THE LIMIT DISTRIBUTION OF THE MIDDLE PRIME FACTORS OF AN INTEGER

Jean-Marie De Koninck ${ }^{1}$
Département de mathématiques et de statistique, Université Laval, Québec G1V 0A6, Canada
jmdk@mat.ulaval.ca

Nicolas Doyon ${ }^{2}$
Département de mathématiques et de statistique, Université Laval, Québec G1V 0A6, Canada
nicolas.doyon@mat.ulaval.ca
Vincent Ouellet
Département de mathématiques et de statistique, Université Laval, Québec G1V 0A6, Canada
vincent.ouellet.7@ulaval.ca

Received: , Revised: , Accepted: , Published:

Abstract

Writing an integer $n \geq 2$ as $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha} \cdots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are its prime factors, for any real $\beta \in(0,1)$, we define the β-positioned prime factor of $n>1$ as $p^{(\beta)}(n):=p_{\max (1,\lfloor\beta(k+1)\rfloor)}$. We obtain the limit distribution of $p^{(\beta)}(n)$.

1. Introduction

Writing an integer $n \geq 2$ as $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha} \cdots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are its prime factors, for any real $\beta \in(0,1)$, we define the β-positioned prime factor of n as $p^{(\beta)}(n):=p_{\max (1,\lfloor\beta(k+1)\rfloor)}$. For convenience, we set $p^{(\beta)}(1)=1$. Recently, Ouellet [9] improved a result of De Koninck and Luca [2] by showing that $p^{(1 / 2)}(n)$, the middle prime factor of n, satisfies the relation

$$
\sum_{n \leq x} \frac{1}{p^{(1 / 2)}(n)}=\frac{x}{\log x} \exp \left(\sqrt{2 \log _{2} x \log _{3} x}\left(H(x)+O\left(\frac{1}{\left(\log _{3} x\right)^{2}}\right)\right)\right)
$$

[^0]where $\log _{k} x$ stands for the k-iterated logarithm of x assuming that x is large enough for $\log _{k} x$ to be well defined and positive, and where
$H(x)=1-\frac{3 \log _{4} x}{2 \log _{3} x}+\left(\frac{3}{2} \log 2-1\right) \frac{1}{\log _{3} x}-\frac{9}{8}\left(\frac{\log _{4} x}{\log _{3} x}\right)^{2}+\left(\frac{9 \log 2}{4}+1\right) \frac{\log _{4} x}{\left(\log _{3} x\right)^{2}}$
and more generally that
$$
\sum_{n \leq x} \frac{1}{p^{(\beta)}(n)}=\frac{x}{\log x} \exp \left(C\left(\log _{2} x\right)^{1-\beta}\left(\log _{3} x\right)^{\beta}\left(G(x, \beta)+O\left(\frac{1}{\left(\log _{3} x\right)^{2}}\right)\right)\right)
$$
where $C=\frac{(1-\beta)^{2 \beta-1}}{\beta^{\beta}}$ and
$$
G(x, \beta)=1+c_{1} \frac{\log _{4} x}{\log _{3} x}+c_{2} \frac{1}{\log _{3} x}+c_{3}\left(\frac{\log _{4} x}{\log _{3} x}\right)^{2}+c_{4} \frac{\log _{4} x}{\left(\log _{3} x\right)^{2}}
$$
with
\[

$$
\begin{aligned}
c_{1}=\frac{-\beta(2-\beta)}{1-\beta}, & c_{2}=\beta\left(\log \beta-\frac{3-2 \beta}{1-\beta} \log (1-\beta)-\frac{1}{1-\beta}\right) \\
c_{3}=\frac{2-\beta}{2} c_{1}, & c_{4}=(2-\beta) c_{2}-c_{1}+\frac{\beta}{1-\beta}
\end{aligned}
$$
\]

Since the main contribution to the sum of the reciprocals of $p^{(\beta)}(n)$ comes from a set of integers of zero density, these results and the investigation of their proofs do not reveal anything concerning the normal value of $p^{(\beta)}(n)$, nor for the distribution of the values of $p^{(\beta)}(n)$. On the other hand, De Koninck and Kátai [1], using a Turán-Kubilius type inequality, showed that the normal order of $\log _{2} p^{(1 / 2)}(n)$ is $\frac{1}{2} \log _{2} n$. Explicitly, they proved that for any function $g(x)$ tending to infinity with x,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x:\left|\log _{2} p^{(1 / 2)}(n)-\frac{1}{2} \log _{2} x\right|>g(x) \sqrt{\log _{2} x}\right\}=0
$$

Tenenbaum, in his book [11], provides an estimate for $p_{j}(n)$, the j-th prime factor of n, namely

$$
p_{j}(n)=e^{e^{j+O(\sqrt{j})}} \quad \text { almost everywhere }
$$

Therefore, since the normal order of $\omega(n):=\sum_{p \mid n} 1$ is $\log _{2} n$ and since $\log _{2} n=$ $\log _{2} x+O(1)$ for almost all $n \leq x$, one can expect that for any given $\varepsilon>0$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x:\left|\log _{2} p^{(\beta)}(n)-\beta \log _{2} x\right|>\varepsilon \log _{2} x\right\}=0
$$

Here, we show the following stronger result.

Theorem 1. For any given real number t such that $|t| \ll\left(\log _{2} x\right)^{\varepsilon}$ for some fixed $0<\varepsilon<\frac{1}{8}$, we have

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\log _{2} p^{(1 / 2)}(n)-\frac{1}{2} \log _{2} x}{\sqrt{\log _{2} x}}<t\right\}=\Phi(2 t)+O\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

where $\Phi(\tau):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\tau} e^{-v^{2} / 2} \mathrm{~d} v$ stands for the normal distribution function.
We also provide a generalization valid for any $\beta \in(0,1)$.
Theorem 2. For $\beta \in(0,1)$ and any real number t such that $|t| \ll\left(\log _{2} x\right)^{\varepsilon}$ for some fixed $0<\varepsilon<\frac{1}{8}$, we have

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\log _{2} p^{(\beta)}(n)-\beta \log _{2} x}{\sqrt{\log _{2} x}}<t\right\}=\Phi\left(\frac{t}{\sqrt{\beta(1-\beta)}}\right)+O_{\beta}\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

Remark. Doyon and Ouellet [4] have shown that the sum of the reciprocals of the middle prime factors behaves very differently depending on whether the prime multiplicity is considered or not. However, Theorems 1 and 2 both hold whether prime multiplicity is taken into account or not. This follows from the fact that if we set $\Omega(n):=\sum_{p^{a} \| n} a$, then, for any function $\xi(x)$ tending to infinity as x tends to infinity, we have

$$
\frac{1}{x} \#\{n \leq x:|\Omega(n)-\omega(n)|>\xi(x)\}=o(1) \quad(x \rightarrow \infty)
$$

A more explicit bound is used below to prove it.

2. Preliminary results

Our proofs of Theorems 1 and 2 will make much use of the following completely additive function $\Omega_{y}^{(\beta)}(n)$ (here y is any given positive real number) defined on primes p by

$$
\Omega_{y}^{(\beta)}(p):= \begin{cases}-1 & \text { if } p \leq y \\ \frac{\beta}{1-\beta} & \text { if } p>y\end{cases}
$$

When the superscript β is omitted, we set $\Omega_{y}(n):=\sum_{\substack{p \leq y \\ p^{a} \| n}} a$. We also define the strongly additive function $\omega_{y}^{(\beta)}(n)$ on primes p by $\omega_{y}^{(\beta)}(p):=\Omega_{y}^{(\beta)}(p)$ and, when the superscript β is omitted, we set $\omega_{y}(n)=\sum_{\substack{p \leq y \\ p \mid n}} 1$. Finally, we let $p(n)$ (resp. $P(n)$) stand for the smallest (resp. largest) prime factor of n.

Lemma 1. Let x be a large real number. Given positive real numbers $y<x$ and $0<\beta<1$, we have

$$
\#\left\{n \leq x: p^{(\beta)}(n) \leq y\right\}=\#\left\{n \leq x: \omega(n)>\frac{1-\beta}{\beta}, \omega_{y}^{(\beta)}(n)<1\right\}+R(x, y)
$$

where $R(x, y):=\#\left\{n \leq x: \omega(n) \leq \frac{1-\beta}{\beta}, p(n) \leq y\right\}$. In particular,

$$
\#\left\{n \leq x: p^{(\beta)}(n) \leq y\right\}=\#\left\{n \leq x: \omega_{y}^{(\beta)}(n)<1\right\}+O_{\beta}\left(\frac{x\left(\log _{2} x\right)^{\frac{1-2 \beta}{\beta}}}{\log x}\right)
$$

Proof. It follows from the definitions of $\omega_{y}^{(\beta)}(n)$ and $\omega_{y}(n)$ that

$$
\begin{equation*}
\omega_{y}^{(\beta)}(n)=\frac{\beta}{1-\beta}\left(\omega(n)-\omega_{y}(n)\right)-\omega_{y}(n)=\frac{1}{1-\beta}\left(\beta \omega(n)-\omega_{y}(n)\right) \tag{1}
\end{equation*}
$$

Moreover, we have for any integer $n>1$ that $p^{(\beta)}(n)>y \quad$ if and only if $\quad \omega_{y}(n) \leq k_{0}-1$, where $k_{0}=\max (1,\lfloor\beta(\omega(n)+1)\rfloor)$. Thus, when $\omega(n)>\frac{1-\beta}{\beta}$, we obtain from (1) that

$$
p^{(\beta)}(n) \leq y \quad \text { if and only if } \quad \omega_{y}^{(\beta)}(n)<1
$$

When $\omega(n) \leq \frac{1-\beta}{\beta}$, we have $k_{0}=1$, so that $p^{(\beta)}(n) \leq y \quad$ if and only if $p(n) \leq y$. Using the well known Hardy-Ramanujan inequality, the error term follows.

From here on, we focus our attention on the distribution of the function $\omega_{y}^{(\beta)}(n)$. In their paper, De Koninck and Kátai [1] used the function $\Delta_{y}(n)$ which is the same as our function $\Omega_{y}^{(1 / 2)}(n)$. Observe that when $\beta=c / d$ is rational, we have

$$
\Omega_{y}^{(\beta)}(p)= \begin{cases}-1 & \text { if } p \leq y \\ \frac{c}{d-c} & \text { if } p>y\end{cases}
$$

which would allow one to work with the integer-valued function $(c-d) \Omega_{y}^{(\beta)}(n)$ and thus to use tools such as the Selberg-Delange method (see for instance Delange [3]). For $k \geq 1$ and $z \geq 2$, we define the function $\mathcal{D}_{k}(z)$ by

$$
\begin{equation*}
\mathcal{D}_{k}(z)=\#\left\{n \geq 1: \omega(n) \leq k, P(n) \leq z, \mu^{2}(n)=1\right\} \ll \frac{1}{k!}\left(\frac{z}{\log z}\right)^{k} \tag{2}
\end{equation*}
$$

uniformly for $k \leq\left(\log _{2} x\right)^{1 / 3}$, where $z=x^{1 / \ell}$ for any real number $1 \leq \ell \leq$ $\left(\log _{2} x\right)^{1 / 3}$. We begin by citing a particular case of Proposition 4 of Granville and Soundararajan [7] which provides information on the moments of the $\omega_{y}^{(\beta)}(n)$ function.

Lemma 2. For any real numbers $\ell \geq 1$ and $\beta \in(0,1)$, set $z:=x^{1 / \ell}$ and consider the functions

$$
\mu_{y}^{(\beta)}(z):=\sum_{p \leq z} \frac{\Omega_{y}^{(\beta)}(p)}{p} \quad \text { and } \quad\left(\sigma_{y}^{(\beta)}(z)\right)^{2}:=\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p}\left(1-\frac{1}{p}\right)
$$

Then, uniformly for all even integers $k \leq\left(\sigma_{y}^{(\beta)}(z) / M\right)^{2 / 3}$ and for all real numbers $2 \leq y<x$ and $1 \leq \ell \leq\left(\log _{2} x\right)^{1 / 3}$, we have

$$
\begin{aligned}
\sum_{n \leq x}\left(\sum_{\substack{p \mid n \\
p \leq z}} \omega_{y}^{(\beta)}(p)-\mu_{y}^{(\beta)}(z)\right)^{k}= & C_{k} x\left(\sigma_{y}^{(\beta)}(z)\right)^{k}+O\left(x C_{k} k^{3} M^{2}\left(\sigma_{y}^{(\beta)}(z)\right)^{k-2}\right) \\
& +O\left(M^{k}\left(\sum_{p \leq z} \frac{1}{p}\right)^{k} \mathcal{D}_{k}(z)\right)
\end{aligned}
$$

where $M=\max \left|\Omega_{y}^{(\beta)}(p)\right|=\max \left(1, \frac{\beta}{1-\beta}\right)$. The constants C_{k} are given by

$$
\begin{equation*}
C_{k}:=\frac{\Gamma(k+1)}{\Gamma(k / 2+1) 2^{k / 2}} \tag{3}
\end{equation*}
$$

which for k even corresponds to the Gaussian moments. Moreover, uniformly for all odd integers $k \leq\left(\sigma_{y}^{(\beta)}(z) / M\right)^{2 / 3}$, for all real numbers $2 \leq y<x$ and $1 \leq \ell \leq$ $\left(\log _{2} x\right)^{1 / 3}$, we have

$$
\sum_{n \leq x}\left(\sum_{\substack{p \mid n \\ p \leq z}} \omega_{y}^{(\beta)}(p)-\mu_{y}^{(\beta)}(z)\right)^{k} \ll C_{k} x\left(\sigma_{y}^{(\beta)}(z)\right)^{k-1} k^{3 / 2} M+M^{k}\left(\sum_{p \leq z} \frac{1}{p}\right)^{k} \mathcal{D}_{k}(z)
$$

The following two easy results (which are consequences of Mertens' formula) will allow for an application of Lemma 2 to our problem.

Lemma 3. For any real number $\ell \geq 1$, set $z=x^{1 / \ell}$. Then, given a real number $\beta \in(0,1)$, we have uniformly for any real numbers $1 \leq \ell \leq\left(\log _{2} x\right)^{1 / 3}$ and $e^{e}<$ $y=o(z)$ that

$$
\mu_{y}^{(\beta)}(z)=\sum_{p \leq z} \frac{\Omega_{y}^{(\beta)}(p)}{p}=\frac{\beta \log _{2} z-\log _{2} y}{1-\beta}+O_{\beta}(1)
$$

In particular, for any fixed $\xi \in(0,1)$, we have uniformly for any y such that $\log _{2} y=$ $(1+o(1)) \xi \log _{2} x$ as $x \rightarrow \infty$ that

$$
\mu_{y}^{(\beta)}(z)=(1+o(1)) \frac{\beta-\xi}{1-\beta} \log _{2} x
$$

Proof. By Mertens' formula, we have

$$
\begin{aligned}
\sum_{p \leq z} \frac{\Omega_{y}^{(\beta)}(p)}{p} & =\sum_{p \leq y} \frac{-1}{p}+\sum_{y<p \leq z} \frac{\beta}{p(1-\beta)} \\
& =-\log _{2} y+\frac{\beta\left(\log _{2} z-\log _{2} y\right)}{1-\beta}+O_{\beta}(1)=\frac{\beta \log _{2} z-\log _{2} y}{1-\beta}+O_{\beta}(1)
\end{aligned}
$$

Since $\log _{2} z=\log _{2}\left(x^{1 / \ell}\right)=\log _{2} x-\log \ell$, we have, when $\log _{2} y=(1+o(1)) \xi \log _{2} x$, that, as $x \rightarrow \infty$,

$$
\begin{aligned}
\sum_{p \leq z} \frac{\Omega_{y}^{(\beta)}(p)}{p} & =\frac{1}{1-\beta}\left(\beta \log _{2} x-\beta \log \ell-(1+o(1)) \xi \log _{2} x\right)+O_{\beta}(1) \\
& =(1+o(1)) \frac{\beta-\xi}{1-\beta} \log _{2} x-\frac{\beta}{1-\beta} \log \ell=(1+o(1)) \frac{\beta-\xi}{1-\beta} \log _{2} x
\end{aligned}
$$

Lemma 4. For any real number $\ell \geq 1$, set $z=x^{1 / \ell}$. Then, given a real number $\beta \in(0,1)$, we have uniformly for any real numbers $1 \leq \ell \leq\left(\log _{2} x\right)^{1 / 3}$ and $e^{e}<$ $y=o(z)$ that

$$
\left(\sigma_{y}^{(\beta)}(z)\right)^{2}=\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p}\left(1-\frac{1}{p}\right)=\frac{\beta^{2} \log _{2} z+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}+O_{\beta}(1)
$$

Moreover, for any fixed $\xi \in(0,1)$, we have uniformly for any y such that $\log _{2} y=$ $(1+o(1)) \xi \log _{2} x$ as $x \rightarrow \infty$ that

$$
\left(\sigma_{y}^{(\beta)}(z)\right)^{2}=(1+o(1)) \frac{\beta^{2}+\xi-2 \beta \xi}{(1-\beta)^{2}} \log _{2} x
$$

Proof. On the one hand, using Mertens' formula, we have

$$
\begin{aligned}
\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p} & =\sum_{p \leq y} \frac{1}{p}+\sum_{y<p \leq z} \frac{\beta^{2}}{(1-\beta)^{2} p} \\
& =\log _{2} y+\frac{\beta^{2}\left(\log _{2} z-\log _{2} y\right)}{(1-\beta)^{2}}+O_{\beta}(1) \\
& =\frac{\beta^{2} \log _{2} z+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}+O_{\beta}(1) .
\end{aligned}
$$

On the other hand,

$$
\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p^{2}} \leq \max \left(1, \frac{\beta^{2}}{(1-\beta)^{2}}\right) \sum_{p} \frac{1}{p^{2}}=O_{\beta}(1)
$$

Hence,

$$
\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p}=\frac{\beta^{2} \log _{2} z+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}+O_{\beta}(1)
$$

where the error term is uniform in ℓ and y. If $\log _{2} y=(1+o(1)) \xi \log _{2} x$ as $x \rightarrow \infty$, then

$$
\begin{aligned}
\sum_{p \leq z} \frac{\left(\Omega_{y}^{(\beta)}(p)\right)^{2}}{p} & =(1+o(1)) \frac{\beta^{2}+\xi-2 \beta \xi}{(1-\beta)^{2}} \log _{2} x-\frac{\beta^{2}}{(1-\beta)^{2}} \log \ell \\
& =(1+o(1)) \frac{\beta^{2}+\xi-2 \beta \xi}{(1-\beta)^{2}} \log _{2} x
\end{aligned}
$$

From Lemmas 2, 3 and 4, we will deduce the following corollary.
Corollary 1. Let $\beta \in(0,1)$ be a real number and set $z=x^{1 / k}$ for any integer $k \geq 1$. Fix $\xi \in(0,1)$. Then, uniformly for even integers $k \leq \frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$, where $N:=\min \left(\left(\frac{1-\beta}{\beta}\right)^{2},\left(\frac{\beta}{1-\beta}\right)^{2}\right)$, and for y such that $\log _{2} y=(1+o(1)) \xi \log _{2} x$ as $x \rightarrow \infty$, we have

$$
\frac{1}{x} \sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{k}=C_{k}+O_{\beta, \xi}\left(\frac{k^{3 / 2} C_{k}}{\sqrt{\log _{2} x}}\right)
$$

while uniformly for odd integers $k \leq \frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$ and y satisfying the above bounds, we have

$$
\frac{1}{x} \sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{k}<_{\beta, \xi} \frac{k^{3 / 2} C_{k}}{\sqrt{\log _{2} x}}
$$

Proof. It follows from Lemma 4 with $\ell=k$ that, as $x \rightarrow \infty$,
$\left(\frac{\sigma_{y}^{(\beta)}(z)}{M}\right)^{2 / 3}=(1+o(1)) \frac{\left(\beta^{2}+\xi-2 \beta \xi\right)^{1 / 3}}{(1-\beta)^{2 / 3}} \frac{\left(\log _{2} x\right)^{1 / 3}}{M^{2 / 3}} \geq(1+o(1)) N^{1 / 3}\left(\log _{2} x\right)^{1 / 3}$
uniformly for $1 \leq k \leq \frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$. Thus, we can apply Lemma 2 for any $k \leq \frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$. Now, we write

$$
\begin{align*}
\omega_{y}^{(\beta)}(n)-\mu_{y}^{(\beta)}(x) & =\left(\sum_{\substack{p \mid n \\
p \leq z}} \omega_{y}^{(\beta)}(p)-\mu_{y}^{(\beta)}(z)\right)+\left(\sum_{\substack{p \mid n \\
p>z}} \omega_{y}^{(\beta)}(p)-\sum_{z<p \leq x} \frac{\Omega_{y}^{(\beta)}(p)}{p}\right) \\
& =\sum_{\substack{p \mid n \\
p \leq z}} \omega_{y}^{(\beta)}(p)-\mu_{y}^{(\beta)}(z)+O(k) \tag{4}
\end{align*}
$$

where this last bound comes from Mertens' formula and the fact that the integer $n \leq x$ may have at most k distinct prime factors $p>z$. Note that the error term is uniform in k. By the binomial theorem and the uniformity of the error term, letting

$$
\mathcal{F}_{y}(z):=\sum_{\substack{p \mid n \\ p \leq z}} \omega_{y}^{(\beta)}(p)-\mu_{y}^{(\beta)}(z)
$$

we get

$$
\begin{equation*}
\left(\omega_{y}^{(\beta)}(n)-\mu_{y}^{(\beta)}(x)\right)^{k}=\left(\mathcal{F}_{y}(z)\right)^{k}+O\left(\sum_{\ell=0}^{k-1}\binom{k}{\ell} k^{k-\ell}\left|\mathcal{F}_{y}(z)\right|^{\ell}\right) \tag{5}
\end{equation*}
$$

Set $R(\ell):=\binom{k}{\ell} k^{k-\ell}\left|\mathcal{F}_{y}(z)\right|^{\ell}$. We now proceed in the same way as in the proof of Proposition 2 of Granville and Soundararajan [7]. We obtain

$$
\frac{1}{x} \sum_{\ell=0}^{k-1} \sum_{n \leq x} R(\ell)<_{\beta, \xi} k^{3 / 2} C_{k}\left(\sigma_{y}^{(\beta)}\right)^{k-1}
$$

so that, from (5),

$$
\begin{equation*}
\sum_{n \leq x}\left(\omega_{y}^{(\beta)}(n)-\mu_{y}^{(\beta)}(x)\right)^{k}=\sum_{n \leq x}\left(\mathcal{F}_{y}(z)\right)^{k}+O_{\beta, \xi}\left(x k^{3 / 2} C_{k}\left(\sigma_{y}^{(\beta)}(z)\right)^{k-1}\right) \tag{6}
\end{equation*}
$$

When k is even, we have from Lemma 2 that

$$
\sum_{n \leq x}\left(\mathcal{F}_{y}(z)\right)^{k}=\left(\sigma_{y}^{(\beta)}\right)^{k}\left(x C_{k}+O_{\beta, \xi}\left(x C_{k} \frac{k^{3 / 2}}{\sqrt{\log _{2} x}}\right)\right)
$$

since $k^{3 / 2} \leq \sigma_{y}^{(\beta)}(z)$. When k is odd, we have

Finally, we have

$$
\mu_{y}^{(\beta)}(x)=\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}+O(1)
$$

so that

$$
\omega_{y}^{(\beta)}(n)-\mu_{y}^{(\beta)}(x)=\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}+O(1)
$$

uniformly for k in our range. Comparing this estimate with (4) and (5), we can replace $\mu_{y}^{(\beta)}(x)$ in (6) while keeping the same error term, which almost completes the proof of the corollary. Indeed, what is left is to estimate $\left(\sigma_{y}^{(\beta)}(z)\right)^{k}$. From Lemma 4, we obtain

$$
\left(\sigma_{y}^{(\beta)}(z)\right)^{k}=\left(\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}\right)^{k}\left(1+O_{\beta, \xi}\left(\frac{k \log k}{\log _{2} x}\right)\right)
$$

which completes the proof of the corollary.
We need two additional lemmas that will provide upper bounds on the frequencies of large deviations of $\omega_{y}^{(\beta)}(n)$ and $\Omega_{y}^{(\beta)}(n)$ from its mean value. We first recall Theorem 3.8 of Tenenbaum [11], chapter 3, which we state as a lemma.

Lemma 5. Uniformly for $3 \leq y \leq x$ and $0 \leq \epsilon<\sqrt{\log _{2} y}$, we have

$$
\frac{1}{x} \#\left\{n \leq x:\left|\omega_{y}(n)-\log _{2} y\right|>\epsilon \sqrt{\log _{2} y}\right\} \ll e^{-\epsilon^{2} / 3}
$$

and

$$
\frac{1}{x} \#\left\{n \leq x:\left|\Omega_{y}(n)-\log _{2} y\right|>\epsilon \sqrt{\log _{2} y}\right\} \ll e^{-\epsilon^{2} / 3}
$$

From Lemma 5, we deduce the following corollary.
Corollary 2. Given $\beta \in(0,1)$, set $c_{\beta}:=(1-\beta)^{2} / 12$. Uniformly for $3 \leq y \leq x$ and $0 \leq \epsilon<\sqrt{\log _{2} y}$, we have

$$
\frac{1}{x} \#\left\{n \leq x:\left|\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}\right|>\epsilon \sqrt{\log _{2} x}\right\} \ll_{\beta} e^{-c_{\beta} \epsilon^{2}}
$$

Moreover, the same estimate is valid for $\Omega_{y}^{(\beta)}(n)$.
Proof. From the definition of $\Omega_{y}^{(\beta)}(n)$, we have

$$
\omega_{y}^{(\beta)}(n)=\frac{\beta}{1-\beta} \omega(n)-\frac{1}{1-\beta} \omega_{y}(n)
$$

From this, it follows that

$$
\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}=\left(\frac{\beta \omega(n)}{1-\beta}-\frac{\beta \log _{2} x}{1-\beta}\right)+\left(\frac{\log _{2} y}{1-\beta}-\frac{\omega_{y}(n)}{1-\beta}\right)
$$

By the triangle inequality, we have

$$
\begin{equation*}
\left|\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}\right| \leq\left|\frac{\beta \omega(n)}{1-\beta}-\frac{\beta \log _{2} x}{1-\beta}\right|+\left|\frac{\log _{2} y}{1-\beta}-\frac{\omega_{y}(n)}{1-\beta}\right| \tag{7}
\end{equation*}
$$

Assuming that

$$
\left|\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}\right|>\epsilon \sqrt{\log _{2} x}
$$

it follows that either

$$
\left|\omega(n)-\log _{2} x\right|>\frac{(1-\beta) \epsilon \sqrt{\log _{2} x}}{2 \beta}
$$

or

$$
\left|\omega_{y}(n)-\log _{2} y\right|>\frac{(1-\beta) \epsilon \sqrt{\log _{2} x}}{2}>\frac{(1-\beta) \epsilon \sqrt{\log _{2} y}}{2}
$$

Using Lemma 5 , the first part of Corollary 2 then follows. The proof for $\Omega_{y}^{(\beta)}(n)$ is similar.

Lemma 6. There exists a positive constant C such that, for all $k \leq \frac{\log x}{\log 2}$, we have

$$
\#\{n \leq x: \Omega(n)>k\} \leq C \frac{x(\log x)\left(\log _{2} x\right)^{4}}{2^{k}}
$$

Proof. Erdős and Sárközy [5, eq (17)] have shown that for all $k \geq 1$, there exists a constant $C>0$ such that,

$$
\begin{equation*}
\#\{n \leq x: \Omega(n)>k\} \leq C \frac{x(\log x) k^{4}}{2^{k}} \tag{8}
\end{equation*}
$$

On the other hand, it follows from the results of Nicolas in [8] that for $B \log \log x \leq$ $k \leq \log x / \log 2($ with $B>2)$, we have

$$
\begin{equation*}
\#\{n \leq x: \Omega(n)>k\} \leq \frac{x \log x}{2^{k}} \tag{9}
\end{equation*}
$$

Gathering inequalities (8) and (9), the lemma follows.
Finally, we will be using a technical result of Esseen [6] which has been used in the proof of Theorem 2 in Rényi and Turán [10].

Lemma 7. (EsSEEN) Let $\varepsilon>0$. Let $F(x)$ and $G(x)$ be two distribution functions such that $G^{\prime}(x)$ exists for all x and $\left|G^{\prime}(x)\right| \leq A$ for some positive constant A. Further let $f(u)=\int_{-\infty}^{\infty} e^{i u x} \mathrm{~d} F(x)$ and $g(u)=\int_{-\infty}^{\infty} e^{i u x} \mathrm{~d} G(x)$ denote their respective characteristic functions. Then, if the condition

$$
\int_{-T}^{T}\left|\frac{f(u)-g(u)}{u}\right| \mathrm{d} u<\varepsilon
$$

is satisfied, we have for all real t,

$$
|F(t)-G(t)|<K\left(\varepsilon+\frac{A}{T}\right)
$$

for some absolute constant $K>0$.

3. The distribution of the $\omega_{y}^{(\beta)}(n)$ function

In this section, we investigate the distribution of the $\omega_{y}^{(\beta)}(n)$ function. Our goal is to prove to following result.

Theorem 3. Given any fixed real numbers $\beta \in(0,1), \xi \in(0,1)$ and integer y such that $\log _{2} y=(\xi+o(1)) \log _{2} x$ as $x \rightarrow \infty$, then, for any $t \in \mathbb{R}$ such that $t=o\left(\log _{2} x\right)$, we have that

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}<t\right\}=\Phi(t)+O_{\beta, \xi}\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

which when $\beta=1 / 2$, simplifies to

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\omega_{y}^{(1 / 2)}(n)-\left(\log _{2} x-2 \log _{2} y\right)}{\sqrt{\log _{2} x}}<t\right\}=\Phi(t)+O_{\xi}\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

Corollary 3. Given any fixed real numbers $\beta \in(0,1), \xi \in(0,1)$ and integer y such that $\log _{2} y=(\xi+o(1)) \log _{2} x$ as $x \rightarrow \infty$ as $x \rightarrow \infty$, then, for any $t \in \mathbb{R}$ such that $t^{2} \ll \sqrt{\log _{2} x}$, we have that

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\Omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}<t\right\}=\Phi(t)+O_{\beta, \xi}\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

In order to prove Theorem 3, we will apply Lemma 7 with $G(x)=\Phi(x)$, allowing us to choose $A=2$. The characteristic function is

$$
\frac{1}{\lfloor x\rfloor} \sum_{n \leq x} \exp \left(i u \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)=f(u)\left(1+O\left(\frac{1}{x}\right)\right)
$$

where

$$
\begin{equation*}
f(u):=\frac{1}{x} \sum_{n \leq x} \exp \left(i u \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right) \tag{10}
\end{equation*}
$$

Set $g(u)=e^{-u^{2} / 2}$. When $\frac{-1}{\sqrt{\log _{2} x}} \leq u \leq \frac{1}{\sqrt{\log _{2} x}}$, we have

$$
g(u)=1+O\left(u^{2}\right)=1+O(u) .
$$

Moreover,

$$
f(u)=\frac{1}{x} \sum_{s \geq 0} \frac{(i u)^{s}}{s!} \sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}
$$

Hence, it follows that

$$
\begin{equation*}
f(u)=1+O\left(\frac{1}{x} \sum_{s \geq 1} \frac{|u|^{s}}{s!}\left|\sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}\right|\right) \tag{11}
\end{equation*}
$$

Using Corollary 1 , we get for $s \leq \frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$ that

$$
\frac{1}{x} \sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}<_{\beta, \xi} C_{s}=\frac{\Gamma(s+1)}{\Gamma\left(\frac{s}{2}+1\right) 2^{s / 2}}
$$

so that, if $N_{0}:=\frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$,

$$
\begin{equation*}
\frac{1}{x} \sum_{s \leq N_{0}} \frac{|u|^{s}}{s!}\left|\sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}\right|<_{\beta, \xi} u \tag{12}
\end{equation*}
$$

From Stirling's formula, we also have

$$
\begin{align*}
& \frac{1}{x} \sum_{s>N_{0}} \frac{|u|^{s}}{s!}\left|\sum_{n \leq x}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}\right| \\
& \quad \leq \frac{1}{x} \sum_{s>N_{0}}\left(e L_{1} \frac{|u|}{s \sqrt{\log _{2} x}}\right)^{s}\left|\sum_{n \leq x}\left(\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}\right)^{s}\right| \tag{13}
\end{align*}
$$

for some positive constant L_{1} depending only on β and ξ. We bound (13) by treating separately the cases $\omega(n) \leq\left(\log _{2} x\right)^{7 / 6}$ and $\omega(n)>\left(\log _{2} x\right)^{7 / 6}$. First observe that, for any constant L depending only on β and ξ,

$$
\begin{aligned}
\sum_{s>N_{0}}\left(\frac{e L|u|}{s \sqrt{\log _{2} x}}\right)^{s} \frac{1}{x} \sum_{\substack{n \leq x \\
\omega(n) \leq\left(\log _{2} x\right)^{7 / 6}}}\left(\log _{2} x\right)^{7 s / 6} & \leq \sum_{s>N_{0}}\left(\frac{e L\left(\log _{2} x\right)^{2 / 3}|u|}{s}\right)^{s} \\
& \leq \sum_{s>N_{0}}\left(\frac{2 e L\left(\log _{2} x\right)^{1 / 3}}{N^{1 / 3}}|u|\right)^{s} \ll u
\end{aligned}
$$

Since there exists a constant L_{2} depending only on β and ξ such that

$$
\left|\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right|<\frac{L_{2} \omega(n)}{\sqrt{\log _{2} x}}
$$

when $\omega(n)>\left(\log _{2} x\right)^{7 / 6}$, we obtain from (13) that

$$
\begin{align*}
& \left.\left.\frac{1}{x} \sum_{s>N_{0}} \frac{|u|^{s}}{s!}\right|_{\substack{n \leq x \\
\omega(n)>\left(\log _{2} x\right)^{7 / 6}}}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s} \right\rvert\, \\
& \ll \sum_{s>N_{0}}\left(\frac{e L_{2}|u|}{s \sqrt{\log _{2} x}}\right)^{s} \frac{1}{x} \sum_{\substack{n \leq x \\
\omega(n)>\left(\log _{2} x\right)^{7 / 6}}} \omega(n)^{s} . \tag{14}
\end{align*}
$$

Using Lemma 6, we have

$$
\frac{1}{x} \sum_{\substack{n \leq x \\ \omega(n)>\left(\log _{2} x\right)^{7 / 6}}} \omega(n)^{s} \ll(\log x)\left(\log _{2} x\right)^{4} \sum_{\left(\log _{2} x\right)^{7 / 6}<j \leq \frac{\log x}{\log 2}}\left(\frac{e^{\frac{s \log j}{j}}}{2}\right)^{j}
$$

For $t>1$, the function

$$
h(t)=\left(\frac{e^{\frac{s \log t}{t}}}{2}\right)^{t}
$$

reaches its maximum when $t=\frac{s}{\log 2}$, so that

$$
\frac{1}{x} \sum_{\substack{n \leq x \\ \omega(n)>\left(\log _{2} x\right)^{7 / 6}}} \omega(n)^{s} \ll(\log x)^{2}\left(\log _{2} x\right)^{4}\left(\frac{s}{e \log 2}\right)^{s} .
$$

It follows from (14) that

$$
\begin{equation*}
\left.\left.\frac{1}{x} \sum_{s>\log _{2} x} \frac{|u|^{s}}{s!}\right|_{\substack{n \leq x \\ \omega(n)>\left(\log _{2} x\right)^{7 / 6}}}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s} \right\rvert\, \ll u \tag{15}
\end{equation*}
$$

When $N_{0}<s \leq \log _{2} x$, we obtain from Lemma 6 that

$$
\frac{1}{x} \sum_{\substack{n \leq x \\ \omega(n)>\left(\log _{2} x\right)^{7 / 6}}} \omega(n)^{s} \ll(\log x)^{2}\left(\log _{2} x\right)^{4} \frac{\left(\log _{2} x\right)^{7 s / 6}}{2^{\left(\log _{2} x\right)^{7 / 6}}}
$$

Thus,

$$
\begin{equation*}
\left.\left.\frac{1}{x} \sum_{N_{0}<s \leq \log _{2} x} \frac{|u|^{s}}{s!}\right|_{\substack{n \leq x \\ \omega(n)>\left(\log _{2} x\right)^{7 / 6}}}\left(\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s} \right\rvert\, \ll u \tag{16}
\end{equation*}
$$

Combining (12), (13), (15) and (16), it follows from (11) that

$$
f(u)=1+O_{\beta, \xi}(u)
$$

Thus, we obtain

$$
\begin{equation*}
f(u)=g(u)+O_{\beta, \xi}(u) \tag{17}
\end{equation*}
$$

for $\frac{-1}{\sqrt{\log _{2} x}} \leq u \leq \frac{1}{\sqrt{\log _{2} x}}$. Now, set $T:=\sqrt{\frac{\log _{3} x}{2}}$. We want to show that $g(u)$ is a good estimation of $f(u)$ when $\frac{1}{\sqrt{\log _{2} x}}<|u| \leq T$. By expanding the exponential, we obtain
$f(u)=\frac{1}{x} \sum_{s \geq 0} \frac{1}{s!} \sum_{n \leq x}\left(i u \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}=f_{1}(u)+f_{2}(u)+f_{3}(u)+f_{4}(u)$,
where $0 \leq s<S_{1}$ in $f_{1}, S_{1} \leq s<S_{2}$ in $f_{2}, S_{2} \leq s<S_{3}$ in f_{3} and $s \geq S_{3}$ in f_{4}. For reasons that will become clear during the course of the proof, we set

$$
S_{1}:=\exp \left(\frac{\log _{3} x}{4 \log _{4} x}\right), \quad S_{2}:=\left(\log _{2} x\right)^{1 / 3-\varepsilon}, \quad S_{3}:=\left(\log _{2} x\right)^{1+\varepsilon}
$$

where ε is a real number satisfying $0<\varepsilon<1 / 10$.

3.1. The estimation of $f_{1}(u)$

Lemma 8. Uniformly for $|u| \leq \sqrt{\frac{\log _{3} x}{2}}$, we have

$$
f_{1}(u)=1+\sum_{s=2, s \text { even }}^{\infty} \frac{C_{s}(i u)^{s}}{s!}+O_{\beta, \xi}\left(\frac{\left(\log _{3} x\right)^{5 / 2}}{\left(\log _{2} x\right)^{1 / 4}}\right)
$$

where the C_{s} 's are the constants defined in (3).
Proof. Recall that we chose $S_{1}<\frac{N^{1 / 3}}{2}\left(\log _{2} x\right)^{1 / 3}$ so that $f_{1}(u)$ can be estimated using the result of Soundararajan and Granville [7], here given by Lemma 2 and Corollary 1. Indeed, using Corollary 1, we have

$$
f_{1}(u)=\frac{1}{x} \sum_{0 \leq s<S_{1}} \frac{1}{s!} \sum_{n \leq x}\left(i u \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}=\Sigma_{1}+O\left(\Sigma_{2}\right)
$$

where

$$
\Sigma_{1}=\sum_{0 \leq s<S_{1}, s \text { even }} \frac{C_{s}(i u)^{s}}{s!}
$$

and

$$
\Sigma_{2}=\sum_{0 \leq s<S_{1}} \frac{|u|^{s}}{s!} \frac{s^{3 / 2} C_{s}}{\sqrt{\log _{2} x}}
$$

We have

$$
\begin{align*}
& \Sigma_{2} \lll \beta, \xi \\
& \frac{1}{\sqrt{\log _{2} x}} \sum_{0 \leq s<S_{1}} s^{2} \frac{C_{s}}{s!}\left(\frac{\log _{3} x}{2}\right)^{s / 2} \tag{18}\\
& \ll \frac{1}{\sqrt{\log _{2} x}} \sum_{3 \leq s<S_{1}} \frac{s^{2}}{\sqrt{s / 2}}\left(\frac{e}{s / 2}\right)^{s / 2}\left(\frac{\log _{3} x}{4}\right)^{s / 2}<_{\beta, \xi} \frac{\left(\log _{3} x\right)^{5 / 2}}{\left(\log _{2} x\right)^{1 / 4}}
\end{align*}
$$

From Equation (18), we find that

$$
\begin{equation*}
f_{1}(u)=\sum_{0 \leq s<S_{1}, s \text { even }} \frac{C_{s}(i u)^{s}}{s!}+O_{\beta, \xi}\left(\frac{\left(\log _{3} x\right)^{5 / 2}}{\left(\log _{2} x\right)^{1 / 4}}\right) . \tag{19}
\end{equation*}
$$

Furthermore, we have

$$
\begin{align*}
\left|\sum_{0 \leq s<S_{1}, s \mathrm{even}} \frac{C_{s}(i u)^{s}}{s!}-\sum_{s \text { even }} \frac{C_{s}(i u)^{s}}{s!}\right| & \leq \sum_{s>S_{1}} \frac{C_{s}|u|^{s}}{s!} \ll \frac{1}{\sqrt{S_{1}}} \sum_{s>S_{1}}\left(\frac{e \log _{3} x}{2 S_{1}}\right)^{s / 2} \\
& \ll \frac{1}{\sqrt{S_{1}}}\left(\frac{e \log _{3} x}{2 S_{1}}\right)^{S_{1} / 2}=o\left(\frac{1}{\sqrt{\log _{2} x}}\right) \tag{20}
\end{align*}
$$

Using (19) and (20), the proof of Lemma 8 is thus complete.

3.2. The estimation of $f_{2}(u)$

Lemma 9. Uniformly for $|u| \leq \sqrt{\frac{\log _{3} x}{2}}$, we have

$$
\left|f_{2}(u)\right|=o_{\beta, \xi}\left(\frac{1}{\log _{2} x}\right) \quad(x \rightarrow \infty)
$$

Proof. Since $S_{2}=o\left(\left(\log _{2} x\right)^{1 / 3}\right)$ as $x \rightarrow \infty$, we can once again use Corollary 1 and obtain

$$
\begin{aligned}
\left|f_{2}(u)\right| & =\left|\frac{1}{x} \sum_{S_{1} \leq s<S_{2}} \frac{1}{s!} \sum_{n \leq x}\left(i u \frac{\omega_{y}^{\beta}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}\right|<_{\beta, \xi} \sum_{S_{1} \leq s<S_{2}} \frac{C_{s}|u|^{s}}{s!} \\
& \ll \frac{1}{\sqrt{S_{1}}} \sum_{s \geq S_{1}}\left(\frac{e \log _{3} x}{2 S_{1}}\right)^{s / 2}=o\left(\frac{1}{\sqrt{\log _{2} x}}\right) .
\end{aligned}
$$

3.3. The estimation of $f_{3}(u)$

Lemma 10. Uniformly for $|u| \leq \sqrt{\frac{\log _{3} x}{2}}$, we have

$$
\left|f_{3}(u)\right| \ll \frac{1}{\sqrt{\log _{2} x}}
$$

Proof. We begin by writing

$$
\begin{equation*}
f_{3}(u)=\frac{1}{x} \sum_{S_{2} \leq s<S_{3}} f_{3, s}(u) \tag{21}
\end{equation*}
$$

where

$$
f_{3, s}(u)=\frac{1}{s!} \sum_{n \leq x}\left(i u \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right)^{s}
$$

To simplify the notation, we set

$$
\begin{equation*}
A(n):=\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}} \tag{22}
\end{equation*}
$$

With this, we get

$$
\begin{equation*}
\left|f_{3, s}(u)\right| \leq \frac{|u|^{s}}{s!} \sum_{n \leq x}|A(n)|^{s} \ll\left(\frac{e \cdot \log _{3} x}{s}\right)^{s} \sum_{n \leq x}|A(n)|^{s} \tag{23}
\end{equation*}
$$

We will now provide upper bounds for $\sum_{S_{2} \leq s<S_{3}}\left|f_{3, s}(u)\right|$ depending on the size of $A(n)$. For this, we let $0<\delta<1$ be an arbitrarily small number and examine three cases separately.

Case 1. $|A(n)|<\left(\frac{s}{e \cdot \log _{3} x}\right)^{1-\delta}$,
Case 2. $\left(\frac{s}{e \cdot \log _{3} x}\right)^{1-\delta} \leq|A(n)|<\left(\log _{2} x\right)^{1 / 2+2 \delta}$,
Case 3. $|A(n)| \geq\left(\log _{2} x\right)^{1 / 2+2 \delta}$.
Case 1. In this case, we have, using Equation (23),

$$
\left|f_{3, s}(u)\right| \leq x\left(\frac{e \cdot \log _{3} x}{s}\right)^{\delta s}
$$

Summing the above with respect to s with $S_{2}<s \leq S_{3}$, we have

$$
\sum_{S_{2} \leq s<S_{3}}\left|f_{3, s}(u)\right| \ll x \sum_{s \geq S_{2}}\left(\frac{e \log _{3} x}{s}\right)^{\delta s} \leq x \sum_{s \geq S_{2}}\left(\frac{e \log _{3} x}{\left(\log _{2} x\right)^{1 / 3-\delta}}\right)^{\delta s}=O\left(\frac{x}{\log _{2} x}\right)
$$

Case 2. In this case, we have

$$
\begin{aligned}
\left|f_{3, s}(u)\right| \leq & \left(\frac{e \log _{3} x}{s}\right)^{s} \sum_{n \leq x}|A(n)|^{s} \\
& \leq\left(\frac{e\left(\log _{3} x\right)\left(\log _{2} x\right)^{1 / 2+2 \delta}}{s}\right)^{|A(n)|<\left(\log _{2} x\right)^{1 / 2+2 \delta}} \\
s & \left.\sum_{n \leq x}^{1-\log _{3}}\right)^{s} 1 .
\end{aligned}
$$

Using Corollary 2, since
$|A(n)| \geq\left(\frac{s}{e \log _{3} x}\right)^{1-\delta} \quad$ if and only if $\quad\left|\frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}\right| \geq\left(\frac{s}{e \log _{3} x}\right)^{1-\delta}$
so that $\left|\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}\right|>\frac{1}{2} \sqrt{\frac{\beta^{2}+\xi-2 \beta \xi}{(1-\beta)^{2}}}\left(\frac{s}{e \log _{3} x}\right)^{1-\delta} \sqrt{\log _{2} x}$,
we obtain

$$
\left|f_{3, s}(u)\right| \ll \beta_{\beta} x\left(\frac{e\left(\log _{3} x\right)\left(\log _{2} x\right)^{1 / 2+2 \delta}}{s}\right)^{s} \exp \left(-\frac{\beta^{2}+\xi-2 \beta \xi}{48}\left(\frac{s}{e \log _{3} x}\right)^{2-2 \delta}\right)
$$

This yields

$$
\left|f_{3, s}(u)\right| \ll x \exp \left(-\frac{\beta^{2}+\xi-2 \beta \xi}{96} s^{2-2 \delta}\right)
$$

Summing the above over s, we obtain that

$$
\sum_{S_{2} \leq s<S_{3}}\left|f_{3, s}(u)\right| \ll x \sum_{S_{2} \leq s<S_{3}} \exp \left(-\frac{\beta^{2}+\xi-2 \beta \xi}{96} s^{2-2 \delta}\right) \ll \frac{x}{\log _{2} x}
$$

Case 3. In this case, since $|A(n)| \geq\left(\log _{2} x\right)^{1 / 2+2 \delta}$, it follows that there exist positive constants $c_{\beta, \xi}$ and $d_{\beta, \xi}$ depending only on β and ξ such that $\omega(n) \geq c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}$ and that

$$
|A(n)| \leq \frac{2 \omega(n)}{d_{\beta, \xi} \sqrt{\log _{2} x}}
$$

Thus, we have

$$
\begin{aligned}
\left|f_{3, s}(u)\right| & \ll\left(\frac{2 e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{\substack{n \leq x \\
\omega(n) \geq c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}}} \omega(n)^{s} \\
& =\left(\frac{2 e \log _{3} x}{s d_{\beta} \sqrt{\log _{2} x}}\right)^{s} \sum_{j \geq c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}} \sum_{\substack{n \leq x \\
\omega(n)=j}} j^{s} .
\end{aligned}
$$

Using Lemma 6, we obtain

$$
\begin{equation*}
\left|f_{3, s}(u)\right| \ll x(\log x)\left(\log _{2} x\right)^{4}\left(\frac{2 e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta} \leq j \leq \frac{\log x}{\log 2}} \frac{j^{s}}{2^{j}} \tag{24}
\end{equation*}
$$

Now observe that, choosing $\delta=\varepsilon$, we obtain

$$
j^{1-\varepsilon / 2} \geq\left(c_{\beta, \xi}\right)^{1-\varepsilon / 2}\left(\log _{2} x\right)^{(1+2 \varepsilon)(1-\varepsilon / 2)} \gg_{\beta, \xi}\left(\log _{2} x\right)^{1+\frac{3}{2} \varepsilon-\varepsilon^{2}}
$$

so that $\left(\log _{2} x\right)^{1+\varepsilon}=o\left(j^{1-\varepsilon / 2}\right)$. From this, it follows that
$\sum_{j \geq c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}} \frac{j^{s}}{2^{j}} \leq \sum_{j \geq c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}}\left(\frac{3}{4}\right)^{j} \ll \exp \left(c_{\beta, \xi}\left(\log _{2} x\right)^{1+2 \delta}(\log 3-\log 4)\right)$,
which allows us to conclude from (24) that

$$
\sum_{S_{2} \leq s<S_{3}}\left|f_{3, s}(u)\right| \ll x S_{3} \exp \left(\frac{c_{\beta, \xi}}{2}\left(\log _{2} x\right)^{1+2 \delta}(\log 3-\log 4)\right)=o\left(\frac{x}{\sqrt{\log _{2} x}}\right)
$$

Gathering the estimates from cases 1,2 and 3 in relation (21), the proof of Lemma 10 is complete.

3.4. The estimation of $f_{4}(u)$

Lemma 11. Uniformly for $|u| \leq \sqrt{\frac{\log _{3} x}{2}}$, we have

$$
\left|f_{4}(u)\right|=o\left(\frac{1}{\sqrt{\log _{2} x}}\right)
$$

Proof. Recalling the definition of $A(n)$ given in (22), we have

$$
\begin{equation*}
\left|f_{4}(u)\right| \ll \frac{1}{x \sqrt{S_{3}}} \sum_{s \geq S_{3}} \frac{\left(e \log _{3} x\right)^{s}}{s^{s}} \sum_{j \geq 1} \sum_{\substack{n \leq x \\ \omega(n)=j}}|A(n)|^{s} . \tag{25}
\end{equation*}
$$

Given that

$$
|A(n)| \leq \frac{c_{1} \omega(n)+c_{2} \log _{2} x}{d_{\beta, \xi} \sqrt{\log _{2} x}}
$$

for some positive constants c_{1} and c_{2} depending only on β, and $d_{\beta, \xi}$ depending only on β and ξ, we have from Equation (25) that

$$
\begin{equation*}
\left|f_{4}(u)\right| \ll \frac{1}{x \sqrt{\log _{2} x}} \sum_{s \geq S_{3}}\left(\frac{e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{j \geq 1} \sum_{\substack{n \leq x \\ \omega(n)=j}}\left(c_{1} j+c_{2} \log _{2} x\right)^{s} . \tag{26}
\end{equation*}
$$

From Lemma 6 and Inequality (26), we obtain

$$
\begin{equation*}
\left|f_{4}(u)\right| \ll \frac{(\log x)\left(\log _{2} x\right)^{4}}{\sqrt{\log _{2} x}} \sum_{s \geq S_{3}}\left(\frac{e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{1 \leq j \leq \frac{\log x}{\log 2}} \frac{\left(c_{1} j+c_{2} \log _{2} x\right)^{s}}{2^{j}} \tag{27}
\end{equation*}
$$

We will evaluate the above sum treating the cases $j \leq \frac{c_{2}}{c_{1}} \log _{2} x$ and $j>\frac{c_{2}}{c_{1}} \log _{2} x$ separately. Let

$$
T_{1}(x):=\sum_{s \geq S_{3}}\left(\frac{e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{1 \leq j \leq \frac{c_{2}}{c_{1}} \log _{2} x} \frac{\left(c_{1} j+c_{2} \log _{2} x\right)^{s}}{2^{j}}
$$

and

$$
T_{2}(x):=\sum_{s \geq S_{3}}\left(\frac{e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \sum_{\frac{c_{2}}{c_{1}} \log _{2} x<j \leq \frac{\log x}{\log 2}} \frac{\left(c_{1} j+c_{2} \log _{2} x\right)^{s}}{2^{j}}
$$

First assuming $j \leq \frac{c_{2}}{c_{1}} \log _{2} x$, we get $c_{1} j+c_{2} \log _{2} x \leq 2 c_{2} \log _{2} x$, so that

$$
\begin{equation*}
T_{1}(x) \leq \sum_{s \geq S_{3}}\left(\frac{2 e c_{2} \log _{2} x \log _{3} x}{S_{3} \cdot d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s} \ll\left(\frac{2 e c_{2} \log _{2} x \log _{3} x}{S_{3} \cdot d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{S_{3}} \tag{28}
\end{equation*}
$$

On the other hand, assuming that $j>\frac{c_{2}}{c_{1}} \log _{2} x$, we have $c_{1} j+c_{2} \log _{2} x \leq 2 c_{1} j$, in which case

$$
\begin{equation*}
T_{2}(x) \leq \sum_{s \geq S_{3}}\left(\frac{2 c_{1} e \log _{3} x}{s c_{\beta} \sqrt{\log _{2} x}}\right)^{s} \sum_{\frac{c_{2}}{c_{1}} \log _{2} x<j \leq \frac{\log x}{\log 2}} \frac{j^{s}}{2^{j}} \tag{29}
\end{equation*}
$$

One can easily check that the maximum value of $j^{s} / 2^{j}$ is reached when $j=s / \log 2$ and is therefore equal to $\left(\frac{s}{e \log 2}\right)^{s}$. Thus,

$$
\sum_{\frac{c_{2}}{c_{1}} \log _{2} x<j \leq \frac{\log x}{\log 2}} \frac{j^{s}}{2^{j}} \ll \log x\left(\frac{s}{e \log 2}\right)^{s}
$$

Substituting this bound in (29), we find that, as $x \rightarrow \infty$

$$
\begin{align*}
T_{2}(x) & \ll \log x \sum_{s \geq S_{3}}\left(\frac{2 c_{1} e \log _{3} x}{s d_{\beta, \xi} \sqrt{\log _{2} x}}\right)^{s}\left(\frac{s}{e \log 2}\right)^{s} \ll \log x\left(\frac{2 c_{1} \log _{3} x}{d_{\beta, \xi} \log 2 \sqrt{\log _{2} x}}\right)^{S_{3}} \\
& =o\left(\frac{1}{\sqrt{\log _{2} x}}\right) . \tag{30}
\end{align*}
$$

Combining (28) and (30) in (27), we conclude that $\left|f_{4}(u)\right|=o\left(\frac{1}{\sqrt{\log _{2} x}}\right)$.
Gathering the estimates from Lemmas 8, 9, 10 and 11, we conclude that

$$
\begin{equation*}
|f(u)-g(u)|<_{\beta, \xi} \frac{\left(\log _{3} x\right)^{5 / 2}}{\left(\log _{2} x\right)^{1 / 4}} \tag{31}
\end{equation*}
$$

uniformly for $|u| \leq \sqrt{\frac{\log _{3} x}{2}}$.

3.5. Completion of the proof of Theorem 3

We have

$$
\begin{equation*}
\int_{-T}^{T}\left|\frac{f(u)-g(u)}{u}\right| \mathrm{d} u=\Delta_{1}(x)+\Delta_{2}(x) \tag{32}
\end{equation*}
$$

where

$$
\Delta_{1}(x):=\int_{\frac{-1}{\sqrt{\log _{2} x}}}^{\frac{1}{\sqrt{\log _{2} x}}}\left|\frac{f(u)-g(u)}{u}\right| \mathrm{d} u
$$

and

$$
\Delta_{2}(x):=\int_{\frac{1}{\sqrt{\log _{2} x}}<|u| \leq T}\left|\frac{f(u)-g(u)}{u}\right| \mathrm{d} u
$$

From (31), we have

$$
\Delta_{2}(x) \lll \beta \frac{\left(\log _{3} x\right)^{5 / 2}}{\left(\log _{2} x\right)^{1 / 4}} \int_{\frac{1}{\sqrt{\log _{2} x}}}^{T} \frac{1}{u} \mathrm{~d} u \ll \frac{\left(\log _{3} x\right)^{7 / 2}}{\left(\log _{2} x\right)^{1 / 4}}
$$

On the other hand, from (17), we easily get that

$$
\Delta_{1}(x)<_{\beta, \xi} \int_{\frac{-1}{\sqrt{\log _{2} x}}}^{\frac{1}{\sqrt{\log _{2} x}}} \mathrm{~d} u \leq \frac{2}{\sqrt{\log _{2} x}}
$$

Hence,

$$
\int_{-T}^{T}\left|\frac{f(u)-g(u)}{u}\right| \mathrm{d} u<_{\beta} \frac{\left(\log _{3} x\right)^{7 / 2}}{\left(\log _{2} x\right)^{1 / 4}}
$$

From Esseen's result (Lemma 7), it follows that, for any $t \in \mathbb{R}$,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}} \leq t\right\}=\Phi(t)+O_{\beta, \xi}\left(\frac{1}{\sqrt{\log _{3} x}}\right) \tag{33}
\end{equation*}
$$

In particular, for any $t \in \mathbb{R}$ such that $t=o\left(\log _{2} x\right)$ as $x \rightarrow \infty$, we have

$$
\begin{equation*}
\Phi\left(t+O\left(\frac{1}{(\log x)^{2}}\right)\right)=\Phi(t)+O\left(\frac{1}{\log x}\right) \tag{34}
\end{equation*}
$$

Indeed, such a formula can be obtained by the fact that

$$
\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-v^{2}} \mathrm{~d} v=1+O\left(\frac{e^{-x^{2}}}{x}\right) \quad(x \rightarrow \infty)
$$

so that, for any $Y \geq 0$,

$$
\Phi(t+h)=\frac{1}{\sqrt{2 \pi}} \int_{-Y}^{t+h} e^{-v^{2} / 2} \mathrm{~d} v+O\left(\frac{e^{-Y^{2}}}{Y}\right)
$$

In particular, if $Y=Y(x), t=t(x)$ and $h=h(x)$ are such that $h=o(Y), t h=o(1)$, and $Y h=o(1)$, then

$$
\begin{equation*}
\Phi(t+h)=\Phi(t)\left(1+O\left(Y|h|+|t h|+|h|^{2}\right)\right)+O\left(\frac{e^{-Y^{2}}}{Y}\right) \tag{35}
\end{equation*}
$$

Estimate (34) follows by choosing $Y=\log x, h=O\left((\log x)^{-2}\right)$ and $t=o\left(\log _{2} x\right)$.
We therefore obtain from (33) and (34) that

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}<t\right\}=\Phi(t)+O_{\beta, \xi}\left(\frac{1}{\sqrt{\log _{3} x}}\right) \tag{36}
\end{equation*}
$$

thus completing the proof of Theorem 3. To prove Corollary 3, first observe that

$$
\Omega_{y}^{(\beta)}(n)-\omega_{y}^{(\beta)}(n)=\frac{\beta}{1-\beta}(\Omega(n)-\omega(n))-\frac{1}{1-\beta}\left(\Omega_{y}(n)-\omega_{y}(n)\right)
$$

Uniformly for real $k \geq 1$, we have

$$
\#\{n \leq x: \Omega(n)-\omega(n) \geq k\} \ll \frac{x}{2^{k / 2}}
$$

By choosing $k=\log _{3} x$, it follows that

$$
\begin{equation*}
\#\left\{n \leq x: \Omega_{y}^{(\beta)}(n)-\omega_{y}^{(\beta)}(n) \geq \log _{3} x\right\}<_{\beta} \frac{x}{\left(\log _{2} x\right)^{\frac{\log 2}{2}}} \tag{37}
\end{equation*}
$$

Hence, we have

$$
\Omega_{y}^{(\beta)}(n)=\omega_{y}^{(\beta)}(n)+O\left(\log _{3} x\right)
$$

for almost all integers $n \leq x$. Moreover, for any real t satisfying $t^{2} \ll_{\beta} \sqrt{\log _{2} x}$, we have

$$
\begin{equation*}
\Phi\left(t+O_{\beta}\left(\frac{\log _{3} x}{\sqrt{\log _{2} x}}\right)\right)=\Phi(t)+O_{\beta}\left(\frac{\log _{3} x}{\left(\log _{2} x\right)^{1 / 4}}\right) \tag{38}
\end{equation*}
$$

which can be obtained from (35) by choosing $Y=\left(\log _{2} x\right)^{1 / 4}, h \ll \frac{\log _{3} x}{\sqrt{\log _{2} x}}$ and $t \ll\left(\log _{2} x\right)^{1 / 4}$.

The proof of Corollary 3 then follows from (36), (37) and (38).

4. Proof of the main results

Theorems 1 and 2 will follow rather directly from Theorem 3. Indeed, we obtain from Lemma 1 that, for any $t \in \mathbb{R}$ such that $t^{2}=o\left(\sqrt{\log _{2} x}\right)$,

$$
\begin{align*}
\#\{n & \left.\leq x: \frac{\log _{2} p^{(\beta)}(n)-\beta \log _{2} x}{\sqrt{\log _{2} x}}<t\right\} \\
& =\#\left\{n \leq x: p^{(\beta)}(n)<\exp \left(\exp \left(\beta \log _{2} x+t \sqrt{\log _{2} x}\right)\right)\right\} \\
& =\#\left\{n \leq x: \omega_{y}^{(\beta)}(n)<1\right\}+O_{\beta}\left(\frac{x\left(\log _{2} x\right)^{\frac{1-2 \beta}{\beta}}}{\log x}\right) \tag{39}
\end{align*}
$$

provided we choose $y:=\exp \left(\exp \left(\beta \log _{2} x+t \sqrt{\log _{2} x}\right)\right)$. Now,

$$
\omega_{y}^{(\beta)}(n)<1 \quad \text { if and only if } \quad \frac{\omega_{y}^{(\beta)}(n)-\frac{\beta \log _{2} x-\log _{2} y}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}<\frac{1+\frac{\log _{2} y-\beta \log _{2} x}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}} .
$$

Given our choice of y, we have $\log _{2} y=\beta \log _{2} x+t \sqrt{\log _{2} x}$, so that

$$
1+\frac{\log _{2} y-\beta \log _{2} x}{1-\beta}=1+\frac{t \sqrt{\log _{2} x}}{1-\beta} .
$$

For any $t \in \mathbb{R}$ such that $t=o\left(\log _{2} x\right)$ as $x \rightarrow \infty$, we have

$$
\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}=\sqrt{\frac{\beta}{1-\beta} \log _{2} x}\left(1+O_{\beta}\left(\frac{t}{\sqrt{\log _{2} x}}\right)\right)
$$

Hence,

$$
\frac{1+\frac{\log _{2} y-\beta \log _{2} x}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}=\frac{t}{\sqrt{\beta(1-\beta)}}+O_{\beta}\left(\frac{1+t^{2}}{\sqrt{\log _{2} x}}+\frac{t}{\log _{2} x}\right) .
$$

Thus, if $t^{2} \ll\left(\log _{2} x\right)^{1 / 2-\varepsilon}$ for some $1 / 4<\varepsilon<1 / 2$, we find that

$$
\begin{equation*}
\frac{1+\frac{\log _{2} y-\beta \log _{2} x}{1-\beta}}{\sqrt{\frac{\beta^{2} \log _{2} x+(1-2 \beta) \log _{2} y}{(1-\beta)^{2}}}}=\frac{t}{\sqrt{\beta(1-\beta)}}+O_{\beta}\left(\left(\log _{2} x\right)^{-\epsilon}\right) . \tag{40}
\end{equation*}
$$

Notice that $|t| \ll\left(\log _{2} x\right)^{1 / 4-\varepsilon / 2}$, so that, for any $h=O\left(\left(\log _{2} x\right)^{-\epsilon}\right)$, we have

$$
\begin{equation*}
\Phi(t+h)=\Phi(t)+O\left(\left(\log _{2} x\right)^{1 / 4-3 \varepsilon / 2}+\left(\log _{2} x\right)^{-\epsilon / 2}\right) \tag{41}
\end{equation*}
$$

which can be obtained from (35) by choosing $Y=\left(\log _{2} x\right)^{\epsilon / 2}, h \ll\left(\log _{2} x\right)^{-\epsilon}$, and $t \ll\left(\log _{2} x\right)^{1 / 4-\epsilon / 2}$. It follows from Theorem 3, (39), (40) and (41) that, for any real $\frac{1}{8}<\varepsilon<\frac{1}{4}$ and $t \in \mathbb{R}$ such that $|t| \ll\left(\log _{2} x\right)^{1 / 4-\varepsilon}$, we have

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\log _{2} p^{(\beta)}(n)-\beta \log _{2} x}{\sqrt{\log _{2} x}}<t\right\}=\Phi\left(\frac{t}{\sqrt{\beta(1-\beta)}}\right)+O_{\beta}\left(\frac{1}{\sqrt{\log _{3} x}}\right)
$$

thus completing the proofs of Theorems 1 and 2. Moreover, the proof is the same in the case when the multiplicity of each prime factor is taken into account to define the β-positioned prime factor.

Acknowledgement: The authors would like to thank the referee for a careful reading.

References

[1] J.M. De Koninck and I. Kátai, Normal numbers and the middle prime factor of an integer, Colloq. Math. 135 (2014), No. 1, 69-77.
[2] J.M. De Koninck and F. Luca, On the middle prime factor of an integer, J. Integer Seq. 16 (2013), Article 13.5.5.
[3] H. Delange, Sur les formules de Atle Selberg, Bull. Sc. Math., 2e série 83 (1959), 101-111.
[4] N. Doyon and V. Ouellet, On the sum of the reciprocals of the middle prime factors taking into account their multiplicity, Ann. Univ. Sci. Budapest. Sect. Comput. 47 (2018), 249-259.
[5] P. Erdős and A. Sárközy, On the number of prime factors of integers, Acta Sci. Math. 42 (1980), 237-246.
[6] C.G. Esseen, Fourier analysis of distribution functions, A mathematical study of the Laplace-Gaussian law, Acta. Math. 77 (1945), 1-125.
[7] A. Granville and K. Soundararajan, Sieving and the Erdős-Kac Theorem. Equidistribution in Number Theory, An Introduction. NATO Science Series II 237 (2007) Springer, Dordrecht, 15-27.
[8] J.-L. Nicolas, Sur la distribution des nombres entiers ayant une quantité fixée de facteurs premiers, Acta Arith. 44 (1984), 191-200.
[9] V. Ouellet, On the sum of the reciprocals of the middle prime factors, J. Integer Seq. 20 (2017), Article 17.10.1.
[10] A. Rényi and P. Turán, On a theorem of Erdős-Kác, Acta Arith. 4 (1958), 71-84.
[11] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Éditions Belin, Paris, 2008.

[^0]: ${ }^{1}$ Research supported in part by a grant from NSREC.
 ${ }^{2}$ Research supported in part by a grant from NSREC.

