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Abstract
Writing an integer n > 2 as n = p{"p§ ---pp* where p1 < py < --- < py are its
prime factors, for any real 5 € (0,1), we define the S-positioned prime factor of
n>1as pP(n):= Pmax(1,|8(k+1)])- We obtain the limit distribution of pP)(n).

1. Introduction

Writing an integer n > 2 as n = pi"p§ ---pp* where p1 < py < --- < py, are its
prime factors, for any real 8 € (0,1), we define the 3-positioned prime factor of n as
PP (n) = Pmax(1,|8(k+1)])- For convenience, we set p® (1) = 1. Recently, Ouellet
[9] improved a result of De Koninck and Luca [2] by showing that p(}/?)(n), the

middle prime factor of n, satisfies the relation

3 p(l/;)(n) - 10; exp <\/2 log, 7 logs © (H(:z:) +0 ((1>)> :

n<x log; )2
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where log,, « stands for the k-iterated logarithm of x assuming that x is large enough
for log;, « to be well defined and positive, and where

1 1 1 > (9log2 1
H(m):1—30g4m+ §10g2—1 _ 9 (logs + 9log +1 0847
2logzx  \2 logsz 8 \logzx 4 (logs x)?

and more generally that

3 m = & exp (C(log2 7)1 8 (logy z)° <G(x, B8)+0 <1>>> :

n<z (logg z)?

where C' = a=p=7} and

L
log, 1 log, 2 log,
G =1
(z,5) ta log; @ te logs @ s <log3x “ (logs x)?

with

_ —B2-5) _ 3-28 1

o= e =p(lgs— T o1 - B) - 1= )
_2-8

B
c3 c1, ca=2-B)ca—c1+—.

2 1-8

Since the main contribution to the sum of the reciprocals of p®)(n) comes from
a set of integers of zero density, these results and the investigation of their proofs do
not reveal anything concerning the normal value of p(ﬁ)(n), nor for the distribution
of the values of p(®)(n). On the other hand, De Koninck and Kétai [1], using a
Turan-Kubilius type inequality, showed that the normal order of log, p1/2) (n) is
1 log, n. Explicitly, they proved that for any function g(z) tending to infinity with
z,

1 1
lim —# {n <z : |logy p/P(n) — 5 log,

T—00 I

> g(x)\/@} =0.

Tenenbaum, in his book [11], provides an estimate for p;(n), the j-th prime factor
of n, namely

I HOWT)

pi(n)=e almost everywhere.

Therefore, since the normal order of w(n) := >~ 1 is logyn and since logyn =
log, x + O(1) for almost all n < x, one can expect that for any given £ > 0,

1
lim —# {n <uz: ‘long(ﬁ)(n) — Blog, .73‘ > elogy x} =0.

T—00 I

Here, we show the following stronger result.
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Theorem 1. For any given real number t such that |t| < (logy x)° for some fized

O<5<%, we have

1 log, pM/?) (n) — % log, = 1
—#l{n<uz: <tp=02)+0 | —— ],
CE# { - v/logy x (%) Vlogg x

—v*/2 dy stands for the normal distribution function.

1 T
where ®(7) 1= — e
(r) V2r /m
We also provide a generalization valid for any 8 € (0,1).

Theorem 2. For 3 € (0,1) and any real number t such that |t| < (logy z)° for

some fized 0 < € < %,

1 log, pP®(n) — Blog, = B t 1
w#{”g” Vg <t}‘1’< ﬁu—m>+05<wog7>'

Remark. Doyon and Ouellet [4] have shown that the sum of the reciprocals of
the middle prime factors behaves very differently depending on whether the prime

we have

multiplicity is considered or not. However, Theorems 1 and 2 both hold whether
prime multiplicity is taken into account or not. This follows from the fact that if
we set Q(n) =3 a),
to infinity, we have

a, then, for any function £(z) tending to infinity as = tends

Ln <o |0n) —w()] > €@} =o1) (x> o0)

A more explicit bound is used below to prove it.

2. Preliminary results

Our proofs of Theorems 1 and 2 will make much use of the following completely
additive function Qg(ﬁ )(n) (here y is any given positive real number) defined on
primes p by

-1 if p <
o) =4, PP

When the superscript § is omitted, we set {Qy(n) := Z a. We also define the
Py
p®lln
strongly additive function wg(ﬁ ) (n) on primes p by wz(/B )(p) := Qz(f )(p) and, when the
superscript § is omitted, we set wy(n) = Z 1. Finally, we let p(n) (resp. P(n))
Py
pln
stand for the smallest (resp. largest) prime factor of n.
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Lemma 1. Let z be a large real number. Given positive real numbers y < x and
0< B <1, we have

#{n <z:pP(n) < y} = #{n <z:w(n)> %,wy (n) < 1} + R(z,v),

where R(x,y) := # {n <z:wn)< ,p(n) < y} In particular,

1—-28
I
#{n <o) <y} =#{n<awl () <1} +0; <w> '

Proof. Tt follows from the definitions of w?(,’B )(n) and wy(n) that

153 1
WP 0) = T ) = 0y ) = ) = 15 (Bal) — (). (1)
Moreover, we have for any integer n > 1 that p® (n) >y if and only if wy(n) < ko —1,
where kg = max (1, |8 (w(n) +1)]). Thus, when w(n) > 1;—/3, we obtain from (1)
that
pP(n) <y if and only if wéﬂ)(n) < 1.

When w(n) < %, we have kg = 1, so that p(ﬂ)(n) <y ifandonlyif p(n)<y.
Using the well known Hardy-Ramanujan inequality, the error term follows. O

From here on, we focus our attention on the distribution of the function wz(fg ) (n).
In their paper, De Koninck and Katai [1] used the function A, (n) which is the same
as our function le/ 2) (n). Observe that when 8 = ¢/d is rational, we have

-1 ifp<
o@Pp) =1, P
I ifp>uy,

which would allow one to work with the integer-valued function (¢ — d)QZ(JB )(n) and
thus to use tools such as the Selberg-Delange method (see for instance Delange [3]).
For k > 1 and z > 2, we define the function D (z) by

1 z F
Due) = # {nz Lwt) < kPO <z =1 < 3 (7)) @

1/3, where z = z'/¢ for any real number 1 < ¢ <

uniformly for & < (log, x)
(log, x)l/ 5. We begin by citing a particular case of Proposition 4 of Granville
and Soundararajan [7] which provides information on the moments of the wéﬁ )(n)

function.
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Lemma 2. For any real numbers £ > 1 and B € (0,1), set z := 2 and consider
the functions

W) =3 Qéii(p) and <géﬁ>(z))2 =3 M (1 - ;) .

2/3
Then, uniformly for all even integers k < (Ul(,ﬁ)(z)/M) and for all real numbers
2<y<zandl <l<(log, x)l/s, we have

k

S| S - | =0 (o) +0 (scuwar? (o) )

n<z \ pln
p<z

k

1
+O | MM (D~ | Dil2) |,

p<z

where M = max ‘Qéﬂ)(p)‘ = max (1, %) The constants Cy are given by

. I'k+1)
= Tt 1) 278 )

which for k even corresponds to the Gaussian moments. Moreover, uniformly for
2/3

all odd integers k < (aéﬁ)(z)/M> , for all real numbers 2 <y <z and1 <<

(log, ac)l/?’, we have

k
k

S| Sew w6 | < (o) et (S ) o

n<x pln p<z
p<z

The following two easy results (which are consequences of Mertens’ formula) will
allow for an application of Lemma 2 to our problem.

1t Then, given a real number

Lemma 3. For any real number { > 1, set z = x
B € (0,1), we have uniformly for any real numbers 1 < £ < (log, x)1/3 and e® <

y =o0(z) that

o)
uP(z) ="

p<z

(P) _ Blog, 2 —logy y

» -3 +03(1).
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In particular, for any fixed £ € (0,1), we have uniformly for any y such that logy y =
(I1+0(1))€&logy x as x — oo that

B
p () = (04 o(1) = Loy .
Proof. By Mertens’ formula, we have
Q) ]
LT Y s
p<z Py y<p<z
1 —1 1 -1

Since log, z = log, (z'/¢) = log, x—log ¢, we have, when log, y = (1 4 o(1)) ¢ log, =,
that, as x — o0,

Q®
L) L (10,0 — Blogt — (1+ o(1)) €log, ) + Oa(1)
p<z
— (1 +0(1)) ’f:élogzx— 1fﬂlogz= (1+0(1)) f:glow.

O

1t Then, given a real number

Lemma 4. For any real number { > 1, set z = x
B € (0,1), we have uniformly for any real numbers 1 < £ < (log, x)1/3 and e® <

y =o0(z) that

B ()
ey - ) (1-5) = gt o,

p<z

Moreover, for any fized £ € (0,1), we have uniformly for any y such that log,y =
(I4+0(1))&logyx as x — oo that

B2+ & —26¢
(1-p)?

Proof. On the one hand, using Mertens’ formula, we have

@7 0)? 1 B
;;Z p 7§p+yéz(l—ﬁ)2p
32 (log, z — logy y)
(1-p)2
_ B2 logy 2 + (1 — 28) logy y
B (1-p)?

log, x.

(04(2))" = (1 +0(1)

=logyy +




INTEGERS: 19 (2019) 7

On the other hand,

(Q(yﬁ) (p)) i 32

p<z

Hence,

3 (" (0)? _ Blogy 2+ (1—28) logy y
P (1-p)?

where the error term is uniform in ¢ and y. If log, y = (1 4+ 0(1)) £ log, x as x — oo,
then

+ O0p(1),

p<z

@ ) _ B2 +€—2B¢ 8
2 yT = (1 =+ 0(1)) W 1Og2 r — m logé
2 _
=(1+4+0(1)) W log, .

From Lemmas 2, 3 and 4, we will deduce the following corollary.
Corollary 1. Let 5 € (0,1) be a real number and set z = 2% for any integer
k>1. Fiz £ € (0,1). Then, uniformly for even integers k < %/3(10& x)Y/3, where
2 2
N := min <(1BB) ,(%) ), and for y such that logey = (1 + o(1))¢logy = as

x — 00, we have

k
() Blog, x—log, y
1 wy (n) — =452 k3/2C
EZ ’ - :Ck+05,§< =,

B2 logy x+(1-20) log, y v/logy x

e 1-p)

while uniformly for odd integers k < N;/S (logy x)

bounds, we have

13 and y satisfying the above

k
wg(,ﬁ) (n) — BlogQwalogz Yy k320,

1 -
p <LBg ~
x n%:m \/52 log, zg(j;)gﬁ) log, y V0og,

Proof. 1t follows from Lemma 4 with ¢ = k that, as x — o0,

) 2/3 1/ 1/
(‘W) (14 o(ry) BEEZ 2OV logy )Ty 8 (1o 1/

M (1 _ 5)2/3 M2/3
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uniformly for 1 < k < %/3 (log, x)l/s. Thus, we can apply Lemma 2 for any

k< %/3 (logsy x)l/?’. Now, we write

(B)
AP0~ 1P @) = | S ) a1 |+ | L - 3 e ®
Pl

pln z<p<lz p
p<z p>z
=> WP (p) — u{P(2) + O(k), (4)
pln
p<z

where this last bound comes from Mertens’ formula and the fact that the integer
n < z may have at most k distinct prime factors p > z. Note that the error term is
uniform in k. By the binomial theorem and the uniformity of the error term, letting

Fy(z) =3 wiP(p) — ulP(2),

pln
p<z
we get
k k — (k ¢
()~ nP @) = (7, @) + 0 <Z (3)r17 ) ) e
=0
Set R (¢) := (l; kMt F, (2)]°. We now proceed in the same way as in the proof of

Proposition 2 of Granville and Soundararajan [7]. We obtain
1 k—1 k—1
YR < kG (o)
=0 n<zx
so that, from (5),
k k—1
> (6200 - @) = X B +0se (201 (o) ). @
n<x n<lx
When k is even, we have from Lemma 2 that

k 3/2
- (o)

n<x

since k%/2 < o) (z). When k is odd, we have

3 (R e a0k (o))" = (o9(2)) w0

e \/long.
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Finally, we have

Blogs, z —logy y
plP) (@) = ERE 08 o),

1-p
so that
o) — P () = wlf) ) - EELZZ 0B o)
uniformly for & in our range. Comparing this estimate with (4) and (5), we can

replace u@(/ﬁ )(ac) in (6) while keeping the same error term, which almost completes

k
the proof of the corollary. Indeed, what is left is to estimate (al(,ﬁ )(z)> . From

Lemma 4, we obtain

k
S _ [ [Blogzm + (1—28)logyy ( (klogk))
< Y ( )) (1*ﬂ)2 1+057§ log2x s

which completes the proof of the corollary. O

We need two additional lemmas that will provide upper bounds on the frequencies
of large deviations of wy(ﬁ )(n) and QZ(,B ) (n) from its mean value. We first recall
Theorem 3.8 of Tenenbaum [11], chapter 3, which we state as a lemma.

Lemma 5. Uniformly for 3 <y <z and 0 < e < \/logyy, we have

1
—# {n <z |wy(n) —logyy| > €y/logy y} <e /s
and 1
5# {n <z :|Qy(n) —logyy| > ey/log, y} <e B
From Lemma 5, we deduce the following corollary.
Corollary 2. Given B € (0,1), set cg := (1 — 8)2/12. Uniformly for 3 <y < z
and 0 < € < y/logyy, we have

1 Blogy z —logy y Cepe?
x#{ngx: wéﬁ)(n)—# > ey/logyx p Kge PC .

1-p

Moreover, the same estimate is valid for Qg(,ﬁ)(n).

Proof. From the definition of Qéﬁ )(n), we have

From this, it follows that

B) (0 Blogyz —logyy  (Buw(n) _ flogy x logy y W (n)
o) - R (U ) ¢ (P-4,
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By the triangle inequality, we have

10%229_”2;(”)
1= 1-p

.

w?(!ﬁ)(m _ ﬁ10g2195—ﬂ10g2y‘ < ﬁlw(nﬁ) _ ﬂll()lggﬁx

Assuming that
Blog, x —lo
7(,5) (n) ) 82 Y

-5 > e+/log, x,

it follows that either

(1= B)ey/logy x

jw(n) —log, x| >

26
or
(1—=P)ey/logax (1 —B)er/logyy
lwy (n) — logy y| > 5 27> 5 22,
Using Lemma 5, the first part of Corollary 2 then follows. The proof for Qg,ﬁ ) (n) is
similar. O
Lemma 6. There exists a positive constant C' such that, for all k < 1°52  we have

log2’

z(log z)(log, )%
2k '

Proof. Erdés and Sérkozy [5, eq (17)] have shown that for all k > 1, there exists a
constant C > 0 such that,

#{n<z:QMn)>k}<C

i <a:Qn)> k) < cx(l%f)k‘l. (8)

On the other hand, it follows from the results of Nicolas in [8] that for Bloglogz <
k <logx/log2 (with B > 2), we have

#{ngx:Q(n)>k}§xl;gx. 9)

Gathering inequalities (8) and (9), the lemma follows. O

Finally, we will be using a technical result of Esseen [6] which has been used in
the proof of Theorem 2 in Rényi and Turédn [10].

Lemma 7. (ESSEEN) Let ¢ > 0. Let F(x) and G(z) be two distribution functions
such that G'(x) exists for all x and |G'(x)| < A for some positive constant A. Fur-

ther let f(u) = [0 e™*dF(z) and g(u) = [~ e™*dG(x) denote their respective
characteristic functions. Then, if the condition
T J—
[ [zt .
T u
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18 satisfied, we have for all real t,

IF(t) - G(t)| < K (g + ;)

for some absolute constant K > 0.

3. The distribution of the w{® (n) function
In this section, we investigate the distribution of the w@(,ﬁ )(n) function. Our goal is
to prove to following result.

Theorem 3. Given any fized real numbers 8 € (0,1), £ € (0,1) and integer y
such that logay = (£ +0(1))logyx as x — oo, then, for any t € R such that
t = o (log, ), we have that

(8) Blog, x—logy y
1 Wy (n) — 1-3 1
— n<z: <tp,=®(t)+0 — ],
x # - \/62 log, z(+(1—)§/3) log, y ®) e V/1ogs x
1-8

which when B = 1/2, simplifies to

(1/2)
1 —(1 — 21 1
x \/logs x V/logz @

Corollary 3. Given any fized real numbers 5 € (0,1), £ € (0,1) and integery such
that logo y = (£ + 0(1))logy x as  — 00 as © — oo, then, for any t € R such that
t? < \/log, x, we have that

(8) Blog, x—log, y
1 Qy7(n) - =45 1
— <x: <tp,=®(t)+0 —_— .
x# =T \/ﬁ2 log v+(1-25) logy y )+ Oss /logs
(1-8)

In order to prove Theorem 3, we will apply Lemma 7 with G(z) = ®(x), allowing
us to choose A = 2. The characteristic function is

(8) Blog, z—log, y
1 . Wy (n) - 1-8 1
la] 2o | i BZlog, a+(1—2B) logy | fw{1+01z))

n<x (1*B)2

where
B log, z—lo
ng )(TL) _ B gzl—ﬁ g2 Y
. (10)
\/,32 log, z+(1—23) log, y
(1-p)2

flu) = % Zexp iu

n<lx
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Set g(u) = e%"/2, When —=L— < u < —~—, we have

Moreover,
1 Z Zu wéﬁ)(n) __ Blogy 957*10gzy
2] 1-28)1
T 50 n<w B2 log, I("'l‘(_ﬁ)zﬁ) og2 Y

Hence, it follows that

(8) Blog, z—logy y
wy ' (n) — e

_ 1 ul® -
fluy=1+0 ;Z? Z \/52 log, z+(1—28) log, y ’ ()
B)?

s>1 " In<z (-

Using Corollary 1, we get for s < %/3 (log, x)l/B that

log, x—lo 5
(ﬁ)( ) B gzl—ﬁ g2 Y F(S+l)

Z B2 log, v+ (1—28) log, y AE¥s T T (% + 1) 2s/2’
n<JL (1-5)2

so that, if Ny : Nl/ (logy x)l/s,

(8) Blog, z—logy y
1 ul® wy (n) — =452
- . > - — <pg U (12)
T s! B2 log, o+ (1— 2ﬂ)log y ’
s<Np n<lz (1— ,B)

From Stirling’s formula, we also have

s 1 z—log.
l Z |U| Z wéﬂ) (TL) B 0521_60822!
| og, T o,
z s>Np s n<z \/ﬁ21 52 (t 16 3t
1 ] ° ( Blogyx —logyy\°
< — el ——— w(ﬂ)(n) - =7 (13)
x3§0 < sw/log2x> nzg; Y 1-5

for some positive constant L; depending only on 8 and £. We bound (13) by treating
separately the cases w(n) < (logy x)7/6 and w(n) > (log,y J:)7/6. First observe that,
for any constant L depending only on § and &,

Z ( 611;|u| )81 Z (loggx)7s/6§ Z (d/(ngM)S
Ssy/1logy T T s

s>Ng n<x s>Ng

w(n)<(logy #)"/°
2eL (log x)l/?’ ’
<2 <N1/23 lul | <u.
s>Np
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Since there exists a constant Ly depending only on S and £ such that

1 z—1
w(ﬂ)(n) B 0g21_50g2y LQW(TI)
\/52 log, a+(1-28) logy y Vlog, x
(1-8)?

when w(n) > (logy 2)”/®, we obtain from (13) that

(ﬂ)( ) — Blog, x—log, y

Ly Moy =
r s! ot \/leogzmHl 26) log, y
0 =
w(n)>(log, z)"/¢

eLs |ul 1

< — w(n)®. 14

s§o< VlogQI) t 7; ( ) ( )
w(n)>(log, z)7/8

Using Lemma 6, we have

LY e <o one)t Y <2>

e (log, 2)7/°<j< 1258

w(n)>(log, ©)"/°
slogt t
e ¢
h(t) =
- (%)

reaches its maximum when ¢t = @, so that

For ¢t > 1, the function

é Z w(n)s < (logl')z (logz -%')4 (610th2> '

n<lx
w(n)>(log, )7/°

It follows from (14) that

w@(}ﬁ) (’I’L) _ Blogyz—logy y

1 |u| -5
; Z Z B2 log, x+(1— 25) log, y < U (15>
log, n<x (- ﬂ
w(n)>(logy ©)7/®
When Ny < s <log, x, we obtain from Lemma 6 that
7s/6

1 s 2 4 (logy )
= ; w(n)® < (logz)” (log, ) g 2T

w(n)>(log, )"/°
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Thus,

(ﬂ)( ) _ Blog, z—log, y

1 |u -5
et . 16
€ Z s! Z o+ (1— 25) log, y <u ( )

! 2 1o
No<s<log, x n<z \/5 = (1-B)?
w(n)>(log, )78

Combining (12), (13), (15) and (16), it follows from (11) that
f(u) =1+ Ope(u).

Thus, we obtain

f(u) = g(u) + Op ¢ (u) (17)

<u< ———. ot T o= /28t
\/@ <u s Now, set T' We want to show that g(u) is

a good estimation of f(u) when \/117 < |u| < T. By expanding the exponential,
08y T

for

we obtain

1 1 w(ﬁ) (n) _ Blogy z—logs y
f) =23 32 | | = A+ fal) + fa(w) + filw),

s>0 " n<z (1-5)2

where 0 < s < S7in f1, 51 <s< Syin fy, So < s < S3in f3 and s > S3 in f;. For
reasons that will become clear during the course of the proof, we set

logs x _
S1:=exp (410524:5) , S2:= (log, $)1/3 °,  S3:=(logyz)"**,

where € is a real number satisfying 0 < ¢ < 1/10.

3.1. The estimation of f;(u)

Lemma 8. Uniformly for |u| < logT”, we have

= Cy(iu)° (log z)*/*
u) =1 + Z ! + Oﬁ’g (31/4 5
S$=2, S even s (IOgZ 1')

where the Cs’s are the constants defined in (3).

Proof. Recall that we chose 51 < %ﬂﬂog2 z)'/3 so that fi(u) can be estimated
using the result of Soundararajan and Granville [7], here given by Lemma 2 and
Corollary 1. Indeed, using Corollary 1, we have

5) (n) — Blogy z—logy y
. 1-3

=% +0(%,),
Z Z \/5210g2m+(1ﬁ)2ﬁ)10g2y ! ( 2)

O<S<Sl ! n<z
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where Cu (i)
)’
M=), =
]
0<s<S1, Seven s
and 320
me Y M
0<s<S; s! logy
We have
1 Cs (logsx /
o i 5,25 (%)
Pos 1Og2xogg<:sl s' 2

1 2 e \*? logs s/ (loggx)‘r’/2
< > <S/2> ( 4 ) Cpg - ——m (18)

s
Viogyw 3 7 \/s/2 (logy x)

From Equation (18), we find that

iu)® og. )/
aw= Y S0 o, (“g)/> (19)

0<5<S1, Seven (log2 .’L')

Furthermore, we have

Cs(iu)® Cy(iu)® C’S|u\ elogs 2\ */?
Y IR S e m e ()

0<s<S1, Seven S even §>S51 s>S
< 1 (elog3x>sl/2 1
— =0 .
VS \ 25 V/log,y
(20)

Using (19) and (20), the proof of Lemma 8 is thus complete. O
3.2. The estimation of fa(u)
Lemma 9. Uniformly for |u] < bgTSx, we have

Rl =0 () @0

Proof. Since Sy = o ((log2 x)l/?’) as & — 00, we can once again use Corollary 1 and

obtain
wﬂ (TL) _B Inglx*ﬂlng Y

— Cs |ul®
|f2 Z Z B2 log, x+(1—28) log, y <<B’£ Z s!

Sl<6<52 . n<x (176)2 S1<s<S2

s/2
elog3x> 1
<z ( 0 .
S>S 25, («/1og2x>

logy

S
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3.3. The estimation of f3(u)

Lemma 10. Uniformly for |u| < log;gc, we have
1

|f3(u)] € —=—=.

v/logy x

Proof. We begin by writing

faw) =1 3 sl (21)

S2<5<S3

where
foa(wy = L3 [
BV T g B2 log, 2+ (1—28) log, y

IA

To simplify the notation, we set

wfﬁ) (n) — ﬁlogzlx_—ﬁlogzy 02)
\/52 logs z4(1-2p) logs y '
(1-p)2

A(n) :=

With this, we get

el < B Sl < (SEBT) S, e

We will now provide upper bounds for > g . _g. |f3,s(u)| depending on the size of
A(n). For this, we let 0 < § < 1 be an arbitrarily small number and examine three
cases separately.

Case 1. |A(n)| < (m)l_i

1-5
Case 2. (@) < |A(n)| < (logy 2)'/2+29,
Case 3. |A(n)| > (logy x)1/2+25,

Case 1. In this case, we have, using Equation (23),

ds
e-logg
)

foslw)| <o (
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Summing the above with respect to s with Sy < s < S3, we have

elogs x o elogs o z
> f3,s(u)<<x2(s> SJ’TZ:((10{@2:@)1/?>—5 =9 \ogsz )

So<s<S3 s>So s>So

Case 2. In this case, we have

faau)] < (1“)

S

|A(n)[®

3
i
8

[
9

(r=)  <lAm)
|A(n)|<(log, z)'/2+2°

e(logs ) (logy 2)1/2T20\
S((g3 )(logy ) ) 3 1

S

n<z

(ms) ' <lAM)]

Using Corollary 2, since

s 1-6 wéﬁ)(n) _ Blogyz—logy y s 1-6
|A(n)| > if and only if L5 >
elogs x \/52 log, 2+ (1-28) log, y elogs
(1-8)

logyz —logyy| 1 [B2+¢—28¢ s \'7?
hat |w® () — Plog2® —logyy| 1 0
so that |w,” (n) - >3 15" eTogy @ V/log, x,
we obtain
e(logs ) (logy ) /22 \ * B4 € —2p¢ s e
[ oo (w)] < 2 ( s P 48 elogs @ '

This yields
2 —
[fs(w)] < zexp </3+62ﬂ6> .

96

Summing the above over s, we obtain that

2 p—
Z |fss(u)| < Z exp(ws22é) « *

96 log, ="
S2<s<S3 S2<5<S3 22

Case 3. In this case, since |A(n)| > (log, x)'/2729 it follows that there exist positive
constants cg ¢ and dg ¢ depending only on 8 and £ such that w(n) > cg ¢ (log, z)
and that 2u(n)
w(n
[A(n)| <

h d/g’gw / log2 a:'
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Thus, we have

2elog; )
[fss(u)l | ——=—= w(n)®
sdgey/logy nz;m

w(n)>cg,e(logy w)1+25
S
2elogs x ) Z Z s
(sdg\/logzx j>cp e (logy ) 1428 n<z
w(n)=j
Using Lemma 6, we obtain

S

2elogs ’ j
[fa.s(w)] < 2(l0g ) (10g, @) ( %> ) I
Sdﬁ 5 10g2 T s, E(Ing 1+25 <]< logm 2]

Now observe that , choosing § = €, we obtain
_ _ 3o_g2
J1 2 () T (logy 1) IS g e (logg @) RS
so that (logyz)' ™ =0 (717%/%). From this, it follows that

J° 3\ 5
Z o < Z (4) < exp (ngg (logy )" T (log 3 — log 4)) ,
1426

j>cp e (logy x)1+28 j>cp.¢(logy )

which allows us to conclude from (24) that

x
| f3,s(u)| < xS3exp (log, x)1+25 (log3 —log4)) =0 | —— | .
52gsz:<s3 ( 2 ) v/logs x

Gathering the estimates from cases 1, 2 and 3 in relation (21), the proof of Lemma
10 is complete. O

3.4. The estimation of f4(u)

Lemma 11. Uniformly for [u| < \/ %%, we have

1
| fa(u)| =0 (\/@> .

Proof. Recalling the definition of A(n) given in (22), we have

|f4<u>|<xjgz (clotg)' § 14 (25)

§>S3 ji>1 n<lz
w(n)=j
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Given that
crw(n) + cology x

dﬂ,gy / 1Og2 x

for some positive constants ¢; and ¢z depending only on 3, and dg ¢ depending only
on 3 and &, we have from Equation (25) that

[A(n)| <

elogs x ’ .
1 s, 26
|f4( | < \/@ Z <5d5,§\/@> Z Z (Clj +c2 089 .’E) ( )

j>1 n<a
w(n)=j

From Lemma 6 and Inequality (26), we obtain

|f4(u)| < (log JJ) (1Og2 JJ)4 ( € 10g3 z )s Z (clj + C2 10g2 x)s ) (27)
s>S3

v/ 1ogs x sdg.¢+/1ogy 27

We will evaluate the above sum treating the cases j < 2 10g2 rand j > 2 10g2 x
separately. Let

elogs x ’ (c1J + o logy x)®
Ti(z) := -
=3 (e ) 3 :

5>S3 1§j§g—flog2ac

1<j <‘°H

and

eloggr ' (c1j + c2log, x)°
Th(z) := . .
N = :

> c . 1 c
s>S83 2 logy << 1055

First assuming j < g—f logy z, we get c1j + calogy, © < 2¢9 log,y z, so that

s S
2ecy log, xlogs x) < (2662 log, xlogs x> ’ ' (28)

Tl(CC) <
5>55 <53 dﬁgwlong‘ Sg'dﬂ,5\/10g2$

On the other hand, assuming that j > i—f logy z, we have c15 + co2logy x < 2¢17, in

which case R
2cielogs j
Th(x) < _— . 29
2(v) < Z (sc/gw/long . Z oge 2 (29)
c1 2 ~Tog2

8233

One can easily check that the maximum value of j°/27 is reached when j = s/ log 2
) . Thus,

and is therefore equal to
elog?2

Z I < logx 5 )
. B & elog2 /)
£10g2$<j§£§§
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Substituting this bound in (29), we find that, as © — oo

s X S3
2cielogs s ° 2¢; logs x
Ty (z) < logz < logw
S;g_ sdger/logy x elog2 dg ¢ log 24/log, x

1
_, <1gx> | (30)

Combining (28) and (30) in (27), we conclude that |fs(u)| = o <1> O

v/1ogs x

Gathering the estimates from Lemmas 8, 9, 10 and 11, we conclude that

(logs )/

(log, )1/1 (31

[f(u) = g(u)] <pe

. logs ©
uniformly for |u| < /=5,

3.5. Completion of the proof of Theorem 3

/.

We have
f(u) —g(u)

u

du = Aq(x) + Ag(x), (32)

where

and

From (31), we have

1 1 7/2
—du < %.

AQ (ZC) <<[-3 u (log .
2

(logs x)°/? /T
1

(log, 95)1/4

Norer
On the other hand, from (17), we easily get that

1
O, x 2
Aq(z) <<57§/”11g2 du <

\/logo = - v 10g2 z
T
L

Hence,
(logs z) "
/4"

ORI

(logy )
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From Esseen’s result (Lemma 7), it follows that, for any t € R,

Tpdn<a: i - Py o(t) + O L (33)
T - \/ﬂ"’loggw(+(1 )2/3)10g2u - B pe Viogzz |
-B)?

In particular, for any ¢ € R such that ¢t = o (logy x) as * — 0o, we have

1 1
<I><t+0<(logx)2>> :<I>(t)+0(10gz>. (34)

Indeed, such a formula can be obtained by the fact that

2 * w2 6_702
ﬁ/o e dv—l—i—O( . ) (x — 00),

so that, for any Y > 0,

t+h 2 64/2
O (t+h) / eV “dv+ 0| — |.
( \/27r Y

In particular, if Y = Y (z), t = t(x) and h = h(z) are such that h = o(Y), th = o(1),
and Yh = o(1), then

@ (t+h) = &(t) (1+0 (Y bl + |th] + b)) +O <€YY) . (35)

Estimate (34) follows by choosing Y = logx, h = O ((log a?)_Q) and t = o (log, x).
We therefore obtain from (33) and (34) that

(5) B1 1
1 ( ) 0g2137 ﬁo.gz Yy

= 1
< <t =®()+0 ; 36
n=: \/52 log, v+(1—25) logy )+ Ope («/logg)x) (36)

(1-8)?

thus completing the proof of Theorem 3. To prove Corollary 3, first observe that

) (1) — ) ) = 1 () () — 15 (@, 0) — ()

Uniformly for real £ > 1, we have

#{n<x:Qn)— ()>k}<<2k/2

By choosing k = log, x, it follows that

# {n <uz: Qy(f)(n) - wz(!ﬁ)(n) > logs a:} <3

log2 *

(logy ) 2
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Hence, we have
Q) (n) = wi? (n) + O (log; z)

for almost all integers n < z. Moreover, for any real ¢ satisfying t* < /log, =, we

have
logs logs
o(t+0 —®(t)+ O0p [ —237 ) (38)
( ? (w/log2x>> ’ <(log2w)1/4
which can be obtained from (35) by choosing ¥ = (log, x)1/4, h < \7% and
O, 2{1/’

t < (logy a:)l/4.

The proof of Corollary 3 then follows from (36), (37) and (38).

4. Proof of the main results

Theorems 1 and 2 will follow rather directly from Theorem 3. Indeed, we obtain
from Lemma 1 that, for any ¢ € R such that t*> = o (\/log2 x),

(8 _
4 ngleoggp (n) Blog2x<t
v/logy x

=4 {n <z:pP(n) <exp (exp (ﬁlong +t\/@))}

:#{ngx:wéﬁ)(n)<1}+0ﬂ (gj(long)ﬁ> (39)

logx

provided we choose y := exp (eXp (ﬁ logy z + t4/log, m)) Now,

wg(;ﬁ) (TL) _ PBlog, xiflog2 y 1+ log, y;iﬁﬁlogz T

w®(n) <1 if and only if

< .
\/62 log, x+(1—23) log, y \/BQ log, z+(1—28) log, y
(1-p)2 (1-p)?

Given our choice of y, we have log, y = Blogy x + t4/log, x, so that
logyy — Blogox 14 ty/log, x
1- 1-p 7

For any ¢ € R such that ¢ = o (log, ) as © — oo, we have

B?logyw + (1 —28)logyy B t
\/ (1-25)2 _\/1—ﬂlog2x<1+0ﬁ<\/10g2x>>.

Hence,

1+

1+ log, yl—_ﬁﬁl‘)gz z

7 t Lo 1+ ¢ Lt
\/5210g2r€;(1*2ﬁ)log2y N \/ﬁ(l—ﬂ) b v/logy x log, © '

-B)
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1/2—¢

Thus, if ¢ < (log, ) for some 1/4 < e < 1/2, we find that

1+ log, y;iﬁﬁlog2 T

t
B log, at(1—28) logy y 1—
\/ A VB[ =pB)

+ 05 ((1og2 g;)*e) . (40)

Notice that |t| < (log, z)"/*7%/2, so that, for any h = O ((log2 :c)fe) , we have

D (t+h) = (t) + O ((logy )~/ + (logy ) ~/*), (41)
which can be obtained from (35) by choosing Y = (log, x)6/2, h < (logy )™ ¢, and
t < (logy x)1/4_€/2. It follows from Theorem 3, (39), (40) and (41) that, for any
real § <& < 1 and ¢ € R such that || < (log, x)'/4e

1 logy pP(n) — Blogy _ t 1
w#{”g” Vomz =N\ Vra ) "\ Vees )

thus completing the proofs of Theorems 1 and 2. Moreover, the proof is the same in
the case when the multiplicity of each prime factor is taken into account to define
the S-positioned prime factor.

, we have
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