of the positive integers n. Indeed, we
proved that if we subdivide the set of primes g into ¢ distinct subsets p;, j =0,1,...,¢—1,
of essentially the same size, and if p; < -+ < p, are the prime divisors of n with p; € g,
for certain ¢; € {0,1,...,q — 1}, then, for almost all n, the corresponding number ¢; .../,
appears essentially at the expected frequency, namely 1/¢". Using this result, we recently
constructed (see [14]) large families of normal numbers.

In this paper, we further expand on this approach but this time using the prime factor-
ization of the values taken by primitive irreducible polynomials defined on the set of positive
integers.

Let Q1,Qa,...,Qn € Zlx| be distinct irreducible primitive monic polynomials each of
degree no larger than 3. Recall that a polynomial with integer coefficients is said to be
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primitive if the greatest common divisor of its coefficients is 1. Foreachv =0,1,2,..., D—1,
let ¢, .. ) be distinct integers, F(z) = H?Zl Qi(x+ c§y)), with F,(0) # 0 for each
v. Moreover, assume that the integers cz(-y) are chosen in such a way that F,(z) are squarefree
polynomials and ged(F,(x), F,(z)) = 1 when v # p.

Let po be the set of prime numbers p for which there exist u # v and m € N such that
plged(F,(m), F,,(m)). It follows from Lemma that g is a finite set. Now let

U(n) = Fo(n)Fi(n)--- Fp_1(n) = 941" ¢> - - - q;",

where ¥ € N(pg) and ¢; < g2 < -+ < ¢, are primes not belonging to N (po) with positive
integers a;. Then, let h,, be defined on the prime divisors ¢® of U(n) by

o [ A if g,
hi(q*) = ha(q) = { ¢ if q|Fy(n), q ¢ ©o

and further define «,, as

an = (g1 ) hn(57) - (7)),
where on the right hand side we omit A when h,(¢") = A for some i. Finally, we let 1 be
the real number whose D-ary expansion is

(3.1) n=0.c1a503 ...

As a simple example, take h = 1, Qi(x) =z, F,(zr) = x4+ v forv =0,1,...,D — 1, in
which case we have gy = {p: p < D — 1}. Then,

Uln) =n(n 1)+ (n+D—1) = e(n)ai’ "

where e(n) := H q“, so that

q%||U(n)
qg<D-1

o { A ifde(n).
ha(q") = hn(q) = { ¢ ifgin+4, g€ po

and
an = ho (g7 ) hn(5?) - - hn(gr),

thus giving rise to the number
n=0.cpa003 ...

In the particular case D = 5, we get U(n) = n(n+1)(n+2)(n+3)(n+4) so that py = {2, 3}
and
o | A ifge {23},
in(q") = hnlq) = { ¢ ifgn++¢, ¢>5where ¢ €{0,1,2,3,4}.

In this case, one can check that

n = 0.cqaeaszayas ... = 0.43241302. ..
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MAIN RESULTS
Theorem 3.1. The number n defined by s a normal number.

Theorem 3.2. With the notations above and assuming that deg(Q);) <2 for j =1,2,...,h,
then the number

§=0.wazas...qp. ..
(where the above subscripts run over primes p) is a normal number.
We will only prove Theorem [3.1] However, in order to do so, we need to prove a few
extra lemmas.
We start with the well known result.
Lemma 3.1. Let F(m) be an arbitrary primitive polynomial with integer coefficients and of
degree v. Let D be the discriminant of F' and assume that D # 0. Let p(m) be the number

of solutions n of F(n) = 0 (mod m). Then p is a multiplicative function whose values on
the prime powers p* satisfy

o =pp) U /[D,
p(p ) { < 2?2 ifp‘D.

Moreover, there exists a positive constant ¢ = c(f) such that p(p®) < ¢ for all prime powers
(0%

p.

Lemma 3.2. If g € Q[z] is an irreducible polynomial and p(m) stands for the number of
residue classes mod m for which g(n) =0 (mod m), then

=g o (5i)

p<lz
(i1) Zp =loglogz +C + O !
logz )’
p<lzx
Proof. This result is due to Landau [51]. O

Lemma 3.3. Let F' be a squarefree polynomial with integer coefficients and of positive degree
such that the degree of each of its irreducible factors is of degree no larger than 3. Let Y (x)
be a function which tends to +00 as x — 4+00. Then

lim #{n < x:p*|F(n) for some p>Y(x)} =0.

T—00 U
Proof. For a proof, see the book of Hooley [45] (pp. 62-69). O

Lemma 3.4. There exists a positive constant ¢ = c(h, D) such that

(3.2) — Z lw(U — hDloglogz|* < ¢ loglog z,

n<:c
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3.3 1 ; -
(3.3) - Z w(U(n)) < loglog
(U (n))>h Dy ezt
and
1
3.4 1 ., _
( ) T Z w( (n)) < oglog x

n<z

w(U(n))<hDzo —013/4

Proof. First observe that

i

(3.5) w(U(n)) = ) w(F;(n) +O(1),

J

Il
=)

where the term O(1) accounts for the possible common prime divisors of F,(n) and F,(n),
which as we saw are in finite number.
From the Turan-Kubilius inequality,

(3.6) iz (w( Z pr, (p ) (1 " Z pr, (p ) ‘

n<x p<z p<zx

On the other hand, it follows from Lemma [3.2] (ii) that

(3.7) Z pF” Z Z Qe+ )) Y = hloglogz + O(1).

p<z 7=0 p<zx

Combining (3.5)), (3.6)) and (3.7)), inequality (3.2)) follows.

Setting
EA = Z 1

n<z

w(U(n))>hD12+czg/4
and using the Cauchy-Schwarz inequality, we have

> w(U(n))

n<x

w(U(n))>hDxzy +czg/4

_ Y Um)-hDz)  + hDx > 1

n<x n<ax

w(U(n))>th2+cmg/4 w(U(n))>th2+cacg/4
1/2
(3.8) <x?x > lw(U(n)) — hDxo)* | + hDxy S 4.

n<x

w(U(n))>hDxzy +czg/4

Now, it follows from ({3.2)) that

T
3.9 Yip < ——.
(39 N
2
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Hence, in light of (3.2]) and (3.9), estimate (3.8]) yields

Z w(lU(n)) < Ez/Qﬁ-xé/2+x22A <zt v o) < vad?,

n<x

w(U(n))>hDxzy +cmg/4

thereby completing the proof of inequality (3.3]). Clearly, (3.4) can be obtained in a similar
way. 0

Let €, = 1/,/22, Y, = exp{a§*} and Z, = exp{x; "}. Also, let
pr={p:p<Yop€p}t, ={p:Yo<p<Z}, @s={p:p>Z}

Finally, for each j = 0,1,2,3, set w;(n) = Z 1.

pln
PEP;

Lemma 3.5. With the above notation, we have

1
(3.10) Zwl(U(n)) <L Z — K TELTy = T\/To,
n<zx p<Yy
1
(3.11) ng(U(n)) <Lz Z -+ 0(z) € zy/5.
n<z Zyp<p<wzl/4
Proof. These two estimates are straightforward. O

Let us write each positive integer n as n = A(n)B(n)C(n), where A(n) € N (po U p1),
B(n) € N(p2) and C(n) € N(ps).

Lemma 3.6. Let mg,my,...,mp_1 be squarefree numbers belonging to N (p2), with M =
momy -+ -mp_1 < /. Let T(x|mg,my,...,mp_1) be the number of those integers n < x for
which B(Fj(n)) =m; for j =0,1,...,D — 1. Then,

(3.12)

xp(M)p(M D xp(M
Talmo.m. ... mp) - ZLADXD 7T (1 - pT@) ()|« PUD ey,
pEp2
where
DW@U
K(M) = 1-—
on =TT (1-
p|M

Remark 3.1. Observe that K(M) =1+ o(1) as M — cc.

Proof. First observe that pg,(n) = pr, (n) for every v and p, while ged(m,,, m,,) = 1 whenever
v # p. Thus, M is squarefree as well. For convenience, let p = pg,. Using these facts, it is
clear that the congruences

B(F;(m)) =0 (mod m,;) (j=0,1,...,D—1)
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hold for n = ¢; (mod M), i=1,2,...,p(M).
Let us now consider ¢ = ¢; for a fixed i € [1, p(M)] and define

F;(0+ kM .
QOJ(IC) = % (jIO,l,,D—l),
J

(3.13) D(k) = wolk)or(k)---op1(k).

Finally, let Q =[], p-

We now apply Lemma with f(k) = 1, ar, = ®(k) and X = /M, and obtain an
estimate for each corresponding I;(X, Q) (to the function I(X, Q) defined in relation (0.8))
for the particular choice ¢ = ¢;. With this set up, we have

p(M)
(3.14) T(x|mo,ma,...,mp_1) = Y _ L(X,Q).
=1

Observe that n(p®) = n(p) = 0 if p € ;. On the other hand, for p € ps N p3, we have
Pe; (DY) = pe,;(p) and also that if plm;, then p, (p) = 1 and p,,(p) = 0 for £ # j, while on
the other hand if (p, M) = 1, then p, (p) = p(p) for j =0,1,...,D — 1.

Now we denote by n(M) the number of those £k mod M such that ®(k) = 0 (mod M).
Then one can easily show that

0 lfp € @17
(3.15) nP*) =np) = Py, (p) =1 if pimy,
p(p) if pcpyNgs, (p, M) =1,

It is also clear that the error term in ((0.7) satisfies
(3.16) |R(X, d)| < Dp(d).
It follows from Lemma [0.11] that
_ T n(p) w(d)
(3.17) LX,Q=0+0H)=][(1-—2)+0 [ > 3“9 R(X,d)

M p dlQ

pl@Q o

Using the notation of Lemma [0.11] we have

5=% n(p) log: p.
|

5 » =)

and one can show that there exist two positive constants ¢; < ¢y such that

S

1 -—_—
(3 8) cr < (1ng)€g;

< Co.

Moreover, we have that logr = (logz)%. So, we choose log z = (log z)%, with 0 < &, < 4,
where J, is a function which tends to 0 as * — oo and which will be determined later.
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We can prove that for z > 2,

(3.19) > 3°@Wn(d) < ez*(log 2)*,

dlQ
d<z3

for a suitable large constant K. Indeed,

>3 n(d)|pd)|logd < D 3°"(log p)n(p)n(w)|p(w)l
d<y pu<Y
(3.20) < 3 Z 3¢y (w)| ()| Z p) log p.
u<Y p<Y/u

Y
Since Z n(p logp<c— 3.20) becomes

p<Y/u
3w(u
> 3 Dn(d)|u(d)logd < V> " u(u)|
d<Y u<Y
3
< cYH(1+M) {32" }
p<Y p p<Y
(3.21) < cY exp(3hloglogY) = cY (logY)*".

Let us write

(3.22) S o3p@ud] = >+ Y =Si+5,

d<y d<VY VY <d<y

say. Clearly we have
(3.23) Sy < VY - YE

where € > 0 can be taken arbitrarily small. On the other hand, in light of (3.21f), we have

(3.24) S < ; 2y Y (log V)™ < ¥ (log V)",
O,

Setting Y = 23 and using and - in - ) proves

Coming back to our choice of z and to the size of S given by , we have

log 2z log z

— Or—E€x ~ Or—E€x
(log x)e= o s ~h
Therefore, by choosing 6, = 2¢,., we obtain
1 So—es 1
(3.25) H < Cexp —5(6,6 — &)Ly - X7 Cexp{—igx To - X"
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Moreover,

IR ) (%

rlQ v p|M
(3.26) — %K(M) 11 (1 - Dp%(m) .

pPEP2

Using (3.19), (3.25) and (3.26]) in (3.17)), and then using this in (3.14)), we obtain that
inequality (3.12]) follows immediately, thus completing the proof of Lemma

]

PRrROOF OF THEOREM [3.1]

Recall that given a word 8 = biby ... b, € A% v3(5) stands for the number of occurrences
of 8 in ¢, that is the number of solutions 71, » € A}, such that § = 7157. Note that it is
clear that

va() + va(re) < vg(nie) < vg(n) +vs(he) + k.

Let N be a large integer and let 6y be the prefix of length N of the infinite sequence
10y . ... Moreover, let x be the largest integer for which

Mag...ap) <N < Moy ... apapr).

Since A(ag41) S w(U(x 4+ 1)) < clogx, we have

N+0(logz) =Y Maw) =Y _(w(U(n)) +O(1)) = O(z) + hDzloglog z.

n<lx n<lx

We may therefore write

N N
2 - N Ny
(3:27) T= iDloglogN ¢ ((log log N)2>

Let Oy = o ... ay. For each n € [1,z], let o, = Y,k,0,, Where 7, is the word composed
from h,,(q) where ¢ runs over those prime divisors of U(n) which belong to the set p; and
similarly d,, is composed from those h,,(q) where ¢ runs over the prime divisors of U(n) which
belong to 3.

We have A\(7,,) < w1 (U(n)) and A\(6,) < ws(U(n)), so that by (3.10) and (3.11]), we obtain

that
Z M) K 24/To and Z Ady,) < Ty/Za,

n<lx n<lx

thereby implying that

(3.28) vs(On) = 3 valin) + O(a/T3).
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Using estimates (3.3)) and (3.4) of Lemma [3.4] it follows from (3.28) that

(3.29) V() = 3" i) + Olay/3),

e
where
J = {n: |wU(n)) — hDz,| < cad/*}.
Now, let

J ={necJ:¢U) for q € ps}.
We claim that we can drop from the sum in (3.29) those n € J’, since one can show by
Lemma [3.3] that
Z vg(kn) = o(z loglog ) (x — o00).

n<x
neJg’

For the remaining integers n < z, n € J \ J’, we have
B(F,(n)) =m, (v=0,1,....,D —1),
with M = mom;y ---mp_1, M squarefree, |w(M) — hD loglog x| < C’xi“. We then have
M < 72D < goa,

say.
Now, let M € N(p2), squarefree, M < 2%, M = q;---qg for primes ¢ < --- < g,
1S — hDay| < cad/*,

With M = mgmy - --mp_; being any representation, we have by Lemma [3.6]

T(x|mo,my,...,mp_1) = x% H (1_Dp%(m) - K(M)

-

For a fixed M, consider all those mqg,mq,...,mp_1 for which M = mgm,---mp_1.
Let 7p(M) be the number of solutions of M = mgmy---mp_y. It is clear that 7p is a
multiplicative function and that 7p(p) = D. If mg,my,...,mp_1 run over all the possible
choices, then the corresponding f3,’s run over all the possible words of length S in A%
Indeed, let &1 ...e5 € A7 and let m; = Hq:j @ (7=0,1,...,5 —1). We then have

i) =« Y ARG TT (1- 2222 8 vt

p

M squa]\r/égr:eEZN(pQ) PEP2 pEA%
\w(M)th:02|§czg/4
M)w(M M
(3‘30) +0 ( Z xﬂ( )w(M)TD( )exp{—miz > L0 <£ ) xg/4> .
M<zez
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Letting >y be the first error term above, we have that

Yo < xexp{—ai" }xy H (1 + W) <L wexp{—zi"}zy - (logz)" < .
PEP2

From this and observing that Z va(p) = (s — k +1)D* % it follows that, given arbitrary
pEAZ
distinet words 31, B2 belonging to A%,

Vg, (Ox) — v, (Ox)] < - 5™,

Since
Z vg(On) = N + O(log N)
BeAk

and since by (3.27) we have x &~ N/(loglog N), it follows that

N 1 N
On) — —| < — On) — 0 O —————
0(05) = 3| < B 3 l0w) = 8+ O (g )
B1EE
thus establishing that
. 1/5(9]\7) 1
limsup —— = —
N%oop Dk

and thereby completing the proof of Theorem

IV. Some new methods for constructing normal numbers [17]
(Annales des Sciences Mathématiques du Québec, 2012)

FIRST METHOD

Fix an integer ¢ > 2. Let B be an infinite set of positive integers and let B(x) = #{b <
x : b€ B}. Further, let F': B — N be a function for which, for some positive integer r and
constants 0 < ¢; < ¢y < +00,

o < )

S < ¢y for all b € B.

1
Let x be a large number and set N = Long +1
0g4q
Let 0 < 4 < --- < ¥, (£ rN) be integers and let ay,...,a, € A,. Using the notation

given in (0.2), we further let

BF (JZ

A

al,...,Qp

>:{b§x:b€5, egj(F(b))ZajJ:lw"ah}
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and ) y
1y---,4h
BF<:E al,...,ah>'

We say that F(B) is a g-ary smooth sequence if there exists a positive constant o < 1
and a function e(x), which tends to 0 as x tends to infinity, such that for every fixed integer
h>1,

bl ):#BF (x

ai,...,ap

qhBF(l' gla-'wgh >
(4.) sup L 1) < elh)e(a)
Noa<ly<--<lp<rN—N« B(x) B

(where ¢(h) is a positive constant depending only on h) and also such that B(z) >

logz’

Theorem 4.1. Let F(B) be a q-ary smooth sequence. Let by < by < by < --- stand for the
list of all elements of B. Let also

and set
n =088 ...

Consider n as the real number whose q-ary expansion is the concatenation of the numbers
£1,€,&3,.... Then n is a g-normal number.

Theorem 4.2. Let ny < ny < ng < --- be a sequence of integers such that #{j € N :n; <
x} > px provided x > xq, for some positive constant p. Then, using the notation of Theorem

let
w= O'£n1§n2§n3 s

Then p is a q-normal number.

SECOND METHOD

Theorem 4.3. Let ¢ > 2 be a fived integer. Given a positive integer n = p?---pzlrll
with primes p; < --- < pry1 and positive exponents ey, ..., exr1, we introduce the numbers

c1(n),...,cx(n) defined by

qlogp; 1 .
. = —_— = 1 “e .
C] (n) LOngHJ € q (] ) 7k)

and consider the arithmetic function H : N — A7 defined by

2,

Hn) :{ ci(n)...cx(n) if w(n) >

A if w(n)

IN IV

Then, the number
E=0.H(1)H(2)H(3)...

s a g-normal number.
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Proof. As we will see, this theorem is an easy consequence of a variant of the Turan-Kubilius
inequality.

Let by, ..., by be fixed digits in A,. Then, for each sequence of k+1 primes p; < -+ < pi41,
define the function

1 if LMJ = b, for each j € {1,...,k},

logpj+1
0 otherwise.

f(pl,u-,pkﬂ) = {

From this, we define the arithmetic function F as follows. If n = ¢ ---q.", where ¢, <
-+ < @, are prime numbers and aq,...,a, € N, let

p—k—1

F(n) = F(n[b, ... by) = Z (@1 Qi)

=

1
We will now show that F'(n) is close to —-w(n) for almost all positive integers n.

Let Y, = expexp{y/loglogz} and Z, = z/Y, and further set

Fo(n) = Z f(Qj+1,--->CIj+k+1),

Qj+l§Yz
Fl <n) = Z f(qj+17 s 7Qj+k+1)7
Yo<qj41<Zs
Fy(n) = Z F( @15 Qgrsr)s
qj+1>Zz
so that
(4.2) F(n) = Fy(n) + Fi(n) + Fy(n).

It is clear that

P<Ya
and that
Fy(n) < > 1.
P2
Therefore,
(4.3) ZFO(n) <z }9 < cx+/loglog x
n<x p<Yy

and

g ) . 6\/loglog;;t

1 log x
. < - <
(4.4) E Fyn) <z g < cxlog (log 7

log x



We now move on to estimate Z (Fy(n) — A(z))? for a suitable expression A(z), which shall
n<x
later be given explicitly.
We first write this sum as follows:

Y (Bi(n) = A@)) = Y () —24(x) ) Fi(n)+ A(z)’|2]

n<x n<x n<x
(4.5) = Si(z) — 24(x)Sy(z) + A(x)?| 2],
say.
Let Y, <p; <--- < pry1. Wesay that pi,...,prr1 is a chain of prime divisors of n, which

n
P1Pk+1

[P1, Pr+1] with the possible exception of the primes p belonging to the set {p1,..., pri1}-

Observe that the contribution to the sums S;(z) and Sy(z) of those positive integers
n < z for which p*|n for some prime p is small, since the contribution of those particular
integers n < x is less than

we note as p; — py > -+ = ppia|n, if ged ,p) = 1 for all primes p in the interval

Hence we can assume that the sums S;(x) and S(z) run only over squarefree integers n.
We now introduce the function

D(u,v) = ] (1—%)

pPEP
u<p<v

and observe that it follows from Theorem 5.3 of Prachar [56] that

(1 +0 (exp{—@})) :

Now, using Lemma [0.11} one can establish that

log u
og v

(4.6) D(u,v) = ]

# VSL:ng v, H pl=1

1 Dl
p Pre+ P1<p<pk+1
X

(4.7) = ————T(p1,pas1) (1 + O (log " p1)),
P1-Prs1

where C' is an arbitrary but fixed positive constant.

It follows from (4.7)) using (4.6]) that

J(p1,--p
Sa) = o Y APl g

p1<-<ppy1<w
Ye<p1<Zzx

+O Z f(p17"'7pk+1) F(pbkarl)
P11 Pr+1 logC P1

p1<-<pp41=<®
Yr<p1<Zz
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. |
— Z f(]?l, 7Pk+1) og
D1 Drr1 108 Dri1

p1<--<ppp1<w
Ye<p1<Zz

1
(48) +O Z f(ph 7pk:+1) -
D1 DPr+1 log  py

p1<-<ppp1<=z
Yz <p1<Zg

In order to estimate the main term on the right hand side of (4.8)), we let

L(:U) _ Z f(p17~--7pk+1) log py
D1 Dry1 108 prpr

1< <pgy1<w
Yr<p1<Zg

and we also consider the sum Lg(x), that is essentially the same sum as the sum L(z) but
where we drop the condition Y, < p; < Z, in the summation.
Note that, in light of (4.3), the error Lo(x) — L(x) satisfies

(4.9) 0< Lo(z) — L(z) < cé Zwyz (n) < /loglog x.

n<x

Now, since, for each j € {1,2,...,k}, we have

1 . 1
> = lopa +00),

Pj
qlogp; b,
logpjy1 |7

it follows that, after iteration, we have

1 1 1
(4.10) Lo(z) = — Z +O(1) = —loglog z + O(1).
q prpi<a Pk+1 q

Now, because of (4.9), we have that L(x)— Lo(x) = o(loglog z), so that it follows from (4.10))
that

(4.11) L(x) = ik loglogz + O(1).
q

Substituting (4.11)) in (4.8]), we get

(4.12) So(x) = qikxlog log z + O(x).

In order to estimate Sy, we proceed as follows. We have

Si = Y Fi(n)

n<x

(4.13) = QZ Z fr, o) flans - @) + E(2),

n<x p1— o pEyin
q1'—>---v—>qk+1|n
Pr4+1<91
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where the error term E(x) arises from those k + 1 tuples {p1,...,pr+1} and {q1,. .., q@rs1}
which have common elements. One can see that the sum of f(p1,...,per1)f(q1, .-, qxs1) ON
such k + 1 tuples is less than kw(n), implying that

(4.14) E(zr) < xloglogx.
Using the fact that

#v < * ZI/,HpXHp:1

P Pr+1d1 Q+1 P1<p<Pr+1 91 <p<qr+1

_ L1 pen)T (a1, g <1+O< 1 ))’

P1- Pr+141 ° - Qk+1 10gc P1

for some positive constant C. It follows from (4.13]) and (4.14)), while arguing as we did for
the estimation of S,, that

2

f(pla cee 7pk+1>F<p17pk+1)
4.15 Si(z) =x + O(xzloglog z).
@) s > ey (¢ loglog 1)

p1<-~<pk+1§z
Ye<p1<Zz

Hence, in light of (4.12) and (4.15]), we get that

2 2
Si(z) ==z (log;g:v + O(l)) =z (log;:gx) + O(zloglog ).

Hence, choosing A(x) = qik log log x, it follows that the left hand side of 1) satisfies

1 21
(4.16) Z (Fl(n) — — loglog x) < —zloglogz.
q q

n<x

Recall that Fj(n), as well as F'(n), depends on by, ..., b, while A(z) does not. Hence,
setting

Gin)= > F(nlb,...,b),
a sum containing ¢* terms, we get that

2
Z (F(n|b1,...,bk) — Gq(;:)) < rloglogx,

n<x

G(n)

k
q
Now, by using the Cauchy-Schwarz inequality along with (4.3) and (4.4), we obtain, in
light of (4.2)), that

D

n<x

so that

does not depend on the choice of (by,...,b) € AL

1
F(n) — E.CEQ

<y

n<x

+ Y [Fo(n)| + ) | F(n)]

n<lx n<lx

1
Fl(n) — q—kxz
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1
Fl(n) — q—kl’g

o\ 1/2
(4.17) < ﬁ(Z ) + O(z+/loglog ).

n<x

Hence, it follows from (4.16|) and (4.17)) that

(4.18) >

n<x

1
F(n) — ?1’2

< Cx+/loglogx.

Hence, given any two k-tuples (by,...,b;) and (b},..., b)) both belonging to Ag, it follows

from (4.18) that
> |F(nlby, ... b)) — F(nlbh, ..., 0,)| < 2Cz+/loglog z,

n<zx

thus implying that the probability of the occurrence of by, . . ., by in the chain of prime divisors
p1 > - = pry1|n is almost the same (that is, essentially of the same order) as that of the
occurrence of 0}, ..., b, for any (b},...,0}) € A’;. This final observation proves that £ is a
normal number and thus completes the proof of Theorem [£.3]

O]

FINAL REMARKS

This last method can easily be applied to prove the following more general theorem.

Theorem 4.4. Let R[x] € Zlx], the leading coefficient of which is positive. Let mqy be a

positive integer such that R(m) > 0 for all m > mg. Moreover, let H(n) be defined as in
Theorem [{.3 and set

£ =0.H(R(my))H(R(mo+ 1))H(R(mo + 2)) ...
Also, let mg < p1 < py < --- be the sequence of all primes no smaller than mqy and set
n=0.H(R(p1))H(R(p2)) H(R(ps)) - -
Then & and n are g-normal numbers.
Even more is true, namely the following.

Theorem 4.5. Let (mg <)ny < ng < --- be a sequence of integers for which #{n; < z} > px
provided x > g, for some positive constant p. Then, using the notations of Theorem[4.4), let

7 =0.H(R(m))H(R(n,)). ..

Then T 1s a g-normal number.
Moreover, let (mg <)m < my < --- be a sequence of primes for which #{m; < x} > on(z)
provided x > xqg, for some positive constant §. Let

R = OH(R(Wl))H(R(ﬂ'Q)) Ce

Then k is a g-normal number.
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V. Construction of normal numbers by classified prime divisors of integers II [18]
(Funct. Approx. Comment. Math., 2013)

In 2011 (see paper I above), we used Theorem A to construct large families of normal
numbers, namely by establishing the following result.

Theorem B. Let ¢ > 2 be an integer and let R, o, 91, - .., 941 be a disjoint classification
of primes. Assume that, for a certain constant ¢; > 5,

1
(5.1) 7([u,uw +v] N ;) = 5%([u,u+v])—l—0 (lochlu)
uniformly for 2 < v < w,i=0,1,...,9— 1, as u — oo. Furthermore, let H : p — A7 be
defined by

| A ifpeR,
(5.2) H(p)—{g if p € gy for some { € A,

and further let T : N — A¥ be defined by T'(1) = A and for n > 2 by

(5:3) Tn) =T/ ---pr) = Hpy).. H(pr).
Then, the number 0.7(1)T'(2)T(3)T(4) ... is a g-normal number.

As one will notice, Theorem B does not use the full power of Theorem A. Indeed, it is
clear that condition is much more restrictive than condition since it does not allow
for subsets of primes p; of distinct densities. In this paper, we first weaken condition (/5.1)
to allow for the construction of even larger families of normal numbers. Then, we extend
our method in order to construct normal numbers using the sequence of shifted primes, and
thereafter using the sequence n? + 1, n=1,2,...

Finally, let us mention that throughout this text, unless specified otherwise, the letters
Dy P1, P2, - -+ q1,G2, - - -5 To, T1, Ta, . .. Will always denote primes.

MAIN RESULTS

Theorem 5.1. Assume that R, oo, ..., 9.1 are disjoint sets of primes, whose union is @,
and assume that there exists a positive number 6 < 1 and a real number c; > 5 such that

(5.4) W([u,u—i-v]ﬂpi)zdﬂ([u,u—l—v])—l—O( l )

log™ u

holds uniformly for 2 <v <wu,i=0,1,...,q9 — 1, and similarly

W([u,u—i-v]ﬂR):(l—qé)ﬂ([u,u+v])+0< “ )

log™ u
Let H and T be defined as in (18.24)) and . Then,
E=0T(1)T22)T(3)...

s a g-normal number.
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Examples

. Let oo ={p:p=1 (mod 8}, p1 ={p:p=7 (mod 8} and R = {2} U{p: p=3,5
(mod 8)}. With H, T and ¢ as in the statement of Theorem [5.1] we may conclude
that the corresponding number £ is a binary normal number.

2. Let P(z) = ez + -+ + e;x € Rlz] be a polynomial with at least one irrational
coefficient. Let Iy and I; be two disjoint intervals in [0, 1) of equal length. Consider
the set of primes po = {p : {P(p)} € Io}, p1 = {p: {P(p)} € L} and R = p\ (poUp1).
(Here, {P(p)} stands for the fractional part of P(p).) With H, T" and £ as in Theorem
5.1}, we may conclude that ¢ is a binary normal number.

3. It is well known that, given a prime p = 1 (mod 4), there exists a prime p € Z[i] (the

arg2p €[0,1) and p = p-p. So, let the subsets of

set of Gaussian integers) such that

primes g, . . ., 941 be defined in such a way that p € p; if the corresponding Gaussian
prime p satisfies

arg p jj+1) .
€ |5, —— j=0,1,...,q—1
/2 {q q ( )

and let R = {2} U{p : p = 3 (mod 4)}. Then, letting H, T and & be defined as in
Theorem [5.1] we may claim that £ is a normal number in base g.

Theorem 5.2. Let R, o, ..., 0q-1, H and T be as in the statement of Theorem [5.1 Then
the number
n=0T1)T2)T4)T6)T(10)...T(p—1)...,

where p runs through the sequence of primes, is a q-normal number.

Theorem 5.3. Let f : N — N be defined by f(n) = n*+ 1. Consider the subset of primes
p={pe€p:p=1(mod4)}. Assume that the sets po, p1,..., 01 C @ satisfy and

let B
R=p\ (U @j) :

=0

Let also H and T be defined as in and . Then
T=0T(fW)T(fR)T(FB)HT(f(4)). .

1 a g-normal number.

We will only prove Theorem [5.1] To do so, we will need three additional lemmas. But
first, we introduce important functions. Let Z, be a function tending to infinity but with

the condition l?ng; — 0 as x — oco. Furthermore, let K, — oo as x — oo, but also satisfying
K, log Z,
————— = 0 as x — o0.

log x

Let Q = H p. Given an integer m > 2 such that P(m) < Z,., we set

P<Zz
p—1
D(xm)=#{p<z:p=1 (mod m), ged ( ——,Q | = 1}.
m
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Further set v(Q) = H <1 - L)
plQ pP= 1

p>2
We now introduce the strongly multiplicative function x(n) defined on primes p by

1 if p=2,
(5.5) h(p) = { el o> 2,
Lemma 5.1. Let Z, and K, be defined by log Z, = (logx)/x3 and K, = Bxy, where B is a
large constant. Then, given any arbitrarily large constant C,

3 Diafm) - LD ) o« T
- m log™ x

m<Zy 7T

P(m)<Zg

Proof. For now, we fix an integer m < ZX= such that P(m) < Z,. We plan to use Lemma
0.11] For this, we set r = m(Z,) and we let ¢; < --- < gr be the sequence of those primes
¢; < x satisfying ¢; — 1 =0 (mod m) for j =1,...,T (so that T'= m(x;m, 1)); and also we
let a, = (g, — 1)/m for n =1,2,...,T and set f(n) = 1. Now, define R(m,d) implicitly by

(5.6) alwidm, 1) = > 1=n(dr(z;m, 1)+ R(m,d),
p_1 Eé)gfmod d)

where n(d) is the strongly multiplicative function defined on primes p by
5 ifplm,
p)=9 "
n(p) { ﬁ if (p,m) = 1.

Hence, as a consequence of Lemma [0.11 we obtain

(5.7) D(x|m) = {1+ 20 H}m(z;m, 1) [T (1 = n(p)) + 202 > _ 3*|R(m, d)|.

plQ ;233
Now, since
1
. % pofg = (14 0(1))log Z, (x — o0)
£>2
and
r=mn(Z,) and logr =log Z, + O(loglog x),
and since
1 1
log z = K, log Z,, 08 % ~ K,, log ( ng) =log K, (x — 00),
logr S

we have, for x large,

Ky
H =exp{—K,(log K, —loglog K, — z/K,)} < exp {—7 logKm} :
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Hence, it follows from ([5.7)) that

Dlelm) — n(aim, DA s @)

(5.8) < 2Hr(x;m, Dy(Q)r(m) +2 3 3°D|R(m, ),

d|Q
d<z3

where R(m,d) satisfies, in light of ({5.6)),
E
(5.9) |R(m,d)| < E(dm) + @)

where

E(r) =

Using (5.9)), we have that
E
S 3@ Rmd)| < Y 3¢9 (E(dm) + %)

d|Q a|Q
d<z3 d<z3
= 3*WE(d wld) 227
> m)+ > 30 d
d|Q d\Q
dﬁz d<z
(510) == 21 + 22,

say. Now, on the one hand,

(5.11) =Y E(k) [Ja+3) =" B(k)2*®

k<z4 plk k<z4

On the other hand, we have

3W<d 3 5
dIQ pIQ
Thus, using and - in - we obtain that
Z 3D R(m,d)| < c(log Z,)*E(m)+ Y E(k)2*®
dlQ k<z4
d<z3
(513) = T1 + TQ,

say. Now, because of Lemma [0.2] we have that, given any fixed constant C,

(5.14) Ty <




On the other hand, observe that since a < b+ %aZ for all a,b € R*, we have

(5.15) T, <257 " E(k) + 272572 Y " B(k)2%® = Uy + Uy,

k<z4 k<z4

say. Using Lemmas and in order to estimate U; and Us, respectively, it follows that
(5.15)) can be replaced by

T T 24w(k)
5.16 T, < logz) 2Bls2 " 2=
( ) 2= (log ) (A)(2B1og2) + log:ﬁ( 0g ) Z p(k)’

k<z4

where B and A’ are arbitrary positive constants. Hence, by an appropriate choice of B and

A’; it follows from ([5.16)) that

X

5.17 T, <« .
( ) 2 logc:p

Then, using (5.14) and (5.17)) in (5.13), placing the result in (5.8) and then summing the
first term on the right hand side of @ over m, we obtain from Lemma that it is

< x/(log® z), thus completing the proof of Lemma . O
Lemma 5.2. Given positive integers k and A, set
By(z, A) = > D(z|Amy ).
mq<zle

w(my)=k
p(my)>wg, P(m1)<Zg

Let gy, . .., pq-1 be a disjoint classification of primes with corresponding densities dy, . .., 0g—1.
Then, given an arbitrary constant C' > 0,

Z Z Z Z D(x|Amy) — b, -+ 0;, Bi(z, A)| < x

o
log” x
ASwg® k<Bxaiy..ipc Ak mq <z &
P(A)<wg H(my)=iy...ig
p(m1)>wg, P(m1)<Zg

Moreover,

> Y B - v@un ™y mml

c -
m

A<w¥® k<Bxs my<zKe 1 IOg X

P(A)<wg w(my)=k

p(my)>wg, P(m1)<Zg

Proof. The result is a direct consequence of Theorem A and Lemma [5.1 O

Recall that vg(«) stands for the number of occurrences of 5 as a subword of the word o.
In other words,

va(er) = #{(71,72) : @ = 11872, where 71,7 € A7},
We then have the following.

39



Lemma 5.3. Given positive integers h > 2k,

(5.18) > (Vﬂ(&) - %)2 < chk,fh,

aGAg q q

where ¢ is some absolute constant.

Proof. On the one hand, we have

h—k
(5.19) Sii= ) vs(e) =) ' =" h—k+ 1),
aGAg (=0
while on the other hand
(5.20) Soi= Y vie) = #{(1,72,73,%) 1 @ = nBy2 = Y367}

ac Al

Now, write

Yo =290+ g1 + Lo,
where in ¥, we impose the condition A(y1) = A(73), in ¥3;, we impose the condition
A(71) > A(73), and finally in oo, we are restricted to A(y1) < A(7y3). In Yoo, we have
Y1 = 73, SO that 22,0 = 21.

Let X511 be the number of those 1,73 for which A(y3) < A(71) + k, and X512 be the
number of those 71, y3 for which A(v3) > A(71) + k. Since 3 is a prefix of 713, it follows that
it has no more than k distinct values for a fixed v;, and therefore that 35, < kX;. Assume
now that A(y3) > A(71) + k. Thus we have the following scheme:

— Ul =k — —ly =  — Ay —

WLl 8] [ % | |

(B) | s | B ] 1 |
— UL+k+ly —<—k—= —l—k=ls—

Let us fix the position of §in (A) and in (B), that is the lengths ¢; and ¢5. Then ¢1+/05+/44
digits can be distributed freely, which yields ¢“***2*% = ¢"=2% integers. Hence the number
of those nonnegative integers ¢y, {5, ¢4 for which ¢; + {5 + ¢4 = h — 2k is equal to

h—2k h—2k

S h—th— 1) = 3oy (22D

2
£4=0 v=1

Thus

Y12 = 247 ¢ =S5t W

(h—2k)(h—2k+1) , h%" O(khqh)
2q2kz ’

so that (5.20) can be written as

h2qh khqh
(5.21) Yo = 72 +O( 2 >

Therefore, combining (5.19) and (5.21)), inequality ([5.18]) follows, thus completing the proof
of Lemma (.3 n
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PROOF OF THEOREM [5.1]
q—1
Let p* = U ©; and define

=0

For each real number u > 2, let us set
pu=T([u] +1)...T([2u]).

It is clear that

1
(5.22) AMpu) = u Z p + O(u) = gduloglogu + O(u).

Now let k be a fixed positive integer and consider the word f = 41...17; € A];. We shall
prove that

valow) — 29| < Cr (),

5.23 max
(5.23) .

Be Ak

where ¢(u) tends to 0 monotonically as u — oo.

Once we will have proven , Theorem will follow. Indeed, let &y stand for the
g-ary expansion of £ up to the N-th digit. Now, given N, let u be a real number which
satisfies the inequalities

Ni= D we(f) SN < Y weeld).

j<2u j<2u+1
Let us further set &y, := T(1)T(2)...T([2u]). With this definition, we have that

(5.24) 0 < A(&n) — A(€n,) = O(log N).

Now, given an arbitrary positive integer ¢ satisfying 2¢ < u, let us write

©)

€N1 =X Puy2t Puj2t-1 -+ Pus

where
po =T(v] +1)...T([2v]).

It follows that
vs(Eny) = vs(X) + vg(pusar) + -+ + vp(pu) + O£ + 1),
Hence, using (5.23)) and ([5.24)), we obtain that

(5.25) vg(én) = vg(€n,) + O(log N) = )\(qgév) +0 (E(U/QZ)N I )\(X(K)» '
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Now, choosing ¢ to be the unique integer satisfying 2° < y/u < 2! and using the fact that
AMx®)/N — 0 as N — oo, we then obtain from ((5.25) that

1
V’B(&V)—>— as N — oo,

N qk

(5.26)

thus proving that ¢ is a ¢-normal number.

Thus, it remains to prove ([5.23]). To do that, we will make repetitive use of . First
we set w, = logloglogu and Z, = exp{(logu)'~"}, where ¢, — 0 as u — oo, and write
each integer n > 2 as

n=[]r"- I] v I] ¢ =A®-Bn-C),

peln pon P n
pSwy wy <p<Zy p>2Zy
say. Since
Z w(A(n)) + Z w(C(n)) = o(uloglogu) (u — 00),
u<n<2u u<n<2u
it follows that
(5.27) vg(pu) = Z vg(T(B(n))) + o(uloglogu) (u — 00).

u<n<2u

Let M, be the set of those positive integers m for which there exists at least one integer
n € [u, 2u] such that B(n) = m, in which case we let

D(m) = #{n € [u,2u] : B(n) =m}.

Then, from (5.27)), we have

(5.28) vs(pu) = Z vg(T'(m))D(m) + o(uloglog u) (u — 0).

meMy

Further define MY as the set of those m € M, for which at least one of the following
conditions holds:

1

m is not squarefree,

(1)

(2) m > ZK« K, = (logu)®/?,
(3) there exist pi|m and pe|m such that p; < ps < 2py,
(4)

4) |w(m) — loglogu| > (loglogu)>/*.

Let MY = M, \ M. Observing that vg(T'(m)) < w(m), we easily obtain that
(5.29) Z vg(T(m))D(m) = o(uloglogu) (u — 00).

mE/\/iqa1>
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By a standard sieve argument, we easily get that, as u — oo,

(5.30)  D(m)=(1+ 0(1))% I1 (1 - 1) = (1+ 0(1))%12212 (m € M),

Wy <p<Zy, p

Thus, using and in , we obtain

va(pu) = (1+ 0(1))1&222}“ Z vs(T(m) + o(uloglogu) (u — 00).
“ mEMﬁLO)

Hence, it remains to prove that, given arbitrary distinct words §; and [ belonging to A’;,

(5.31) 3 —Vﬂl(jr;(m)):(l—{—o(l)) 3 —%(Z;L(m)) (u — 00).
memy) meM

We shall now use a technique we have already used to prove Theorem 1 of our 1995 paper
[12]. We define the sequence £y < ¢; < --- as follows:

l; .
éo = Wey, fj-i—l :Ej—l— (logjéj)5 fOl"j :0,1,....

Let r be defined implicitly by ¢, < Z, < £,1; and set I; = [{;, ;1) for each integer j > 0.
Let h be fixed, |h — loglogu| < (loglogu)®*, 0 < ji < jy < -+ < ji < r — 1 with
Jes1 > 2je. Further define M&O)(jl, ..., Jn) as the set of those m = mymy---m, for which
m; € Iy, for j=1,... h.
Observe that any m € M (J1,- .-, Jn) satisfies

€j1+1 ’ €j2+1 o 'gjh—f—l >m > éjl . ij ce éjh

and that

/Ay
1 < Ji+1 " Y+l Jh+1 <
- g .g. e _H logg

J1 J2 j=1

h h—1
1 1
exp E ——— < exp E -
{j:l (log @-)5} { — (log wy, + jlog 2)5}

J

IN

= 1+4o0(1) (u — 00).

This means that instead of proving ({5.31]), we only need to prove

(5.32) v ) gy el )

m

Now let M&O)(ﬁjl, o oskjp | 9wy -+ 90, ) be the set of those m = mymy - - - 7y, € M&O)(Ejl, o)
for which m, € @,,.

43



Then, repeating the computation done in [I2], we obtain that

#Ms))(gju .- 7€jh|p’/1’ S pyh)
0
#Mg)(@'l, s 7£jh)

(5.33) =(1+o(1)7(v1) - 7(vp) (u — 00),

where 7(v) = if v € {0,1,...,¢— 1} and 7(q) = 1 — ¢d. Assume that among vy, ..., 1,
the value ¢ occurs ¢; times. Then, on the right hand side of (5.33), we have 7(vy) -+ 7(1;) =
(1—qd)™ - 6" which depends only on ¢;. It is clear that v4(7T(m)) is constant in every set
M) iy i ooy -y 00, )- S0, let €3 < -+ < ey, < h be arbitrary integers and consider
those @,,,..., ¢, for which v,, = ¢ for j = 1,...,¢; and vy # q if £ # e;. Further let
vg < U1 < -+ < vp_¢,—1 be the sequence of integers defined by

{vo, ..., vn—t,—1} =A{1,...,h} \ {e1,. .., e }.

Moreover, for j = 0,1,...,h —t; — 1, let v,, € {0,1,...,¢ — 1} be arbitrary digits. If
0
m € ./\/l(u)(éjl, ol |90y s 00, then

(5.34) vs(T(m)) = v VooV, - Vuy_y, 1 )-

Now, one can easily show that the number of those n € [u, 2u] for which h —#; < k? is o(u).
Hence, we may assume that h —¢; > k?. Then, in light of (5.33), (5.34) and Lemmal5.3] we
easily obtain (5.32)) and thereby ([5.23)) and (5.26)), thus completing the proof of Theorem|5.1

VI. Construction of normal numbers using the distribution of the k-th largest prime factor [20]
(Bull. Australian Mathematical Society, 2013)

In [13], we showed that if F' € Z[z] is a polynomial of positive degree with F(x) > 0 for
x > 0, then the real numbers

0.F(PR)F(PB))...F(P))...

and

0.F(P2+1)F(P3+1))...F(P(p+1))...,

where p runs through the sequence of primes, are g-normal numbers.

Here, we prove that the same result holds if P(n) is replaced by Py(n), the k-largest
prime factor of n. The case of Py(n) relies on the same basic tool we used to study the
case of P(n), namely the 1996 result of Bassily and Katai [2], stated in Lemma |0.5 above.
However, the Py (n) case raises new technical challenges and the proof is not straightforward.
Interestingly, the family of normal numbers thus created is much larger. To conclude, we
raise an open question.
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MAIN RESULTS

Given an integer k > 1, for each integer n > 2, we let Py(n) stand for the k-largest prime
factor of n if w(n) > k, while we set Py(n) = 1 if w(n) < k — 1. Thus, if n = p*p5? .- p%
stands for the prime factorization of n, where p; < py < --- < p,, then

Pi(n) = P(n) = ps, Py(n) = ps-1, P3(n) = ps-2, ...

Let F' € Z[z] be a polynomial of positive degree satisfying F(x) > 0 for = > 0. Also, let
T € Z[z] be such that T'(z) — oo as * — oo and assume that ¢, = deg7. Fix an integer
k > ly. We then have the following results.

Theorem 6.1. The number

0 =0.F(P,(T(2)) F(Pe(T(3))) ... F(P(T(n))) - ..
1 a g-normal number.

Theorem 6.2. Assuming that k > o+ 1, the number

p=0F(P(T2+1))F(P(T3+1))...F(P(T(p+1)))...
18 a q-normal number.
The following lemma will come handy in the proofs of our theorems.

Lemma 6.1. Let € > 0 be a small number. Given any integer k > £y + 1, there exists
xo = xo(e) such that, for all x > x,

(6.1) #{pe€l,: P(T(p+1) <2} <ce

log
Moreover, for each integer k > {y, there exists xo = zo(€) such that, for all x > xo,
(6.2) #{n € l,: P(T(n)) <2} < cex.

Proof. For a proof of (6.1]) in the case k = 1 and T'(n) = n, see the proof of Theorem 1 in
our paper [I3]. The more general case k > 2 and T € Z|x] can be handled along the same
lines. The estimate (6.2]) also follows easily. n
THE PROOF OF THEOREM

Let x be a fixed large number. Let I, = [z, 2z], Ny = [z], N1 = |2z| and set

0 == F(P(T(No))) F(P(T(No +1))) .. F(P(T(N)).

Given any prime p, we know that
. _ _ rp)
(6.3) #{nel,:T(n)=0 (modp)}= 79& + O(1),
where p(p) stands for the number of solutions n of the congruence T'(n) =0 (mod p).
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On the other hand, since we have assumed that k& > /¢y, there exists a constant ¢ > 1
such that Py(T'(n)) < cz for all n € I,. We then have

(6.4) #{nel,: P(T(n)) >z} <7z, cz]) +x Z % =0 (lozx) = o(x).

r<p<cx

Finally, given a fixed small positive number § = 0(k), setting

ws(T(n)) == > 1,

p|T(n)
15<P<ml/2

one can show, using a type of Turan-Kubilius inequality, that a positive proportion of the
integers n € I, satisfy the inequality ws(7(n)) > k. It follows from this observation and

from (6.4)) that

(6.5) v(0@) = Y vs(F(P(T(n)) + O(x) = xlog,

’I’LEICE

where the constant implied by the &~ symbol may depend on k as well as on the degrees of
T and F.

In order to complete the proof of the theorem it will be sufficient, in light of , to
prove that given any two distinct words [, f2 € Af;, we have

(6.6) }Vﬁl(ﬁ(x)) — 1/52((9(”"))‘ = o(xlog x) as v — 00.

Indeed, since Afl contains exactly ¢’ distinct words and since their respective occurrences are
very close in the sense of , it will follow that

va(0) | 1

6.7 il
(6:7) xlogx q*

as r — 00,

thus establishing that € is a g-normal number.
In the spirit of Lemma [0.4] we will say that the prime Q € I, is a bad prime if

—— L(u") -
(6.8) max vs(F(Q)) - L7 L(ur)
and a good prime if
——  L(u")
(6.9) vs(F(Q)) — I L(ur).
First observe that

where
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e in Y;, we sum the expression m,, := ’Vgl(F(Pk(T(n)))) — v, (F(P,(T'(n))))| over those
integers n € I, for which Py(T'(n)) < z%;

e in Yy, we sum the expression m,, over those integers n € I, for which p = P,(T'(n)) > z*

with p being a good prime;

e in X3, we sum the expression m,, over those integers n € I, for which p = P,(T'(n)) > z*

with p being a bad prime.
It is clear that, in light of estimate (6.2]) of Lemma

(6.11) ¥ < cexlogx.

On the other hand, choosing k, = loglogu in the range z°¢ < u < =,

(6.12) Yo < cxy/log xloglog x.
Finally,
(6.13) Y3 = Z m, < clogx Z 1 =clogx ¥y,
p= P (1)) 2% PP (T(m)) 2%
p bad prime p bad prime
say.

Subdivide the interval [z°,/z] into disjoint intervals [u,2u) as follows. Let jo be the
smallest positive integer such that 2/0T1z° > /7, so that

Jo
[]35, \/E] C U Jj,
7=0

where ' ‘
Jj = [Uj,uj‘+1) = [2]$€,2j+1$€), j IO,l,...,jo.

Using (6.3)), we get

Yy < ZO Z #{nel,:T(n)=0 (mod p)}

7=0 pe[uj,2uj)
pbad prime

Jo
<wy Y
7=0 pe[uj,Quj) p
p bad prime
Jo 1
< cx
; (log log u;)? log u;
1 x
(6.14) <

¢ (loglog z)?”
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Substituting (6.14)) in (6.13)), we obtain that

B xrlogx
(6.15) Y3 =20 ((log Tog x)Q) :

Thus, gathering estimates (6.11]), (6.12)) and (6.15)) in (6.10]), estimate follows immedi-
ately and therefore as well, thereby completing the proof of Theorem

THE PROOF OF THEOREM

First observe that the additional condition k£ > ¢y + 1 guarantees that, for p < x, we
have Q = P.(T(p + 1)) < 2%/F with £y/k < 1. Hence, it follows from the Brun-Titchmarsh
Inequality (Lemma [0.1) that
Z p(Q)z pQ) =

PS5 Qos@@) € Q loga

(6.16)

pE|[x,2x]
T(p+1)=0 (mod Q)

From here on, the proof is somewhat similar to that of Theorem but with various ad-
justments. It goes as follows.
Let

where p; < - -+ < pg is the sequence of primes appearing in the interval I,.

Observe that, since S = m([x,2z]) & ——, we may write
log
> T
(6.17) () = S v PTG+ D) +0 (1) o
i=1

As in the proof of Theorem in order to complete the proof of Theorem [6.2] it will be
sufficient, in light of l} to prove that given any two arbitrary distinct words 31, B2 € Aﬁ,
we have

(6.18) V5, (0) = vsa(p)| = o) as & = oc,

Indeed, since Aﬁ contains exactly ¢° distinct words and since their respective occurrences
will be proved to be very close in the sense of (6.18]), it will follow that

vs(p™) 1

6.19
(6.19) =

as r — 00,

thus establishing that p is a ¢g-normal number.
Hence, our main task will be to prove (6.18]). To do so, we once more use the concepts

of bad prime and good prime defined in ((19.17)) and , respectively. We first write

S
|76, (017)) = v, (p)] < Z ‘V,Bl(F(Pk(T(pi +1)))) = va(F(P(T(pi +1))))| + O(S5)

(6.20) = Y1 +X+33+0 (L> ;
log

where, letting m; := [vg, (F(PL(T(p; +1)))) = vs, (F(Be(T(p; + 1)),
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e in ¥, we sum m; over those j for which p = Py(T(p; + 1)) < °,

e in ¥y, we sum m; over those j for which p = P,(T(p; + 1)) > 2°, when p is a good
prime,

e in X3, we sum m; over those j for which p = P,(T(p; + 1)) > 2°, when p is a bad
prime.

Now observe that
(6.21) vg(F(Q)) < cL(u”) < cilogu for all primes Q € I,,.

Thus, using Lemma [6.1] we have, in light of (6.21), that

(6.22) Y < logz - = ex.

log
Using Lemma [6.1) and estimate (6.21)), we also have that

U 1 x
2 dip < . -1 = — 1 = .
(6:23) 2= clogu (loglog u)? et =0 <logx ©8 x) ()

Finally, it is clear, using (6.21]), that

(6.24) Yy = g m; < clogx g 1 = clogz¥y,
p=Py(T(p;+1)) 2z p=Py(T(p;+1)) 2z
p bad prime p bad prime
say. Since

2023 5 #U Tl +1)=0 (mod p),

J=0 p€lu;,2uy)
p bad prime

it follows, by ((18.23)) and by adopting essentially the same approach used to establish (6.14]),
that

Jo

s X

7=0 PE[uj,2uj)
p bad prime

Jo
x 1
<
- Clogm jZO (loglog u;)? log u;
T
6.25 :
(6.25) < log z(log log )?
Substituting (6.25]) in (6.24]), we obtain
x
6.26 Y3 =0—7"—=).
(620 =0 (i)
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Substituting (6.22), (6.23]) and (6.26)) in (6.20]), we get that, given any two distinct words
617 62 € Agu

‘V/31 (p(x)) - Vﬁ2(p(x))‘ < Ex,
which proves (6.18) and in consequence (6.19), thus completing the proof of Theoreml6.2}

A RELATED OPEN PROBLEM

Let ¢ be a fixed prime number. Let n be a positive integer such that (n,q) = 1 and
consider its sequence of divisors 1 = d; < dy < -+ < dr(») = n, where 7(n) stands for the
number of divisors of n. Given any positive integer m, we associate to it its congruence class
modulo ¢, thus introducing the function f,(m) = ¢, that is, m = ¢ (mod ¢). Let us now
consider the arithmetical function ¢ defined by

En) = (@) . Fyldri) € AT,

Given 3 € Al and o € AZ, let M(a|f) stand for the number of occurrences of the word 3
in the word a.
Is it true that the quantity

M(E(n)|B)(q —1)"

(1) !

tends to 0 for almost all positive integers n for which (n,q) =1 and 7(n) — o0 ?

This seems to be a difficult problem. Even proving the particular case Q2(n) — 0 appears
to be quite a challenge. But observe that the case k = 1 is easy to establish. Indeed, let x
stand for a Dirichlet character and let

Sen) = _"x(@) = J[ @ +x) + -+ x@)-

dln p*ln

Then, letting ¢ stand for the Euler function, we have, letting yo stand for the principal
character,

#dn:d=0 (mod )} = —— S X(O)S\(n)

for almost all n such that 7(n) — oo, thus establishing the case @Q;(n) — 0.
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VII. Using large prime divisors to construct normal numbers [19]
(Annales Univ. Sci. Budapest, Sect. Comput., 2013)

cx
Let n(x) be a slowly increasing function, that is an increasing function satisfying lim % =1
z—o0 N(x

for any fixed constant ¢ > 0. Being slowly increasing, it satisfies in particular the condition
log ()
———= = 0 as x — o0.
log x

We then let Q(n) be the smallest prime divisor of n which is larger than n(n), while
setting Q(n) = 1 if P(n) < n(n). Then, we show that the real number 0.Q(1) Q(2) Q(3) ...
is a g-normal number. With various similar constructions, we create large families of normal
numbers in any given base g > 2.

Finally, we consider exponential sums involving the Q(n) function.

MAIN RESULTS

Theorem 7.1. Given an arbitrary base ¢ > 2, the number

& =0Q(M)R(2)QM) ...

s a q-normal number.

Given an integer ¢ > 2, let R, oo, p1,..., 01 be a disjoint set of primes such that,
uniformly for 2 < v < wu as u — oo,

1 U .
o) = Snuut ) +0 () G=00eg-),

so that, in particular,

w([u,u+vm7€):0( “ >

log® u

Then, consider the function x defined on g as follows:

- 14 iprpe,
“<p)_{ A ifpeR.

With this notation, we have

Theorem 7.2. The number

& = 0.£(Q(1))r(Q(2))r(Q(3)) - ..
s a g-normal number.

Remark 7.1. In an earlier paper [T]|], we used such classification of prime numbers to create
normal numbers, but by simply concatenating the numbers k(1), k(2), k(3), ...

Let a be a fixed positive integer. Then we have the following result.
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Theorem 7.3. The number
& = 0.6(Q(2 + a))K(Q(3 + a))K(Q(B + ) ... K(Q(p+ a))....
where p runs through the set of primes, is a q-normal number.

Define p* as the set of all the prime numbers p =1 (mod 4). Then, let R*, g, 071, . . ., 9;_;
be disjoint sets of prime numbers such that

P =R UpyUpiU---Ugp, 4,

and such that, uniformly for 2 < v < u as u — oo,

7r([u,u+v]ﬂgo;):%W([u,u+v]ﬂp*)+0( ) (7=0,1,...,¢—1),

log® u
so that, in particular,

W([u,u—HJ]ﬂR*):O( “ )

log® u

Then, consider the function v defined on primes p as follows

[t ifpegy,
V<p)_{A if p & Ui 95

With this notation, we have the following result.

Theorem 7.4. The number

& = 0(QM)r((Q(2)r(Q(3)) - -
1s a q-normal number.
Now, consider the arithmetic function f(n) = n*+ 1. We then have the following result.

Theorem 7.5. The two numbers

& = 0.R(QUF(1))r(Q(f(2)r(Qf(3))) -,
& = 0.5(Q(f(2))R(QUB)HQS(5))) - s(QUF (). -

where p runs through the set of primes, are g-normal numbers.

Remark 7.2. One can show that this last result remains true if f(n) is replaced by another
non constant irreducible polynomial.

We now introduce the product function F'(n) = n(n+1)---(n+ ¢ — 1). Observe that
if for some positive integer n, we have p = Q(F(n)) > ¢, then p|n + ¢ only for one ¢ €
{0,1,...,q — 1}, implying that ¢ is uniquely determined for all positive integers n such that
Q(F(n)) > g. This allows us to properly define the function

r(n) = ¢ ifp=Q(F(n)) >qand pln+¢,
| A otherwise.

Using this notation, we have the following result.
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Theorem 7.6. The number
& =01(g+ 1)71(g+2)m(¢+3)...
1 a q-normal number.

We now introduce the product function G(n) = (n 4+ 1)(n 4+ 2)---(n + ¢) and further
define the function

(n) = ¢ ifp=Q(G(n))>q+1and pjn++1,
PV =1 A otherwise.

Moreover, let (p;);>1 be the sequence of all primes larger than g, that is, ¢ < p; < py < ---
With this notation, we have the following result.

Theorem 7.7. The number
§s = 0.p(p1)p(p2)p(p3) - .

1 a q-normal number.

Let « be an arbitrary irrational number. We will be using the standard notation e(y) =
exp{2miy}. We then have the following.

Theorem 7.8. Let
A(w) = f(n)e(aQ(n)),

n<x

where f is any given multiplicative function satisfying |f(n)| = 1 for all positive integers n.
Then,

(7.1) lim A®)

T—r0o0 T

=0.

We will only prove Theorems[7.1]and [7.2] However, we will first prove Theorem [7.2] since
its content will be useful for the proof of Theorem

PROOF OF THEOREM [7.2]

Let I, = [z,2z] and first observe that, given any fixed small ¢ > 0, we may assume that
Q(n) < n(x)'/c. Indeed,

(7.2) #{nel,:Qn) >nk) )<z H (1 — }9) L €.
n(z)<p<n(z)t/e

Now let po,pi1,...,pe—1 be any distinct primes belonging to the interval (n(z),n(z)"¢),
and let pf < pj < -+ < p;_; be the unique permutation of the primes py, p1, . .., pr—1, hamely
the one such that has all its members appear in increasing order, so that we have

n(x) <py <P <o <phog < @)

Our first goal will be to estimate the size of
N($|p0ap1a'-'7pk—l) = #{n S € : Q(n+j) = Dy, ]: 0717"'7k_ 1}
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We must therefore estimate the number of those integers n € I, for which p;jn +j (j =
0,1,...,k—1), while at the same time (7;,n+j) =1ifn(z) <7 <p; (7 =0,1,...,k—1).
Before moving on, let us set

Qr=pop1- pr1 and T;= H T (7=0,1,....k—1),
n(x)<m<p;

where this last product runs over primes 7. It is then easy to see that, say by using the
Eratosthenian sieve (see for instance Chapter 12 in the book of De Koninck and Luca [34]),
we have

T
(7.3) N(z|po,p1y .- ypr-1) = (1 + 0(1))@20 (r — 00),

where (60) (Ge)

H\00) - - - P Ok—1

-
0 ) Zé S0 Op1
05> k—1
8;1T; (7=0,1,....k—1)

(8;,85)=1 if izj

(here u stands for the Mébius function.) One can see that, as x — oo,

SR RO NCESE N

n(z)<m<pg Py <m<pi P <T<Pj_,
1 * —k 1 N\ —k+1 1 * —1
(7.4) = (1+0(1)) (ﬂ) < Og?{{) (&fl) _
log () log pj log p;_»
1
Hence, if we set o(p) := og1(x) , it follows from 1) that
log p
(7.5) Yo=(140(1))o(po) - o(pk-1) (x — o).

Substituting ((7.5)) in ([7.3), we obtain

(7.6) N(z|po,p1y---ypr-1) = (1 +0(1))x (x — 00),
an estimate which holds uniformly for n(z) < p; < n(z)Y¢ (j =0,1,...,k—1).

We will now use a technique which we first used in [12] to study the distribution of subsets
of primes in the prime factorization of integers. We first introduce the sequence

ug = 1(z), Ujp1 = Uj + u2] for each j =0,1,2,...
log” u;

and then let T be the unique positive integer satisfying ur_; < n(x)'/¢ < uzp. Then, consider
the intervals
Jo = [uo,wr), Jii=[u,ue), ..., Jroi = [urog,ur).
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Choose k arbitrary integers jo, ..., jx—1 € {0,1,...,T—1}, as well as k arbitrary integers
iy - .-, ik—1 from the set {0,1,...,¢g — 1}, and consider the quantity

.]07]17"'7'?k_1 ) = Z N(x|p07"'7pk*1)'

Z.Oa ila sy g1
pe€diNpi,

(7.7) M (x

a(pn)

Observe that =(1+ 0(1))0(uh) as x — oo if p € Jj. It follows from this observa-
u

Dp, h
tion and using (7.6) and ([7.7)) that, as  — oo,
. : k-1 o (u;)
.707]17'”7?1?*1 ) :<1+0(1))$ Z H 1)

10,01y -+ 5 Th—1 . w;
T ’ pe€JeNpi, j=0 J

(7.8) M (x

Using Theorem 1 of our 1995 paper [12] in combination with ([7.8]), we obtain that

(790 M <x J0r s T ) = (1+o(1))M (m JOs s Tkt ) (z — o),
20,21y« 511 Loy lyy -5l q
where (iy,1],...,1,) is any arbitrary sequence of length k& composed of integers from the set

{0,1,....q—1}.
Finally, consider the expression
Ay = r(Q([z])) .. w(Q([22] —1)).
It follows from 1} that, for any given word 3 € A’q“, the number of occurrences of 3 as a
subword in the word A, is equal to (1 +o(1))— as # — oo, thus completing the proof of
q
Theorem [7.2]

PROOF OF THEOREM [7.1]
Let

B, = Q[a]) ... Q([2a] = 1.
Also, let Q*(n) = mlin p and observe that Q*(n) < Q(n), whereas if Q*(n) # Q(n), we have
p>n(x)
pln if n(z) < p <n(22).
Moreover, let

By = Q(lz]) ... Q*([2z] = 1).

Clearly, since n(z) was chosen to be a slowly oscillating function, we have

1 2
(7.10)  0<AB,) - AB)<ew Y lzgp < cizlog ’7((::)) —o(z) (z— o0).
n@)<p<nzs) 09 g

It follows from (|7.10) that we now only need to estimate A(B). To do so, we first let §, be
a function tending to 0 very slowly as x — oo, in a manner specified below. If p < 2% we
have

Ry(w) =#{nel: Q') =p} = (1+o1)> [] (1_1)

p n(z)<m<p T
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7.11 = (I+4+o(1 T — 00),
(711) (140 TERD (o5 o)
whereas if 2% < p < 22, we have

x log n(z)
7.12 R 2o\
(7.12) (o) < 2B
Now, observe that, as * — o0,
] log p
) = X RN = Y R[]
n(z)<p<2z n(z)<p<2z &4
x log n(x) 1
= (1+0(1)) Z + O | zlogn(zx) Z -
log ¢ p s
n(z)<p<2z zdr <p<z
(7.13) = (14 o1 ) o 18T o (e ) Tog &
' a logg " logn() BIMEIOES )
Choosing the function ¢, in such a way that
lo 1 oflo log z
#5. "\ *logn(x)
allows us to replace ([7.13)) with
1 1
(7.14) MBS = (1+ o(1))z 221E) 1, loae (z — 00).

g
log ¢ log n(x)

Now, pick any two distinct words S, fs € .A';. First write

(). ) = J L

Jj=0
where

L, = [uj,uji1), with ug = n(z), uj = 29 (z) for j =1,2,..., T +1,

J

where T is defined as the unique positive integer satisfying up < 2% < up,.
In the spirit of Lemma [0.4], we will say that the prime p € I, is a bad prime if

. L(u)
max vg(p) — el R L(u)
and a good prime if
. L(uw)
vs(p) — | S L(u)

We will now separate the sum ) R,(z)A(p) running over the primes p located in the
intervals [u;,uj11) into two categories, namely the bad primes and the good primes.
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First, using (7.11]) and (7.12]), we have

zlogn(x) log ()
7.15 Y Ry(x)A(p) < )Y < , .
(7.15) i o(T)Mp) < enlu;) . Tplogp logn(z) + jlog?2
p pj];agi+1 pE[uj,ujit1)

On the other hand, if p is a good prime, one can easily establish that the number of occur-
rences of the words 3 and (3, in the word B} are close to each other, in the sense that

(7.16) Vs (By) = v, (By) = o(M(By))-

T

Hence, proceeding as in [I3] (see paper II above — page [16)), it follows, considering the
true size of A\(B}) given by (7.14) and in light of (7.10)), (7.15)) and (7.16)), that the number
B,

as r — OoQ.

of words 3 € .A'; appearing in B, is equal to (14 o(1))——

We then proceed in the same manner in order to obtain similar estimates successively for
the intervals I, /5, I, /92, ... Thus, repeating the argument used in [I3], Theorem follows
immediately.

VIII. Prime-like sequences leading to the construction of normal numbers [21]
(Funct. Approx. Comment. Math., 2013)

Given an integer ¢ > 3, we consider the sequence of primes reduced modulo ¢ and
examine various possibilities for constructing normal numbers using this sequence. We create
a sequence of independent random variables that mimics the sequence of primes and then
show that for almost all outcomes we obtain a normal number.

Given a fixed integer ¢ > 3, let

A g A1,
Ja(n) = { ¢ ifn Eq€ (mod q), (4,q)=1.

Further, letting ¢ stand for the Euler function, let

By ={l1, - Lo}

be the set of reduced residues modulo ¢.
Let p stand for the set of all primes, writing p; < py < --- for the sequence of consecutive
primes, and consider the infinite word

& = fap1) fo(p2) fo(p3) - -

We first state the following conjecture.
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Conjecture 8.1. The word &, is a normal sequence over By, in the sense that given any
integer k > 1 and any word 8 =11 ...1 € Béz(q), then, setting

5¢§N) = fo(p1)fy(p2) ... fy(pn) for each N €N

and
MN(éq‘ﬂ) = #{(”Ylﬁz)’gém =B}
we have
L Malgls) 1
Noeo N o(q)F

Recently added comment: See comments on Page 71| regarding progress on this conjec-
ture.

Now, with the above notation, consider the following weaker conjecture.
Conjecture 8.2. For every finite word (3, there exists a positive integer N such that My (&,|5) >
0.

Remark 8.1. Observe that, in 2000, Shiu [58] provided some hope in the direction of a proof
of this last conjecture by proving that given any positive integer k, there exists a string of
congruent primes of length k, that is a set of consecutive primes p,i1 < Pnio < -+ < Pnik
(where p; stands for the i-th prime) such that

Pntl1 = Pny2 =" =Pntk = 0a (mOd Q)a

for some positive integer n, for any given modulus q and positive integer a relatively prime
with q.

Let €, be a real function which tends monotonically to 0 as n — oo but in such a way
that (loglogn)e, — oo as n — oo. Letting p(n) stand for the smallest prime factor of n,
consider the set

(8.1) NED) = In eN:p(n) >n"} = {n,ny, ...}
We then have the following conjecture.

Conjecture 8.3. Let ny < ny < --- be the sequence defined in . Then the infinite word
&g = fo(n1) fy(na) . ..
is a normal sequence over the set {¢ mod q: (¢,q) = 1}.

Although the problem of generating normal numbers using the sequence of primes does
seem inaccessible, we will nevertheless manage to create large families of normal numbers,
in the direction of Conjectures [8.1] and [8.3] but this time using prime-like sequences.

MAIN RESULTS
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Theorem 8.1. Let ny < mng < --- be the sequence defined in . Then the infinite word

ng = resq(ny)resy(ng) .. .,

where resy(n) = £ if n = £ (mod q), contains every finite word whose digits belong to By
infinitely often.

Remark 8.2. It is now convenient to recall a famous conjecture concerning the distribution
of primes.

Let Fy,...,F, be distinct irreducible polynomials in Z[x| (with positive leading coeffi-
cients) and assume that the product F' := Fy---F, has no fivzed prime divisor. Then the
famous Hypothesis H of Schinzel and Sierpinski [57] states that there exist infinitely many
integers n such that each Fy(n) (i =1,...,9) is a prime number. The following quantitative
form of Hypothesis H was later given by Bateman and Horn ([3],[4)]):

(BATEMAN-HORN HYPOTHESIS) If Q(F,...,Fy;x) stands for the number of
positive integers n < x such that each Fi(n) (i = 1,...,g) is a prime number,
then

C(Fl,...,Fg) T

Fi,....F;x)=(1 1
Q( 1, ) 9737) ( +O( )) hl"'hg 10gg$

(x — 00),

where h; = deg F; and

C(F,....F)=1]] ((1—%)g (1—%)),

P
with p(p) denoting the number of solutions of Fi(n)--- Fy(n) =0 (mod p).

Theorem 8.2. Let 5 be an arbitrary word belonging to Bg(q) and let & be defined as in
Congecture 3. If the Bateman-Horn Hypothesis holds, then

Mn(&|8) = o0 as N — oo.

Let
L_fo ifm=1,2,...,10,
™ 1/logm if m > 11.

Let &, be a sequence of independent random variables defined by P(&,, = 1) = A, and
P(&, =0)=1— \,. Let Q be the set of all possible events w in this probability space.

Let w be a particular outcome, say mi,my, ..., that is one for which &, =1 for j =
1,2,...and & = 0 if £ & {my,mo,...}. Now, for a fixed integer ¢ > 3, set res,(m) = ¢ if
m = { (mod ¢), with £ € A,. Then, let n,(w) be the real number whose ¢g-ary expansion is
given by

ng(w) = 0.res,(mq)resy(ma) . ..

We then have the following result.

Theorem 8.3. The number n,(w) is a g-normal number for almost all outcomes w.
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We only prove Theorems[8.1and [8.2] Before doing so, we prove three important lemmas.

Lemma 8.1. Let ¢ > 2, k> 1 and M > 1 be fixed integers. Given any nonnegative integer
n < g™, write its g-ary expansion as

M—

[y

and, given any word o = by ...b, € A’;, set
E,(n) =#{j€{0,1,... .M —k} :¢;(n)...j3%-1(n) = a}.

Then, there exists a constant ¢ = c(k,q) such that

> (Ea(n) - q-%)z <cg™ M.

0<n<gM
Proof. Let
. 1 if(Cl,...,Ck):(bl,...,bk>,
e, a) = { 0 otherwise.
Then,
M—k—1
o= Y Ea(n)= ) Z flej(n), ... ej0u1(n)) = ¢MH(M — k).
0<n<q]M 0<n<q1\4 :
Similarly,
So = Y Ea(n)’
0<n<qM
M—k—1M—k—1
= Z f(€j1 (n>’ s 7€j1+k‘—1<n)) ’ f(€j2 (n)7 cee u€j2+k—1(n))
0<n<gM j1=0  j2=0
= Z f(€j1 (n>7 €j1+k*1(n)) : f(SjQ (n)a cee 7€j2+k*1(n>)
0<n<gM [j1—j2|<k
+ Z Z flej(n), . gjian1(n)) - fe(n), - - - Ejarn(n))
0<n<gM |j1—j2|>k
= o1+ a9,
say.

On the one hand, it is clear that
(8.2) 0< Yoy <2+ 1) (M —k) < cgd" M.

On the other hand, to estimate X o, first observe that for fixed ji, jo with |51 — jo| > k, we
have to sum 1 over those n € [0,¢™ — 1] for which

() - €jrn1(n) = a =¢e5,(n) ... gjprp1(n).
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k

But this occurs exactly for ¢™—2¥ many n’s. Thus,

(8.3) Soa=q"* )" 1=¢"M 40" M),

31 —d2|>k
0<j1,j2<M—k—1

In light of (8.2) and (8.3)), it follows that

M2 M M2
Z (Ea(n) - —> = Yo — 2?21 + WQM

k
0<n<qM q
M—2k § r2 M 2w My
= O(¢™M),
thus completing the proof of the lemma. O]

Lemma 8.2. Given a fized positive integer R, consider the word k = ¢1...cg € AqR. Fiz
another word o = by...b, € .A',;, with k < R. Let K stand for the number of solutions
(71,72) of kK = maye, that is the number of those j’s for which cji1...cju = a. Then,
gwen fized indices iy, ..., iy, let Ky be the number of solutions of cji1 ... c¢jpr = a for which
{J+1,....5+k}n{iy,...,ig} =0 holds. Then,

0< Ky, — Ky, <2kH.
Proof. The proof is obvious. O]

Lemma 8.3. Let Fy,. .., F, be distinct irreducible polynomials in Z[z| (with positive leading
coefficients) and set F':= Fy---F,. Let p(p) stand for the number of solutions of F(n) =0
(mod p) and assume that p(p) < p for all primes p. Write p(n) for the smallest prime factor
of the integer n > 2 and assume that u and x are real numbers satisfying v > 1 and x'/* > 2.
Then,

4{n <z Fn) =g fori=1,...,k}

()

p<:131/“
X {1 + Op(exp(—u(logu — loglog 3u — logk — 2))) + Op(exp(—+/log :1:))} .
Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [43]. O

PROOF OF THEOREM [8.1]

Theorem [8.1] is essentially a consequence of Lemma Indeed, letting a; < --- < ay, be
positive integers coprime to ¢ and considering the product of linear polynomials

(8.4) F(n):=(gn+ay)--- (gn + ax),
we have, by Lemma [8.3] that, as x — oo,

(8.5) #{n € [z,2z] : p(F(n)) > (2qx + ax)*} = (1 + o(1))x H ( — @> :

p

p<xtw
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If n is counted in the set on the left hand side of , we certainly have that p(gn + a;) >
(gn+a; )+t for j = 1,..., k. On the other hand, the desired numbers gn+a;, j =1,...,k,
are consecutive integers with no small prime factors for all but a negligible number of them.
Indeed, if they were not consecutive, then there would be an integer b € (ay, ax) such that

p(gn + b) > z°=. In this case, set Gy(n) := gn + b. Then, by (8.5)), we would have

(8.6) #{n € [z,2z] : p(F(n)Gp(n)) > 2%} = (14 o(1))x H (1 . Pb(p)) 7

p<zcw p

where p,(p) stands for the number of solutions of F'(n)Gy(n) = 0 (mod p). Since p(p) = k
(recall that each factor on the right hand side of (8.4) is linear) and py(p) = k+ 1 if p{q
and p > ay, it follows that we have the following two “opposite” inequalities:

I ( _M) > Clan,... ) (o loga) ™,

p<zc® b
H (1_M) < C’(al,...,ak) (sxlogm)_k_l.
p<ze® b

Now, for the choice of b, we clearly have a; — a; + 1 — k possible values. We have thus
proved that for every large number z, there is at least one n € [z, 22| for which the numbers
qn + a1, ...,qn + a; are consecutive integers without small prime factors, that is for which
plgn + a;) > (gn + a;)° ™, thus completing the proof of Theorem

PROOF OF THEOREM [8.2]

The proof of Theorem 8.2is almost similar to that of Theorem[8.1] Indeed assume that the
Bateman-Horn Hypothesis holds (see Remark above). Then, let a; be a positive integer
such that a; = b; (mod ¢) and a; = 0 (mod D), where D = H m, where 7 are primes.

<k
miq

Similarly, let as be a positive integer such that ay = by (mod ¢) and a3 = 0 (mod D), with
as > ay. Continuing in this manner, that is if aq,...,a,_; have been chosen, we let a, = by
(mod ¢) with Dla, and a; > a,_1. Then, applying the Bateman-Horn Hypothesis, we get
that if 0 < a; < --- < ay are k integers satisfying (a;,q) = 1 for j = 1,..., k, then for each
positive integer n, setting

F(n)=(gn+a1)---(gn + ay),

letting
pim)=#{v (modm): F(v)=0 (modm)},

so that p(m) =0 if (m,q) > 1 and p(p) < p for each prime p, and further setting
Hw = H b,
pPEP
p<y/qr+tay
we have that, as © — o0, letting p stand for the Moebius function,

)DEREEED DI SENTOED SO NS S

n<e n<z §|(F(n),IL,) 8|11, n<e
(F(n),IIz)=1 F(n)=0 (mod §)

62



= (1+0(1))xZM:(1+0(1))x 1T <1—@)

I, p<Vqztai b
(8.7) — (1+o(1))e—r—,
log” x
where c is a positive constant which depends only on a4, ..., ax.
Now, we can show that almost all prime solutions m; < --- < 7 represent a chain of

consecutive primes. To see this, assume the contrary, that is that the primes 7 < --- < my
are not consecutive, meaning that there exists a prime 7 satisfying m < 7 < 7, and 7™ ¢

{ma, ..., mk_1}. Assume that 7, < 7 < w4 for some £ € {1,...,k — 1}. We then have
Ty = T +az — a,
T3 = M+ az—ai,

Ty = T+ ag—a,
T = M1+ ag — ay,
™ = m +d, where ay —a; < d < agy1 — ag.

We can now find an upper bound for the number of such k£ + 1 tuples. Indeed, by using
the Brun-Selberg sieve, one can obtain that the number of such solutions up to z is no

larger than 01%7 which in light of 1) proves our claim, thus completing the proof of
og""x
Theorem [R.2

IX. Normal numbers and the middle prime factor of an integer [24]
(Collogquium Mathematicum, 2014)

Given an integer n > 2, consider its prime factorisation n = ¢{* ---gp*. We let p,,(n)
stand for the middle prime factor of n, that is,

¢ if k=1,
Pm(n) =< qen if kisodd,
qe2 if K is even.

Recently, De Koninck and Luca [34] showed that as © — oo,

1 x
Z pm(n) - logaj eXp <(1 + O<1))\/2 log 1ng log log log ZL’) ,

n<zx

thus answering in part a question raised by Paul Erdés.
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Here, we first establish that the size of logp,,(n) is, for almost all n, close to v/logn,
and then we show how one can use the middle prime factor of an integer to generate a
normal number in any given base D > 2. Finally, we study the behavior of exponential sums
involving the middle prime factor function.

MAIN RESULTS

Theorem 9.1. Let g(x) be a function which tends to infinity with x but arbitrarily slowly.
Set xo = loglogx. Then, as x — o0,

1 _ log pm(n)
9.1 ZH4dn e [x,2z] e VERIW) < 2T < pVER9@) Ly
. x#{ | | — Vdogz T
2 Lulncu evmoe < 10820 _ mge) 1
(9.2) #in<z:e e N
x N — Vdogx

Analogously, as r — oo,

1 1
(9.3) —# {n <z : |loglog pm(n) — 5% < V/xo g(m)} — 1.

x
Theorem 9.2. The sequence Concat(py,(n) : n € N) is D-normal in every base D > 2.

From here on, we will be using the standard notation e(y) := exp{2wiy}. We now
introduce the sum
T(x) = logpm(n).
n<x

Theorem 9.3. Consider the real valued polynomial Q(x) = apa® + - + ayx, where at least

one of the coefficients oy, . .., aq is irrational, and set
Eg(x) := ) logpp(n) - e(Q(pm(n))).
n<x
Then,

Eg(x) =o(T(z)) (x — o0).

Remark 9.1. Observe that Theorem[9.3 includes the interesting case Q(x) = ax, where a
15 an arbitrary irrational number.

PROOFS OF THE THEOREMS
We will first prove the following lemmas.

Lemma 9.1. Given a positive integer k, let 51 and [y be two distinct words belonging to
A’B. Let c¢g > 0 be an arbitrary number and consider the intervals

w
Jw = |:U),U) + logTw} (’LU > 1)
Further let w(J,,) stand for the number of prime numbers belonging to the interval J,,. Then,
1 N _
yyﬁl(p) Vﬂz(p>| 0 1S W — 0.
7(Jw) = log p
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Proof. This is a reformulation of Lemma [0.5] O]

Lemma 9.2. Let

E, = Z log pm(n).

n<x
apm (n)|n
Qﬂéﬁl<q<3pwﬂn>

Then, there exists a positive constant ¢ such that
E, < cxloglogx.

Proof. We have that

EISZIng Z 1§leoip Z égclxzzljg@xloglogx,

p<z p/%fffgp p<z p/3<q<3p p<z
thus completing the proof of Lemma [9.2] O]
Lemma 9.3. Let Q(z) = agz® + -+ ayx be a real-valued polynomial such that at least one
of its coefficients ay, ..., aq 1s irrational. If py < pa < --- stands for the sequence of primes,
then

Z e(Q(pn)) = o(x) as r — oo.

n<x
Proof. For a proof of this result, see Chapters 7 and 8 in the book of .M. Vinogradov [63]. [

PROOF OF THEOREM

Let
1
(9.4) y = exp{+/logz}, so that loglogy = 572
Then set

wy(n) = Z L, Ry(n) = Z L, Ay(n) = wy(n) = Ry(n).
p

pln
p<y P>y

It is well known that, if £, — 0 arbitrarily slowly as x — oo, then

1 1
—#{n <z:|wn)—xs] > —y/22} -0 asz— 0.
T £

T

On the other hand, from the Turdn-Kubilius inequality and in light of our choice of y given

by (9.4), we have
1 \? )
E {wy(n) —ptz) = E wy(n) —loglogy|” = O(zz,).

n<x
)2

Secondly,

wy(n) - §x2

< (|w(n) — Za| +
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(9.5) < 2 (<w<n> — ) (wym) - ;)) ,

where we used the basic inequality (a + b)? < 2(a? + b?) valid for all real numbers a and b.
Then, summing both sides of (9.5)) for n < z, we obtain that for some positive constant C,

(9.6) D 1A )P <) 2w, (n) — -xzyQ +) 2R, (n) - —:c2|2 < Cz .

n<x n<x n<z

It follows from that

1
(9.7) |A,(n)| < 6—\/x_2 for all but at most o(x) integers n < x.

x

Let us now choose z and w so that
log 2z = (logy)e V729 logw = (logy)eV™24),

Since

L = 10 logy (] = xZ Xz o = T (]
2 5= t0n (n?) ot = vEze) 4ol = )+ o)

say, and similarly,

Z—= (logj)+o<1>=¢—g<>+o<1> A() + (1),

y<p<w

then setting

w[a’b](n) = Z 1,

pln
p€la,b]

we have, again using the Turan-Kubilius inequality, that

3" (@ (n) = A(@))* < CaAz) and Y (wyu(n) — Aw))” < Ca A(x).

n<x n<z

from which it follows that

99 les() — A@)] < VAT,
(9:9) el () — A(o)] < - VA).

Now, recall that from (9.7)), we only need to consider those n < x for which

() = Byfn)] < =/

xT

and for which and hold. So, let us choose ¢, = 2/¢(z), in which case we have
A(x) = /22 - g(x) = (2/€2)/T2. Thus, assuming first that 0 < Ry(n) — w,(n) < é T, We
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have p,,(n) > y and by (9.9), pm(n) < w provided z is large enough. On the other hand, if

—iy/l’g < Ry(n) —wy(n) <0, then we have p,,(n) <y and by , Pm(n) > z provided z
is large enough. Hence, in any case, we get

z < pm(n) < w,

which proves (9.2), from which (9.1)) and (9.3]) follow as well, thus completing the proof of
Theorem [0.11

PROOF OF THEOREM
Let x be a fixed large number. Let L, :={n € N: |z] <n < |2z| — 1} and set

ps := Concat(p,,(n) : n € L,).

It is clear that

(9.10) Mpz) = D Mpm(n)),
(9.11) va(p) = Y va(pm(n)) + O(),
(9.12) Ap) = 11(§)ggz];+0(1>'

It follows from (9.10), (9.12)) and Theorem [9.1] that there exists ¢; > 0 such that

(9.13) Apz) > crzy/logxexp {—v/x29(x)} .

Given arbitrary distinct words 3y, B2 € A%, we set
Ala) :=vg, (a) —vg(a) (€ Ap).

Our main task will be to prove that

. A(lox)
9.14 lim =0.
( ) 200 A(pz)
This will prove that, for any word 3 € A%,
1
(9.15) v(pe) =o(1) as T — 00

Mps)  DF

and therefore that the sequence Concat(p,,(n) : n € N) is D-normal, thus completing the
proof of Theorem [9.2]

To see how ({9.15)) follows from (9.14)), observe that, in light of the fact that, for £ € N
fixed,

(9.16) > vy(pa) = Mpa) =k +1 = Apx) + O(1),

k
YEAL
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we have, as x — 00,

Vﬂ(pw)Dk ZyeA’B Vv(p:v) +O(1)
1
= F (v(pz) — v4(pz)) + O(1)
WEAIB
Lok
= ﬁD o(A(pz))
= 0o(A(pa)),
thus proving (9.15]).
Hence, we only need to prove ((9.14)).
Now, from (9.11)), it follows that
(9.17) Alpa) = Y Alp(n)) + O(x).
TLELI
Let us further introduce the sets
LY = {n € L, : qpm(n) | n for some prime ¢ € (pm?fn) , 3pm(n)> } ,

LY = {n € L, :logpm(n) < \/logxexp{—Q\/w_gg(x)}} .

With this notation, we then have, in light of Lemma and of (9.13)), that

Z logpm(n) < cxloglogx + xzy/logx exp{—2y/z2 g(z)}

ner®urt
— o(:p\/logxexp{—\/ﬂﬁ_gg@)})
(9.18) = o(A(pa))-

Hence, setting LY = L\ (L,Eso) U L;1)>, it follows from ((9.17)) and (9.18]) that

(9.19) Alps) = > Alpm(n) + o(A(pa))-

nEL:(EZ)

)

Let us now write each integer n € L{? as n = apm(n) b, where

P(a) < pm(n) < p(b).
Thus setting M = ab and given an arbitrarily small ¢ > 0, we have from Theorem that
2z

pllogz)2 ¢

(9.20) M <
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Now, let us fix M = ab. It is clear that we may ignore those integers n < x for which
Pm(n)? | n since they are at most o(z) of them anyway. Once this is done, it is clear that in
the factorization n = ap,,(n)b, we have P(a) < p(b), so that M determines a and b uniquely.
Then, in light of , we may consider the set

Ev={neLlP:n=ap,(n)b=Mp,(n)}.

Let n; < ny < --- < ny be the list of all elements of £y, and further set 7; = p,,,(n;) for
7 =1,2,..., H. By construction, it is clear that m; < my < --- < my, all consecutive primes,
and that, since z/M is large by (0.20)), it follows that 7y > (3/2)m.

Then, let I be the set of those M’s such that the corresponding set £,; contains at least
one n € ngz), since the others need not be accounted for. Hence, for those ab = M, we have

ik elements, thus implying that H > ik
og 1 2logm
chosen to be large enough.

Using Lemma (9.1} it follows that, when M € KC, we have

RURINERCY)]
EZ log pm (1)

=1

that &), contains at least , provided x is

—0 asz — oo.

From this, it follows that, for M € K, there exists a function ¢, — 0 as * — oo such that

(9.21) SN Al < X ST Apuln).

MeK ne€yy MeK ne€yy
Using (9.21)), estimate ([9.14) follows, thus completing the proof of Theorem [0.2]

PROOF OF THEOREM
We first write
(9.22) Eq(2r) — Eg(x) = ) logpm(n) - e(Q(pm(n))).
r<n<2z

Using the notation introduced in the proof of Theorem [9.2] we can, in the above sum, drop
all those n € LY U LY. Tt follows that we only need to consider those M € K. Now for a
fixed M € K, we only need to examine the sum

Zlogﬂj -e(Q(my)),

where m,..., 7y are consecutive primes and 7y > (3/2)m. Using Lemma [0.3] we then

obtain that
H
Z log ;
j=1

<&

2105’;%‘ -e(Q(m;))

Using this in (9.22)), it follows that, as z — oo,

|Eq(2x) = Eq(x)] = | Y 1ogpm(n) - e(Qpm(n))| + o(T(x))

r<n<2zx
nGL(IQ)
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e.T(z) + o(T(x))

as requested.
FINAL REMARKS

Instead of considering the middle prime factor of an integer, that is the prime factor
whose rank amongst the w(n) distinct prime factors of an integer n is the |iw(n)]-th one,
we could have also studied the one whose rank is the |aw(n)|-th one, for any given real
number o € (0,1). In this more general case, say with p(®)(n) in place of p,,(n), the same
type of results as above would also hold, meaning in particular that log p(® (n) would be

close to log™ n instead of y/logn.

X. Constructing normal numbers using residues of selective prime factors of integers [23]
(Annales Univ. Sci. Budapest. Sect. Comp., 2014)
N

Given an integer N > 1, for each integer n € Jy := [eV, eV ™), let gy (n) be the smallest

prime factor of n which is larger than N; if no such prime factor exists, set gy (n) = 1. Fix an
integer () > 3 and consider the function f(n) = fo(n) defined by f(n) =£ifn =/¢ (mod Q)
with (¢,Q) = 1 and by f(n) = A otherwise, where A stands for the empty word. Then
consider the sequence (k(n))p,>1 = (kg(n))n>1 defined by x(n) = f(gn(n)) if n € Jy with
gn(n) > 1land by k(n) = Aifn € Jy with ¢y(n) = 1. Then, for each integer N > 1, consider
the concanetation of the numbers (1), k(2), ..., that is define Oy := Concat(x(n) : n € Jy).
Then, set ag := Concat(fy : N = 1,2,3,...). Finally, let By = {{1,ls,...,lyq)} be the set
of reduced residues modulo @), where ¢ stands for the Euler function. We show that oy is a
normal sequence over By,.

In previous papers ([13], [20], [22]), we showed how one could construct normal numbers
by concatenating the digits of the numbers P(2), P(3), P(4),..., where P(n) stands for the
largest prime factor of n, then similarly by using the k-th largest prime factor instead of
the largest prime factor and finally by doing the same replacing P(n) by p(n), the smallest
prime factor of n.

Here, we consider a different approach which uses the residue modulo an integer Q > 3
of the smallest element of a particular set of prime factors of an integer n.

Given a fixed integer () > 3, let

A i (n,Q) #1,
(10.1) Jo(n) '—{e if n=¢ (modQ), (£,Q)=1

Write p1 < py < --- for the sequence of consecutive primes, and consider the infinite
word

§o = fo(p1) fo(p2) fo(ps) - -
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Let
Bg ={li,0s,... >€¢(Q)}

be the set of reduced residues modulo @), where ¢ stands for the Euler totient function.

In an earlier paper [21] (see Conjecture 8.1 on Page , we conjectured that the word
o is a normal sequence over By in the sense that given any integer £k > 1 and any word
B=ri...rp € B(’f?, and further setting

§(QN) = fo(p1)fop2) ... fo(pn) foreach N eN

and
MN(§Q|6> = #{(71,72)|§gv) =157},

we have

My (§olP) 1

lim = .
N—oo N o(Q)F
In this paper, we consider a somewhat similar but more simple problem, namely by using
the residue of the smallest prime factor of n (modulo @) which is larger than a certain
quantity, and this time we obtain an effective result.

OUR MAIN RESULT

Given an integer N > 1, for each integer n € Jy = [zn,zn11) = [eV,eN ), let gn(n)
be the smallest prime factor of n which is larger than N; if no such prime factor exists, set
gn(n) = 1. Fix an integer @ > 3 and consider the function f(n) = fg(n) defined by (10.1)).
Then consider the sequence (k(n))n>1 = (kg(n))n>1 defined by k(n) = f(gn(n)) if n € Jy
with gy(n) > 1 and by k(n) = A if n € Jy with gy(n) = 1. Then, for each integer N > 1,
consider the concatenation of k(1),k(2), x(3),. .., that is define

On := Concat(k(n) : n € Jy).

Then, setting
ag = Concat(fy : N =1,2,3,...),

we will prove the following result.

Theorem 10.1. The sequence ag is a normal sequence over Bg.

PROOF OF THE MAIN RESULT

We first introduce the notation Ay = loglog N. Moreover, from here one, the letters p
and 7, with or without subscript, always stand for primes. Finally, let p stand for the set of
all primes.

Fix an arbitrary large integer N and consider the interval J := [x,z + y] C Jy. Let
P1, P2, - - -, Pk be k distinct primes belonging to the interval (N, N*¥]. Then, set

SJ(p17p27"'7pk) = #{n’e JqN(n+j) :p] fOI'j: 172a"'7k}‘
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We know by the Chinese Remainder Theorem that the system of congruences
(10.2) n+j=0 (mod p;), j=12 ...k
has a unique solution ng < pyps - - - pr and that any solution n € J of is of the form

n =ng+ mpips---pr for some non negative integer m.
Let us now reorder the primes pi,ps,...,pr as
Diy < DPiy <+ < Piy-

If7 e pand N < 7 < p;, it is clear that we will have (n + j,m) = 1 for each

j € {1,2,...,k}. Similarly, if 7 € p and p;, < ™ < p;,, then (n + j,7) = 1 for each

je{L,2,....k}\ {i1}, and so on. Let us now introduce the function p : p N (N,p; ] —
{0,1,2,...,k} defined by

(& if N<m < Piys
k=1 if p;, <7 < piy,
p(m) = :
1 it pi,, <7 <pi,
L 0 if e {pl,pg,...,pk}.

By using the Eratosthenian sieve, we easily obtain that, as y — oo,

(10.3) Sy(p1, .-, pk) = (1 +0(1)) i H (1 — @> :

DY 7T
b1 Pk N<n<pi,

Setting U := H 1-— M), one can see that, as N — oo,
T

N<7r<pik

logU = kloglog N — kloglogp;, — (k— 1)loglogp;, + (k — 1) loglog p;,
—--- —loglogp;, +loglogp;, , +o(1)
= kloglog N —loglogp; —--- —loglogp;, + o(1),

implying that

i log N
ey log p;

(10.4) U= (1+0(1)) (N = o0).

Hence, in light of (10.4}), relation ([10.3)) can be replaced by

k

(10.5) Sy ) = (o)L 22 (5= 00)

i=1
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Now let ry,...,7, be an arbitrary collection of reduced residues modulo @) and let us
define
By(r1,...,1) = Z Sy(p1s- - Pr)-

pj=r; (mod Q)
N<p; <N N
j=1,...,k

From the Prime Number Theorem in arithmetic progressions, we have that

1 1 1
(10.6) > = (1+ 0(1)>m > (u — 00).

plogp u<p<u+tu/(logu)10 plogp

u<p<utu/(logu)l0
p=¢{ (mod Q)

On the other hand, it is clear that, from the Prime Number Theorem,

(10.7) D :(1+0(1))/ du _1+0) v,

2
Neozw plogp N ulogiu  logN
Combining ((10.5)), (10.7)), and ((10.6)), it follows that, as y — oo,
k
log N
By(ri,....me) = (L+o(1)y > ]
pj=r; (mod Q) j=1 p‘j logp]
N<pj<N/\N
j=1,...,k
(10.8) — (1+0(1)——.
$(Q)
Observe also that
1
(10.9) —#{n € Jy:qn(n) > N} =0 as ry — 00.
TN

Indeed, it is clear that if qy(n) > N*V, then [ n, H 7 | = 1. Therefore, for some

N<rt<NAN
absolute constants C7 > 0 and Cy > 0, we have
1
(1010) #{TL S JN : qN<TL) > N/\N} < Cx]\[ H (1 — —) < Cx—N,
m >\N
N<a<NAN

which proves ((10.9)).
We now examine the first M digits of aq, say aégM). Let N be such that xy < M < zy11
and set z =y, y:= M —xy and Jy = [z, + ).

It follows from (|10.8)) and ((10.10) that, as y — oo,
(10.11)

#{nedy:gv(n+j)=r; (mod Q) forj=1,....k} =(1 +0(1))—¢(é)k +0 (%) )

where the above error term accounts (as measured by ((10.10))) for those integers n € Jy for
which ¢y(n) > N*¥. Running the same procedure for each positive integer H < N, each
time choosing Jg = [xg,xg+1), we then obtain a formula similar to the one in (10.11)).
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Gathering the resulting relations allows us to obtain that, for X = x + y,

1
lim Y#{nSX:qN(n%—j)Erj (mod Q) for j =1,2,... k}

X—00
:)}1_{11 %(Z_l#{nGJH gyn(n+j)=r; (mod Q) forj=12,... k}
+#{nedy:gvin+j)=r; (mod@)forjzl,...,k})
1
P(Q)F

thus completing the proof of Theorem [10.1}
FINAL REMARKS

Let Q(n) := > a), @ stand for the number of prime factors of n counting their multiplic-
ity. Fix an integer () > 3 and consider the function ug(m) = ¢, where ¢ is the unique non
negative number < ) — 1 such that m = ¢ (mod Q). Now consider the infinite sequence

&g = Concat (ug(2(n)) : n € N).

We conjecture that &g is a normal sequence over {0,1,...,0Q — 1}.
Moreover, let @ C o be a subset of primes such that Zpeﬁ 1/p = +oo and consider the
function Qg( Z a. We conjecture that
P2 n

£o(p) == Concat (ug(25(n)) : n € N)

is also a normal sequence over {0,1,...,Q — 1}.

Finally, observe that we can also construct normal numbers by first choosing a monoton-
ically growing sequence (wy)y>1 such that wy > N for each positive integer N and such
that (logwyn)/N — 0 as N — oo, and then defining gy (n) as the smallest prime factor of
n larger than wy if n € Jy, setting gy (n) = 1 otherwise. The proof follows along the same
lines as the one of our main result.

XI. The number of prime factors function on shifted primes and normal numbers [25]
(Topics in Mathematical Analysis and Applications, Springer, Volume 94, 2014)

Let w(n) stand for the number of distinct prime factors of the positive integer n. One
can easily show that the concatenation of the successive values of w(n), say by considering
the real number & := 0.w(2) w(3) w(4) w(b)..., where each 7 stands for the g-ary expansion
of the integer m, will not yield a normal number. Indeed, since the interval I := [eerfl, e,
(n)

r

where r := |loglog x|, covers most of the interval [1,z] and since

—1’ < ——, say,
r
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with the exception of a small number of integers n € I, it follows that £ cannot be normal
in base q.

Recently, Vandehey [62] used another approach to yet create normal numbers using cer-
tain small additive functions. He considered irrational numbers formed by concatenating
some of the base ¢ digits from additive functions f(n) that closely resemble the prime
counting function Q(n) := >~ ., a. More precisely, he used the concatenation of the last
[ %} digits of each f(n) in succession and proved that the number thus created turns
out to be normal in base ¢ if and only if 0 <y < 1/2.

In this paper, we show that the concatenation of the successive values of |w(n)—|loglogn||,
as n runs through the integers n > 3, yields a normal number in any given base ¢ > 2. We
show that the same result holds if we consider the concatenation of the successive values of
lw(p+ 1) — [loglog(p + 1)]|, as p runs through the prime numbers.

So, let us first introduce the arithmetic function d(n) := |w(n) — |loglogn||.

MAIN RESULTS

Theorem 11.1. Let R € Z[x] be a polynomial of positive degree such that R(y) > 0 for all
y > 0. Let
n = Concat(R(6(n)) :n =3,4,5,...).

Then, n s a normal sequence in any given base q > 2.

Theorem 11.2. Let

¢ = Concat(o(p+1):p € p).

Then, & is a normal sequence in any given base q > 2.

Remark 11.1. We shall only provide the proof of Theorem[11.9, the reason being that it is
somewhat harder than that of Theorem[I1.1. Indeed, for the proof of Theorem[I1.1], one can
use the fact that

k—1

() =H#{n<z:wh)=k}=(1+ 00));@

uniformly for |k — xo| < /T3 x3, say, and also the Hardy-Ramanugjan inequality

z (Tg + o)
m(z) < Clx_l—(k —
which is valid uniformly for 1 < k < 10xy and x > xo (see for instance the book of De
Koninck and Luca [5])], p. 157). Hence, using these estimates, one can easily prove Theorem
essentially as we did to prove that Concat(P(m) : m € N) is a normal sequence in
any given base q > 2 (see [13]). Now, since there are no known estimate for the asymptotic
behavior of #{p < x : w(p + 1) = k}, we need to find another approach for the proof of
Theorem [11.2.

Remark 11.2. It will be clear from our approach that if w(n) is replaced by Q(n) or if we
consider the function dy(n) := [|log7(n)| — |loglogn]| (where T(n) stands for the number
of positive divisors of n), the same results hold.
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PRELIMINARY LEMMAS

1 “ 2
For each real number u > 0, let ®(u) := —/ e U2 .
() = —= N
Lemma 11.1. (a) As v — oo,

Vvloglog x

(b) Letting €, a function which tends to 0 as x — co. Then, as © — oo,

L# {p <z:0(p+1)< ap\/loglogx} — 0.

7(x)

Ll 90D U ) — 9
st {pas <uf =1+ o) (B0 - B(-).

Proof. For a proof of part (a), see the book of Elliott [38], page 30. Part (b) is an immediate
consequence of part (a). O

Let x be a fixed large number. For each integer n > 2, we now introduce the function
d*(n) := |w(n) — [loglog x||.

Lemma 11.2. For all x > 2,
Z(é*(p +1))? < en(x) loglog .
p<z

Proof. To obtain this inequality, we may argue as in the proof of the Turan-Kubilius in-
equality, using the fact that the contribution of those prime divisors which are larger than
26, say, is small. O

Lemma 11.3. Given an arbitrary € (0,1/2), then, for all x > 2,
#p<z:Plp+1)<a"}+#{p<z:Plp+1)>2""} <crr(a).

Proof. This is an immediate application of Theorem 4.2 in the book of Halberstam and
Richert [43]. O

Lemma 11.4. Let a and b be two non zero co-prime integers, one of which is even. Then,
as r — oo, we have, uniformly in a and b,

1 p—1 =z loglogx))
< - b e <8 1—— 1 0 ‘
#ip<wiapt+bepy < H( (p—l)Q)mp—?logzw( " ( logz

p>2

plab

Proof. This is Theorem 3.12 in the book of Halberstam and Richert [43] for the particular
case k = 1. O

Lemma 11.5. Let M > 2k, (1, 82 € AL, Set A(a) = |vg, (o) — v, ()]. Then,

Z A?(a) < cMg™.

ac AT
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Proof. Let B =bp_1...by € A’;. Consider the function fg : A’; — {0, 1} defined by

1 ifupg..oug =B,
fﬁ(uk—lv <oy lg) = { 0 otherwise.

Let M € N, M > 2k. Let a = €)s...¢ run over elements of Aé\“l. It is clear that

A = Z I//g(Oé)

aeAé”“
M+1-k
= Y #HaeAl ey g, =p)
v=0
(11.1) = (M+1—k)g" "

On the other hand,

B = Z v3(«)
ozG.Aéqul

M+1-k M+1-k

— Z Z Z f6(8V1+k_1,...,Eyl)f6(6y2+k}—17"'7€V2)

l/1:0 l/2:0 EQyeeny EM
M4+1—k

= A+2 Z Z fﬁ(gljl—l-k—l""7€l/1>f5(€l/2+k—17"'7€l/2)

v1,v2=0 go,....e
v1<vy

M+1-k

= A+2 Z Z fﬁ(ng-‘rk‘—l?'"7€V1)fﬂ(€vg+k—17“‘7gug>

v1,v2=0 €0y-EM
vy <vg<vi+k

M+1-k

(11.2) +2 > D falEmshats ) f5(Evrkts - Eu)-
V21>7V2iok €04 EM
12 IJ1 C

Now, on the one hand we have

M+1-k

(11.3) DY folenrrots s mn) falErits s E) < kMg,
v1,v2=0  go,..,Epr
vy <vo<vi+k

while on the other hand,

M+1-k

Z Z f6<€V1+k—17"‘7€V1)f,3(€V2+k—17"‘7€l/2>

v1,v2=0 gqg,....en
vo>vy+k

(11.4) = i gM IR = MR (M4 1) — O(kM)) .

vy,vp=0
vy +k<vg
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Combing (11.1) and (11.2)), using estimates ((11.3)) and (11.4]), we conclude that
M+1\?
(11.5) Z (1/5(04)— a > <cMg™.

qk

Q=EM\[...€E0

Note that here we summed over those €y = 0 as well. But (11.5)) remains true if we drop
those )y = 0. This allows us to conclude that

> (Vﬂ(a) - Mj:l)Q < cMqg™,

q
ac AMH

thus completing the proof of Lemma [11.5]

PROOF OF THEOREM [11.2]

Let

& = Concat(o(p+1) : p < z).

Our first goal is to prove that there exist two positive constants c; and ¢y such that

A=)

m(x) z3

(116) C1 S

> Co,

provided z is sufficiently large, from which it will follow that the order of A(&,) is 7(x)zs.
We have

mn N = X [EE | o) = 21+ 5+ Ola(a)
5(:51]);?50

say, where the sum in ¥; runs over the primes p < x/x5, while that of ¥y runs over the
primes located in the interval J, := (z/x2, z].
It follows from Lemma that, for each u > 0 there exists ¢(u) > 0 such that

7 {p <uz: &p—\/%l) > u} > c(u)m(x),

from which it follows that

(11.8) Yo > cm(x) 3

(&
and therefore, from (11.7)), that, if x > ¢, the inequality (&)

7(x) z3
constant ¢, thereby establishing the first inequality in ((11.6)).
To obtain the upper bound in ([11.6)), first observe that

> ¢ holds for some positive

(11.9) ¥ <2m(z/x9)x9 = O(7(2)).
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On the other hand, from the definitions of the functions ¢ and ¢*, it is clear that

0*(p+1) =d(p+1)[ <1 forallpe J,.

Hence,
Yo < ¢ Z logd*(p+1) =c Z logd*(p+1) +c Z logd*(p+ 1)
m/z2<p§a: z/wo<p<z z/x9g<p<lx
5*(p+1)<d /73 5 (p+1)>4 /73
T3
< (210g2 —) log 5 (p + 1
< ( 0g2+ 5 m(x) + ¢ /Z; ogd*(p+1)
z/xo<p<lx

§* (p+1)>4,/T5

(1110) < Cg?T(.T)Q?:g + 23,

say.
From Lemma [11.2] we obtain that for every A > 1,

F(p+1) cm(x)
W > A} < 2

We now apply ([11.11]) successively with A =27, j = 2,3, ..., thus obtaining

(11.11) #{peJx:

Y3 < en(x) Z log (2j+1, V72)

< =
Jj=2
(7 +1)log2 T3
< e 3 (T
Jj=2

from which we may conclude, in light of (11.7]), (11.9) and (11.10)), that the right hand side
of (11.6) holds as well.

We will now prove that, given any fixed integer & > 1 and distinct words 1, 82 € .A’q“,
and setting A(a) := vg, (o) — v, () for each word a € A7,

(11.12) lim [2(6)

200 A(&r)
In order to achieve this, now that we know (from (11.6))) that the true order of A\(&,) is

7(x) 3, we essentially need to prove that A(&,) is of smaller order than 7(x) z3.
Let 6, be an arbitrary function which tends monotonically to 0 very slowly. Then consider
the sets

< gr(x) zs,

= 0.

Dy = {peyp:p<az/aa},
Dy, = {pegp:p<zandi(p+1) <b,/x2},

1
D; = {pEp:prand5(p+1)>0—\/x_2},

and let D = D1 UDQUDg
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Because A(d(p + 1)) < cx3 if p € Dy and p < cxq, and since (11.11)) holds for p € Dj, it
follows from Lemma and ((11.9) that

D IAGE+)| < cagm(a) (D(6:) — B(—6,)) + em(a/x2)ws

peD

= S(p+1) [20 2711 27 +1
11.1 e -1 : :
(11.13) +Z#{peJx N [QI, 7 o | V2

J=0

Since this last sum is less than

w(e) Y (g +10g(1/0,)) - 2% < e log(1/6,) + 25) 027 (z),

Jj=0
it follows from that
(11.14) Z [A(G(p+1))| = o(n(z) x3) (x — 00).
peD
Using , we then have
(11.15) A&) =) AW +1)) +o(m(x) z5) = Xa + o(m(w) w5),

pgD

say.
Let k € (0,1/2). From Lemma|11.3, we obtain, using the fact that p € Ds (since p &€ D),
that

(11.16) > |A@G(p+1))] < crm(x)log <0i\/x—2) < eyrm(x)as,

pE€D z
P(p+1)g[zr,zl 5]

provided that 6, is chosen so that 1/6, < x4, say.

Now let K = | 25| and then, for ¢ satisfying e,vK < |{] < LV K, where ¢, is a function
which tends to infinity very slowly as £ — oo and which will be chosen appropriately later
on.

Further set

R.(0) =#{pe J,: Plp+1)€ (z", 2" ") and w(p+1) = K + £}.
Using Lemma |11.4] we obtain that

R.(0) < #{peJ.:p+tl=uaq a<z'™" q¢>a"/2y wla)=K+/{—1}
1 =z 1 p—1 1—
11.1 < _— — — K
(11.17) < E aHp_2+O(x ),

2 2
K= log” x
8 w(n)=K+£(—1 P‘>2
pla

where the O(...) term accounts for the contribution of those ¢ such that ¢* | p + 1.
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It then follows from ((11.17)) that

Rn(g) < r (Z% + C) m +0 ($1_H)

2 2
k?log” x e

C3T (K—G—C)K'M_l
k2log?z (K +¢—1)!"

Now, observe that, if w(p +1) = K + ¢, p € J,, then 6(p+ 1) € {|¢| — 1, ]¢],|¢] + 1}.
Therefore, recalling ((11.16]),

(11.18)

Xal < Do (AU + A = 1)+ A+ 1)) - (Re(=6) + Re(0))
+ckm(x)Ts

(11.19) = Yp+ arr(r)zs,
say.

Using ((11.18)), we obtain that
(11.20)

C4T - _ _ (K + C)K—I—Z—l (K + C)K—e—l)
Y < A(0) + A — 1) + A(J¢]| + 1))- :
P = k2log? s <z€:<1 (AL + A = 1) +A( + 1) ((K+€—1)! (K —(—1)!
Ezfﬁfa

Since we can easily establish that

. ((K+C)K+£1 . (K+c>“1) _ (K40t exp{65 <1)2}7

o<e<VE \ (K +(—1)! (K —¢-1)! (K —1)! .
it follows from ((11.20)) that
2 _
c4x 1 (K +c)f-1
11.21 Y < — —)
( ) P = k2log’x P {C5 (8,,6) } (K -1 ~@
where
Seo= Y. (A +AC-1)+A(C+1))
er< =<t
(11.22) < 3 Y A(0)+0(xs) = 35p + Olas),
szgiKﬁi
say.

To estimate Y p, we will use Lemma [11.5] Indeed, let My be the largest integer for
which ¢ < ¢,v/K and let M; be the smallest integer for which ¢ > é\/f . Set Ky =

[¢M, g™+ —1]. With this set up, we clearly have that
(11.23) Sp< > T,
Mo<M<M;



where Ty, = Z A(?). Now, it follows from Lemma |11.5(that
e

(11.24) T < (@ HYVHMPM M2 < v/ MgM.

Using ((11.24)) in (11.23)), we obtain that

1 1 [
(11.25) Yp < e/ Mig™h <1+‘+—2+"'><@\/?\/10g—f(<—c6 VT
q q Ex Ex
Gathering (11.21]), (11.22) and (|11.25)), we have that

2 K-1
7T 1 (K +¢) V/T2/T3
11.26 Yp < ———— — . .
( ) B= x2log® x P {C5 <8$) } (K —-1)! Ex
) (K + )kt ) e _
Setting (x = Ko and using Stirling’s formula n! = n"e "v2mn(1 + O(1/n)), we
have that
K-1 1
logly = (K—1)log(K +¢)— (K —-1)log| —— | — 510gK+O(1)
e
K+c 1
= (K—l)logK_1 —§logK+O(1)+K—1,
from which it follows that .
KK S Cg—l.
N
Using this last estimate in ({11.26]), we obtain that
2
(11.27) Sp < %m) /.

Choosing ¢, = x5, say, while using (11.27)) and (11.6]), we conclude that

: Yp
11.28 lim sup =0.
2 P E)
Combining ((11.28)), (11.19)) and (11.15)), we obtain that
: A()
11.29 lim sup < cK.

Since x can be taken arbitrarily small, we may finally conclude that (11.12) holds, thus
completing the proof of Theorem [11.2]
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XII. Normal numbers generated using the smallest prime factor function [22]
(Annales mathématiques du Québec, 201/)

In a series of recent papers, we constructed large families of normal numbers using the
distribution of the values of the largest prime factor function (see for instance [13], [17]
and [20]). What if we consider instead the function p(n), which stands for the smallest
prime factor of an integer n > 27 At first, one might think that the (base 10) real number
m = 0.p(2)p(3)p(4)p(5) ... is not a normal number because p(n) = 2 for every even number.
But, on the contrary, as we will show here, 7, is indeed a normal number. In fact, it turns out
that the smallest prime factor of an (odd) integer is often very large with a decimal expansion
which “most of the times” contains all ten digits at essentially the same frequency.

Here,we examine various constructions of real numbers involving the smallest prime factor
function p(n), including ones where the integers n run through the set of shifted primes.

MAIN RESULTS
Theorem 12.1. The expression ny = Concat(p(n) : n € N) is a normal sequence.

Theorem 12.2. Let R € Z[x] be a polynomial such that R(x) > 0 for allx > 0 and satisfying
lim, o R(z) = 00. The expression ny = Concat(R(p(n)) : n € N) is a normal sequence.

Theorem 12.3. Let a € NU{0} be an even integer. The expression ny = Concat(p(m + a) :
T € ) is a normal sequence.

Remark 12.1. Observe that the particular case a = 0 has been proved by Davenport and
Erdés [11)].

Theorem 12.4. Let a € NU {0} be an even integer and let R be as in Theorem [12.4 The
expression ny = Concat(R(p(m + a)) : ™ € ) is a normal sequence.

We will only provide the proofs of Theorems and [12.3] since those of Theorems [12.2
and can be obtained along the same lines.

PROOF OF THEOREM [12.1]

Let x be a large number, but fixed. Consider the interval

= [[g) 110)

and the following two subwords of n;:

n. := Concat(p(n) : n < z), pz := Concat(p(n) : n € I,).
Let § be an arbitrary word in A
Letting /y be the largest integer such that 2% < z, it is clear that

Lo
(12.1) ve(na) = > vslpujer) + O(log ),

=0
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(12.2) valparp) = Y. ve@m) +0(5).

nEII/Qg

where the error term on the right hand side of accounts for the cases where the word
3 overlaps two consecutive intervals I, joe11 and I, /5. Note that here and throughout this
section, the constants implied by the Landau notation O(- - -) may depend on the particular
base ¢ and on the particular word S.

Hence, in light of and , in order to prove that n; is a normal sequence, it
will be sufficient to show that, given any two distinct words i, B2 € .A’; , we have

(12.3) 17N (mi(;;m(px)l

We first start by establishing the exact order of A(p,).
For each Q) € g, we let

—0 as r — 0.

8.(Q) = #{n € L : p(n) = Q}.

Let £, be a function such that lim,_,.. e, = 0. Let also Y, < Z, be two positive functions
tending to infinity with z, that we will specify later. It is clear, using Mertens’ formula,
that, as x — o0,

(12.4) 3.(Q) = (1+ o(l))% I1

m<Q
TEP

(1 - %) — 1+ 0(1))%621;@

uniformly for Y, < @ < 2°¢ (here v stands for the Euler-Mascheroni constant). By a sieve
approach, we may say that for some absolute constant ¢; > 0, we have

<cCpieg foral @ <z,
(12.5) &c(Q){ < %ng@ for /z < Q < .

We may then write

Mea) = D 8@QMQ+ D FQ@IXQ+ Y 3.(QANQ)+O0()

Q<Y Yo <Q<Zy Zz<Q<x
(12.6) = ¥+ 33+ 35+ O(x),

say. As we will see, the main contribution will come from the term 3.

Using (|12.4) and ((12.5]), we easily obtain

1
12.7 Y1 < oo -log Q < c3xloglog Y,
1 LSO 2 Glng :
1 log x
. < — < .
(12.8) Y < oz E 0= csx log (log Zac)
Z,<Q<ax
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1
Choosing Y, so that logY, = (logz)®* and Z, so that 08T

= (log z)®*, it follows from

log Z,

(12.7) and (12.8]) that, as © — oo,

(12.9) ¥ = o(xzloglogx),

(12.10) Y35 = o(zloglogx).

Now, in light of (12.4]), we have, as x — oo,
5= Y RQMQ
Y2<Q<Zg
@) C7$
- s ¥ 2D s >
Yo<Q<Z, Ql Q logq Y.<Q<Z, Q

log Z,

(12.11) = (14 o(1))crzlog el (14 o(1))crzloglog x + O(xe, loglog x),
og Yy

for some positive constants c¢g and cy.
Hence, gathering estimates , and and substituting them into ((12.6]),
we obtain that
A pz) = crxloglog x 4 o(x loglog x),
thus establishing that the true order of A(p,) is x loglog z. Therefore, in light of our ultimate
goal , we now only need to show that

(12.12) 1V5,(p) = Vs (p2)| = ofwlogloga) (¢ = oc).

To accomplish this, using the same approach as above, we easily get that

(1213) |V51 (pﬂﬁ) — Vg, <p$)| < Z ‘Vlﬁ (@ - VBQ ‘ 8 + 0(17 10g log CL’)

Yo<Q<Zy

We further set ¢; as the largest integer such that 24+ <Y, and /5 as the smallest integer
such that 2% > Z_. We then write the interval [Yz, Z.] as a subset of the union of a finite
number of intervals, namely as follows:

Lo
T x
(12.14) Y., 2] < | [%?]

{={y

that is the union of a finite number of intervals of the form [u, 2u].
For each of these intervals [u, 2u], we have

(12.15) T(u):= Y |v5(Q) —v5(Q)3.(Q) = Si(u) + Sa(u),

u<Q<2u

where Sp(u) is the same as T'(u) but with the restriction that the sum runs only over those
primes @) € [u, 2u] for which

15,(Q) — v5,(Q)| < kur/L(u),
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while Sy(u) accounts for the other primes @ € [u, 2u], namely those for which
’V51<@> - U/BQ(@)’ > Ry L(’LL)
Using Lemma and ((12.5)), we thus have that, for some positive constants cg and cg,

Si(u) < g Z Ruv/1ogu §,(Q) < cgkyn/logu x Z !

u<Q<2u u<Q<2u Q IOg Q
TKy

“llogu)?

(12.16)

On the other hand, using the trivial estimate vg,(Q)) < A(Q) < logu, we easily get, again
using Lemma and ((12.5)), that, for some positive constant ¢y,

Ci0® U C10T
12.17 S. < = .
( ) 2(u) = u (logu)k?  (logu)k2

Substituting (12.16]) and (12.17)) in (12.15)), we obtain that

Ku 1
(12.18) T(u) <cx ((logu)3/2 + (Tog ) /{121> :

We now choose k, = logloglogx. Then, in light of (12.14]) and using (|12.18]), we may
conclude that
I .
> alen) =)l £ 3T (5) < olwlogloga),

Ya<Q<Zy =0,

which in light of (12.13)) proves (12.12)), thereby completing the proof of Theorem m
PRrROOF OF THEOREM [12.3]

We let = be a large number and turn our attention to the truncated word
0, = Concat(p(mr +a) : w € I,),

of which we first plan to estimate the size of A(0).
For each prime number U, let

M, (U)=#{rel,:p(r+a)=U}.

This allows us to write

(12.19) Mog) =Y M (AT)= > + > =%+,

Uep U<azfx U>zéx
Uecp Uecp

say. Using Theorem 4.2 of Halberstam and Richert [43], we get that

Yo < (logzx) -#{r<z:p(r+a)>a=}
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xrlogx 1 x
12.20 < 1—— <
( ) = ¢ log x H ( p) - Clsxlogx’

p<zxtz

by Mertens’ estimate.

Let us choose ¢, so that 1/e, tends monotonically to infinity, but very slowly. We will
now use Lemma and the Bombieri-Vinogradov theorem to estimate M, (U) for U < z°
for almost all U. Choose ky = 1//€p.

Following the notation of Lemma [0.11] we have

TU:Hp7 p1<<ps(SU)7 A:TF(U>_17

p<U

(gg)m<~--<7rN(§x), mi+a=0 (modU),
a,=m,+aforn=12...,N, f(n)=1forallneN.

Moreover, for each d|Ty,

Z 1 . :
say. We have
. (e ) — li(x) (% Ca) li(z/2)

Let 1 be the multiplicative function defined on the squarefree integers by

_J1/(p—-1) ifpta,
77(]9)—{0 if p|a.
We then have

log p
S = Zp—z = logU + O(1).

p|Ty
pla

Then, the condition
1
S log z > max(log7(U),log U)

clearly holds for every large U. Further set

2
H = Hy =exp {—RU (log/{U — loglog ky — —) } .
Ry

We then have

(12.21) M,(U) = {1+ 201H}W 1T (1 - L) + B(U),
2<p1)7:U
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where
B(U) =20, »  3““|R(N,d)],

d|Ty
d<U~U

and where [0, <1, |65 < 1.
On the one hand, there exists a constant A; = A;(a) > 0 such that

(12.22) 11 (1 - %) = (1+ o(1))10‘21U (U — ).

2<p<U P
pta

On the other hand,

g
=
S
A

IR

U<zt U<zex d|Ty
d<U”"U

DI

U<zez d|Ty
d<U”®U

(12.23) = Si(z) + Solx),

QU —a) li(x)
7(x; dU, —a) o(dl) ‘

‘ li(x/2)
m(x/2;dU, —a) — o) ‘

say. We have dU < U"v*!. Set m = dU. Since U = P(m), it follows that m determines d
and U uniquely.

We shall now provide an estimate for Si(x) by using the Brun-Titchmarsh inequality
(Lemma [0.1)) and the Bombieri-Vinogradov theorem (Lemmal0.2). So, let B > 0 and E > 0
be arbitrary numbers. We then have

li(z)

Silz) < > 3P

m(x;m, —a) —

w(my 1i(2)
2 )

m<zVErtex d)(m) m<zVEr e
w?m)Ssz w?m)>Bx2
< x- 3572 li(x) 3 32w(m)
o 3Ba> o) o(m)
P('r;)<x5$
x- 3872 li(x) 9p
12.24 < 1+ .
(12.24) 7 T 3m H( (b 17

It follows from ((12.24)) that, given any fixed number A > 0, an appropriate choice of B and
E will lead to

(12.25) Si(z) < %.
log”™ x

Proceeding in a similar manner, we easily obtain that

li(z)

log”™ x
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Using (12.25) and (12.26) in (12.23), and combining this with (12.22)) and (12.21)) in our
estimate ((12.20]), and recalling ({12.19)), we obtain

(12.27) =) M( =Y 45, <5+

o (log x)e,

Let us now write

(12.28) Yy = Z + Z =T + 1o,
U<logz logax<U<z®z

say.

First observe that, using (12.21)), as x — oo,

o o g o (10)

U<logz log T
: 1 li(z)
< li(x) Z —+O< N )
U<logzx U log X
(12.29) < li(x) - x3,
while
1 log U
T, < (li(z) - li(z/2)) [ w
10ggc§ZU<xa96 (U - 1) IOgU lqu
1
li(z) —li(z/2 —
< ol -lE2) 3
logx<U<ze=
(12.30) = (1+ 0(1))@ (li(z) — li(z/2)) loglog z.
Gathering (12.29)), (12.30)) and (12.28)) in (12.27)), we get
1 . Ty
12.31 Aoy) € ———— (liz) — li(z/2
(12.31) (0)<<210gq-10gx<1() i(z/ ))$2<<1gx

Let 61, B2 € A% and set A(ar) = v, (o) — v, (r). We will prove that

=0.

A
(12.32) lim o

First, observe that it is clear that

[Ao,)] <Y M(U)|AT)| +0(1) ) | MU

Uep Uep

By using (12.20)), we obtain that
> M(U) <

U>zez

83@ log T
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By using (12.25)) and (|12.26]), we obtain that

T
AU)| <1 B(U) <
> BOIAD) < logr 3 BU) < i
nggx ngcgﬂ?

provided = > x.

Thus, by using ((12.21)) and (|12.29]), we obtain that

x A(U) T T3
< . .
[Aloa)l < UZEW Clogm UlogU +0 (logx>

logz<U<zfx

By using Lemma it follows that

— cVlogV cV cV
AU + cky -logV = —+CV/<;V
UZGP AU = logV -k% ' logV " K
Vv<UuL2v

Thus,

|A(D)] c CRy
12. < .
(12.33) Z UlogU ~ logV - k% + 10g3/2 Vv

Let us apply this with V' =V} for j = 0,1,...,jo, where V = logz, V;
Vjo <z < Vj0+1'
Thus, it follows from ((12.33]) that

Uecp
log z<U<zfx

(12.34) = W)+ W,

7=0

say. Since -
Wi < —-logjo < —5=
K2

Vo K,
and noting that sy, — oo as x — 0o, and since

1 CoRy
Wy < cky - < ,
22D oot 7 < o

it follows from (|12.34)), that if we choose x, < /x5 say, then

1A@)|
2 UlogU ~ %2

Uep
logz<U<zfz

AT Do
< =
Z UlogU — IiVO 2:: log( Vo 27) T CR V1 Z 1o g3/2 v,

= 2V}, with

which, in light of (12.31)), proves ((12.32)) and thus completes the proof of Theorem m

FURTHER REMARKS

Using the same approach, one can also prove the following two theorems.
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Theorem 12.5. Let G(n) =n?+ 1 and set

& = Concat(p(G(n)) : n € N),
& = Concat(p(G(m)) : m € p).

Then & and & are g-normal sequences.

We further let py(n) stand for the k-th smallest prime factor of n, that is, if n = ¢{"* - - - g%,

where ¢; < --- < g, are primes and each «; an integer, then
e R,
p’“(m_{ 1 ifk>r

Theorem 12.6. Let G(z) = a,2" + a,_12" ' + -+ + ag € Z|[x] be irreducible and satisfying
(@p,ap1,...,a0) =1, a, >0 and G(x) > 0 for x > xy. Then

n. = Concat (pk(G(n)) txo < n € N)

1S a g-normal sequence.

Observe that the proof of Theorem is very similar to that of Theorem [12.1} Indeed,
we first define
k. := Concat (pk(G(n)) ‘n e [x> ,

where I, = [|x/2] + 1, |z]). Then, for each prime @, we set

T(Q) = #{n € L : pr(G(n)) = Q},

so that

Aka) = D Ap(G(n) = Y MQ)T(Q).

nely Q<z

As can be shown using sieve methods, the main contribution to the above sum comes from
those primes Q < x'/?*, while that coming from the primes Q > x'/?* can be neglected.
This allows us to establish that the order of \(k,) is z(loglog x)*.

Then, it is enough to prove that, given an arbitrary t € N and any two words 1, B2 € Afl,

V6, (Ka) — Vg, ()|

)\(Hx) —0 as r — oo

and this is done by showing that

lvg, (Ke) — vs,(Ks)| = o(z(log log ZL’)k) as r — 00.
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XIII. Complex roots of unity and normal numbers [26]
(Journal of Numbers, 201/)

Given an arbitrary prime number ¢, set £ = e*™/9. We use a clever selection of the values
of €%, o= 1,2, ..., in order to create normal numbers. We also use a famous result of André
WEeil concerning Dirichlet characters to construct a family of normal numbers.

Let A(n) be the Liouville function (defined by A(n) := (—1)%™ where Q(n) := D perfn )
It is well known that the statement “Y° _ A(n) = o(x) as * — o00” is equivalent to the
Prime Number Theorem. It is conjectured that if b; < by < --- < by, are arbitrary positive
integers, then > _ A(n)A(n +b1)---A(n + bx) = o(z) as * — oo. This conjecture seems
presently out of reach since we cannot even prove that ) _ A(n)A(n+1) = o(z) as z — oo.

The Liouville function belongs to a particular class of multiplicative functions, namely the
class M* of completely multiplicative functions. Recently, Indlekofer, Kétai and Klesov [47]
considered a very special function f € M* constructed in the following manner. Let o stand
for the set of all primes. For each ¢ € g, let C, = {{ € C: {7 = 1} be the group of complex
roots of unity of order g. As p runs through the primes, let &, be independent random
variables distributed uniformly on C,. Then, let f € M* be defined on p by f(p) = &,
so that f(n) yields a random variable. In their 2011 paper, Indlekofer, Katai and Klesov
proved that, if (€2, A, p) stands for a probability space where &, (p € p) are the independent
random variables, then for almost all w € 2, the sequence a = f(1)f(2)f(3) ... is a normal
sequence over C; (see Definition below).

Let us now consider a somewhat different set up. Let ¢ > 2 be a fixed prime number and
set A, :={0,1,...,¢—1}. Given an integer ¢t > 1, an expression of the form i;is . .. i;, where
each i; € Ay, is called a word of length ¢. We use the symbol A to denote the empty word.
Then, AZ will stand for the set of words of length ¢ over A;, while A; will stand for the set
of all words over A, regardless of their length, including the empty word A. Similarly, we
define Cj to be the set of words over C; regardless of their length.

Given a positive integer n, we write its g-ary expansion as

n=¢o(n) +er(n)g+ - +en)d,
where ¢;(n) € A, for 0 < i <t and g/(n) # 0. To this representation, we associate the word
n=¢eo(n)e1(n)...e(n) € A

Definition 13.1. Given a sequence of integers a(1), a(2 ) a(3), ..., we will say that the con-

catenation of their q-ary digit expansions a(l ) ( Ya(3). .., denoted by Concat(a(n) : n € N),

is a normal sequence if the number 0.a(1) a(2)a(3)... is a g-normal number.

It can be proved using a theorem of Haldsz (see [43]) that if f € M* is defined on the
primes p by f(p) =& (a #0), then > . f(n) = o(x) as x — oo.

Now, given ug,u,...,u—1 € Ay let Q(n) = Hﬁ o(n 4 j)%. We believe that if

max;e(o,1,...¢—1} ;5 > 0, then

(13.1) Zf(@(n)) = o(x) as x — oo.

n<x
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If this were true, it would follow that
Concat(f(n) : n € N) is a normal sequence over C,,.

We cannot prove ([13.1)), but we can prove the following. Let ¢ € o and set & := 7/,

Further set 2, = 2% and y;, = x,le/ vk for k =1,2,... Then, consider the sequence of completely
multiplicative functions f, k = 1,2, ..., defined on the primes p by

(13.2) fk(p)_{l if p<korp>y.

Then, set
Nk ‘= fk(ﬂfk)fk(xk —+ 1)fk(l’k + 2) cee fk('rk—i-l - 1) (k S N>

and

0 := Concat(ny : k € N).

Theorem 13.1. The sequence 0 is a normal sequence over Cy.

We now use a famous result of André Weil to construct a large family of normal numbers.
Let ¢ be a fixed prime and set ¢ := >™/9 and ¢, := €2™/4 = ¢4 Recall that C, stands
for the group of complex roots of unity of order ¢, that is,

Co={ceC:¢"=1}={¢":a=0,1,...,q—1}.

Let p € p be such that ¢|p — 1. Moreover, let x, be a Dirichlet character modulo p of
order ¢, meaning that the smallest positive integer ¢ for which ng = Xo is ¢. (Here x stands
for the principal character.)

Let ug,u1, ..., ux—1 € A, and consider the polynomial
k—1
(13.3) F(2) = Fugou 1 (2) = [ [z +5)"
§=0

and assume that its degree is at least 1, that is, that there exists one j € {0,...,k — 1} for
which u; # 0. Further set

Suo,.., uk_l(Xp> = Z Xp (Fuo ----- uk_l(n)> .

(13.4) | Sy (Xp)| < (B —1)/p.

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski [48].
We can prove the following.
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Theorem 13.2. Let p; < po < --- be an infinite set of primes such that q | p; — 1 for all
J €N. For each j € N, let x,,, be a character modulo p; of order q. Further set

L= xp(xp(2) ... xp(p—1)  (p=p1,02,...)

and
(13.5) ni=0pT. ..
Then n is a normal sequence over C.

As an immediate consequence of this theorem, we have the following corollary.

Corollary 13.1. Let ¢ : C, — A, be defined by ¢(&,) = a. Extend the function ¢ to
p:Cy = Ay by p(aB) = p(a)p(B8) and let

e(n) = e(Lp)o(Tp,) - - -

and consider the q-ary expansion of the real number

(13'6) K= O'@(Fpl)gp(rm) S

Then k 1s a normal number in base q.

Example 13.1. Choosing ¢ = 3 and {p1,pa2,p3,...} = {7,13,19,...} as the set of primes
p; =1 (mod 3), then, the sequence n defined by is normal sequence over {0, e2™/3 e1™i/3}
while k defined by s a ternary normal number.

XIV. The number of large prime factors of integers and normal numbers [27]
(Publications mathématiques de Besangon, 2015)

Letting w(n) stand for the number of distinct prime factors of the positive integer n, we
have shown in [25] (see paper XI above) that the concatenation of the successive values of
lw(n) — [loglogn]| in a fixed base ¢ > 2, as n runs through the integers n > 3, yields a
normal number.

Given an integer N > 1, for each integer n € Jy := (e, e ™!), let gy (n) be the smallest
prime factor of n which is larger than N; if no such prime factor exists, set gy(n) = 1.
Fix an integer () > 3 and consider the function f(n) = fo(n) defined by f(n) = ¢ if
n =/ (mod Q) with (¢/,Q) = 1 and by f(n) = A otherwise, where A stands for the empty
word. Then consider the sequence (k(n))n>3 = (kg(n))n>3 defined by x(n) = f(gn(n)) if
n € Jy with gy(n) > 1 and by k(n) = A if n € Jy with gy(n) = 1. Then, given an
integer N > 1 and writing Jy = {1, jo, J3, - - -}, consider the concatenation of the numbers
k(j1), k(J2), k(J3), - - ., that is define

Oy := Concat(k(n) : n € Jy) = 0.6(j1)k(j2)k(J3) - - - -
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Then, set ag := Concat(fy : N = 1,2,3,...) and let Bg = {{1,ls,...,ly0)} be the set of
reduced residues modulo @, where ¢ stands for the Euler function. In [23], we showed that
ag is a normal sequence over Bg, that is, the real number 0. is a normal number over
Bg.

Here we prove the following. Let ¢ > 2 be a fixed integer. Given an integer n > ng =
max(q,3), let N be the unique positive integer satisfying ¢ < n < ¢V*! and let h(n,q)
stand for the residue modulo ¢ of the number of distinct prime factors of n located in the
interval [log N, N]. Setting zy := eV, we then create a normal number in base ¢ using the
concatenation of the numbers h(n, q), as n runs through the integers > x,, .

THE MAIN RESULT

Theorem 14.1. Let ¢ > 2 be a fized integer. Given an integer n > nyg = max(q,3), let N
be the unique positive integer satisfying ¢V < n < ¢t and let h(n,q) stand for the residue
modulo q of the number of distinct prime factors of n located in the interval [log N, N|. For
each integer N > 1, set xy := V. Then, Concat(h(n,q) : T,, < n € N) is a g-ary normal
sequence.

Proof. For each integer N > 1, let Jy = (xy,zn41). Further let Sy stand for the set of
primes located in the interval [log N, N] and T for the product of the primes in Sy. Let
no = max(q, 3). Given a large integer N, consider the function

(14.1) f) = fxm)= 3 L,

p[n
log N<p<N

Let us further introduce the following sequences:

Uy = Concat (h(n,q) :n € Jy),
Voo = Concat (Uy : N > ng) = Concat (h(n,q) : n > x,,),
V. = Concat (h(n,q) : xp, <n <x).

Let us set A, :={0,1,...,¢—1}. If we fix an arbitrary integer r, it is sufficient to prove
that given any particular word w € AZ, the number of occurrences F,, (V) of w in V, satisfies

(14.2) Fo(V,) = (1+ 0(1)% (z — 00).

For each integer » > 1, considering the polynomial
Q-(u) =u(u+1)---(ut+r—1).

and letting
pr(d) =#{u (mod d):Q.(u) =0 (mod d)},

it is clear that, since N is large,

(14.3) pr(p) =7 if p e Sy.
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Observe that it follows from the Turan-Kubilius inequality that for some positive con-
stant C'

(14.4) Z (f(n) —loglog N)? < Ce loglog N.

neJy

Letting ey = 1/logloglog N, it follows from ({14.4]) that

1 1
(14.5) x—#{ne Jy o |f(n) —loglog N| > E—\/loglogN}—>0 (exy — 0).
N N

This means that in the estimation of F,,(V,), we may ignore those integers n appearing in
the concatenation h(2,q)h(3,q)...h(|x],q) for which the corresponding f(n) is “far” from
loglog N in the sense described in ([14.5]).

X
Let X be a large number. Then there exists a large integer N such that — < xy < X.
e

X
Letting . = } —, X} , we write
e

$::|§7$N:| U]xNaX] :ag/ﬂlug%

say, and A(.Z;) for the length of the interval .%; for i = 1,2.
Given an arbitrary function 6y which tends to 0 arbitrarily slowly, it is sufficient to
consider those & and % such that

The reason for this is that those n € £, (resp. n € %) for which \((Z}) < Iy X (resp.
ML) < 6y X) are o(x) in number and can therefore be ignored in the proof of ([14.2)).

Let us first consider the set %. We start by observing that any subword taken in the
concatenation h(n,q)h(n+1,q)...h(n+ 7 —1,q) is made of co-prime divisors of T (since
no two members of the sequence h(n,q),h(n+1,q),...,h(n+1r —1,q) of r elements may
have a common prime divisor p > log N). So, let dy,ds, ...,d,_; be co-prime divisors of Ty
and let By(%%;do, dy, ..., d—1) stand for the number of those n € % for which d; | n +j

. Tn
for 7 =0,1,...,r — 1 and such that (QT(n), Td o d
of the d;’s is squarefree, since the number of those n + j < X for which p? | n + j for some

1
p>logN is < X Z — = o(X).
p>log N

In light of (14.4), we may assume that

> = 1. We can assume that each

(14.7) w(d;) < 2loglog N for j=0,1,...,r— 1

By using the Eratosthenian sieve (see for instance the book of De Koninck and Luca [34])
and recalling that condition (|14.6)) ensures that X — z is large, we obtain that, as N — oo,

X —=x r
By(Bydodi, ) = ] (1——)

dodl Ce d7~71 DI T/ (dodsdv_1) P
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N r
14.8 4o| —mM8M8M8M— 1—-—
(14.9 = I ()

—1
" pITn /(dody dr—1)

Letting Oy := H (1 — C), one can easily see that
p|TN P
(loglog N)"

(14.9) On = (1+0(1) =0

(N — 00).

Let us also introduce the strongly multiplicative function s defined on primes p by k(p) =
p — 1. Then, (14.8)) can be written as

X~ @y On+ < il 0 )
)
(do)rs(r) -+ w(dr—) " \wldo)a(da) - w(droa)
as N — oo. For each integer N > e°, let

Vl1oglog N Vloglog N
5—,loglogN—|— —.

N EN

(1410) BN<D%;d0,d17. .. ,d,«_1> = -

Ry = |loglog N —

Let ly,0q,...,¢._1 be an arbitrary collection of non negative integers < ¢. Note that
there are ¢" such collections. Our goal is to count how many times, amongst the integers

n € %, we have f(n+j) = ¢; (mod q) for j = 0,1,...,r — 1. In light of (14.5)), we only
need to consider those n € % for which

f(n+j) € Ry (j=0,1,...,7r—1).

Let
* 1
(14.11) Sl by, ... loy) o= |
o 1 f<dj)_zjz(mod Q) rk(do)k(dy) - K(d,—1)
;T

§7=01,...,r—1

where the star over the sum indicates that the summation runs only on those d; satisfying
f(d;) € Ry for j=0,1,...,r — 1.
From (|14.10)), we therefore obtain that

#{ne L fin+j)={; (modgq), j=0,1,...,r—1}
(1412) = (X - ZL‘N>0N¢5/(€0,€1,‘ .. agr—l) —|—0(mN0N¢V(€0,€1,. .. afr—l))

as N — oo. Let us now introduce the function

Observe that, as N — oo,

1 1 1
s R AL (O

log N<p<N log N<p<N log N<p<N
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1
= loglog N —logloglog N + o(1) + O (logN>

(14.13) = loglog N —logloglog N + o(1).
From the definition ({14.11)), one easily sees that

/'f]t0+t1+"'+t'r71

(1414) y(é())éh"'ag’f—l) = (]‘+0<1)) Z to'tl‘t _1!

ti=L; (mod gq)
tjERN

(N — 00),

where we ignore in the denominator of the summands the factors x(p)® (with a > 2) since
their contribution is negligible.
Moreover, for t € Ry, one can easily establish that

s it
=(1 1))— N
- Lre@y (V=)
and consequently that, for each j € {0,1,...,r — 1},
n' n' e
(14.15) > 5 =1+o(1 Z—!_ (1+of ))q (N — o).
P (mod gq) €RN
i;€Ry
Using (|14.15)) in (14.14)), we obtain that
nr
(14.16) Pl b, b)) = (1 +0(1) = (N = o0).
q""

Combining (|14.12)) and ((14.16]), we obtain that
#{neL: fln+j)=¢ (modgq), j=0,1,...,r—1}

e e
= (X—JZ'N)(QN?—FO LL'NQNq—

(14.17) = X_xNJro( q1> (N = c0),

q"
where we used ([14.9) and ([14.13)).

Since the first term on the right hand side of (14.17]) does not depend on the particular
collection gy, ¢y, ...,0,_1, we may conclude that the frequency of those integers n € % for
which f(n+ j) =¢; (mod ¢) for j =0,1,...,r — 1 is the same independently of the choice
of Eo,gl, ce ,fr_l.

The case of those n € £ can be handled in a similar way.

We have thus shown that the number of occurrences of any word w € Ay in h(n, g)h(n +
(X — X/e)

qr

1,q)...h(n+7r—1,q) as n runs over the | X — X/e| elements of .Z is (1 + o(1))

Repeating this for each of the intervals

}L ﬁ] (j=0,1,..., |logz]),

@]"Fl ! e’
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T
we obtain that the number of occurrences of w for n < z is (14 o(1))—, as claimed.
qT

The proof of (14.2)) is thus complete and the Theorem is proved.

FINAL REMARKS

First of all, let us first mention that our main result can most likely be generalized in
order that the following statement will be true:

Let a(n) and b(n) be two monotonically increasing sequences of n forn = 1,2, ...
such that n/b(n), b(n)/a(n) and a(n) all tend to infinity monotonically as n — oc.
Let f(n) stand for the number of prime divisors of n located in the interval
[a(n),b(n)] and let h(n,q) be the residue of f(n) modulo ¢; then, the sequence
h(n,q), n=1,2,..., is a g-ary normal sequence.

Secondly, let us first recall that it was proven by Pillai [55] (with a more general result
by Delange [36]) that the values of w(n) are equally distributed over the residue classes
modulo ¢ for every integer ¢ > 2, and that the same holds for the function Q(n), where
Q(n) = > e, We believe that each of the sequences Concat(w(n) (mod ¢) : n € N)
and Concat(§2(n) (mod q) : n € N) represents a normal sequence for each base ¢ = 2,3, .. ..
However, the proof of these statements could be very difficult to obtain. Indeed, in the
particular case ¢ = 2, such a result would imply the famous Chowla conjecture

1
lim — ;)\(n)A(n+ a)---An+a,) =0,

where A(n) := (=1)*™ is known as the Liouville function and where a;,as,...,a; are k
distinct positive integers (see Chowla [9]).

Thirdly, we had previously conjectured that, given any integer ¢ > 2 and letting res,(n)
stand for the residue of n modulo ¢, it may not be possible to create an infinite sequence of
positive integers ny < ny < --- such that

0.Concat(resy(n;) : j =1,2,...)

is a g-normal number. However, we now have succeeded in creating such a monotonic
sequence. It goes as follows. Let us define the sequence (myg)r>1 by

where f is the function defined by

fn)=fx(n)= > 1

p[n
log N<p<N

In this case, we obtain that

Mg+ —my = k- k+ f(k+1) — f(k),
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a quantity which is positive for all integers k£ > 1 provided

(14.18) flk+1) = f(k) > —k! - k,
that is if
(14.19) Fk) < k- k.

But since we trivially have
F(k) < w(k) < 2logh < K1 -k,

then (14.19)) follows and therefore ((14.18]) as well.

Hence, in light of Theorem [14.1], if we choose n;, = m;, our conjecture is disproved.

XV. Multidimensional sequences uniformly distributed modulo 1
created from normal numbers [28]

(Contemporary Mathematics, Vol. 655, AMS, 2015)

Recall that if « is an irrational number, then the sequence (an),>; is uniformly dis-
tributed modulo 1 (see for instance Example 2.1 in the book of Kuipers and Neiderreiter
[50]). Here, given a prime number ¢ > 3, we construct an infinite sequence of normal num-
bers in base ¢ — 1 which, for any fixed positive integer r, yields an r-dimensional sequence
which is uniformly distributed on [0,1)". More precisely, our main result consists in creating
an infinite sequence «q,as,... of normal numbers in base ¢ — 1 such that, for any fixed
positive integer r, the r-dimensional sequence ({a;(q¢ — 1)"}, ..., {a.(¢ — 1)"}) is uniformly
distributed on [0, 1)", where as usual {y} stands for the fractional part of y.

Fix a positive integer r. For each integer j € {1,...,r}, write the (¢ — 1)-ary expansion
of each «; as

aj = 0.a;1a520;3 . ..

To prove our claim we only need to prove that for every positive integer k£ and arbitrary
integers by € A1 :={0,1,...,¢ — 2} (for 1 <j <r, 1< {¢<k), the proportion of those
positive integers n < x for which a; 1, = b;, simultaneously for j =1,...,rand ¢ =1,...,k
is asymptotically equal to 1/(g — 1)*".

To do so, we first construct the proper set up. For each positive integer N, consider the
semi-open interval Jy := [ry, Zn41), where zy = eVV. For each integer N > ¢¢, we introduce
the expression A\y = loglog N and consider the corresponding interval Ky := [N, N*¥].
Given an integer n € Jy, we define the function gy(n) as the smallest prime factor of n
which belongs to Ky, while we let gy (n) = 1 if (n,p) = 1 for all primes p € Ky.

Further let my < my < - -+ < 7y be the prime factors of n which belong to Ky (written
with multiplicity). With this definition, we clearly have (n/m; - - - T, p) = 1 for each prime
pE Ky.
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For each positive integer ¢+ and each n € Ky, we let

(i) _f omif 1<4d < h(n),
(”)_{ 1 if > h(n),

so that in particular qj(\})(n) =qn(n).

We further set

=1 if m=/{ (modgq)and/?#0,
fq<m)_{A if ¢q|m.

Let r and k be fixed positive integers. Let ; ¢, for ¢ = 1,...,7 and ¢ = 1,...,k be
distinct primes belonging to Ky such that Q1, < Q2 < --- < Q. For a given interval
J =z, x+y] C Jy, where y > xy, welet S;(Qie|i=1,...,7, £=1,... k) be the number
of those integers n € J for which qj(\i,) (n+0)=Qiy

For each integer r > 1, let o(1),...,0(k) be the permutation of the set {1,...,k} which
allows us to write

Qro1) < Qro@) <+ < Qrok)-

Using the Eratosthenian sieve, we obtain that, as N — oo,
SiQie|i=1,....r, L=1,... k)
(15.1) — (1+0(1)) ==Y 11 (1_@)’

H Qi N<m<Qr (k) i
1265k
where
(& if N<7m<Qron),
E—=1 it Qoq) <7< Qro):
p(r) =9 :
1 if Qrog—1) <7 < Qrom),
L 0 it me{Qip:i=1,....r, {=1,... k}.
Let tip (i =1,...,r, £ =1,...,k) be any collection of the (non zero) reduced residues
modulo ¢ and set
(15.2)
By(tig|i=1,....r, 0=1,... k) := > SHQigli=1,....r, £=1,... k).

Qi,ZEti,E (mod q)
N<Q; g<N*N

Now, letting m(x; k, £) stand for the number of primes p < x such that p = ¢ (mod k), it
follows from the Prime Number Theorem in arithmetical progressions that, with 2 < v < u,
as u — 0o,

r(u+ v, €) — w5, £) = (1+ 0(1))—— (w(u +v) — 7()) + O (L) ,

qg—1 log' u
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from which we obtain that

1 1 1 log(u + v) 1
15.3 = (1+o(1 1 +0 | —+—
( ) u<§+u plogp ( of ))q —1llogu 08 log u <log10u>
p=¢ (mod q)
and
1 1 log(u + v) 1
154 -=(1 1 1 O
1 u<;+v p (L+of ))q—l o8 log u - (logwu)
p=¢ (mod q)
Substituting (15.3)) and (15.4)) in (15.1), we obtain
SJ(QZ"(|Z.:1,...,T,EZ]_,...,]{?)
= (14 0(1)) J exp{kloglog N — kloglog Q. )
H1gz’§r,1gegk Qi,é
—(k —1)loglog Qr.o(2) + (k — 1)loglog @y »(1) — - .. — loglog Qr. o}
" log N
(155) = (1+0(1)) Y & (y = 0).

Using ((15.5)) and definition ((15.2)), we obtain that, as y — oo,

k
. Yy 1 log N
15. Bj(t; =1,... =1,... =(1 1 E ||
( 56) J(tz,f ’ ? s N l ) 7k> ( +0( ))(q_ 1)kfr - H 1 )

where the summation runs over those subsets of primes m; , for which
N<my<myy<--<mg<NW  ({=1,... k).

Now, observe that, as N — oo,

Z 1 1

N e Tr—1,0 Wr,zlogﬂr,e
N<my o< <Tp 1,0 <Tp g <NN

r—1
1 1 1
= (1401 -l ——
( (1)) ; (r—1)! N<§<:w T 0108 T, g
1 log e\ \ 1
= (1 1 I i -
(1+of )>7TZZ (r—1)! (og ( log N )) Trelog
NAN r—1
1 log u du
= (1 1 1
o) [ oy (Og (logN)) ulog?u
An log N 1 v v
15.7 = (1 1 | —.
(15.7) (1+of >>/w = (og (1ogN>> "
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Setting v = ylog N in this last integral, we obtain that the above expression can be replaced
by

Y,

(L+o(®) (™ 1 (ogy ™ —~— (1+o(1) 1 > (logy)™
log N /1 (r—1)" 42 dy = log N (r—l)!/l y? d

which in turn, after setting z = logy, becomes

(1+o0(1)) [®e =zt (1+0(1))
log N /0 dz =

(r—1)! logN '

which substituted in (15.7)) yields

(15.8) D ! L U+l oy o

Tl Tr_1e Trelogm log N
NIy p<o <M1 0 <My g <NAN

Using (|15.8) in (|15.6)), we obtain that

(15.9) By(tig|i=1,....r, t=1,....k)=(1 —i—o(l))% (y — 0.

We now define, for each integer N € N,
6%) = Concat{fq(q%)(n)) ‘n € Jy} (1=1,2,...).
Then consider the number
00 = gl ..

and from these numbers, introduce the number

that is the number whose g-ary expansion is 0.0,
Recall that, for n € Jy, we defined h(n) as the number of prime divisors of n located in
the interval [N, N*¥]. Thus, setting

1
Uy := Z — =log Ay +0(1) (N — ),

N<p<NAN

we obtain, using the Turan-Kubilius inequality, that for some absolute constant ¢ > 0,

(15.10) Z (h(n) — Uy)® < cxylog Ay

neJn

On the one hand, it follows from ({15.10f) that for each integer r > 1, there exists a constant
¢, > 0 such that

CrTN

(15.11) #{neJy:h(n) <r}< g Ay
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On the other hand, it is easy to see that, as y — o0,

1
(15.12) #{n € Jy : p*|n for some prime p > N} < cxy Z — =0 (x—N> .
p>Np2 N

We therefore have, in light of ((15.9)), keeping in mind ((15.11)) and (15.12)), that, as y — oo

(and thus as N — o0),
(15.13)

#ined: fqPn+0)=ti—1:i=1,....r, C=1,... .k} = (1+0(1))—2

(g — 1)

Now, to prove the normality of «; in base ¢ — 1, we need to estimate the quantity

+o(xy).

H(z) =#{n<az: f(dVn+0)=tig—1:i=1,....r, L=1,... k}.
For this, let us set
Ky=#{neJyv: fld@m+0)=tiy—1:i=1,...,r, (=1, k}
Let = be a large number. Then, x € Jy, for some Ny. Hence, applying , we get

Hiz) = O1)+ K3+ Ky+ -+ Kny—1
+#{JIn, 1 Sx:fq(q](\z,g_l(n—l—é)) =tiy—1:1=1,...,r, L=1,...,k}

d+oll) Tg— T3 — ot (an, — r—x
<q _ 1>1€T (( 2 1) + ( 3 2) + + ( No N071> + ( No)) + O(l)
= (1+ 0(1))W =(1+ 0(1))W,

thus completing the proof of our main result.

XVI. On sharp normality [31]
(Uniform Distribution Theory, 2016)

In this papei] we identify a very special family of normal numbers — that we will call
sharp normal numbers — which are connected with arithmetical functions that have a local

30ur original paper on sharp normality appeared in Uniform Distribution Theory under the title On
strong normality. After its publication, we became aware that the term “strongly normal” had been used by
other authors with a different meaning. For instance, Adrian Belshaw and Peter Borwein [5] call a strongly
normal in base b if every string of digits in the base b expansion of « appears with the frequency expected
for random digits and the discrepancy fluctuates as is expected by the law of the iterated logarithm. With
this concept of “strong normality”, they then showed that almost all numbers are strongly normal (as we
do in the present document, but for different reasons). This being said, in order to avoid confusion, in this
survey and in other papers in which we will further expand on properties regarding this new concept, we
shall always talk about “sharp normal numbers”.
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normal distribution, such as the function w(n) which counts the number of distinct prime
factors of n.

Let us first recall some definitions already given on Page [2|
A sequence (x,,),en of real numbers is said to be uniformly distributed modulo 1 (or mod
1) if for every interval [a,b) C [0, 1),

]\}grgo %#{n <N :{z,} €la,b)} =b—a.

In other words, a sequence of real numbers is said to be uniformly distributed mod 1 if every
subinterval of the unit interval gets its fair share of the fractional parts of the elements of
this sequence.

Recall also that, given a set of N real numbers z, ..., x5, the discrepancy of this set is
defined as the quantity

2|

D(zq,...,xN) == su 1—(b—a)|.
) Z; o=
{en}€la,b)

It is known that a sequence (x,)nen of real numbers is uniformly distributed mod 1 if
and only if D(zy,...,2zy) — 0 as N — oo (see Theorem 1.1 in the book of Kuipers and
Niederreiter [50]).

Also, given an integer ¢ > 2, it can be shown (see Theorem 8.1 in the book of Kuipers
and Niederreiter [50]) that a real number « is normal in base ¢ if and only if the sequence
({¢"a})nen is uniformly distributed mod 1.

We are now ready to introduce the concept of sharp normality. For each positive integer
N, let

(16.1) M = My = |65V N|, where dy — 0 and dy log N — 0o as N — co.

We shall say that an infinite sequence of real numbers (z,,),>1 is sharply uniformly distributed
mod 1 if
D(xni1,. - yxnim) >0 as N — o0

for every choice of dy satisfying ((16.1)).

Remark 16.1. Observe that if a sequence of real numbers (T,)nen s sharply uniformly
distributed mod 1, then it must be uniformly distributed mod 1 as well. The proof goes as
follows. Assume that (z,)nen S sharply uniformly distributed mod 1 and define the sequence
(€k)ren by

62{1 if k<e,

b 1/logk if k>e.
Also, for each integer k > 1, let Uy = |k*ex] and Vi = Uy — Up — 1. Moreover, setting
N = U, and M = My =V}, one can verify that 15 satisfied as k — oo. To see this,
observe that

V. = (/{5 + 1)2€k+1 — kQEk + 0(1) = 2kepq + k2(6k+1 — Ek) + O(l)
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(16.2) = 2kepy1 +0 (Lz) = (1+0(1))2kes as k — oo.
log” k

Now, for each k € N, define oy, implicitly by Vi, = |0y, /Uyx|. Using this in , it follows
that
2ker(1 + o(1)) = oy kv/ex(1 + o(1)) (k — o0),

from which we obtain that
du, = (1 +0(1))2/eg (k — o0).
Hence, it follows that
dn =0y, = 0 and dylog N = (14 0(1))2/ex log U, = (1 + 0(1))4+/logk — 0o (k — o0),

implying that condition is satisfied and also, using the fact that (x,)nen s sharply
uniformly distributed mod 1, that

(163) D(xUkV"?xUIHl*l) ID(ZCN,...,QTN+M) — 0 (k—) OO)
We shall now use this result to prove that
(16.4) D(zy,...,2n) =0 (N — 00).

To do so, for each N € N, let ty be the unique integer k for which Uy < N < Uiy, from
which it follows that

N — U, < Uiy+1 — Uy

(16.5) I I —0 (N — 00).

With this set up, we have
tn—1

(16.6) ND(x1,...,2n) £ Y (Uegr = Ug)D(zy,, ., 2v,,,-1) + (N = Uyy).
=1

Applying successwely with k = € for ¢ = 1,... ty — 1, it follows, in light of ,
that the right hand side of is o(N) as N — oo. From this, follows immediately,
thus proving our claim.

Remark 16.2. [t follows from the above that if o is a sharp normal number, then it must
also be a normal number. Indeed, by definition, the sequence ({aq"})nen is sharply uniformly
distributed mod 1 and therefore, in light of Remark[16.1], it must then be uniformly distributed
mod 1, which in turn (as we saw above) is equivalent to the statement that o is a normal
number.

Given a fixed integer ¢ > 2, we say that an irrational number « is a sharp normal number
in base ¢ (or a sharp g-normal number) if the sequence (x,)nen, defined by x,, = {¢"a}, is
sharply uniformly distributed mod 1. First, observe that there exist normal numbers which
are not sharp normal. For instance, consider the Champernowne number

f#:=0.11011100101110111100010011010101111001101 11101111 ...
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that is the number made up of the concatenation of the positive integers written in base 2.
It is known since Champernowne [8] that 6 is normal. However, one can show that ¢ is not
a sharp normal number. Indeed, given a positive integer n, let S,, = [2"/(y/nlogn)| and
consider the sequence

(16.7) 22 41,22 42,2 43, 2" 4+ S,

writing each of the above .5, integers in binary. Each of the resulting binary integers contains
2n + 1 digits, implying that the total number of digits appearing in the sequence is
equal to (2n +1)S,,.

Now, letting A(m) stand for the number of digits in the integer m, the total number N
of digits of the concatenated integers preceding the number 22" + 1 is, as n becomes large,

(16.8) N=S Mm)=2m+1+ Y Fogmw = (1+o(1))2n - 22"

m<22n m<22n

We can write the first digits of the Champernowne number as

0 = 0.6162...€N22n+122n+2 22n—|—Sn

== 0.6162...61\[[) ceey

say, where in fact, p = 220 + 1220 +2 . .22 + S, = eny1...€n4a(). (Here, miny... 7y
stands for the concatenation of all the digits appearing successively in the integers nq, na, ..., n,.)
We will first show that the proportion of zeros in the word p is too large. For this we shall
first count the number of 1’s in p. Setting S(m) as the number of 1’s in the integer m, the
total number of 1’s in p is equal to

_ 18,log S,
m; B(m) = 2 log2 + O(Sn),

from which we can deduce that the total number of zeros in p is

B 15,1 log S,

Sn Sn
(16.9) > n+ ) (n—B(m)) =2nS, . +0(S,).

log 2

Since A(p) = (2n+1)5,, and recalling that S,, = [2"/(y/nlogn)], it follows from ((16.9) that
the proportion of zeros in p is equal to, as n — oo,

1 2n 1 log S,
—— X th ber of i = - 1
)\(p)x € number ol zeros 1n p M1 2(2n+1)10g2+0( )
1nlog2 — Llogn
=1 1) — = 2 1
o G gz WY
1 3
— 1——=+o(1) = +o(1).
7 Tot) =7 +o(1)
Then, since
1 1
> 1--(@2n+1)8,| > ~(2n+1)S,,
N+1<v<N+M 2 4
{2vey<d
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it follows that, setting x,, := {2"0} and choosing
M = My = (2n+1)S, ~ V' N/loglog N
(where we used (|16.8])), thereby complying with condition ((16.1), the discrepancy of the

sequence of numbers xyi1,...,Tyin 18

D($N+17 e ,-’EN+M)

1
[a,b)gl[%,n (2n+1)S Z ( ) (( )Sn)

" | N+1<v<N+M
{2¥6}€[a,b)

iCn+1)S, 1

> 4\ P 2
- (2n+1)S, 4

and therefore does not tend to 0, thereby implying that 6 is not sharply normal.

Remark 16.3. Observe that instead of choosing My = L(SN\/NJ as we did in , we
could have set My = |dnN” |, where «y is fized real number belonging to the interval (0,1),
and then introduce the corresponding concept of a ~y-strongly uniformly distributed sequence
mod 1, with corresponding ~y-strong normal numbers. In this case, one could easily show that
if 0 < v <y <1, then any vy1-strong normal number is also be a ,-strong normal number.

Remark 16.4. A further discussion on appropriate choices of My in the definition of sharp
normality is exposed below.

Identifying which real numbers are normal is not an easy task. For instance, no one has
been able to prove that any of the classical constants 7, e, v/2 and log 2 is normal, even though
numerical evidence indicates that all of them are. Even constructing normal numbers is not
an easy task. Hence, one might believe that constructing sharp normal numbers will even be
more difficult. So, here we first show how one can construct large families of sharp normal
numbers. On the other hand, it has been shown by Borel [6] that almost all real numbers are
normal. Although the set of sharp normal numbers is “much smaller” than the whole set of
normal numbers, in this paper, we prove that almost all numbers are sharply normal. After
studying the multidimensional case, we examine the relation between arithmetic functions
with local normal distribution and sharp normality.

Our first two propositions provide a simple criteria for sharp uniform distribution mod 1
and for sharp normality. They are direct consequences of the definition of sharp normality.
Proposition 16.1. Let D be the set of all continuous functions f :[0,1] — [0,1) such that

1
f(z)dz = 0. Then, the sequence (x,)n>1 is sharply uniformly distributed mod 1 if and

0
only if, for all f € D, letting M = My be as in ,
M
sz({xN+j})_>0 as N — o0.
j=1
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Given a positive real number o < 1 whose g-ary expansion is written as a = 0.€165. . .,
where each ¢; € A, := {0,1,...,¢ — 1}. For an arbitrary word 8 = 8;...0, € A¥, let
Ry m(B) stand for the number of times that the word 3 appears as a subword of the word

EN+1---EN+M-

Proposition 16.2. A positive real number o« < 1 is sharply g-normal if and only if, given
an arbitrary word = 61 ...0; € A’; and M = My as in ,

’ Rym(B) 1
m — = —.
N—oo M qk

THE CONSTRUCTION OF SHARP NORMAL NUMBERS

We first show how one can go about constructing sharp normal numbers. One way is

as follows. First, we start with a normal number in base ¢ > 2, say o = 0.€1¢65..., and
then for each positive integer T, we consider the corresponding word ar = €165...ep. One
can show that, if the sequences of integers 17 < Ty < --- and my; < my < --- are chosen

appropriately, and if, for short, we write 4" for the concatenation of m times the word =,
that is 4™ = ~...~, then the number
——

m times
_ mi1 . m2
p=0.ap'ap’ ...

is a sharp normal number in base q.
We first show that the choice T, = ¢ and m, = ¢ is an appropriate one and in fact we
state this as a proposition.

Proposition 16.3. Let « be a g-normal number. Then, using the above notation, the number
B =0.ai050; . ..
1$ a sharp normal number in base q.

Remark 16.5. Other choices of Ty and my can also lead to the construction of sharp normal
numbers. For instance, let R > 0 be a fixed integer and, for each real number x > 0, define

x1 := log, x = max(1,log ), Tep1 = log, @y (t=1,2,...).
Given a real number
a = 0.6162 ... € AqN,

set
F(a; 8) = #{(7,72) : & = 11072},

that is the number of occurrences of the word (8 in the digits of the word ac. One can construct
a real number o such that, for every integer k > 1,

1 1
(16.10) [Igré%;; M—NF(6N+1 Nty B) — 7 —0 as N = 0.
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P
Indeed, for each integer ¢ > 1, let us choose Ty = € and my = 22, that is { =
log, log, . .. log, my. Now, starting with a q-ary normal number v = 0.€1€5 ..., and, for each

positive integer T', set yp = 0.€1€5...€p. Then, one can show that the number

B=0~""75"...

does indeed satisfy condition (16.10) and is therefore a sharp q-normal number.

PRELIMINARY LEMMAS

A real number is simply normalin base ¢ if in its base ¢ expansion, every digit 0,1,...,g—1
occurs with the same frequency 1/q. The following lemma offers a simple way of establishing
if a given real number is a normal number.

Lemma 16.1. Let ¢ > 2 be an integer. If a real number o is simply normal in base q" for
each r € N, then o is normal in base q.

Proof. A proof of this result can be found in the book of Kuipers and Niederreiter [50]. [

In the spirit of Proposition [16.2] we will say that a real number v < 1 is a simply sharp
normal number in base q if for every digit d € A,,

lim —RN’M(d) = 1
N—o0 M o q

Lemma 16.2. Let ¢ > 2 be an integer. If a real number « is a simply sharp normal in base
q" for each r € N, then « is sharply normal in base q.

Proof. This result can be proved along the same lines as one would use to prove Lemma

161l O
Lemma 16.3. For each integer k > 1, let

mr(x) = #{n <z :w(n) = k}.
Then, the relation

z  (loglogz)k1

logz (k—1)!

m(x) = (14 0o(1)) (x — 00)

holds uniformly for

1
(16.11) |k —loglogz| < 5—\/loglogx,

T

where 9, is some function of x chosen appropriately and which tends to 0 as ¥ — 0.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca [34]. [
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Lemma 16.4. Letting 0, be as in the statement of Lemma |16.

Tt 0(2)
Wk(x)

max —1‘—)0 as x — 0Q.
k satisfying

eefo,[63/2 /IogTog 1)
Proof. Given k satisfying ((16.11]), let 6, be defined implicitly by k = loglogx + 6, and let

e o, (62/2\/10g log z]]. Then, in light of Lemma , we have, as © — oo,

logl ¢
me®) g4 o)) Z(czglogx) :
e VI (4 5)
B loglog z\ * (0 —1) A
= (1+0(1))( ’ ) exp{— o +0 12
1 ¢
= (1 1 1 1
(1+0(1)) <1+6’k/loglogx> (1+0(1))
09, 092
— 1 _ Tk
ol ))eXp{ log log o <(10glogrr)2)}
= 1+ o(1),
thereby completing the proof of Lemma [16.4] O

For any particular set of primes P, we introduce the expressions

1
(16.12) Qp(n) = g a and E(z) = E —.
p?|In p<z p

pPEP pEP

The following two results, which we also state as lemmas, are due respectively to Halasz
[42] and Katai [49].

Lemma 16.5. (HALASZ) Let 0 < 6 < 1 and let P be a set of primes with corresponding
functions Qp(n) and E(zx) given in . Then, the estimate

_TE@)* g |k — E(2)] 1
; 1 - {1+O< =) )+O< E(@)}

Qp(n)=k

holds uniformly for all integers k and real numbers x > 3 satisfying

8 k
Elx)> — d 0 < <2-9
(@257 o = Bx) =
Lemma 16.6. (KATAI) For 1 <h <z, let
Az, h) = YL
z<n<z+h
w(n)=k
Ak(l’, h) Wk(ﬂ?)
) h) = —
k('rv ) h x )
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= 5i(z,h).
k=1

Letting € > 0 be an arbitrarily small number and x7/'**¢ < h < z, then
1

E(x,h) < .
(z, h) log?z - \/Ioglog z

OUR MAIN RESULTS

Theorem 16.1. The Lebesque measure of the set of all those real numbers o € [0, 1] which
are not sharply q-normal is equal to 0.

Let r be a fixed positive integer and set F := [0, 1)". Consider an r dimensional sequence
(2,)nen == (21, ..., 2),en in R7. This sequence is said to be uniformly distributed mod

E if, for all intervals [a;,b;) € [0,1), j =1,...,7, we have
]\;eréo— {n<N: {x e laj,b;) for j=1,...,7} :H(bj—aj).
Accordingly, the discrepancy of the finite sequence z, ...,z in R" is defined as

r

1
D(zy,...,zx) = sup N E 1_H(bj_aj) :
[a b; )Clo,1) (n) 1
Jj= 1 ,,,,, r {IJ }E[aj,bj) J=
Jj=1,...,r

Then, we shall say that an infinite sequence (z,,)nen is sharply uniformly distributed mod
E if

D(zy,...,Zn4) =0 as N — 00
for every choice of dy satisfying ((16.1)).
In what follows, we let ¢y, ..., q, be fixed integers > 2.

Theorem 16.2. The Lebesque measure of the set of all those r-tuples (aq,...,a,) € [0,1)"
for which the sequence (x, )nen, where x, := ({a1q}}, ..., {a.q"}), is not sharply uniformly
distributed in [0,1)" is equal to 0.

Theorem 16 3 Assume that for each i = 1,2,...,r, the number a; is sharply q;-normal.
Let E = " and assume that f is a contmuous periodic function mod E and that it

satzsﬁes/ / flxy,...,x.)dxy -+ - dx, = 0. Further set

Yn = f(alq‘f(n)a7arq;d(n)) (n: 1,2,)
Then,
1
( ) I nZ;y as o0
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Moreover, further defining z,, := ({ozqu(n)}, o {arqff(n)}> form =1,2,..., we have that

(2, )nen is uniformly distributed in E.

The following result is a direct consequence of Theorem and is related to the result
stated in Lemma [16.5

Theorem 16.4. Let g be any one of the arithmetic functions

w(n) := Z 1, Qn) = Z a, Qp(n) = Z a

a p%|n
pln plln .

and let z, = ({aag® ™}, ..., {a,g?™}). Then, for almost all (as,...,q,) € [0,1), the
sequence (z,))n>1 is uniformly distributed in [0,1)".

The following result is a consequence of Lemma [16.6|and its proof is essentially along the
same lines as that of Theorem [16.3]

Theorem 16.5. For each integer i = 1,...,r, assume that o is sharply q;-normal and set
z, = ({ong™}, o o ™)),
Then, with M = My as in ,

D(@yy1s--sZypn) =0 as N — oo.

We only provide here the proof of Theorem [16.1] which will follow essentially from the
following lemma.

Lemma 16.7. Let (2, A, P) be a probability space, where Q@ =[0,1), A is the ring of Borel
sets and P is the Lebesque measure. Let q > 2 be a fized integer and set A, := {0,1,...,q—1}.
Let e, € A,, n =1,2,..., be independent random variables such that P(e, = a) = 1/q for
each a € A,. For each w € , let

a(w) == 0.6;(w)ex(w) . ..

For an arbitrary 6 > 0, let

‘ | M 1
Es .= wEQ:h}rvnjolipzréif Mn;ll_a >0 0,
en=d
where M satisfies . Then,
(16.14) P(Es) =0 for every 6 > 0.
Moreover, setting
) . N+M 1
E* = wEQ:hIr\?jolipgelzf Mn_zjwll_g #0 7,
en=d

we have P(E*) = 0.
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Proof of Lemma[16.7. Let U € N and given any d € A, let

ag(€er, ... ep) = Z 1.

It is clear that L
Plag(er, ... ev) =j) = — (]_)(q — 1)V,

For each 0 < 0 < 1/¢, set

U
(16.15) S =25(0) := {w €N: gré%( ag(€r, ... ep) — 7 > 5U} :
If w € S, then clearly the inequality
U
agler, ..., ep) < — — 06—
q q

holds for at least one d € A,, in which case we have

wo nosy T (o) 5 Oty

0<j<(1-6)U/q

where V = [(1 —0)U/q].

Now let U .
ti=(" . j=0,1,....,V).
’ (])(Q—l)] ( )

Then, for each integer j > 1, we have

<1-9,

tin j (¢—-1DA-0)U/g _(¢g—1(1-09)
R Ol vy Sl e ey v 7R G

so that ¢, < (1 — 0)t;, thus implying that

> tjgtv{1+(1—5)+(1—5)2+...}:t—".

0<j<V

Using the Stirling formula in the form
1
logn! = nlog(n/e) + 3 log(27n) + 6, with 6,, = 0

. 12U 14 1
and setting V = kU, where k = 0 +0 7)) we then have
q

logty = UlogU — kU log(kU) — (1 — k)U log((1 — k)U) — kU log(q — 1)

1 1
+-1 — —log(2m) + O(6y)

2 ®hl—r) 2
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= (—krlogr — (1 —k)log(l — k) —klog(qg—1))U

1 1 1 1
Slog ——— — —log(2m) — =1 .
+3 ogﬁ(l_ﬁ) 5 og(2m) 5 ogU + O(bv)
Letting h(k) = k1o ! +(1—k)lo ! it follows that
ing h(k) =k g<q_1)l{ k) log T—. i W

1 1 1
log ty = “log ——— — ~log(2m) — =1 .
ogty = Uh(k) + 5 10g S0—n) 2 og(2m) 5 ogU + O(0y)

Observe that h(1/q) = log

g ] and that

() < (1= €(3)) log =,

where ¢(d) > 0 provided § > 0.
Using this in (16.16)), we obtain that

(16.17) P(S) < qexp {Ulog(l —1/q) +logV 4+ U(1 — ¢(0)) log d 1} < exp{—c1(0)U},
q —
where ¢;(d) > 0 is some constant depending only on § and q.
For each integer r > 1, let N, = ¢" and consider the interval £, = [N,, N4 — 1].
(g=1)q"

Let us cover a given interval £, by the union of K, := 1+ LTJ consecutive intervals

7O T ,Tlglrl, each of length U, := r?. Now, we define the sets SZ-(T), fori=1,..., K.+
1, as we did for the set S in , but this time with the independent variables
ENy+(i—1)Uy+£ (t=1,2,...,U,).
For these new independent variables, if we proceed as we did to obtain , we then have
P(S") < ¢ exp{—c1(6)r?}  (i=1,...,K, +1),

so that

Kr+1 ¢!
P(U Sf”) < K.q" exp{—c(§)r*} < = exp{—c;1(6)r*}

i=1
1
= exp{—c1(0)r* + (2r + 1) logq — 2logr} < —,
”
provided r is sufficiently large.

Since the series > 1/r® converges, we may apply Lemma and conclude that the set

K41
Es =#{w:we U SZ-(T) for infinitely many r}

=1

is such that P(Ejs) = 0. From this result, it then follows also that P(E*) = 0. O
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FINAL REMARKS

When we introduced the notion of sharply normal number in base q, we chose for sim-
plicity to consider intervals [N + 1, N + M] with M = |6yvN|. However, it is interesting
to observe that we could have chosen much smaller intervals, namely with M = [log® N |,
and nevertheless still preserve the property that almost all real numbers are sharply normal.
Indeed, following the proof used in Lemma [16.7] as we consider an arbitrary sequence of dig-
its ent1€N12 - - Enpar, With M = Uog2 N |, and examine the occurrence of an arbitrary digit
d € A, in this sequence, we could define r as the unique integer such that ¢" < n < ¢"*', in

which case we would have )
1
r? < ( ogn) < (r+1)>~%
log q

In the end, we would see that

1 n+|log? n| 1
1——1>9
log2 n u;; q
ep=d

holds only for finitely many n’s and that this is true for each 6 > 0. We can conclude from
this that, for almost all «,

1 n+|log? n| 1
lim max 5 E: 1--1=0,
n—o00 d€Ay log n v=n+1 q
ey—d

thus also establishing that we could have defined the notion of sharply normal numbers with
M = |log? N| instead of with M = [6yVN].

Now, could we have chosen M even smaller, say M = |log N|? Not really! Indeed,

assume that (e,),>1 are independent random variables such that P(e, = a) = 1/q for each
N+1 _

N
ac A, For NeN,let H=Hy = {%J and set

B = {w:emynan =0, v=01,...,N—1}  ((=0,1,...,H—1).

The events BéN) (¢=0,1,...,H— 1) are independent and P (BéN)> = 1/¢". Hence, with

Dy = 2*1:—01 BlgN), we have

P(Dy) = qEN > QLN
On the other hand Dy, D,, ... are independent and Z P(Dy) = oo. Hence, by the second
Borel-Cantelli lemma (see Lemma , we may con]gﬁllde that for almost all events w, there
exists an infinite sequence of N’s, say ni, ne, ... such that
€np+1 = 0,€n,42=0,..., €, 4m, =0,
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logn,

log q
sequences of digits covering intervals of the form [N + 1, N + M|, with M = log N, made up

only of zeros.

. We have thus shown that one could encounter a normal number a with

where m, > ¢

XVII. Prime factorization and normal numbers [29)]
(Researches in Mathematics and Mechanics, 2015)

In two papers [14], [I§], we used the fact that the prime factorization of integers is locally
chaotic but at the same time globally very regular in order to create various families of
normal numbers.

Here, we create a new family of normal numbers again using the factorization of integers
but with a different approach. Write each integer n > 2 as n = pypy - - - p,, where p; < py <
.-+ < p, represent all the prime factors of n. Then, setting ¢(1) = 1 and, for each integer
n > 2, letting ¢(n) represent the concatenation of the primes py, p,...,p,, we show that
by concatenating ¢(1),¢(2),£(3),..., we can create a normal number, that is that the real
number 0.£(1)¢(2)¢(3) ... is a normal number. Actually, we prove more general results.

MAIN RESULTS

Let ¢ > 2 be a fixed integer. From here on, we let S(z) € Z[z] be an arbitrary polynomial
(of positive degree rg) such that S(n) > 0 for all integers n > 1. Moreover, for each integer
n > 2, we write its prime factorization as n = p1ps - - - p,, where p; < py < --- < p, are all
the prime factors of n and set

t(n) := S(p1) S(p2) .- S(pr),
where each S(p;) is expressed in base ¢. For convenience, we set £(1) = 1.
Theorem 17.1. The real number
€:=04(1)0(2)£(3)¢(4) . ..
1$ a q-normal number.
Theorem 17.2. Given an arbitrary positive integer a, the real number
n:=0L24+a)lB3+a)l(5+a)...l(p+a)...,
where p runs through all primes, is a g-normal number.
Let 1 = dy < dy < -+ < drp) = n be the sequence of divisors of n and let t(n) =

S(dy)S(dz) ... S(drm)). Then, let

6 := 0.Concat(t(n):n € N),

k = 0.Concat(t(p+a):p € p),

where a is a fixed positive integer.
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Theorem 17.3. The above real numbers 0 and k are g-normal numbers.

Let S(z) be as above and let Q(z) € Z[z] be a polynomial of positive degree such that
Q(n) > 0 for each integer n > 1. Then, consider the expression

Q)= [ »*=pw2--pr,

p*lIQ(n)

where p; < py < - < p, are all the prime factors of Q(n), so that

(Q(n)) = S(p1) S(p2) - Spr)-

Then, let
a = 0.Concat(¢(Q(n)) :n € N),
g = 0.Concat(¢(Q(p)) : p € ).

Theorem 17.4. The above real number « is a g-normal number and, if Q(0) # 0, the real
number (3 is also a q-normal number.

Let Q(x) be as above. Then, let 1 = e; < ez < -+ < e5m) be the sequence of all the
divisors of (n) which do not exceed n, consider the expression

h(Q(n)) := S(e1) S(ez) ... 5(66(n))

and set
¢ := 0.Concat(h(Q(n)) : n € N)

Theorem 17.5. The above real number v is a g-normal number.

Here we shall only prove Theorems|17.1},{17.2land [17.3] For this, we will need the following
two lemmas.

Lemma 17.1. Let S € Z[x] be as above. Given a positive integer k, let 51 and B3 be any two
distinct words belonging to A’;. Let ¢y > 0 be an arbitrary number and consider the intervals

w
Juw = |:w7w + logTw] (w > 1).
Then,
1
T 2 [ B - BT 20 e
PEJw
Proof. This result is a consequence of Lemma 0.5} u

Given an infinite sequence v = aa; ... € A} and a positive integer T', we write 7" for
the word aqas ... ar.

Lemma 17.2. The infinite sequence v s a g-normal sequence if for every positive integer
k and arbitrary words [y, P € A’;, there exists an infinite sequence of positive integers
T, < Ty < --- such that
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T,
(i) lim —=

=1,
n—oo T},
(i) T [, (77%) — v (577) =0
n—oo 1, B B2 ’
Proof. 1t is easily seen that conditions (i) and (ii) imply that
1
T }Vﬁl(’YT) - Vﬂg(’yT)‘ —0 asT — o0

and consequently that

Lk

(17.1) 7| v, (77) — Z ve,(Y)| =0 as T — oo.
B2 Ak
But since
Y v =T+0(),
Bae Ak
it follows from (|17.1)) that
va(0")

1
i (1—1—0(1))% as T — oo,

thereby establishing that + is a ¢-normal number and thus completing the proof of the
lemma. O

PROOF OF THEOREM [I7.1]
Let x be a large number and set

€@ = 0(1)0(2)€(3) ... (| ).

Since log S(p) = (1 4 o(1))rglogp as p — oo, we find that

e - (5

= log q

= @ZZalogS(p) + O(x)

n<z ptn

1 T
= Togq ; alog S(p) (]; + O(U) + O(x)

a>1

_ =z ZlogS(p)+O<x>

log q D

p<z

xlogx
= (1 1
(1 o)

O(x),
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thereby establishing that the number of digits of £(*) is of order xlog z, that is that
(17.2) MEW) ~ 2 log .

Now, we easily obtain that

vs(e®) = 3 vy (5T0) Lﬂ 1O = xzw L 0).

pe<z p<z

and therefore that, given any two distinct words 1, B2 € A’;, the exists a positive constant
C such that, as © — o0,

Vg, (S(p)) - V52(S(p))

C
073) sy € =) < o Y ‘ b o)

p<z

On the other hand, it is clear from Lemma that

1
N S TITT Vs, (S = v (SE))| =0 (2 o0).

Observe that, in light of (17.4), as x — oo,

Vﬂl(%) - VﬁQ(%)‘

Z‘ < Yo Y |G - s

pSIE p Qng 2£§p<2€+1
£>1

1 2¢log 2°
- Z?O( ; ):o(loga:),

2l<y
0>1

which used in ((17.3) along with (17.2)) yields

1 1
AE@) |3, (€)= v, (€)= 0 (logx

which, in light of Lemma [17.2], completes the proof of Theorem [17.1]

log x) +o(1) = o(1),

PROOF OF THEOREM [17.2]
Let x be a large number and set
7@ = Concat({(p+a) : p < x).
First observe that the number of digits in the word n® is of order z, since
(17.5) A7) =~ 7(z)logx ~ .

On the other hand, letting 6 > 0 be an arbitrary small number, it follows from Lemma
that there exists a positive constant ¢ > 0 such that

(17.6) #{r <x:P(r+a)>2"} <cin(x).
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Arguing as in the proof of Theorem [17.1] we have that, given any two distinct words
B, e € .A’;, for some positive constant C1,

s, (1)) = v ()| < Y ‘Vﬁl(s(p))—%(s(p)) -m(2;p, —a)

p§I1_5
(17.7) +C Z (logp)m(x; p, —a) + O(w(x) loglog x).
1= <p<az
It follows from Lemma [0.1] that
x

17.8 w(zp, —a) € ——

1) b =) < ogarp)
which implies, in light of ((17.6]), that

(17.9) Z (logp)m(z;p, —a) < logz - dm(z) < dx.

xl=d<p<z

Using Lemma [0.5] it follows from (17.7)), [17.8) and (17.9) that, for some positive constant
027

‘Vﬁl (77(30)) — Vg, (U(x)) |

(17.10) lim < Cy6.

Since d > 0 was chosen to be arbitrarily small, it follows that the left hand side of ((17.10))
must be 0. Combining this with observation (17.5)), the result follows.

PROOF OF THEOREM [17.3

The proof that # is a normal number is somewhat similar to the proof that 7 is normal
as shown in Theorem Hence, we will focus our attention on the proof that s is normal.
Let o be a large number and set £®) := Concat(t(p + a) : p < x). First we observe that

@) = Z)\ 7(2;d, —a) + O(li(x))

= Z ({%J + 1) m(z;d, —a) + O(li(x))
— 1 Z ﬁj —a)+ 0 (Z T(p+ a)) +O(li(z))
(17.11) - l(% S (g d)n(z;d, —a) + O(x),

where we used the fact that > _ 7(p+a) = O(z).
Let 6 > 0 be an arbitrarily small number. On the one hand, for some positive constant

Clv
> (ogd)w(z;d,—a) < (logz) > 1

rl-0<d<z 2l=d<d<az
dv=p+a, p<z
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< (logz) Z 7(x; v, —a)

17.12 < 1 < 0Cixlog .
(17.12) < (log x <Z log /o) Cizlog x
and, for some positive constant Cy,

17.13 log d)m(x;d, —a) < (log z) _—

UT13) 2, Uogd)r( > i <

dS:Bl*‘S d<z 1-6
On the other hand, using Lemmas [0.1] and [0.2] for some positive constant Cj,

Z(logd)w(m; d,—a) > Z (logd)h(a:) _ Z (log d) li(x)

d<z d<zl/3 d<gl/3 ¢<d)

= C’g(l—l—o(l))xloga:—l—O( xA )
log”™ x

m(x;d, —a) —

(17.14) > zlogx.

Hence combining relations (17.11)), (17.12), (17.13) and (17.14)), we find that

(17.15) A0 = zlog .

Now, we easily obtain that, for any distinct words Sy, 52 € ./4’; ,

|1/51(0($)) — y52(9(x))| < Z ‘yﬁl(S(d)) — Vg, (m)‘ m(z;d, —a) + coxlog x

d<zl-3
v, (S@) = v (S(@)|
(17.16) < (4 d;é (@) Tog(2/d) + coxlog x,

where we used Lemma Combining (|17.16)) with Lemma [17.1] we obtain that

Vg, (9(96)) — 1/52(9(76)) <5
)\(9(37)) -7

lim sup
T—00

thereby implying, arguing as in the previous proofs and in light of (|17.15)), that

vg, (0°)) — v, (0))
&)

E

lim sup
T—r00

thus completing the proof of Theorem [17.3]
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XVIII. On properties of sharp normal numbers and of non-Liouville numbers
132]
(Annales mathématiques du Québec, 2018)

We show that some sequences of real numbers involving sharp normal numbers or non-
Liouville numbers are uniformly distributed modulo 1. In particular, we prove that if 7(n)
stands for the number of divisors of n and « is a binary sharp normal number, then the
sequence (ar(n)),>1 is uniformly distributed modulo 1 and that if g(z) is a polynomial of
positive degree with real coefficients and whose leading coefficient is a non-Liouville number,
then the sequence (g(7(7(n))))n>1 is also uniformly distributed modulo 1.

Recall the concept of sharp normality introduced by De Koninck, Katai and Phong [31]
(see paper XVI above). Before we move on, observe that instead of choosing My = [dyV/N |
in ([16.1)), we could have chosen My = [dyN?] for some fixed number v € (0,1), thereby
introducing the notion of y-sharp distribution modulo 1 and the corresponding notion of
~-sharp normal number. With such definitions, it can be shown that, given 0 < 1, < 7 < 1,
any ~i-sharp normal number is also a ~p-sharp normal number. One can then show that,
given v € (0,1), almost all real numbers are y-sharp normal numbers. Various alternatives
for the choice of M = My in are discussed in De Koninck, Katai and Phong [31].

We shall also need the concept of discrepancy of a set of N ¢-tuples y DYy Y where

y = (x§”>, . ,xﬁ’”) forn =1,2,..., N, with each xﬁ") € R. The discrepancy of a set of N

such vectors (RERRRY/ING - defined as the quantity

N t

> 116 —a)|,

n=1 =1
{gn}GI

Dy,,...,y,):= sup
(_1 _N) ICfo,1)t

==

where {y } stands for ({z1},...,{2,}) and where the above supremum runs over all possible
subsets I = [y, 81) X -+ X [ay, ;) of the t-dimensional unit interval [0, 1)".

Recall also that an irrational number § is said to be a Liouwville number if for each integer
m > 1, there exist two integers ¢ and s > 1 such that

1
< —.

Sm

0<

gt
S

In a sense, one might say that a Liouville number is an irrational number which can be well
approximated by a sequence of rational numbers.

Here, we show that some sequences of real numbers involving sharp normal numbers or
non-Liouville numbers are uniformly distributed modulo 1. We also study the discrepancy
of a sequence of t-tuples of real numbers involving sharp normal numbers.

Throughout this paper, g stands for the set of all primes. Given an integer n > 2, we let
v(n) (resp. w(n)) stand for the product (resp. number) of distinct prime factors of n, with
v(1) =1 and w(1) = 0. Moreover, given a set B C o, we let

we(n) =Y 1.
Pl

peEB
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We also let 7 stand for the number of divisors function. More generally, given an integer
¢ > 2, we let 7(n) stand for the number of ways of writing n as the product of ¢ positive
integers. Also, we let ¢ stand for the Euler function and write e(y) for e*™™. Finally, by
log, x (resp. logs x) we mean max(2,loglogx) (resp. max(2,loglog, x)).

MAIN RESULTS

If a is an irrational number, it is well known that the sequence (an),>1 is uniformly
distributed modulo 1, while there is no guarantee that the sequence (a7 (n)),>1 will itself be
uniformly distributed modulo 1. However, if « is a sharp normal number, the situation is
different, as is shown in our first result.

Theorem 18.1. Let ¢ > 2 be a fized integer. If o is a sharp q-normal number, then the
sequence (at,(n))n>1 s uniformly distributed modulo 1.

In an earlier paper [30], we showed that if g(z) = ax® +ap_12* 1+ -+ a1z + ap € R[z]
is a polynomial of positive degree, where « is a non-Liouville number, and if h belongs to a
particular set of arithmetic functions, then the sequence (g(h(n)),>1 is uniformly distributed
modulo 1. Our next result goes along the same lines.

Theorem 18.2. Let g(z) = az® + ap_ 12" + -+ + ayz + a9 € R[z] be a polynomial of
positive degree, where « is a non-Liouville number. Then, the sequence (g(7(7(n))))n>1 s
uniformly distributed modulo 1.

Now, consider the following (plausible) conjecture.

Conjecture 18.4. Let e, be some function which tends to 0 as x — oo. Then, if |k — (| <

exr/logy T, we have, uniformly for |k —log, x| < éx/logQ x and [¢ —log, x| < i\/log2 x, as

T — 00,
i#{n <z:wn)=kandwin+1) ="~}
=1 —|—0(1))§#{n <z:w(n)=k}- é#{n <ziwhn+1) =10

and more generally, if |¢; — {;| < ezr/logy x for all i # j, then, uniformly for |{; — log, x| <
i«/long, foreach j=0,1,....t—1, as x — o0,

1
—#{n<z:wn+j)=4;, withj=0,1,...,t—1}
x

= (o) [ s < s wln+) = 63}

It is interesting to observe that, using the ideas mentioned at the beginning of Theorem
18.3], the following result would follow immediately from Conjecture [18.4]

Let qo,q1, - - ., q:—1 be integers larger than 1 and, for each j = 0,1,...,t—1, let ;
be a sharp ¢;-normal number. Consider the sequence of t-tuples (z,,),>1 defined
by

z, == (a0t ™} {ong? ™}, o {aag? T VY ) € [0, 1)"

Then, the sequence (x,,),>1 is uniformly distributed modulo [0, 1)".
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This observation explains the importance of the following result.

Theorem 18.3. Let w, and Y, be two increasing functions both tending to oo as r — oo
and satisfying the conditions

1
ogY, o, Y,
log log x

— 00, w, < logy (x — o00).

SetB=B,={p€p:w, <p<Y,}andlet qo,q1 ...,q_1 bet integers larger than 1 and for
each i1 =0,1,...,t — 1, let o; be a sharp normal number in base q;. Consider the sequence
of t-tuples (gn)”zl defined by

g, = ({oos™ ™} g Y, oY) € 0,1)"
If D\, stands for the discrepancy of the set {gl, e ,gm}, then D\, — 0 as x — oo.
Finally, the following result is essentially the case t = 1 of the previous theorem.

Corollary 18.2. Given an integer ¢ > 2, let o be a sharp g-normal number. Let w,, Y, and
B = B, be as in Theorem and consider the sequence (y,)n>1 defined by y, = {ag*s™}.
Then, the discrepancy D(y1,Ys, .., Y|z)) tends to 0 as x — oo.

PRELIMINARY RESULTS

Lemma 18.1. If a is a sharp g-normal number and m a positive integer, then ma is also a
sharp g-normal number.

Proof. Let x,, € [0,1) for n = 1,2,..., N and consider the corresponding numbers y, =
{mz,} forn=1,2,..., N. If we can prove the inequality

(18.1) D(y1,y2,...,yn) <mD(z1,22,...,2n),

the proof of Lemma will be complete. In order to prove (18.1), first observe that,
for each integer n € {1,2,..., N}, we have that y, € [a,b) C [0,1) if and only if mz, €
61 [l + a, ¢+ b), which is equivalent to

x”EU[mJFEE E) UJ@

Since
N
1 b—a
N ; 1-— m <D<ZL'1,-Z'2, ,.TN),
anJg
it follows that
N m—1 N
1 1 b—a
N LTS |y 2 e S S mP e )
yne_[a,b) = I"EJZ

Taking the supremum of the first two of the above quantities over all possible subintervals
[a,b) of [0,1), inequality ([18.1)) follows immediately. O
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The following result is Lemma 3 in Spiro [59].

Lemma 18.2. Let By, By and Bs be three fixed positive numbers. Assume that x > 3
and that both y and ¢ are positive integers satisfying y < Bylog,x, { < exp{log32 z} and
v(0) < logP® 2. Then, uniformly fory and ¢,

) = 0 S s aln) = ) =1 ) =) 3
o e () (i) +omn ()

el 2) () o -TT (1)

pl¢

Lemma 18.3. Let w,, Y, and B = B, be as in Theorem and let N'(B) be the semigroup
generated by B. Further let r, be a function which tends to oo as x — oo, while satisfying
the two conditions

where

2 log Yy
(18.2) ry < logs and lim (22872 _ g
r—00 10g33

Moreover, let D; € N(B), j =0,1,...,t =1, with (D;, D;) =1 for i # j, and let

(183) ND(),D1 ..... thl(x) :#{HSZL'DJ|”+]7,]:0717,t—17 (n;]’B) :1}

J

Then, as x — 00,
1

(184) —#{n<z:D;|n+7j=0,1,...,t —1 and max(Dy, D;,...,Di—1) > Y, "} =0
T

and, uniformly for D; <Y, j=0,1,...,t -1,

Npy,pr,...o0i1 () = (14 0(1))2 £(Do) (D) - - K(Dy1) Ly,
as x — 0o, where k is the multiplicative function defined on primes p by
1 p—t+1
wp) = Lo
p p—t
log w,
dL, = )
a logY,
Proof. First observe that (18.4)) is easily proved. We may therefore assume that D; < Y~
for j =0,1,...,t — 1. In order to use the same notation as in Lemma [0.11} we set

B:{plv"'aps}v Q:pl"'p& E:DODI"'Dt—la DJ|Qf0r]:0717at_1

Observe that the condition D; | n+j for (j = 0,1, ...,t—1) in the definition of Np, p,,.. p, (%)
(see ([18.3) holds for exactly one residue class n (mod FE). Letting this residue class be ¢
(mod F), we then have

Noo.ps ... Dtl(:c):#{mg %J : (%Q) _ 1, j:0,1,...,t—1}+0(1).

J
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t—1 :
¢ E
Choose N = {%J and f(m) = 1, while further setting a,, := H #

Using Lemma with X = N, we then get that if d | Q, relatlon (0.7) can be written
as

> 1=p(d)N+R(N,d).

amEOm?rlrlod d)
Here, p(d) is multiplicative and defined by

{/ itp| Q/E,
plp) = { ¢Vl ity E

On the other hand, |R(N, d)| < 7:(d) = (t +1)“D (since d is squarefree), which implies that
D 3DIR(N,d)| < ) 3*Wr(d) <Y (Bt +1))*¥ < C2Plog? 2,
d|Q d|Q d<z3

d<z3 d<z3

where A and C' are suitable constants depending only on ¢. Again, with the notation used
in Lemma [0.11], we have

p(p) tlogp (t —1)logp
S = logp:
5 1-rp) %/:E (1—1/p) Z p(1—(t=1)/p)
logp log p
= t +(t—-1 + O(1
5 S22 4 oqy
p|lQ/E p|E
1 1
(18.5) - tz °sp Z %8P
plQ p|lE

| . logY,
Observing that Z o8P < tr o8

p|lE
((83) that

— 0 as x — 0o (because of (|18.2)), it follows from
Wy

xT

S =tlog(Y,/w,)+ O (rxlo—ng> :

Choosing r = ps and since

it follows, since logr = log s + loglog s + O(1), that
logr =log Y, + O(loglog Y,).

Finally, choose z = Y%'"= where v, — oo very slowly as x — oo. One can then easily check
that the conditions of Lemma [0.11| are satisfied, thus allowing us to conclude that

H = exp (_81;’/90 (1Og(8yx) - log log(8l/x) + 0(1))) )
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thereby implying, since v, — 0o as r — oo, that
(18.6) H=H,, =o1) (x — 00).

Now, writing
1 — =L

1)) R

[T —p)

rlQ plQ plE
we may conclude from (|18.6)) that
(18.7) Nij01pie (&) = (14 0(1) FA(E) + O(" log™ 2).

It remains to check that the above error term is not too large compared to the main term
x
E)\(E) Indeed, if v, tends to co slowly enough, this will guarantee that 2* < \/z, say, while

on the other hand, in light of conditions ((18.2), we have that, for any small ¢ > 0,

_— = = — €T
E — )/aztrz etre logY, — ete log xte ’

say. Finally, since A(E) > C/logY, for some constant C' > 0, we may conclude that indeed
the error term in ([18.7)) is of smaller order than the main term of (18.7). Consequently,
uniformly for D; <Y, j=0,1,...,t — 1, we find that

t t—1
N, = (1+o(1)——t [] (1——)- [] (1——)
by ey e P) ipobyDics P

ptDoDy---Dy_q

pEB
x 1= t
= (+o) 5 55— I : -H(l——).
DoDy -+ Dy p|DoD1---Dy 1 - p peB p
Since
t
11 (1 — -> = (1+0(1))L,  (z— ),
peB p
the proof of Lemma is complete. O

The following result is Lemma 1 in our paper [30].

Lemma 18.4. Let g(z) = az® +ap_ 12" 1+ + a1z + 0y € R[z] be a polynomial of positive
degree, where o be a non-Liouville number. Then,

| Uy
sup — e(g(n))| — 0 as N — o0.
| 3 et

Lemma 18.5. Assume that the set of natural integers N is written as a disjoint union of
sets Nx, where K runs through the elements of a particular set P of positive integers, that
is, N = Ugep Ni. Assume that, for each K € P, the counting function Ni(x) := #{n <
x:n € Nk} satisfies

Nk ()

lim ———= = ¢,
T—00 x
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where the cix are positive real numbers such that Z cx = 1. Moreover, let (x,)n,>1 be a

KeP
sequence of real numbers which is such that, for each K € P, the corresponding sequence

(Tn)neny 18 uniformly distributed modulo 1, that is, for each integer h > 1,

(18.8) S%l)(x) = Z e(hx,) = o(Nk(z)) as x — o0.

n<x
neENg

Then, the sequence (Ty)n>1 ts uniformly distributed modulo 1.

Proof. According to an old and very important result of Weyl [65], a sequence (x,),>1 is
uniformly distributed modulo 1 if for every non negative integer h,

1 N
dm gy 2 o) =0

Therefore, in light of Weyl’s criteria, we only need to prove that, for each positive integer h,
(18.9) SM () = Z S%l)(x) — 0 as x — 0.

KeP
Given any z > 0 and writing

S® () =D S @)+ D S (@),

KeP KeP
K<z K>z

it follows that

S ()

T

(18.10) ’

< Z NI;(IE).N;(x>|5§?)(x)|+i#{n§x:n€ U NK}.

K<z,KeP KeP,K>z

Since, in light of (|18.8)), we have that m|8§?)(l‘)| =0(1) as © — o0, it follows from ([18.10]
that, for some C >0,

: S"(x)
lim sup <C-( Z ci)-o(l) + Z CK,
ree g K<z, KeP K>z KeP
which is as small as we want provided z is chosen large enough, thus proving ([18.9)). O]

PROOF OF THEOREM [I8.1]

An integer n is called squarefull if p | n implies that p? | n. Let P be the set of all
squarefull numbers. For convenience, we let 1 € P. To each squarefull number K, we
associate the set Ng := {n = Km: (m,K) =1, y?>(m) = 1}, where u stands for the Mobius
function. Since each positive integer n belongs to one and only one such set Ny, we have

that
N = U Np.
KeP
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For any n € N, we have 7,(n) = 7,(Km) = 7,(K)g“™.
Now, in light of Lemma [18.5 the theorem will follow if we can prove that for each fixed
KeP,

(18.11) the sequence ({a7,(n)})neny is uniformly distributed modulo 1 over Ng.

To prove this last statement, we use Lemma [18.2] First, observe that for £ = K fixed, we
have that y(¢) = v(K) is bounded and that we can also assume that, given any function ¢,
which tends to 0 sufficiently slowly as © — oo, say with 1/, < log; z,

1
(18.12) ly — log, x| < 5—\/10g2 x,

T

-1 -1

so that each of the two quantities F Y ) and £y <y ) is equal to 14+0(1) as z — oo
08y T log, ©

for y in the range ([18.12)). From there and the fact that « is a sharp normal number, it is

clear that ([18.11) follows.

PROOF OF THEOREM [18.2

Given a squarefull number K, let Nx and P be as in the proof of Theorem [I8.1 Any
integer n € N can be written as n = Km, where (K,m) = 1 and p*(m) = 1. Moreover,
write 7(K) = k; - 2°% for some odd positive integer k; and some non negative integer pg.
From this set up, it follows that 7(n) = 7(Km) = k; - 2°57(™) from which it follows that

(18.13) 7(7(n)) = 7(k1) (w(m) + px + 1)
Now, for n € N with w(m) = ¢, we have, using (18.13),
(18.14) g(t(r(n))) = ar (k)" (t + prc + D+ -+ = ar(k)"" + P 1 (1),

where P,_1(t) stands for some polynomial of degree no larger than k — 1.
We shall now use Weyl’s criteria, already stated in the proof of Lemma So, let h
be an arbitrary positive integer. For each K € P, set

Si(x) = ) e(hg(r(r(n)))).

n<z
ne€Ng

In light of (18.14)), we have, writing ¢ for w(m),

Sk(z) = Z e(hat (k) " + P_1 (1)) - mxc (w0, 1),

t>1

were mg(x,t) was defined in Lemma Setting R(t) := a7 (k1)*t* + P,_1(t), we may write

the above as
Sk(x) = e(hR(t)) - mx(x,t).

t>1

Our goal will be to establish that, given any K € P,

(18.15) Sk(x) = o(x) (x — 0).
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If we can accomplish this, then, in light of Lemma the proof of Theorem will be
complete.
To prove ([18.15)), we first observe that

(18.16) > Tr(x,t) =o(x)  (x— o)

t>1

[t—logg x|>+/logg x /e

and furthermore that

7TK(.T}, tl)

18.17 max max
( ) Tk (x, t2)

t1 to

[t1—logg z|<y/logg x/ex |tg—t1|<eg+/logox

—1‘—>Oasm—>oo.

Now, consider the sequence of real numbers (z,),>o defined by

\/log,
20 = logy x — 82 and for each m > 1 by z,, = 2,1 + €21/ 10g, T,

xT

2/e.)4/1
and, setting M = V /22) V108 xJ = L2

— |, further consider the intervals
ex/logy €§J
]j ::[LZ]‘J7Z]'+1> (]:0,1,,M)

Now, observe that, uniformly for j € {0,1,..., M}, as  — oo,

(18.18) > e(hR(t))mx(,t) — wic(x, |2]) Y e(hR(1)] < o(1) > mxc(x,t).

telj tEIj tEIj

Using the fact that the above intervals I; are all of the same length, say £ = £,, it follows
from Lemma that, uniformly for j € {0,1,..., M},

(18.19) %Ze(hR(t)) S50 (2 o0).

tel;

Combining (|18.18) and ((18.19) allows us to conclude that

> e(hR(t)mx(z,t)| = of).

j=0 tel,

Using this last estimate and recalling estimates ((18.16)) and ({18.17)), it follows that estimate
(18.15)) holds, thus completing the proof of Theorem [18.2,

PROOF OF THEOREM [18.3]

1
Given a large number z, let T'=T, := Z —, and observe that

Wy <p<Yy

log,
log w,,

(18.20) T = log ( ) +0(1) =log L' + o(1) (x — 00).

131



Further let 6, be a function which tends to 0 as z — oo, but not too fast in the sense that
1

We will be using the fact that, as a consequence of Lemma [18.3] as  — oo,

t—1
i#{ngx:wlg(nqtj):kj, j:O,l,...,t—1}:(1+0(1))j1;[0§#{n§x:wlg(n):k:j}

1
uniformly for positive integers ko, k1, . .., ki satisfying |k; — T'| < 5—\/T and also that

T

l#{n§w:w>i}—>0 as T — 0.

We begin by obtaining an upper bound for the sum

Si= Y kDOMD) - k(D)L

DyeN(B), Dy<Yg®
(D;j,Dj)>1 for some i7j

where r, is as in Lemma keeping in mind that we allow the above sum to run only over
those D, < Y because, as was shown in ({18.4)), the total contribution of those terms for
which at least one of the D, exceeds Y, is negligible. So, let us fix 7, j and consider the sum

Sipt= Y. kK(D)r(D;)L2.

D;,D;EN(B)
(D, Dj)>1
Dy, Dj<Yg®

Writing D; = UD; and D; = V D}, where U and V have the same prime divisors, (D;, D};) =
(U, D;) = (V, D) = 1, we then have

R(Di)r(D;) = k(D)) r(D5)R(U)R(V).

Observe also that, for some positive constant ¢;, we have

-1

K(O)E(V) < ¢ Hp2

p|lU

From these observations, it follows that, for some positive constant c,,

2
0

Si,j < C2 Z % L, Z ’KL(D)

m=2
e eB) DeN (B)

o0

(18.21) =y %-H(Hﬁ(p))zli-

m=2 B
meN (B) pe

132



On the other hand, using (|18.20)),

[Ta+xp) = exp (Z log(1 + ff(p))>

peB pEB

= exp (Z ! + O(l)) =exp(T + O(1))

pEB

= exp(—log L, + O(1)).

Using this last estimate and the fact that

oo
1 1 2
> Loy Lot
m=2 m>wg
meN (B)

say, it follows from ([18.21]) that, for some positive constant cs,

C3 1 2 C3
S < S 2=
YT w, L2 w,
Moreover, in light of the fact that

L, Z k(D,) < ¢4

Dy eN(B)
D, <Y %
for every v=0,1,..., t—1

for some absolute constant ¢4 > 0, we obtain after gathering our estimates that
1

(18.22) S=0 (—) .
Wy

Now, given arbitrary subsets Ey, E1,...,E;_1 of {D: D € N(B), D <Y/}, we have, as
x — 00, in light of ([18.22]),

t—1

(18.23) > K(Do)k(Dy) -+ k(De—1) L = T [ Le Y w(D) | + o(x).
Dg€Eq,....,Dy_1€E4_1 7=0 DeE;
(DZ,Dj)ZI for i#j
Observe that to the discrepancy Dy := D(x1,...,zy) of the real numbers x1,...,zy (as

defined by (0.1])), one can associate the so-called star discrepancy

N
1
Dy = D*(x1,...,xN) := sup |— E 1-p
N ( 1 N) 0<p<l N -
{z;}<B

and establish that D}, < Dy < 2Dj. In light of this observation, defining the function
H,:[0,1) — {0,1} by

(1 0<y<u,
(18.24) ]ﬂ@”—{01fugy<L
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one can easily establish that

D*—max< ZHwn >,

u€l0,1)

implying that if we can show that this last expression tends to 0 as N — oo, it will allow us

to conclude that Dy = D|,) — 0 as N — oo.
To do so, given real numbers ug, u1, ..., u;_1 € [0,1), choose

E;:={D e N(B) : |w(D) — T| < VT/d,, D <Y, H, ({ayq"'"}) = 1}

and apply estimate (|18.23)).

It follows from this that, if we can prove that

(18.25) ({aj ws(ntd) }) is uniformly distributed modulo 1
n>1

for each 7 =0,1,...,t — 1, it will imply that, as + — oo,

S© Hy, (o DR(D)Le —uy  (G=0,1,...t—1),
D eN(B)
ngygw
thus allowing us to conclude that
j)Lx = uguy - w1 + o(1) (x — 00),

t—1

w(D;

Il > Ay s(D

j=0 | DjeN(B)
Dj<Y ®

thereby establishing that the sequence (y )n>1 is uniformly distributed mod [0, 1)".
Thus, it remains to prove ((18.25). To "do so, it is enough to prove Corollary [18.2 -

PRrRoOOF OoF COROLLARY [18.2]

A(n) =[] p* and M, :=]] (1-%).

p®|In
peB

For every D € N(B) with D < Y= we have

#{n<a:A(n) =D} = <1 +0 <10g1w$

Let

))%m: (& = o0),

from which it follows that, as * — oo,

Bi(z) = i#{n <z:wp(n) =k}
(18.26) = (I+o(1)M, Y % + O(Ui(x)),
DeN(B)
w(D)=k
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where

Uplz) = M, Z:%+i#mgxmmn>mawmm»:m,

DeN(B)
w(D)=k
D>Y,®
thereby implying that
(18.27) Z Uk(z) = 0 as & — 00.
k>1

For each positive integer k, let z, = {aq¢*}. Further, let H,(y) be the function defined in
the proof of Theorem [18.3| (see (|18.24])).
In light of estimate ([18.26)), we have, as x — oo,

Rx:éZmW:Zm@%@

n<lz k>1
1
k>1 g(Eé\g(:Bk) k>1

Observing that

allows us to write that

1 1 1
(18.29) Mx:exp{—Z—%—O(—)}:exp{—T+O<—)},
p Wy Wy
peEB
say. Hence, it follows from ([18.27)), (18.28) and ({18.29) that
(18.30) R, = 1)) Hy(z) exp{~T} - — +0( ) (= ).

k>1

Now, since, for any function d, which tends to 0 as z — oo,

Tk
Z exp{—T} - ——>O as & — 00,

we obtain that ([18.30]) can be replaced by

(18.31) R, = (1+0(1)) Z H,(z)Kr + 0o(1) (x — 00),
Tk

where K := exp{—-T} - —
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On the other hand, observe that for any function ¢, which tends to 0 as x — oo, we have

(18.32) max max - 1‘ — 0 as r — o0.

k1 ko

k1
k=T <1l |kg—k1|<exVT
VT |~ %z

Let us now subdivide the interval [T — /T /8,, T + /T /d,] into intervals Iy, I, ..., I,
1»

where s = |2/(6,£,) ], each of length e,4/T. Since, in light of we have
Ky,
(18.33) max —max -1 =0 asz—
7=1,..., S k’l,kQGIJ’ Kkl
and since « is a sharp g-normal number, it follows that, for each j € {1,..., s},
ZHu(zk (I+o(1 Zl (xr — 00).
kel kel

Using this last statement in ((18.31)), recalling (18.33), and writing |I;| for the length of the
interval [, we obtain that, as © — oo,

R, = (1+o0(1 ZZH ) K

J=1 kel;

= 1—|—O ZZH Zk |]|ZKk1
J=1 kel; ki1€l;

= (1+4o(1) Z Ti |ZKk1 ZH (21)
j=1 Y ki1€l; kel;

= (1+40(1) Z > Ky, | (14 o(1))ulL]

=\ a| =)
D N
7j=1 k‘EIj

= (L+o(l)u Y K
\H\gkﬁ/sz
= (1+o(1))u.

Since this last estimate holds for every real u € [0, 1), it follows that R, = o(1) as x — oo
and the proof of Corollary is complete.

FINAL REMARKS

Using the same techniques as above, one could prove the following result regarding the
discrepancy of a t-tuples sequence.

136



Let fi, fo, ..., fi € R]z] be polynomials of positive degree such that the coefficient
of the leading term of each f; is some non-Liouville number o;. Moreover, let
ai, as, .. .,a; be distinct integers and let B be as in Theorem [I8.3] Set

y, = (ilws(n + a)), folws(n + as)), ..., filws(n +ar))) .

-—n

Then,
D(gl,g?...,gm)%o as T — 00

and similarly, if p; and m(x) stand respectively for the i-th prime and the number
of primes not exceeding =,

D(gQ,gg,QS,...,gpﬂz)) -0 as T — 00.

XIX. Distinguishing between sharp and non-sharp normal numbers [33]
(Mathematica Pannonica, 2018)

In 2015, De Koninck, Katai and Phong introduced the concept of sharp normal numbers
and proved that almost all real numbers are sharp normal numbers in the sense of the
Lebesgue measure. They also proved that although the Champernowne number is normal
in base 2, it is not sharp in that base. Here, we prove that various real numbers are sharp
normal numbers, while others are not.

Given an integer ¢ > 2, De Koninck, Katai and Phong [31] introduced the concept of
base q strong normal number, shortly after called base-q sharp normal number. In particular,
they showed that, given a fixed base ¢ > 2, the Lebesgue measure of the set of all those real
numbers « € [0, 1] which are not sharp g-normal is equal to 0.

In a more recent paper [32], we proved that, given a fixed integer ¢ > 2 and letting 7,(n)
stand for the number of ways of writing n as a product of ¢ positive integers, then, if « is
a sharp normal number in base ¢, the sequence (a7,(n)),>1 is uniformly distributed modulo
1. In that same paper, other properties of sharp normal numbers were established.

Given an integer ¢ > 2 and a real number v € (0, 1), we will say that a real number « is
a ~y-sharp normal number in base ¢ if, by setting x,, = {a¢"} for n =1,2,... and

(19.1) M = My = |0nN7], where 6y — 0 and dylog N — oo as N — oo,

we have that
D(znit, - xyinm) — 0 as N — o0

for every choice of dy satisfying ((19.1)).
Observe that in [31], it was shown that the binary Champernowne number

f#:=0.1101110010111011110001001 10101011 11001101 11101111 ...
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is not a sharp normal number. Similarly, one can prove that 6 is not a y-sharp normal
number for any v € (0, 1).
Here, we further explore the topic of v-sharp normal numbers.

MAIN RESULTS

From here on, we let ¢ stand for a fixed integer > 2. Let o = {p1, ps, ...} stand for the
set of all primes. Given a positive integer n, we let 7 stand for the concatenation of the base
q digits of the number n.

In 1946, Copeland and Erdés [10] showed that the now called Copeland-Erdés number

0:=0p1p2p3---
is g-normal. Here, we will prove the following.
Theorem 19.1. Given any v € (0, 1), the number 6 is not a binary ~y-sharp normal number.

In the same 1946 paper, Copeland and Erdés conjectured that if f € Z[z] is a polynomial
of positive degree such that f(z) > 0 for # > 0, then the number 8 = 0.f(1) f(2) f(3)... is
a normal number in base 10. This was proved to be true in 1952 by Davenport and Erdds
[11]. Here we prove the following.

Theorem 19.2. Given a positive integer r, the real number
B=0TTF ...
1s not a binary sharp normal number.

Fix an integer ¢ > 2. Given an integer n > 2, let p(n) stand for its smallest prime factor
and write p(n) for the concatenation of the digits of p(n) in base ¢. In 2014, we showed [22]

that the number 7 = 0.p(2) p(3) p(4) ... is a g-normal number. Here, we prove the following.
Theorem 19.3. Given an arbitrary real number v € (0, 1), the real number
n=0.p2)p(3)p(4)...
1s a y-sharp normal number in base q.
Fix an integer ¢ > 2. Let ©g, o1, ..., 941, R be disjoint sets of primes such that
P=poUprU---Up, 1 UR
and such that #R < oco. Assume also that

m([z, 7 +y] N )

max max -1 =0 asxz — oo.
0<i<j<q—1 - <y<z | 7([z, + y] N p;)

More over let A stand for the empty word and for each p € p, let

mm’{A if peRr.
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Given an integer n > 2 written as n = ¢{* - - - ¢, where ¢; < --- < ¢, are primes and each
a; € N, let

S(n) = H(q) ... H(g)-
Further set S(1) = 1. In 2011, we showed [I4] that the number 0.Concat(S(n) : n € N) is a
g-normal number. Here, we prove the following.

Theorem 19.4. Given an arbitrary real number v € (0,1), the real number

0.5(1)S(2)S(3) ...
s a y-sharp normal number in base q.
We also have the following.

Theorem 19.5. Fizx an integer ¢ > 2. Given any pair of prime numbers u < v, let e(u,v)
stand for the unique integer £ € {0,1,...,q — 1} such that
é < log u - 4+ 1'
q ~ logv q

For each positive integer n = q¢{* - -- g%, let

§(n) = { %%,@)6(6]2&3)---é(qr_l,qr) ZZ 283 i ?

Then, given any real number v € (0,1), the number
0.Concat(&(n) : n € N)

1s a y-sharp normal number in base q.

Let P be a set of primes and set 7p(z) := #{p < x : p € P}. Moreover, let N' =
{n1,na,...} be the semi-group generated by P. Let F'(z) € Z[x] be a monic polynomial of
positive degree t. Assume that there exists a positive constant 7 such that

lim WP(x) =T,
£—00 l1(x)
. Todt : . . e _
where li(z) := Toaf’ Fix an integer ¢ > 2. Given a positive integer n, let 7 stand for the
2 108

concatenation of the digits of n in base ¢ and consider the real number

no = 0.F(ny) F(na) F(ng) ...

It was proved by German and Katai [40] that 7y is a g-normal number. Their proof uses
essentially the same method as the one used in the paper of Bassily and Katai [2], along
with other ideas of E. Wirsing, H. Davenport and L.K. Hua. Using these ideas, one could
prove the following.

Theorem 19.6. The g-normal number 1y is not sharp.
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PRrROOF OF THEOREM [19.1]

First observe that it has been proved by Montgomery [53] that, given any small € > 0,

(19.2) m(z+y)—7(z)=(14+o0(1)) uniformly for 212t <y < z.

log x

1
Let t > 2 be an integer sufficiently large so that v <1 — o Moreover, for each integer

k> 1, let 7y = 22" and y;, = x};l/? = 222" Then, let ¢; < g2 < --- < qg be all the

primes located in the interval (z, xx +yi|, where clearly R = R(k). For each j € {1,..., R},
let a; be defined implicitly by ¢; = zx + a;. Then, a; < y; and in light of ((19.2), we have
R =m(x, +yr) — 7(zx) = (14 o(1))yr/ log zs, (k — 00).

Given an integer n > 1, let a(n) stand for the sum of its binary digits. Adopting the
argument of Erdés and Copeland used in [I0], we can say that for every arbitrarily small
d > 0, there exists a constant k = x(d) > 0 such that

# {m <y a(m) > (148)2"! (1 - %) } <y

provided k is sufficiently large. It follows from this observation that

R R
T = ) alg) =R+ aly)
Jj=1 j=1
(19.3) < R+ (1+4)2%! (1 —~ %) R+ 2Fy =% < (1+20)2F! (1 - %) R,

provided k is large enough.
Letting A(n) stand for the number of binary digits of n and observing that A(g;) = 2% +1
for j =1,..., R, it follows from ({19.3) that

(19.4) T < (% - 5) ix(q—j).

However, if § were to be a binary y-sharp normal number, we would need to have

T 1
ST 2 P

which clearly contradicts ((19.4]). We may therefore conclude that # is not a binary ~-sharp
normal number.

PROOF OF THEOREM [19.2)

Given an integer n € [2% 2¥1) write its binary expansion as n = ZIZ:O e,(n)2". In [2],
the following result was proved.
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log x

Lemma 19.1. Let N = L
log 2
such that F(n) >0 forn > 1. If

J and let F(x) € Z[x] be a polynomial of positive degree r

NY3 <y <rN— N3,

then,

é#{n <wie(F(n) =1} = % o (loglAl’) 7

where A is some positive constant which may depend on the particular polynomial F'.

In order to prove Theorem [19.2] we use Lemma with F'(n) =n".
Let M = M, := 2% and let

(19.5) f(m) = (4M* +m)" = (2M)* + g(m),

where

o) =3 () earimr,

J=0

Recalling that a(n) stands for the sum of the binary digits of n, whereas A(n) stands for

the number of binary digits of n, our goal will be to estimate Ay := i a(f(m)) and to
y m=1
compare it with Ly, := Z A(f(m)).
Now, let !
In=10,2k), L =[2k+1,4k], ... L1 =1[2(r—1)k+1,2rkl.

Given any I € NU {0}, we shall be using the function a;(n) := )" ., €.(n).
It follows from ([19.5)) that

a(f(m)) =1+ a(g(m)) =1+ ar,(g(m)).
With M fixed, consider the expression
M
K; ::Zoz[j(g(m)) (j=0,1,...,r—1).
m=1

Observing that a,(g(m)) = ay,(m”) and choosing A = 2/3 in Lemma [19.1] we get that
Ko = kM + O(k**M).

Similarly, we obtain that
M T

(19.6) K, = Z ar, (m’“ + <1> (2M)2m’“—1) = kM + O(kY3 M)
m=1
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and more generally that

(19.7) K;j=KM+OE"?M) (j=2,....,r—2).
We also get that
.
(19 analotm) =ar, (| 7))25H0 ) = e

implying that

k
(19.9) Koy =M+ O(K'3M).

Therefore, gathering (19.6)), (19.7), (19.8) and ((19.9)), we obtain that

1
Ay =M+ (r — 1)kM + gM + O(KV3M) = (r — 5) kM 4 O(K'3 ).

Since A(f(m)) =2(k+1)r+1form=1,..., M, it follows that

Ly =Y A(f(m)) = 2(k + L)r + 1)M.

Combining these last two relations, we find that
Ay 1 1
19.10 li — ===
(19.10) Mow Ly 2 2
However, if 3 were to be a binary sharp normal number, we would need to have
. Ay 1
imsup — = —,
M—)oop Ly 2
which is clearly in contradiction with ((19.10). We may therefore conclude that /3 is not a
binary sharp binary normal number.
PRrROOF OF THEOREM [19.J

Given large numbers x and y = y(x), we set

n. = p(2)p3)p4) ... p([x]),
p=pay = p(lz]+1)p(lz] +2) ... p(lz] + [y])-

In [22], we proved that there exists an absolute constant ¢ > 0 such that

(19.11) A1z) = (1 +0(1))cx loglog (x — 00).

Pick an arbitrary positive number § < 1, let y = y(z) = 2° and consider the interval
Jr = [z,x 4+ y]. Using standard sieve methods, given a fixed small number £ > 0, one can
prove that, for any prime ) < ¢, for some absolute constants C; > 0 and Cy > 0,

Y 1 Y
(19.12) 1< (Jl@ 11 (1 - %) < @m

P?rze)fQ m<Q
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and that, for some absolute constant C3 > 0,

Y
logx’

(19.13) #{neJ, pn)>a"} <Cs

In light of (19.11]), it is easily seen that, for some absolute constant ¢; > 0,
(19.14) Mtz y) = (1 +0(1))cry loglog (x — 00).

Let A, :={0,1,...,¢ — 1}. Moreover, let K be an arbitrary positive integer and let T
be the set of the g-ary words of length K. Here, by a ¢g-ary word of length K, we mean a
block of K base g digits. Choose an arbitrary 5 € Tg. Given a word £ whose digits belong
to Ay, let o(&, 5) be the number of times that 5 appears as a subword of the word &. It is

clear that
lz]+y)

o(u.B)= Y olp(n),f)+O0(yK)

n=|z|+1

and therefore that, if 81, By € T with 81 # fo, then

lz]+1y]

(19.15) o, 80) = ol B <D |oln), B1) = o(p(n), B2)| + Oy K).

n=|z|+1

Clearly, the theorem will be proved if we can show that

|0-(/L7 Bl) - 0'(,&, 62>|
19.16 0 .
( ) ﬁlzl%él{ X — (x — 00)

Indeed, if (19.16]) holds, then, given any 5 € Yk,

S A ()
s 3 )~

=0 (z— o),

thereby implying that p is a g-normal sequence, as requested.

Arguing as Copeland and Erdds did in their paper [10], we have that, given a fixed £; > 0,

(19.17) 4 {Q € pN[U,2U]: max 0(Q. 1) — o(@. Bl 51} < U,
g N@)

where k and ¢y are positive constants depending on £, and K.
Let us now say that @) is a bad prime if

max ‘U(Qaﬁl) __O-(Qa 62)' > g
g N@Q)

Now, observe that, for each 8 € Y,

lz]+1y]
> o), B) = Y o@8)#{neJ:phn) =Q}

n=|xz]+1 Q<x®



+O (#{n € J, : p(n) > z°} -log z),
which in light of (19.13) can be written as

lz]+ |y
> opn),B)= > o(@Q.B)-#{n € J.:pn)=Q}+O(y).

n=|z]+1 Q<x®

It follows from this last estimate that

lz]+1y]
S = Z ’00%751)_0(@’52)
n=|z|+1
(19.18) < O(y)+e1 Y MNQ)-#{neJ,:pn)=Q}+ B(x),

Q<zt

where B(z) stands for the contribution of the bad primes.

Now, since, in light of (19.17)), the number of bad primes @Q € [2%,2“"!] is no larger than
o - (24)17%, it follows, using (19.12), that there exists a positive constant ¢z such that

— 1
B) < e Y Mgpasw Y g

Q<xf Q<€
Q bad primes Q bad primes
1
< c3y Z @#{Q € [2%,2"] . Q is a bad prime}
2u§$€
1 u(l—k)
< 3Cy Z -
Qu< g
(19.19) = c3c Zi<cc ii<c
. 3C2Y . qur = €8 2Y 2 ur 4Y

for some positive constant c;.

Substituting (19.19)) in (19.18)) and recalling ((19.14]), it follows from ((19.15]) that

max lo(p, Br) — a(p, Ba) < O(y) + e (i) + O(y)
SRS A(w) - )

B1#B2

<e +o(l) (z— o0),

which implies (19.16)), thereby completing the proof of the theorem.

PROOFS OF THEOREMS [19.4], [19.5] AND [19.6

The proofs of Theorems [19.4] [19.5| and [19.6| are similar to that of Theorem [19.3| and we
will therefore omit them.
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Open problems and conjectures

1. Consider the Liouville function A\(n) := (—1)%™ and define the sequence (€,,)m>1 as

follows:
0 i A(m) =-1,
UL i Am) =1
and consider the number

f == 0.616263 e

It is not known if £ is a binary normal number.

Observe that this would be an immediate consequence of the Chowla conjecture, which
can be stated as follows: Given a positive integer k, for every choice of integers 0 < a; <
as < -+ < ap, we have

.1
Jim 2 3" M+ @)+ Ao+ ) =0,

It is clear that if the Chowla conjecture is true, then the number £ is a binary normal
number. Observe that recently, some partial results concerning the Chowla conjecture have
been obtained (see K. Matom-Aki, M. Radziwi and T. Tao, An average form of Chowla’s
conjecture, arxiv.org/pdf/1503.05121v1.pdf).

2. Given an integer ¢ > 2, let A, = {0,1,...,¢ — 1} and Q(n) = Zpo‘Hn «. Consider the
following generalisation of Chowla’s conjecture: Given arbitrary positive integers a; < --- <
G,

r—00 I

1 1
lim —#{n <z:Q(n+a;) =4 (mod q), jzl,...,kz}:g

for every choice of ({1, .., () € AL Now, consider the function R,(m) defined by Ry(m) = ¢
where ¢ € A, is the unique integer such that m = ¢ (mod ¢) and the real number

1= 0.Rq(Q(1)) Ry(2(2)) Ry (2(3)) - ..
If the above generalisation of Chowla’s conjecture is true, then the number 7 is a ¢g-normal

number.

3. Let py < p2 < p3 < --- be the sequence of all primes and consider the set B, =
{lo, ..., Ly(g)-1} of reduced residues modulo g. With the function R,(m) defined above (in
2), consider the function

ey _{ Ry(m) if  Ry(m) € By,
A if  (m,q) #1

and the corresponding real number

p = 0.Ry(p1)Ry(p2)Ry(ps) - -
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We make the conjecture that p is a g-normal number, although we are not absolutely sure
that it is true.

The following conjecture of Rényi is somewhat simpler: Let ¢1,t5,...,t;, be arbitrary
integers belonging to B,. Then, there exist infinitely many positive integers n such that
Pnt; = t; (mod q) for j = 1,2,... h. Interestingly, this conjecture has been solved in the
particular case t; =ty = -+ =, (see Shiu [58] and Remark [8.1] on Page [58)).

4. Let M be the semi-group generated by the integers 2 and 3. Let m; < my < --- be
the list of all the elements of M. Is it possible to construct a real number « such that
the sequence (Y, )nen, where y, = {m,a} (here {x} stands for the fractional part of x), is
uniformly distributed in the interval [0,1)?

5. Is it possible to construct a real number § for which the corresponding sequence ($;,)nen,
where s, = {(v/2)"3}, is uniformly distributed in the interval [0, 1) ?

6. Given a fixed integer ¢ > 2, let 1 = {y < 1 < -+ < Lg(4—1 be the list of reduced residues
modulo g. Further let p; < py < --- be all those prime numbers which do not divide gq.
Denote by ¢, the set of these primes. For each p € g,, let h(p) = v if p = ¢, (mod ¢) and
consider the real number o whose ¢(g)-ary expansion is given by a = 0.h(py) h(p2) h(ps) - ..
Concerning this number, we state three conjectures:

e Conjecture 1: « is a ¢(q)-ary normal number.

e Conjecture 2 (somewhat weaker): « is a ¢(g)-ary normal number with weight 1/n,
in the following sense: For every positive integer k, given e; ... e, an arbitrary block
of k digits in {0,1,...,¢(q) — 1}, we have

R(Pp1)-h(Ppyp)=e1-ef

e Conjecture 3: The sequence ({¢(q)"a})nen is everywhere dense in the interval [0, 1).

7. Given a fixed integer ¢ > 2, consider the two sequences (&,)neny and (0, )nen defined
by &, = w(n) (mod ¢) and 6, = Q(n) (mod g), where w(n) =3_ 1 and Q(n) =>_ ., a
Then, let a, 1= 0.6165 ... and §, := 0.6195 . .. Moreover, consider the sequence (k,)nen defined
by kn, = Q(p, +1) (mod ¢), where p,, stands for the n-th prime, and let 7, := 0.51k2 ... We
state the following conjecture:

Conjecture: The numbers oy, 3, and ~, are all g-ary normal numbers.

Observe that the case of dy is essentially Chowla’s conjecture, which we already stated

on Page [09
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