Three new conjectures related to the values of arithmetic functions at consecutive integers

Jean-Marie De Koninck ${ }^{1}$, Imre Kátai and Bui Minh Phong

Édition du 9 mai 2019

1 Introduction

Let \mathcal{M}_{1}^{*} stand for the set of completely multiplicative functions f such that $|f(n)|=1$ for all integers $n \geq 1$ and let \mathcal{A}^{*} be the set of completely additive functions. Given $f \in \mathcal{M}_{1}^{*}$, we set $\delta_{f}(n):=f(n+1) f(n)$ for each integer $n \geq 1$, whereas given $f \in \mathcal{A}^{*}$, we set $\Delta_{f}(n):=f(n+1)-f(n)$ for each integer $n \geq 1$.

Given $f \in \mathcal{M}_{1}^{*}$, we say that $w \in \mathbb{C}$ is a strong limit point of the sequence $\left(\delta_{f}(n)\right)_{n \geq 1}$ if there exists an infinite sequence of positive integers $n_{1}<n_{2}<\cdots$ such that $\lim _{j \rightarrow \infty} \delta_{f}\left(n_{j}\right)=w$ and $\liminf _{x \rightarrow \infty} \frac{1}{x} \#\left\{n_{j}<x\right\}=c$ for some constant positive c. Similarly, given $f \in \mathcal{A}^{*}$, we say that $w \in \mathbb{C}$ is a strong logarithmic limit point of the sequence $\left(\delta_{f}(n)\right)_{n \geq 1}$ if there exists an infinite sequence of positive integers $n_{1}<n_{2}<\cdots$ such that $\lim _{j \rightarrow \infty} \delta_{f}\left(n_{j}\right)=w$ and such that $\liminf _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n_{j}<x} \frac{1}{n_{j}}=c$ for some constant positive c.

Here, letting \mathcal{H} (resp. $\mathcal{H}_{\log }$) stand for the set of those $f \in \mathcal{M}_{1}^{*}$ which have at least one strong limit point (resp. at least one strong logarithmic limit point), we conjecture that all functions in \mathcal{H} are necessarily of a certain particular form and we also conjecture that the set $\mathcal{H}_{\log }$ is the same as the set \mathcal{H}.

Similarly, we let \mathcal{K} be the set of those $f \in \mathcal{A}^{*}$ for which there exists some real number $\lambda \in[0,1)$ and an infinite sequence of positive integers $n_{1}<n_{2}<\cdots$ such that $\lim _{j \rightarrow \infty}\left\|\Delta_{f}\left(n_{j}\right)-\lambda\right\|=0$ and $\liminf _{x \rightarrow \infty} \frac{1}{x} \#\left\{n_{j}<x\right\}=c$ for some positive constant c. Here, we conjecture that all functions in $f \in \mathcal{K}$ can be written as $f(n)=d \log n+$ $u(n)+v(n)$ for some constant $d>0$ and where $u(n)$ and $v(n)$ are some basic functions belonging to the set \mathcal{K}.

2 Characterisation those functions belonging to \mathcal{H}

Consider the following three categories of functions.
(A) Those functions f of the form $f(n)=n^{i t}$ for some real number t. Clearly, all these functions belong to \mathcal{H}.

[^0](B) Those functions $f \in \mathcal{M}_{1}^{*}$ such that for some $k \in \mathbb{N}$, we have $f^{k}(n)=1$ for all integers $n \geq 1$. Clearly, all these functions also belong to \mathcal{H}.
(C) Let \mathcal{B} a set of primes such that $\sum_{p \in \mathcal{B}} 1 / p<\infty$. Moreover, let $\mathcal{N}(\mathcal{B})$ be the multiplicative semigroup generated by \mathcal{B}. We construct a particular function $f \in \mathcal{M}_{1}^{*}$ as follows. Let ξ be an arbitrary point on the unit circle. We then define f on the primes p by
\[

f(p)=\left\{$$
\begin{array}{lll}
\xi & \text { if } & p \in \mathcal{B} \\
1 & \text { if } & p \notin \mathcal{B}
\end{array}
$$\right.
\]

One can prove that such functions f belong to \mathcal{H}. Indeed, let f be such a function and let $b_{1}, b_{2} \in \mathcal{N}(\mathcal{B})$ be such that $\left(b_{1}, b_{2}\right)=1$. Since the set of those positive integers n of the form $n=b_{1} \nu$ and for which $b_{2} \mu-b_{1} \nu=1$ with $(\mu \nu, \mathcal{B})=1$ is of positive density, we may therefore conclude that $f \in \mathcal{H}$.

Given three arithmetic functions f_{A}, f_{B}, f_{C} belonging to the categories $\mathrm{A}, \mathrm{B}, \mathrm{C}$, respectively, consider the arithmetic function $f(n):=f_{A}(n) \cdot f_{B}(n) \cdot f_{C}(n)$. One can easily prove that $f \in \mathcal{H}$.

Conjecture 1. If $f \in \mathcal{H}$, then $f(n)=f_{A}(n) \cdot f_{B}(n) \cdot f_{C}(n)$ for some functions f_{A}, f_{B}, f_{C} belonging to the categories A, B, C, respectively.

Conjecture 2. The set $\mathcal{H}_{\log }$ is the same as the set \mathcal{H}.

3 Characterisation those functions belonging to \mathcal{K}

Consider the following three categories of functions.
(A1) Those functions f of the form $f(n)=d \log n$ for some real number d. Clearly, all these functions belong to \mathcal{K}.
(B1) Let $u \in \mathcal{A}^{*}$ be such that $k u(n) \equiv 0(\bmod 1)$ for some $k \in \mathbb{N}$. One can easily see that all such functions u belong to \mathcal{K}.
(C1) Let \mathcal{B} a set of primes such that $\sum_{p \in \mathcal{B}} 1 / p<\infty$. We construct a particular function $v \in \mathcal{A}^{*}$ as follows. Let ξ be an arbitrary point on the unit circle. We then define v on the primes p by

$$
v(p)=\left\{\begin{array}{lll}
\xi & & \text { if } \\
0 \in \mathcal{B} \\
0 & (\bmod 1) & \text { if } \\
p \notin \mathcal{B}
\end{array}\right.
$$

One can prove that such functions v belong to \mathcal{K}.
Given any real number d and two arithmetic functions u and v belonging respectively to the categories B1 and C1, consider the arithmetic function $f(n):=d \log n+u(n)+$ $v(n)$. One can easily prove that $f \in \mathcal{K}$.

Conjecture 3. If $f \in \mathcal{K}$, then $f(n)=d \log n+u(n)+v(n)$ for some real number d and some functions u and v belonging respectively to the categories B1 and C1.

Jean-Marie De Koninck
Dép. de mathématiques
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

Bui Minh Phong
Computer Algebra Department Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
bui@inf.elte.hu

JMDK, le 9 mai 2019; fichier: three-conjectures.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.

