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Abstract

Writing an integer n ≥ 2 as n = pα1
1 pα2 · · · p

αk
k where p1 < p2 < · · · < pk are its

prime factors, for any real β ∈ (0, 1), we define the β-positioned prime factor of

n > 1 as p(β)(n) := pmax(1,bβ(k+1)c). We obtain the limit distribution of p(β)(n).

1. Introduction

Writing an integer n ≥ 2 as n = pα1
1 pα2 · · · p

αk
k where p1 < p2 < · · · < pk are its

prime factors, for any real β ∈ (0, 1), we define the β-positioned prime factor of n as

p(β)(n) := pmax(1,bβ(k+1)c). For convenience, we set p(β)(1) = 1. Recently, Ouellet

[9] improved a result of De Koninck and Luca [2] by showing that p(1/2)(n), the

middle prime factor of n, satisfies the relation∑
n≤x

1

p(1/2)(n)
=

x

log x
exp

(√
2 log2 x log3 x

(
H(x) +O

(
1

(log3 x)2

)))
,
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where logk x stands for the k-iterated logarithm of x assuming that x is large enough

for logk x to be well defined and positive, and where

H(x) = 1− 3 log4 x

2 log3 x
+

(
3

2
log 2− 1

)
1

log3 x
− 9

8

(
log4 x

log3 x

)2

+

(
9 log 2

4
+ 1

)
log4 x

(log3 x)2

and more generally that∑
n≤x

1

p(β)(n)
=

x

log x
exp

(
C(log2 x)1−β(log3 x)β

(
G(x, β) +O

(
1

(log3 x)2

)))
,

where C = (1−β)2β−1

ββ
and

G(x, β) = 1 + c1
log4 x

log3 x
+ c2

1

log3 x
+ c3

(
log4 x

log3 x

)2

+ c4
log4 x

(log3 x)2

with

c1 =
−β(2− β)

1− β
, c2 = β

(
log β − 3− 2β

1− β
log(1− β)− 1

1− β

)
,

c3 =
2− β

2
c1, c4 = (2− β)c2 − c1 +

β

1− β
.

Since the main contribution to the sum of the reciprocals of p(β)(n) comes from

a set of integers of zero density, these results and the investigation of their proofs do

not reveal anything concerning the normal value of p(β)(n), nor for the distribution

of the values of p(β)(n). On the other hand, De Koninck and Kátai [1], using a

Turán-Kubilius type inequality, showed that the normal order of log2 p
(1/2)(n) is

1
2 log2 n. Explicitly, they proved that for any function g(x) tending to infinity with

x,

lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣log2 p
(1/2)(n)− 1

2
log2 x

∣∣∣∣ > g(x)
√

log2 x

}
= 0.

Tenenbaum, in his book [11], provides an estimate for pj(n), the j-th prime factor

of n, namely

pj(n) = ee
j+O(

√
j)

almost everywhere.

Therefore, since the normal order of ω(n) :=
∑
p|n 1 is log2 n and since log2 n =

log2 x+O(1) for almost all n ≤ x, one can expect that for any given ε > 0,

lim
x→∞

1

x
#
{
n ≤ x :

∣∣∣log2 p
(β)(n)− β log2 x

∣∣∣ > ε log2 x
}

= 0.

Here, we show the following stronger result.
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Theorem 1. For any given real number t such that |t| � (log2 x)
ε

for some fixed

0 < ε < 1
8 , we have

1

x
#

{
n ≤ x :

log2 p
(1/2)(n)− 1

2 log2 x√
log2 x

< t

}
= Φ(2t) +O

(
1√

log3 x

)
,

where Φ(τ) :=
1√
2π

∫ τ

−∞
e−v

2/2 dv stands for the normal distribution function.

We also provide a generalization valid for any β ∈ (0, 1).

Theorem 2. For β ∈ (0, 1) and any real number t such that |t| � (log2 x)
ε

for

some fixed 0 < ε < 1
8 , we have

1

x
#

{
n ≤ x :

log2 p
(β)(n)− β log2 x√

log2 x
< t

}
= Φ

(
t√

β(1− β)

)
+Oβ

(
1√

log3 x

)
.

Remark. Doyon and Ouellet [4] have shown that the sum of the reciprocals of

the middle prime factors behaves very differently depending on whether the prime

multiplicity is considered or not. However, Theorems 1 and 2 both hold whether

prime multiplicity is taken into account or not. This follows from the fact that if

we set Ω(n) :=
∑
pa‖n a, then, for any function ξ(x) tending to infinity as x tends

to infinity, we have

1

x
#{n ≤ x : |Ω(n)− ω(n)| > ξ(x)} = o(1) (x→∞).

A more explicit bound is used below to prove it.

2. Preliminary results

Our proofs of Theorems 1 and 2 will make much use of the following completely

additive function Ω
(β)
y (n) (here y is any given positive real number) defined on

primes p by

Ω(β)
y (p) :=

{
−1 if p ≤ y,
β

1−β if p > y.

When the superscript β is omitted, we set Ωy(n) :=
∑
p≤y
pa‖n

a. We also define the

strongly additive function ω
(β)
y (n) on primes p by ω(β)

y (p) := Ω(β)
y (p) and, when the

superscript β is omitted, we set ωy(n) =
∑
p≤y
p|n

1. Finally, we let p(n) (resp. P (n))

stand for the smallest (resp. largest) prime factor of n.
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Lemma 1. Let x be a large real number. Given positive real numbers y < x and

0 < β < 1, we have

#
{
n ≤ x : p(β)(n) ≤ y

}
= #

{
n ≤ x : ω(n) >

1− β
β

, ω(β)
y (n) < 1

}
+R(x, y),

where R(x, y) := #

{
n ≤ x : ω(n) ≤ 1− β

β
, p(n) ≤ y

}
. In particular,

#
{
n ≤ x : p(β)(n) ≤ y

}
= #

{
n ≤ x : ω(β)

y (n) < 1
}

+Oβ

(
x (log2 x)

1−2β
β

log x

)
.

Proof. It follows from the definitions of ω
(β)
y (n) and ωy(n) that

ω(β)
y (n) =

β

1− β
(ω(n)− ωy(n))− ωy(n) =

1

1− β
(βω(n)− ωy(n)) . (1)

Moreover, we have for any integer n > 1 that p(β)(n) > y if and only if ωy(n) ≤ k0 − 1,

where k0 = max (1, bβ (ω(n) + 1)c). Thus, when ω(n) > 1−β
β , we obtain from (1)

that

p(β)(n) ≤ y if and only if ω(β)
y (n) < 1.

When ω(n) ≤ 1−β
β , we have k0 = 1, so that p(β)(n) ≤ y if and only if p(n) ≤ y.

Using the well known Hardy-Ramanujan inequality, the error term follows.

From here on, we focus our attention on the distribution of the function ω
(β)
y (n).

In their paper, De Koninck and Kátai [1] used the function ∆y(n) which is the same

as our function Ω
(1/2)
y (n). Observe that when β = c/d is rational, we have

Ω(β)
y (p) =

{
−1 if p ≤ y,
c
d−c if p > y,

which would allow one to work with the integer-valued function (c− d)Ω
(β)
y (n) and

thus to use tools such as the Selberg-Delange method (see for instance Delange [3]).

For k ≥ 1 and z ≥ 2, we define the function Dk(z) by

Dk(z) = #
{
n ≥ 1 : ω(n) ≤ k, P (n) ≤ z, µ2(n) = 1

}
� 1

k!

(
z

log z

)k
(2)

uniformly for k ≤ (log2 x)
1/3

, where z = x1/` for any real number 1 ≤ ` ≤
(log2 x)

1/3
. We begin by citing a particular case of Proposition 4 of Granville

and Soundararajan [7] which provides information on the moments of the ω
(β)
y (n)

function.
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Lemma 2. For any real numbers ` ≥ 1 and β ∈ (0, 1), set z := x1/` and consider

the functions

µ(β)
y (z) :=

∑
p≤z

Ω
(β)
y (p)

p
and

(
σ(β)
y (z)

)2
:=
∑
p≤z

(
Ω

(β)
y (p)

)2
p

(
1− 1

p

)
.

Then, uniformly for all even integers k ≤
(
σ
(β)
y (z)/M

)2/3
and for all real numbers

2 ≤ y < x and 1 ≤ ` ≤ (log2 x)
1/3

, we have

∑
n≤x

∑
p|n
p≤z

ω(β)
y (p)− µ(β)

y (z)


k

= Ckx
(
σ(β)
y (z)

)k
+O

(
xCkk

3M2
(
σ(β)
y (z)

)k−2)

+O

Mk

∑
p≤z

1

p

k

Dk(z)

 ,

where M = max
∣∣∣Ω(β)
y (p)

∣∣∣ = max
(

1, β
1−β

)
. The constants Ck are given by

Ck :=
Γ(k + 1)

Γ (k/2 + 1) 2k/2
(3)

which for k even corresponds to the Gaussian moments. Moreover, uniformly for

all odd integers k ≤
(
σ
(β)
y (z)/M

)2/3
, for all real numbers 2 ≤ y < x and 1 ≤ ` ≤

(log2 x)
1/3

, we have

∑
n≤x

∑
p|n
p≤z

ω(β)
y (p)− µ(β)

y (z)


k

� Ckx
(
σ(β)
y (z)

)k−1
k3/2M +Mk

∑
p≤z

1

p

k

Dk(z).

The following two easy results (which are consequences of Mertens’ formula) will

allow for an application of Lemma 2 to our problem.

Lemma 3. For any real number ` ≥ 1, set z = x1/`. Then, given a real number

β ∈ (0, 1), we have uniformly for any real numbers 1 ≤ ` ≤ (log2 x)
1/3

and ee <

y = o (z) that

µ(β)
y (z) =

∑
p≤z

Ω
(β)
y (p)

p
=
β log2 z − log2 y

1− β
+Oβ(1).
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In particular, for any fixed ξ ∈ (0, 1), we have uniformly for any y such that log2 y =

(1 + o(1)) ξ log2 x as x→∞ that

µ(β)
y (z) = (1 + o(1))

β − ξ
1− β

log2 x.

Proof. By Mertens’ formula, we have

∑
p≤z

Ω
(β)
y (p)

p
=
∑
p≤y

−1

p
+
∑

y<p≤z

β

p(1− β)

= − log2 y +
β(log2 z − log2 y)

1− β
+Oβ(1) =

β log2 z − log2 y

1− β
+Oβ(1).

Since log2 z = log2

(
x1/`

)
= log2 x−log `, we have, when log2 y = (1 + o(1)) ξ log2 x,

that, as x→∞,

∑
p≤z

Ω
(β)
y (p)

p
=

1

1− β
(β log2 x− β log `− (1 + o(1)) ξ log2 x) +Oβ(1)

= (1 + o(1))
β − ξ
1− β

log2 x−
β

1− β
log ` = (1 + o(1))

β − ξ
1− β

log2 x.

Lemma 4. For any real number ` ≥ 1, set z = x1/`. Then, given a real number

β ∈ (0, 1), we have uniformly for any real numbers 1 ≤ ` ≤ (log2 x)
1/3

and ee <

y = o (z) that

(
σ(β)
y (z)

)2
=
∑
p≤z

(
Ω

(β)
y (p)

)2
p

(
1− 1

p

)
=
β2 log2 z + (1− 2β) log2 y

(1− β)2
+Oβ(1).

Moreover, for any fixed ξ ∈ (0, 1), we have uniformly for any y such that log2 y =

(1 + o(1)) ξ log2 x as x→∞ that(
σ(β)
y (z)

)2
= (1 + o(1))

β2 + ξ − 2βξ

(1− β)2
log2 x.

Proof. On the one hand, using Mertens’ formula, we have

∑
p≤z

(Ω
(β)
y (p))2

p
=
∑
p≤y

1

p
+
∑

y<p≤z

β2

(1− β)2p

= log2 y +
β2(log2 z − log2 y)

(1− β)2
+Oβ(1)

=
β2 log2 z + (1− 2β) log2 y

(1− β)2
+Oβ(1).
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On the other hand,

∑
p≤z

(
Ω

(β)
y (p)

)2
p2

≤ max

(
1,

β2

(1− β)2

)∑
p

1

p2
= Oβ(1).

Hence, ∑
p≤z

(Ω
(β)
y (p))2

p
=
β2 log2 z + (1− 2β) log2 y

(1− β)2
+Oβ(1),

where the error term is uniform in ` and y. If log2 y = (1 + o(1)) ξ log2 x as x→∞,

then

∑
p≤z

(Ω
(β)
y (p))2

p
= (1 + o(1))

β2 + ξ − 2βξ

(1− β)2
log2 x−

β2

(1− β)
2 log `

= (1 + o(1))
β2 + ξ − 2βξ

(1− β)2
log2 x.

From Lemmas 2, 3 and 4, we will deduce the following corollary.

Corollary 1. Let β ∈ (0, 1) be a real number and set z = x1/k for any integer

k ≥ 1. Fix ξ ∈ (0, 1). Then, uniformly for even integers k ≤ N1/3

2 (log2 x)1/3, where

N := min

((
1−β
β

)2
,
(

β
1−β

)2)
, and for y such that log2 y = (1 + o(1))ξ log2 x as

x→∞, we have

1

x

∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

k

= Ck +Oβ,ξ

(
k3/2Ck√

log2 x

)
,

while uniformly for odd integers k ≤ N1/3

2 (log2 x)1/3 and y satisfying the above

bounds, we have

1

x

∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

k

�β,ξ
k3/2Ck√

log2 x
.

Proof. It follows from Lemma 4 with ` = k that, as x→∞,(
σ
(β)
y (z)

M

)2/3

= (1 + o(1))
(β2 + ξ − 2βξ)1/3

(1− β)2/3
(log2 x)

1/3

M2/3
≥ (1 + o(1))N1/3 (log2 x)

1/3
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uniformly for 1 ≤ k ≤ N1/3

2 (log2 x)
1/3

. Thus, we can apply Lemma 2 for any

k ≤ N1/3

2 (log2 x)
1/3

. Now, we write

ω(β)
y (n)− µ(β)

y (x) =

∑
p|n
p≤z

ω(β)
y (p)− µ(β)

y (z)

+

∑
p|n
p>z

ω(β)
y (p)−

∑
z<p≤x

Ω
(β)
y (p)

p


=
∑
p|n
p≤z

ω(β)
y (p)− µ(β)

y (z) +O(k), (4)

where this last bound comes from Mertens’ formula and the fact that the integer

n ≤ x may have at most k distinct prime factors p > z. Note that the error term is

uniform in k. By the binomial theorem and the uniformity of the error term, letting

Fy(z) :=
∑
p|n
p≤z

ω(β)
y (p)− µ(β)

y (z),

we get

(
ω(β)
y (n)− µ(β)

y (x)
)k

= (Fy (z))
k

+O

(
k−1∑
`=0

(
k

`

)
kk−` |Fy (z)|`

)
. (5)

Set R (`) :=

(
k

`

)
kk−` |Fy (z)|`. We now proceed in the same way as in the proof of

Proposition 2 of Granville and Soundararajan [7]. We obtain

1

x

k−1∑
`=0

∑
n≤x

R (`)�β,ξ k
3/2Ck

(
σ(β)
y

)k−1
,

so that, from (5),∑
n≤x

(
ω(β)
y (n)− µ(β)

y (x)
)k

=
∑
n≤x

(Fy(z))
k

+Oβ,ξ

(
xk3/2Ck

(
σ(β)
y (z)

)k−1)
. (6)

When k is even, we have from Lemma 2 that

∑
n≤x

(Fy(z))
k

=
(
σ(β)
y

)k(
xCk +Oβ,ξ

(
xCk

k3/2√
log2 x

))

since k3/2 ≤ σ(β)
y (z). When k is odd, we have∑

n≤x

(Fy(z))
k �β,ξ xCkk

3/2
(
σ(β)
y (z)

)k−1
=
(
σ(β)
y (z)

)k
xCk

k3/2√
log2 x

.
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Finally, we have

µ(β)
y (x) =

β log2 x− log2 y

1− β
+O(1),

so that

ω(β)
y (n)− µ(β)

y (x) = ω(β)
y (n)− β log2 x− log2 y

1− β
+O(1)

uniformly for k in our range. Comparing this estimate with (4) and (5), we can

replace µ
(β)
y (x) in (6) while keeping the same error term, which almost completes

the proof of the corollary. Indeed, what is left is to estimate
(
σ
(β)
y (z)

)k
. From

Lemma 4, we obtain

(
σ(β)
y (z)

)k
=

(√
β2 log2 x+ (1− 2β) log2 y

(1− β)
2

)k (
1 +Oβ,ξ

(
k log k

log2 x

))
,

which completes the proof of the corollary.

We need two additional lemmas that will provide upper bounds on the frequencies

of large deviations of ω
(β)
y (n) and Ω

(β)
y (n) from its mean value. We first recall

Theorem 3.8 of Tenenbaum [11], chapter 3, which we state as a lemma.

Lemma 5. Uniformly for 3 ≤ y ≤ x and 0 ≤ ε <
√

log2 y, we have

1

x
#
{
n ≤ x : |ωy(n)− log2 y| > ε

√
log2 y

}
� e−ε

2/3

and
1

x
#
{
n ≤ x : |Ωy(n)− log2 y| > ε

√
log2 y

}
� e−ε

2/3.

From Lemma 5, we deduce the following corollary.

Corollary 2. Given β ∈ (0, 1), set cβ := (1 − β)2/12. Uniformly for 3 ≤ y ≤ x

and 0 ≤ ε <
√

log2 y, we have

1

x
#

{
n ≤ x :

∣∣∣∣ω(β)
y (n)− β log2 x− log2 y

1− β

∣∣∣∣ > ε
√

log2 x

}
�β e

−cβε2 .

Moreover, the same estimate is valid for Ω
(β)
y (n).

Proof. From the definition of Ω
(β)
y (n), we have

ω(β)
y (n) =

β

1− β
ω(n)− 1

1− β
ωy(n).

From this, it follows that

ω(β)
y (n)− β log2 x− log2 y

1− β
=

(
βω(n)

1− β
− β log2 x

1− β

)
+

(
log2 y

1− β
− ωy(n)

1− β

)
.
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By the triangle inequality, we have∣∣∣∣ω(β)
y (n)− β log2 x− log2 y

1− β

∣∣∣∣ ≤ ∣∣∣∣βω(n)

1− β
− β log2 x

1− β

∣∣∣∣+

∣∣∣∣ log2 y

1− β
− ωy(n)

1− β

∣∣∣∣ . (7)

Assuming that ∣∣∣∣ω(β)
y (n)− β log2 x− log2 y

1− β

∣∣∣∣ > ε
√

log2 x,

it follows that either

|ω(n)− log2 x| >
(1− β)ε

√
log2 x

2β

or

|ωy(n)− log2 y| >
(1− β)ε

√
log2 x

2
>

(1− β) ε
√

log2 y

2
.

Using Lemma 5, the first part of Corollary 2 then follows. The proof for Ω
(β)
y (n) is

similar.

Lemma 6. There exists a positive constant C such that, for all k ≤ log x
log 2 , we have

#{n ≤ x : Ω(n) > k} ≤ Cx(log x)(log2 x)4

2k
.

Proof. Erdős and Sárközy [5, eq (17)] have shown that for all k ≥ 1, there exists a

constant C > 0 such that,

#{n ≤ x : Ω(n) > k} ≤ Cx(log x)k4

2k
. (8)

On the other hand, it follows from the results of Nicolas in [8] that for B log log x ≤
k ≤ log x/ log 2 (with B > 2), we have

#{n ≤ x : Ω(n) > k} ≤ x log x

2k
. (9)

Gathering inequalities (8) and (9), the lemma follows.

Finally, we will be using a technical result of Esseen [6] which has been used in

the proof of Theorem 2 in Rényi and Turán [10].

Lemma 7. (Esseen) Let ε > 0. Let F (x) and G(x) be two distribution functions

such that G′(x) exists for all x and |G′(x)| ≤ A for some positive constant A. Fur-

ther let f(u) =
∫∞
−∞ eiuxdF (x) and g(u) =

∫∞
−∞ eiuxdG(x) denote their respective

characteristic functions. Then, if the condition∫ T

−T

∣∣∣∣f(u)− g(u)

u

∣∣∣∣du < ε
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is satisfied, we have for all real t,

|F (t)−G(t)| < K

(
ε+

A

T

)
for some absolute constant K > 0.

3. The distribution of the ω(β)
y (n) function

In this section, we investigate the distribution of the ω
(β)
y (n) function. Our goal is

to prove to following result.

Theorem 3. Given any fixed real numbers β ∈ (0, 1), ξ ∈ (0, 1) and integer y

such that log2 y = (ξ + o (1)) log2 x as x → ∞, then, for any t ∈ R such that

t = o (log2 x), we have that

1

x
#

n ≤ x :
ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

< t

 = Φ(t) +Oβ,ξ

(
1√

log3 x

)
,

which when β = 1/2, simplifies to

1

x
#

{
n ≤ x :

ω
(1/2)
y (n)− (log2 x− 2 log2 y)√

log2 x
< t

}
= Φ(t) +Oξ

(
1√

log3 x

)
.

Corollary 3. Given any fixed real numbers β ∈ (0, 1), ξ ∈ (0, 1) and integer y such

that log2 y = (ξ + o(1)) log2 x as x → ∞ as x → ∞, then, for any t ∈ R such that

t2 �
√

log2 x, we have that

1

x
#

n ≤ x :
Ω

(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

< t

 = Φ(t) +Oβ,ξ

(
1√

log3 x

)
.

In order to prove Theorem 3, we will apply Lemma 7 with G(x) = Φ(x), allowing

us to choose A = 2. The characteristic function is

1

bxc
∑
n≤x

exp

iuω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

 = f(u)

(
1 +O

(
1

x

))
,

where

f(u) :=
1

x

∑
n≤x

exp

iuω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

 . (10)
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Set g(u) = e−u
2/2. When −1√

log2 x
≤ u ≤ 1√

log2 x
, we have

g(u) = 1 +O
(
u2
)

= 1 +O (u) .

Moreover,

f(u) =
1

x

∑
s≥0

(iu)
s

s!

∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s

.

Hence, it follows that

f(u) = 1 +O

 1

x

∑
s≥1

|u|s

s!

∣∣∣∣∣∣
∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s∣∣∣∣∣∣
 . (11)

Using Corollary 1, we get for s ≤ N1/3

2 (log2 x)
1/3

that

1

x

∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s

�β,ξ Cs =
Γ (s+ 1)

Γ
(
s
2 + 1

)
2s/2

,

so that, if N0 := N1/3

2 (log2 x)
1/3

,

1

x

∑
s≤N0

|u|s

s!

∣∣∣∣∣∣
∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s∣∣∣∣∣∣�β,ξ u. (12)

From Stirling’s formula, we also have

1

x

∑
s>N0

|u|s

s!

∣∣∣∣∣∣
∑
n≤x

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s∣∣∣∣∣∣
≤ 1

x

∑
s>N0

(
eL1

|u|
s
√

log2 x

)s ∣∣∣∣∣∣
∑
n≤x

(
ω(β)
y (n)− β log2 x− log2 y

1− β

)s∣∣∣∣∣∣ (13)

for some positive constant L1 depending only on β and ξ. We bound (13) by treating

separately the cases ω(n) ≤ (log2 x)
7/6

and ω(n) > (log2 x)
7/6

. First observe that,

for any constant L depending only on β and ξ,

∑
s>N0

(
eL |u|

s
√

log2 x

)s
1

x

∑
n≤x

ω(n)≤(log2 x)
7/6

(log2 x)
7s/6 ≤

∑
s>N0

(
eL (log2 x)

2/3 |u|
s

)s

≤
∑
s>N0

(
2eL (log2 x)

1/3

N1/3
|u|

)s
� u.
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Since there exists a constant L2 depending only on β and ξ such that∣∣∣∣∣∣ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

∣∣∣∣∣∣ < L2ω(n)√
log2 x

when ω(n) > (log2 x)
7/6

, we obtain from (13) that

1

x

∑
s>N0

|u|s

s!

∣∣∣∣∣∣∣∣
∑
n≤x

ω(n)>(log2 x)
7/6

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s
∣∣∣∣∣∣∣∣

�
∑
s>N0

(
eL2 |u|
s
√

log2 x

)s
1

x

∑
n≤x

ω(n)>(log2 x)
7/6

ω(n)s. (14)

Using Lemma 6, we have

1

x

∑
n≤x

ω(n)>(log2 x)
7/6

ω(n)s � (log x) (log2 x)
4

∑
(log2 x)

7/6<j≤ log x
log 2

(
e
s log j
j

2

)j
.

For t > 1, the function

h(t) =

(
e
s log t
t

2

)t
reaches its maximum when t = s

log 2 , so that

1

x

∑
n≤x

ω(n)>(log2 x)
7/6

ω(n)s � (log x)
2

(log2 x)
4

(
s

e log 2

)s
.

It follows from (14) that

1

x

∑
s>log2 x

|u|s

s!

∣∣∣∣∣∣∣∣
∑
n≤x

ω(n)>(log2 x)
7/6

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s
∣∣∣∣∣∣∣∣� u. (15)

When N0 < s ≤ log2 x, we obtain from Lemma 6 that

1

x

∑
n≤x

ω(n)>(log2 x)
7/6

ω(n)s � (log x)
2

(log2 x)
4 (log2 x)

7s/6

2(log2 x)
7/6

.
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Thus,

1

x

∑
N0<s≤log2 x

|u|s

s!

∣∣∣∣∣∣∣∣
∑
n≤x

ω(n)>(log2 x)
7/6

ω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s
∣∣∣∣∣∣∣∣� u. (16)

Combining (12), (13), (15) and (16), it follows from (11) that

f(u) = 1 +Oβ,ξ(u).

Thus, we obtain

f(u) = g(u) +Oβ,ξ (u) (17)

for −1√
log2 x

≤ u ≤ 1√
log2 x

. Now, set T :=
√

log3 x
2 . We want to show that g(u) is

a good estimation of f(u) when 1√
log2 x

< |u| ≤ T . By expanding the exponential,

we obtain

f(u) =
1

x

∑
s≥0

1

s!

∑
n≤x

iuω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s

= f1(u) + f2(u) + f3(u) + f4(u),

where 0 ≤ s < S1 in f1, S1 ≤ s < S2 in f2, S2 ≤ s < S3 in f3 and s ≥ S3 in f4. For

reasons that will become clear during the course of the proof, we set

S1 := exp

(
log3 x

4 log4 x

)
, S2 := (log2 x)1/3−ε, S3 := (log2 x)1+ε,

where ε is a real number satisfying 0 < ε < 1/10.

3.1. The estimation of f1(u)

Lemma 8. Uniformly for |u| ≤
√

log3 x
2 , we have

f1(u) = 1 +

∞∑
s=2, s even

Cs(iu)s

s!
+Oβ,ξ

(
(log3 x)

5/2

(log2 x)
1/4

)
,

where the Cs’s are the constants defined in (3).

Proof. Recall that we chose S1 <
N1/3

2 (log2 x)1/3 so that f1(u) can be estimated

using the result of Soundararajan and Granville [7], here given by Lemma 2 and

Corollary 1. Indeed, using Corollary 1, we have

f1(u) =
1

x

∑
0≤s<S1

1

s!

∑
n≤x

iuω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s

= Σ1 +O (Σ2) ,
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where

Σ1 =
∑

0≤s<S1, s even

Cs(iu)s

s!

and

Σ2 =
∑

0≤s<S1

|u|s

s!

s3/2Cs√
log2 x

.

We have

Σ2 �β,ξ
1√

log2 x

∑
0≤s<S1

s2
Cs
s!

(
log3 x

2

)s/2

� 1√
log2 x

∑
3≤s<S1

s2√
s/2

(
e

s/2

)s/2(
log3 x

4

)s/2
�β,ξ

(log3 x)
5/2

(log2 x)
1/4

. (18)

From Equation (18), we find that

f1(u) =
∑

0≤s<S1, s even

Cs(iu)s

s!
+Oβ,ξ

(
(log3 x)

5/2

(log2 x)
1/4

)
. (19)

Furthermore, we have∣∣∣∣∣∣
∑

0≤s<S1, s even

Cs(iu)s

s!
−
∑
s even

Cs(iu)s

s!

∣∣∣∣∣∣ ≤
∑
s>S1

Cs|u|s

s!
� 1√

S1

∑
s>S1

(
e log3 x

2S1

)s/2

� 1√
S1

(
e log3 x

2S1

)S1/2

= o

(
1√

log2 x

)
.

(20)

Using (19) and (20), the proof of Lemma 8 is thus complete.

3.2. The estimation of f2(u)

Lemma 9. Uniformly for |u| ≤
√

log3 x
2 , we have

|f2(u)| = oβ,ξ

(
1

log2 x

)
(x→∞).

Proof. Since S2 = o
(
(log2 x)1/3

)
as x→∞, we can once again use Corollary 1 and

obtain

|f2(u)| =

∣∣∣∣∣∣ 1x
∑

S1≤s<S2

1

s!

∑
n≤x

iu ωβy (n)− β log2 x−log2 y
1−β√

β2 log2 x+(1−2β) log2 y
(1−β)2

s∣∣∣∣∣∣�β,ξ

∑
S1≤s<S2

Cs |u|s

s!

� 1√
S1

∑
s≥S1

(
e log3 x

2S1

)s/2
= o

(
1√

log2 x

)
.
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3.3. The estimation of f3(u)

Lemma 10. Uniformly for |u| ≤
√

log3 x
2 , we have

|f3(u)| � 1√
log2 x

.

Proof. We begin by writing

f3(u) =
1

x

∑
S2≤s<S3

f3,s(u), (21)

where

f3,s(u) =
1

s!

∑
n≤x

iuω(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

s

.

To simplify the notation, we set

A(n) :=
ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

. (22)

With this, we get

|f3,s(u)| ≤ |u|
s

s!

∑
n≤x

|A(n)|s �
(
e · log3 x

s

)s∑
n≤x

|A(n)|s . (23)

We will now provide upper bounds for
∑
S2≤s<S3

|f3,s(u)| depending on the size of

A(n). For this, we let 0 < δ < 1 be an arbitrarily small number and examine three

cases separately.

Case 1. |A(n)| <
(

s
e·log3 x

)1−δ
,

Case 2.
(

s
e·log3 x

)1−δ
≤ |A(n)| < (log2 x)1/2+2δ,

Case 3. |A(n)| ≥ (log2 x)1/2+2δ.

Case 1. In this case, we have, using Equation (23),

|f3,s(u)| ≤ x
(
e · log3 x

s

)δs
.
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Summing the above with respect to s with S2 < s ≤ S3, we have

∑
S2≤s<S3

|f3,s(u)| � x
∑
s≥S2

(
e log3 x

s

)δs
≤ x

∑
s≥S2

(
e log3 x

(log2 x)1/3−δ

)δs
= O

(
x

log2 x

)
.

Case 2. In this case, we have

|f3,s(u)| ≤
(
e log3 x

s

)s ∑
n≤x(

s
e log3 x

)1−δ
≤|A(n)|

|A(n)|<(log2 x)
1/2+2δ

|A(n)|s

≤
(
e(log3 x)(log2 x)1/2+2δ

s

)s ∑
n≤x(

s
e·log3 x

)1−δ
≤|A(n)|

1.

Using Corollary 2, since

|A(n)| ≥
(

s

e log3 x

)1−δ

if and only if

∣∣∣∣∣∣ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

∣∣∣∣∣∣ ≥
(

s

e log3 x

)1−δ

so that

∣∣∣∣ω(β)
y (n)− β log2 x− log2 y

1− β

∣∣∣∣ > 1

2

√
β2 + ξ − 2βξ

(1− β)
2

(
s

e log3 x

)1−δ√
log2 x,

we obtain

|f3,s(u)| �β x

(
e(log3 x)(log2 x)1/2+2δ

s

)s
exp

(
−β

2 + ξ − 2βξ

48

(
s

e log3 x

)2−2δ
)
.

This yields

|f3,s(u)| � x exp

(
−β

2 + ξ − 2βξ

96
s2−2δ

)
.

Summing the above over s, we obtain that∑
S2≤s<S3

|f3,s(u)| � x
∑

S2≤s<S3

exp

(
−β

2 + ξ − 2βξ

96
s2−2δ

)
� x

log2 x
.

Case 3. In this case, since |A(n)| ≥ (log2 x)1/2+2δ, it follows that there exist positive

constants cβ,ξ and dβ,ξ depending only on β and ξ such that ω(n) ≥ cβ,ξ (log2 x)
1+2δ

and that

|A(n)| ≤ 2ω(n)

dβ,ξ
√

log2 x
.
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Thus, we have

|f3,s(u)| �

(
2e log3 x

sdβ,ξ
√

log2 x

)s ∑
n≤x

ω(n)≥cβ,ξ(log2 x)
1+2δ

ω(n)s

=

(
2e log3 x

sdβ
√

log2 x

)s ∑
j≥cβ,ξ(log2 x)

1+2δ

∑
n≤x

ω(n)=j

js.

Using Lemma 6, we obtain

|f3,s(u)| � x(log x)(log2 x)4

(
2e log3 x

sdβ,ξ
√

log2 x

)s ∑
cβ,ξ(log2 x)

1+2δ≤j≤ log x
log 2

js

2j
. (24)

Now observe that , choosing δ = ε, we obtain

j1−ε/2 ≥ (cβ,ξ)
1−ε/2

(log2 x)
(1+2ε)(1−ε/2) �β,ξ (log2 x)

1+ 3
2 ε−ε

2

,

so that (log2 x)
1+ε

= o
(
j1−ε/2

)
. From this, it follows that

∑
j≥cβ,ξ(log2 x)

1+2δ

js

2j
≤

∑
j≥cβ,ξ(log2 x)

1+2δ

(
3

4

)j
� exp

(
cβ,ξ (log2 x)

1+2δ
(log 3− log 4)

)
,

which allows us to conclude from (24) that

∑
S2≤s<S3

|f3,s(u)| � xS3 exp
(cβ,ξ

2
(log2 x)

1+2δ
(log 3− log 4)

)
= o

(
x√

log2 x

)
.

Gathering the estimates from cases 1, 2 and 3 in relation (21), the proof of Lemma

10 is complete.

3.4. The estimation of f4(u)

Lemma 11. Uniformly for |u| ≤
√

log3 x
2 , we have

|f4(u)| = o

(
1√

log2 x

)
.

Proof. Recalling the definition of A(n) given in (22), we have

|f4(u)| � 1

x
√
S3

∑
s≥S3

(e log3 x)s

ss

∑
j≥1

∑
n≤x

ω(n)=j

|A(n)|s . (25)



INTEGERS: 19 (2019) 19

Given that

|A(n)| ≤ c1ω(n) + c2 log2 x

dβ,ξ
√

log2 x

for some positive constants c1 and c2 depending only on β, and dβ,ξ depending only

on β and ξ, we have from Equation (25) that

|f4(u)| � 1

x
√

log2 x

∑
s≥S3

(
e log3 x

sdβ,ξ
√

log2 x

)s∑
j≥1

∑
n≤x

ω(n)=j

(c1j + c2 log2 x)s. (26)

From Lemma 6 and Inequality (26), we obtain

|f4(u)| � (log x)(log2 x)4√
log2 x

∑
s≥S3

(
e log3 x

sdβ,ξ
√

log2 x

)s ∑
1≤j≤ log x

log 2

(c1j + c2 log2 x)s

2j
. (27)

We will evaluate the above sum treating the cases j ≤ c2
c1

log2 x and j > c2
c1

log2 x

separately. Let

T1(x) :=
∑
s≥S3

(
e log3 x

sdβ,ξ
√

log2 x

)s ∑
1≤j≤ c2c1 log2 x

(c1j + c2 log2 x)s

2j

and

T2(x) :=
∑
s≥S3

(
e log3 x

sdβ,ξ
√

log2 x

)s ∑
c2
c1

log2 x<j≤
log x
log 2

(c1j + c2 log2 x)s

2j
.

First assuming j ≤ c2
c1

log2 x, we get c1j + c2 log2 x ≤ 2c2 log2 x, so that

T1(x) ≤
∑
s≥S3

(
2ec2 log2 x log3 x

S3 · dβ,ξ
√

log2 x

)s
�

(
2ec2 log2 x log3 x

S3 · dβ,ξ
√

log2 x

)S3

. (28)

On the other hand, assuming that j > c2
c1

log2 x, we have c1j + c2 log2 x ≤ 2c1j, in

which case

T2(x) ≤
∑
s≥S3

(
2c1e log3 x

scβ
√

log2 x

)s ∑
c2
c1

log2 x<j≤
log x
log 2

js

2j
. (29)

One can easily check that the maximum value of js/2j is reached when j = s/ log 2

and is therefore equal to

(
s

e log 2

)s
. Thus,

∑
c2
c1

log2 x<j≤
log x
log 2

js

2j
� log x

(
s

e log 2

)s
.
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Substituting this bound in (29), we find that, as x→∞

T2(x)� log x
∑
s≥S3

(
2c1e log3 x

sdβ,ξ
√

log2 x

)s(
s

e log 2

)s
� log x

(
2c1 log3 x

dβ,ξ log 2
√

log2 x

)S3

= o

(
1√

log2 x

)
. (30)

Combining (28) and (30) in (27), we conclude that |f4(u)| = o

(
1√

log2 x

)
.

Gathering the estimates from Lemmas 8, 9, 10 and 11, we conclude that

|f(u)− g(u)| �β,ξ
(log3 x)

5/2

(log2 x)1/4
(31)

uniformly for |u| ≤
√

log3 x
2 .

3.5. Completion of the proof of Theorem 3

We have ∫ T

−T

∣∣∣∣f(u)− g(u)

u

∣∣∣∣du = ∆1(x) + ∆2(x), (32)

where

∆1(x) :=

∫ 1√
log2 x

−1√
log2 x

∣∣∣∣f(u)− g(u)

u

∣∣∣∣ du
and

∆2(x) :=

∫
1√

log2 x
<|u|≤T

∣∣∣∣f(u)− g(u)

u

∣∣∣∣du.
From (31), we have

∆2(x)�β
(log3 x)

5/2

(log2 x)
1/4

∫ T

1√
log2 x

1

u
du� (log3 x)

7/2

(log2 x)
1/4

.

On the other hand, from (17), we easily get that

∆1(x)�β,ξ

∫ 1√
log2 x

−1√
log2 x

du ≤ 2√
log2 x

.

Hence, ∫ T

−T

∣∣∣∣f(u)− g(u)

u

∣∣∣∣du�β
(log3 x)

7/2

(log2 x)
1/4

.
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From Esseen’s result (Lemma 7), it follows that, for any t ∈ R,

1

x
#

n ≤ x :
ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

≤ t

 = Φ(t) +Oβ,ξ

(
1√

log3 x

)
. (33)

In particular, for any t ∈ R such that t = o (log2 x) as x→∞, we have

Φ

(
t+O

(
1

(log x)
2

))
= Φ(t) +O

(
1

log x

)
. (34)

Indeed, such a formula can be obtained by the fact that

2√
π

∫ x

0

e−v
2

dv = 1 +O

(
e−x

2

x

)
(x→∞) ,

so that, for any Y ≥ 0,

Φ (t+ h) =
1√
2π

∫ t+h

−Y
e−v

2/2dv +O

(
e−Y

2

Y

)
.

In particular, if Y = Y (x), t = t(x) and h = h(x) are such that h = o(Y ), th = o(1),

and Y h = o(1), then

Φ (t+ h) = Φ(t)
(

1 +O
(
Y |h|+ |th|+ |h|2

))
+O

(
e−Y

2

Y

)
. (35)

Estimate (34) follows by choosing Y = log x, h = O
(

(log x)
−2
)

and t = o (log2 x).

We therefore obtain from (33) and (34) that

1

x
#

n ≤ x :
ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

< t

 = Φ(t) +Oβ,ξ

(
1√

log3 x

)
, (36)

thus completing the proof of Theorem 3. To prove Corollary 3, first observe that

Ω(β)
y (n)− ω(β)

y (n) =
β

1− β
(Ω(n)− ω(n))− 1

1− β
(Ωy(n)− ωy(n)) .

Uniformly for real k ≥ 1, we have

# {n ≤ x : Ω(n)− ω(n) ≥ k} � x

2k/2
.

By choosing k = log3 x, it follows that

#
{
n ≤ x : Ω(β)

y (n)− ω(β)
y (n) ≥ log3 x

}
�β

x

(log2 x)
log 2

2

. (37)
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Hence, we have

Ω(β)
y (n) = ω(β)

y (n) +O (log3 x)

for almost all integers n ≤ x. Moreover, for any real t satisfying t2 �β

√
log2 x, we

have

Φ

(
t+Oβ

(
log3 x√
log2 x

))
= Φ(t) +Oβ

(
log3 x

(log2 x)
1/4

)
, (38)

which can be obtained from (35) by choosing Y = (log2 x)
1/4

, h � log3 x√
log2 x

and

t� (log2 x)
1/4

.

The proof of Corollary 3 then follows from (36), (37) and (38).

4. Proof of the main results

Theorems 1 and 2 will follow rather directly from Theorem 3. Indeed, we obtain

from Lemma 1 that, for any t ∈ R such that t2 = o
(√

log2 x
)
,

#

{
n ≤ x :

log2 p
(β)(n)− β log2 x√

log2 x
< t

}
= #

{
n ≤ x : p(β)(n) < exp

(
exp

(
β log2 x+ t

√
log2 x

))}
= #

{
n ≤ x : ω(β)

y (n) < 1
}

+Oβ

(
x (log2 x)

1−2β
β

log x

)
(39)

provided we choose y := exp
(
exp

(
β log2 x+ t

√
log2 x

))
. Now,

ω(β)
y (n) < 1 if and only if

ω
(β)
y (n)− β log2 x−log2 y

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

<
1 + log2 y−β log2 x

1−β√
β2 log2 x+(1−2β) log2 y

(1−β)2

.

Given our choice of y, we have log2 y = β log2 x+ t
√

log2 x, so that

1 +
log2 y − β log2 x

1− β
= 1 +

t
√

log2 x

1− β
.

For any t ∈ R such that t = o (log2 x) as x→∞, we have√
β2 log2 x+ (1− 2β) log2 y

(1− β)2
=

√
β

1− β
log2 x

(
1 +Oβ

(
t√

log2 x

))
.

Hence,

1 + log2 y−β log2 x
1−β√

β2 log2 x+(1−2β) log2 y
(1−β)2

=
t√

β (1− β)
+Oβ

(
1 + t2√
log2 x

+
t

log2 x

)
.
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Thus, if t2 � (log2 x)
1/2−ε

for some 1/4 < ε < 1/2, we find that

1 + log2 y−β log2 x
1−β√

β2 log2 x+(1−2β) log2 y
(1−β)2

=
t√

β (1− β)
+Oβ

(
(log2 x)

−ε
)
. (40)

Notice that |t| � (log2 x)
1/4−ε/2

, so that, for any h = O
(

(log2 x)
−ε
)

, we have

Φ (t+ h) = Φ(t) +O
(

(log2 x)
1/4−3ε/2

+ (log2 x)
−ε/2

)
, (41)

which can be obtained from (35) by choosing Y = (log2 x)
ε/2

, h � (log2 x)
−ε

, and

t � (log2 x)
1/4−ε/2

. It follows from Theorem 3, (39), (40) and (41) that, for any

real 1
8 < ε < 1

4 and t ∈ R such that |t| � (log2 x)
1/4−ε

, we have

1

x
#

{
n ≤ x :

log2 p
(β)(n)− β log2 x√

log2 x
< t

}
= Φ

(
t√

β (1− β)

)
+Oβ

(
1√

log3 x

)
,

thus completing the proofs of Theorems 1 and 2. Moreover, the proof is the same in

the case when the multiplicity of each prime factor is taken into account to define

the β-positioned prime factor.
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Equidistribution in Number Theory, An Introduction. NATO Science Series

II 237 (2007) Springer, Dordrecht, 15-27.

[8] J.-L. Nicolas, Sur la distribution des nombres entiers ayant une quantité fixée
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