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Abstract

Given a positive integer k, we construct a binary number 0.aiazas ... having the
property that any sequence a1 ... am1x of k consecutive digits from its binary ex-
pansion appears with a frequency directly related to the various permutations of the
set {1,2,...,k+1}.
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1 Introduction

Given a positive integer k, let II; be the set of the permutations of the set {1,2,...,k +
1}. Various interesting aspects of this set II; can be studied; see for instance the book of
Pemmaraju [1]. Here, we use this set to construct real numbers with an interesting property,
as follows. Given 7 € Ily, let 71,72, ..., jrs1 be defined by (i) = j;. Further set, for each
h=1,2,... k,
. 1 it gagr > g,

P i) = { 0 if  Jur1 < Jn

Moreover, given (01, 0a,...,6) € {0,1}F, set

D(01,02,...,0k) :=#{m €y : p(r(i),7(i + 1)) =0; for i = 1,2,...,k}

and D(61, 6o, -, 54)
81,0, ..., 0) = —— 2 h
/{( 1,02, ) k) (k+1)'
As we will see in Section 4,
(01, 0 Op) > L (k=1,2,...)
K(01,02,...,0k _(l{/‘—|—1)' =1,2,...).
To illustrate the function £(dy, da, . . ., Ix), if we choose the case k = 4, we obtain the following

table.



’ (61, 02, G3, 04) ‘ D(61, 02,03, 04) ‘ K(01, 0, 03, 04) ‘

(0,0,0,0) 1 1/120
(0,0,0,1) 4 1/30
(0,0,1,0) 9 3/40
(0,0,1,1) 6 1/20
(0,1,0,0) 9 3/40
(0,1,0,1) 16 2/15
(0,1,1,0) 11 11/120
(0,1,1,1) 4 1/30
(1,0,0,0) 4 1/30
(1,0,0,1) 11 11/120
(1,0,1,0) 16 2/15
(1,0,1,1) 9 3/40
(1,1,0,0) 6 1/20
(1,1,0,1) 9 3/40
(1,1,1,0) 4 1/30
(1,1,1,1) 1 1/120

Our purpose in this short paper is to construct some binary number
a = 0.a1aq0a3. ..,

that is, where each digit a; € {0, 1}, and such that

1
]\}l_lgoﬁ {m<N Am+1 - am+k:61---5k}:/€(517---75k)~

To construct «, we proceed as follows. First we set
Fyv=[e", ") and Ly =[log N, N] (N=1,2,...).

Let p(n) = py(n) stand for the smallest prime divisor of n which is located in the interval
Ly. Observe that the number of those n € Fxn which do not contain any prime divisors in

Ly is bounded by
log log N
o H oN
(1 B _> s¢ logN ’

pELN
pPEP

To each number n € Fy, we associate the number

. 1 ifp(n+1)>pn)and n+1 € Fy,
"1 0 otherwise

for some absolute constant ¢ > 0, where p stands for the set of all primes. Thus, ¢, = 0 if
p(n+1) < p(n)orif n < eVt < n+ 1 or if either p(n) or p(n + 1) does not exist. Then, to
each N € N, we associate the number

&n = Concat(e, : n € Fy),

and we then define

(11) a = 0.525354...
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2 The distribution function of ({2"a}),>1

With o as in (1.1), let 0 < u < 1 written as

th | ta | 13
2.1 T A
(2.1) U= + 52 + 53 +
Here, we may assume that t,, = 0 for infinitely many n € N. We can prove that
1

(2.2) lim —#{n < N :{2"} <u}=F(u) exists.

N—oo N
To see this, we proceed as follows. Let r; < ry < --- be a sequence of integers such that

Tj—1
, 125 ~ 1 :

ty;, = 0 for some j € N and then set u; := Z; o and further define u; := o +uy. It is
clear that

We then introduce the two functions
1
Fi(u) = liminf —#{n < N : {2"a} < u},
N—oco N
1
Fy(u) = limsup —#{n < N :{2"a} < u}.
N—o0 N
With these definitions, we easily see that

(2.3) Fluj) = > k(ar,. .. a.,) < Fi(u),

ar,
A <u
o™i =

(2.4) F(a;) = > K(ar,. .. ap,) > Fy(u).

ar;
21,92 4 J <
53+t ot <u

a1 az
F+3++

Moreover,
(2.5) F(uj) — F(uj) = 6ty .., ey, 1).
Also, observe that it will follow from Theorem 4.1 below that

(2.6) lim max  K(dy,...,0,) =0.
m—00 §y,...,0m €{0,1}™
It then follows from (2.3), (2.4), (2.5) and (2.6) that F}(u) = F5(u) and therefore that F'(u)
exists, as claimed.
We can even prove that F'(u) is a continuous function. To show this, we first fix u and
choose two sequences of numbers (ups)pr>1 and (var)pr>1 such that uy < u < vy for each

M > 1, and such that uy; — v and vy, — u as M — oo. Then, let s be an integer such that

s+1

|u-2M| = s and choose uy; = ZLM and vy = o We then have

F(uy) = Z k(ay,...,an),

al apm M
7+"'+W§8/2
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F(uy) = Z k(ay, ... an),
Gt A <(s+1)/2M

with 1 b
5 =244 M
i~ g T
Since F(var)—F (upr) = K(by, ..., by) = 0as M — oo, we therefore have that limpy o0 F'(up) =

F(u) and limp/ o F(vp) = F(u). Thus we proved that F(u) is continuous at the points
u € R\ Q and also continuous from the right at those points u € Q of the form u = s/(2%),
where s is an odd integer. Moreover, assuming that /i is an integer larger than R and setting
ug = u—1/2% we have F(u) — F(ug) = s(t1,to,...,tr_1,0,1,1,...,1) which tends to 0 as
K tends to infinity, thereby establishing that F'(u) is continuous from the left, as well.

3 Main theorem

Theorem 3.1. Given an integer k > 2 and an arbitrary k-tuple (61, ...,0) € {0,1}*, we
have

hm M#{mSM{Q Oé}e |:§—|—+?,5+ +%+2k)}:/€(51”5k)

Proof. Let py,pa, ..., prr1 be distinct primes located in the interval Ly. Let us count those
n € Fy for which p(n + j) = p;. Also, let {i1,...,ik+1} be that particular permutation of
the set {1,2,...,k + 1} for which p;, <p;, <--- < ps,,,. Then, set

Q= ][] »

log N<p<U
pPEP

Since n+j =0 (mod p,;) for j =1,2,...,k+1, it follows that n = m - p1ps - - - pr41 +r with

(r,p1p2 - pry1) = 1. Moreover, (n+iy, Qp, ) = 1, (nti9,Qp, ) =1, .. ., (n—l—z’kH,kaH) =1
Using standard asymptotic sieve techniques, we can write these conditions in the form

k+1 k+1 Qp.
Piq Piy,

r (mod pips - - -pk+1).

Thus the number of such numbers n € Fy is, as N — o0,

H#FN ( k:+1> ( k) ( 1)
1+o0(1)— =% . 1-— 1—=)--- 1—=
(1+o(1) -T2 — H , [1 o) 10 p

k+1
1
- (1 logloglog N - [T ————
(14 o(1))#Fn - logloglog ||pzloglogpl



The important observation here is that this asymptotic behavior does not depend on the
particular permutation of the primes py, ps, ..., prr1 we choose. We may therefore conclude
that, as N — oo,

1 01 O 01 O, 1
- Fy: {2 O O % L  o(1))k(G, ., B).
#FN#{mE v {2"a} € 2+ +2k,2+ +2k+2k (14 0(1))k(01, ..., 0%)
Now, we need to count those {2"a} (m = 1,2,...,|z]) not only for the particular values

x = eV but also for the more general values z € (e, eV 1!).
So, let € > 0 be an arbitrarily small number and set x = eN¥*? with 0 < # < 1. We now
examine two separate cases. If § < ¢, then

#{n:eN <n<a}<eNef —1) < 2.

On the other hand, if § > ¢, setting S := [eV, eN*?), we may then repeat the above argument
for the interval S instead of Fn and obtain the same result. Therefore, in both cases, the
proof is complete. O

4 The size of k(d1,...,0;)

Theorem 4.1. Let k > 2 and let ay,aq,...,a; € {0,1} be given. Then,

1 1

G < #(ar, az, -, k) < gy

Proof. First, we prove the first inequality, namely

1
(4.1) k(ay,as, ... a;) > G
To do so, we let ji,..., . be the indices of those a;’s for which a;, =0 (v =1,...,7)
and let t;,...,t, be the indices of those a;’s for which a;, = 1 (© = 1,...,s). The case
where one of the two sets {j1,...,7,} or {t1,...,ts} is empty is much more simple. So, let

S={1,...;r}and M ={r+1,...,k+1}. Now, let {u(1),...,u(k+ 1)} be a permutation
of {1,2,...,k + 1} satisfying

L {u(jr +1),u(fo +1),...,u(j + 1)} is a permutation of S satisfying the condition
If jor1 = jo+ 1 for some £ € {1,...,r}, then u(j,+ 1) > u(jes1 +1).
Observe that such a permutation clearly exists.
2. {u(t; + 1), u(ta +1),...,u(ty—, + 1)} is a permutation of M satisfying the condition
Ift,;1 =t,+1forsome v e {1,...,s}, then wu(t, +1) <u(t,41+1).

Such a permutation also clearly exists.



For such a permutation {u(1),...,u(k + 1)}, we have that p(u(¢),u(¢ + 1)) = a, for £ =
1,...,k. The special case S = () is very simple, because in this case, u(j) = j for each
j=1,...,k+ 1. On the other hand if M = (), then

wl)=k+1, uw?2)=Fk ..., u(k+1)=1

This completes the proof of (4.1).
We will now prove the second inequality in Theorem 4.1, namely

1
(42) ﬁ(al,ag,...,ak) < m

Assume that {j1, j2, ..., jrr1} is @ permutation of {1,2, ... k+ 1} satisfying p(j¢, jer1) = ae
for £ =1,...,k. Assume first that k£ + 1 is even and consider the pairs

(J1,792),  (UssJa), -y (U Jrs1)-

If a; = 1, then j; < jo; if a; = 0, then j5 > j1; if ag = 1, then j3 < j4; if ag = 0, then j35 > j4,
and so on, up to if ap = 1, then jx < jgi1; if ax = 0, then jr 1 < Ji.

To sum up, this means that the number of associated permutations is no larger than
(k+1)!
o(k+1)/2

The case where k + 1 is odd can be treated in a similar manner, since we then have that
k is even, in which case we consider the k/2 4+ 1 numbers

(jl?j?)a <j37j4)7 ceey (jk*l?jk)? ijrl?

which allows us in the end to conclude that the number of associated permutations is no
(k+1)!

ST

In both cases, we have proved (4.2) and the proof of Theorem 4.1 is complete.

larger than

References

[1] S. Pemmaraju, Computational Discrete Mathematics, Cambridge University Press, 2003,
xiv+480 pages.

Jean-Marie De Koninck Imre Katai

Dép. math. et statistique Computer Algebra Department
Université Laval Eotvos Lorand University
Québec 1117 Budapest

Québec G1V 0A6 Pazméany Péter Sétany 1/C
Canada Hungary

jmdk@mat.ulaval.ca katai@inf.elte.hu

JMDK; fichier: permutations-2.tex; le 24 juillet 2020.

6



