

DOI: 10.1515/udt-2018-00?? Unif. Distrib. Theory **13** (2018), no.2, 000-000

PARTITIONING THE SET OF PRIMES TO CREATE r-DIMENSIONAL SEQUENCES WHICH ARE UNIFORMLY DISTRIBUTED MODULO $[0,1)^r$

JEAN-MARIE DE KONINCK — IMRE KÁTAI

ABSTRACT. Expanding on our previous results, we show that by partitioning the set of primes into a finite number of subsets of roughly the same size, we can create r-dimensional sequences of real numbers which are uniformly distributed modulo $[0, 1)^r$.

Communicated by

1. Introduction

In previous papers, we used the factorization of integers to generate large families of normal numbers; see for instance [1] and [2]. Along the same lines, letting $q \ge 3$ be a prime number, we showed in a recent paper [3] how one can create an infinite sequence $\alpha_1, \alpha_2, \ldots$ of normal numbers in base q-1 such that, for any fixed integer $r \ge 1$, the r-dimensional sequence $(\{\alpha_1(q-1)^n\}, \ldots, \{\alpha_r(q-1)^n\})$ is uniformly distributed on $[0, 1)^r$, where $\{y\}$ stands for the fractional part of y. Here, given an appropriate partition of the primes, we create an r-dimensional sequence of real numbers which is uniformly distributed modulo $[0, 1)^r$.

First, we introduce some basic notation. Given an integer $q \geq 3$, let $A_q := \{0, 1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_1 i_2 \ldots i_t$, where each $i_j \in A_q$, is called a *finite word* of length t. The symbol Λ will denote the *empty word*, so that if we concatenate the words α, Λ, β , then, instead of writing $\alpha \Lambda \beta$, we simply write $\alpha \beta$.

Let \wp stand for the set of all primes. Given an integer $q \geq 3$, a partition \mathcal{T} of \wp into sets of primes $\wp_0, \wp_1, \ldots, \wp_{q-1}, \mathcal{R}$, noted (\mathcal{T}, q) , is said to be a *regular* partition if $\wp_0 \cup \wp_1 \cup \ldots \cup \wp_{q-1} \cup \mathcal{R} = \wp$, where \mathcal{R} is finite (possibly empty) and

²⁰¹⁰ Mathematics Subject Classification: 11K16, 11J71. Keywords: Uniform distribution modulo one.

where the sets \wp_i 's are roughly of the same size in the sense that, for every fixed $\varepsilon > 0$,

$$\max_{\substack{j=0,1,\ldots,q-1\\\varepsilon \le y/z \le 1}} \left| \frac{q \pi([x,x+y] \cap \wp_j)}{\pi([x,x+y])} - 1 \right| \to 0 \qquad \text{as } x \to \infty.$$

The following provide examples of *regular partitions* of primes:

(1) Given an arbitrary integer $k \geq 2$, let $\ell_0, \ell_1, \ldots, \ell_{\varphi(k)-1}$ be the reduced residues mod k (here φ stands for the Euler totient function). Setting

$$\begin{split} \wp_{\nu} &:= \{ p \in \wp : p \equiv \ell_{\nu} \pmod{k} \} \qquad (\nu = 0, 1, \dots, \varphi(k) - 1), \\ \mathcal{R} &:= \{ p \in \wp : p \mid k \}, \end{split}$$

Using the prime number theorem for arithmetic progressions, one can easily show that $\wp_0, \wp_1, \ldots, \wp_{\varphi(k)-1}, \mathcal{R}$ represents a regular partition of the primes.

- (2) Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Given an integer $q \geq 2$, let $I_0, I_1, \ldots, I_{q-1}$ be disjoint intervals each of length 1/q such that $[0,1) = I_0 \cup I_1 \cup \cdots \cup I_{q-1}$. Setting $\wp_{\nu} = \{p \in \wp : \{\alpha p\} \in I_{\nu}\}$ for $\nu = 0, 1, \ldots, q-1$ and $\mathcal{R} = \emptyset$, we easily obtain a regular partition of the primes.
- (3) Let $p_1 < p_2 < \cdots$ represent the sequence of all primes. Given a fixed integer k, then for each integer $\ell = 0, 1, \ldots, k-1$, consider the set of primes $\wp_{\ell} := \{p_{mk+\ell} : m = 0, 1, 2, \ldots\}$ and let $\mathcal{R} = \emptyset$, then one can show that $\wp_0, \wp_1, \ldots, \wp_{k-1}, \mathcal{R}$ constitutes a regular partition of the primes.

Let λ_N be a function such that $\lambda_N \to \infty$ as $N \to \infty$. Then, for each integer $N > e^e$, we introduce the intervals $J_N = [e^N, e^{N+1})$ and $K_N = [N, N^{\lambda_N}]$, as well as the particular product of primes $Q_N := \prod_{p \in K_N} p$. Now, we write each integer

 $n \in J_N$ as

$$n = \pi_1(n)\pi_2(n)\cdots\pi_{h(n)}(n)\,\nu(n),\tag{1}$$

where $\pi_1(n) \leq \pi_2(n) \leq \cdots \leq \pi_{h(n)}$ are those prime factors of *n* located in the interval K_N and $\nu(n)$ stands for the product of the other prime factors of *n*, namely those which are relatively prime to Q_N .

2. Main result

THEOREM 1. Let $(\mathcal{T}^{(j)}, q_j)_{j\geq 1}$ be an arbitrary sequence of regular partitions of the primes, with corresponding partitions

$$\wp_0^{(j)}, \wp_1^{(j)}, \dots, \wp_{q_j-1}^{(j)}, \mathcal{R}^{(j)} \qquad (j = 1, 2, \dots).$$

J.-M. DE KONINCK — I. KÁTAI

Given $j, n \in \mathbb{N}$, let

$$a_{j,n} = \begin{cases} \ell & \text{if} \quad \pi_j(n) \in \wp_{\ell}^{(j)} \text{ with } j \le h(n), \\ 0 & \text{if} \quad \pi_j(n) \in \mathcal{R}^{(j)} \text{ or if } j > h(n), \end{cases}$$

where h(n) is as in (1). For each integer $j \ge 1$, consider the number β_j whose q_j -ary expansion is

$$\beta_j = 0.a_{j,1}a_{j,2}\dots$$

and further consider the sequence

$$u_{n,j} = \{\beta_j q_j^n\}$$
 $(n = 1, 2, ...).$

Then, for each fixed integer $r \ge 1$, the r-dimensional sequence

 $(u_{n,1}, u_{n,2}, \ldots, u_{n,r})_{n \ge 1}$

is uniformly distributed modulo $[0,1)^r$.

3. The approach and some preliminary lemmas

Fix positive integers r and k. Then, consider the real $r \times k$ matrix

$$S = \begin{pmatrix} b_{1,1} & \cdots & b_{1,k} \\ b_{2,1} & \cdots & b_{2,k} \\ \vdots & & \vdots \\ b_{r,1} & \cdots & b_{r,k} \end{pmatrix},$$

where each $b_{i,j}$ belongs to A_{q_j} , and, moreover, for each positive integer n, consider the real $r \times k$ matrix

$$\kappa(n) = \begin{pmatrix} a_{1,n+1} & \cdots & a_{1,n+k} \\ a_{2,n+1} & \cdots & a_{2,n+k} \\ \vdots & & \vdots \\ a_{r,n+1} & \cdots & a_{r,n+k} \end{pmatrix},$$

where the elements $a_{j,m}$ are those appearing in the q_j -ary expansion of β_j . Then,

set
$$T := \left(\prod_{j=1}^r q_j\right)^{\kappa}$$
.

In order to prove Theorem 1, it is sufficient to prove that, given any small number $\varepsilon > 0$, for every matrix S (as the one above), we have

$$\limsup_{x \to \infty} \left| \frac{T}{x} \# \{ n \le x : \kappa(n) = S \} - 1 \right| \le \varepsilon.$$
(2)

 $\mathbf{2}$

UNIFORMLY DISTRIBUTED *r*-DIMENSIONAL SEQUENCES

Indeed, fixing $\varepsilon > 0$ and assuming that we can establish that for $e^N \leq x \leq e^{N+1},$ we have

$$|T \# \{ n \in [e^N, x) : \kappa(n) = S \} - (x - e^N) | \le \varepsilon x + O(1),$$
 (3)

and similarly also with $[e^{\nu}, e^{\nu+1})$ instead of $[e^N, x)$ for $\nu = k, k+1, \ldots, N-1$, we have

$$#\{n \le x : \kappa(n) = S\} = \sum_{\nu=k}^{N-1} \#\{n \in J_{\nu} : \kappa(n) = S\} + \#\{n \in [e^N, x) : \kappa(n) = S\} + O(1),$$

then we easily see that (2) follows (3).

LEMMA 1. Let y_x be a function of x which tends to infinity with x. Then, the number of those positive integers $n \leq x$ which have two prime divisors p_1, p_2 such that $y_x \leq p_1 < p_2 < 2p_1$ and p_2 divides $|\prod_{-k \leq j \leq k} (n+j)$ is o(x) as $x \to \infty$.

Proof. It is clear that amongst those positive integers $n \leq x$, the situation $p_1 \mid n, p_2 \mid n+j$ for some $j \in [-k,k]$ and $y_x \leq p_1 < p_2 < 2p_1$ occurs at most $x \sum_{y_x \leq p_1 < p_2 < 2p_1 < x} \frac{1}{p_1 p_2} = o(x)$ times, thus establishing our claim. \Box

LEMMA 2. With y_x as in Lemma 1, we have

$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : p^2 \mid n, \ p \ge y_x \} = 0.$$

Proof. This is immediate if one observes that

$$\#\{n \le x : p^2 \mid n, \ p \ge y_x\} \le \sum_{p \ge y_x} \frac{x}{p^2} \ll \frac{x}{y_x}$$

LEMMA 3. As $N \to \infty$,

$$\frac{1}{e^N} \#\{n \in J_N : \min_{-k \le \ell \le k} h(n+\ell) \le r\} \to 0.$$

Proof. This is an immediate consequence of the Turán-Kubilius inequality. \Box

LEMMA 4. Let $J = [e^N, x]$, where $e^N < x \le e^{N+1}$. Let r and k be fixed positive integers. Let $Q_{i,\ell}$, for i = 1, ..., r and $\ell = 1, ..., k$ be distinct primes belonging to K_N such that $Q_{1,\ell} < Q_{2,\ell} < \cdots < Q_{r,\ell}$. Moreover, let $S_J(Q_{i,\ell} \mid i = 1, ..., r, \ell = 1, ..., k)$ be the number of those integers $n \in J$ for which $\pi_i(n + \ell) = Q_{i,\ell}$. Also,

J.-M. DE KONINCK — I. KÁTAI

for each integer $r \ge 1$, let $\sigma(1), \ldots, \sigma(k)$ be the permutation of the set $\{1, \ldots, k\}$ which allows us to write

 $Q_{r,\sigma(1)} < Q_{r,\sigma(2)} < \cdots < Q_{r,\sigma(k)}.$

Then, given any small $\varepsilon > 0$ and provided $x - e^N \ge \varepsilon e^N$, we have, as $N \to \infty$,

$$S_J(Q_{i,\ell} \mid i = 1, \dots, r, \ \ell = 1, \dots, k) = (1 + o(1)) \frac{x - e^N}{\prod_{\substack{1 \le i \le r \\ 1 \le \ell \le k}} Q_{i,\ell}} \cdot \prod_{N \le \pi < Q_{r,\sigma(k)}} \left(1 - \frac{\rho(\pi)}{\pi}\right),$$

where

$$\rho(\pi) = \begin{cases} k & \text{if } N \le \pi < Q_{r,\sigma(1)}, \\ k-1 & \text{if } Q_{r,\sigma(1)} < \pi < Q_{r,\sigma(2)}, \\ \vdots & \vdots \\ 1 & \text{if } Q_{r,\sigma(k-1)} < \pi < Q_{r,\sigma(k)}, \\ 0 & \text{if } \pi \in \{Q_{i,\ell} : i = 1, \dots, r, \ \ell = 1, \dots, k\}. \end{cases}$$

Proof. This is relation (2.1) in our paper [3].

4. Proof of Theorem 1

Let $\delta \in (0, 1/4)$ be fixed and set $\eta = 1 + \delta$. Further let N be a large number and let $\nu_0 = \nu_0(N)$ be an integer satisfying

$$\nu_0 \delta > \frac{1}{\varepsilon} \log N$$

Then, for each $m \in \{0, 1, \ldots, \nu_0\}$, consider the interval

$$L_m = [\eta^m N, \eta^{m+1} N].$$

Further consider the set \mathcal{M} of matrices

$$M = \begin{pmatrix} m_{1,1} & \cdots & m_{1,k} \\ m_{2,1} & \cdots & m_{2,k} \\ \vdots & & \vdots \\ m_{r,1} & \cdots & m_{r,k} \end{pmatrix},$$

where $0 \le m_{1,\ell} < m_{2,\ell} < \cdots < m_{r,\ell} \le \nu_0(N)$ for $\ell = 1, 2, \ldots, k$ and $m_{u_1,v_1} \ne m_{u_2,v_2}$ if $(u_1, v_1) \ne (u_2, v_2)$.

UNIFORMLY DISTRIBUTED *r*-DIMENSIONAL SEQUENCES

With J as in the statement of Lemma 4 and given $n \in J$, write

$$\tau(n) = M$$
 if $\pi_i(n+\ell) \in L_{m_{i,\ell}}$ $(\ell = 1, \dots, k, i = 1, \dots, r).$

Let us drop all those integers $n \in J$ which can be neglected in light of of Lemmas 1, 2 or 3. Then, the size of the set of those $n \leq x$ thus dropped is o(x) as $x \to \infty$. Hence, for those $n \in J$ which are not dropped, we have that $\tau(n) = M$ holds for one and only one element of M. Let us fix a matrix $M \in \mathcal{M}$. Observe that if $Q_{i,\ell}$ is a prime in the interval $L_{m_{i,\ell}}$, then, according to Lemma 4, the expression $S_J(Q_{i,\ell} \mid i = 1, \ldots, r, \ell = 1, \ldots, k)$ tends to a constant as $N \to \infty$, since in fact it is

$$(1+o(1))\frac{x-e^N}{N^{rk}\prod \eta^{\sum m_{i,\ell}}}\prod_{N<\pi< N\eta^{\max m_{i,\ell}}}\left(1-\frac{\rho^*(\pi)}{\pi}\right),$$

where $\rho^*(\pi)$ is defined by

$$\rho^{*}(\pi) = \begin{cases} k & \text{if} & N \leq \pi < N\eta^{m_{r,\sigma(1)}}, \\ k-1 & \text{if} & N\eta^{m_{r,\sigma(1)}} \leq \pi < N\eta^{m_{r,\sigma(2)}}, \\ \vdots & & \vdots \\ 1 & \text{if} & N\eta^{m_{r,\sigma(k-1)}} \leq \pi < N\eta^{m_{r,\sigma(k)}}. \end{cases}$$

The size of the collection of those primes $Q_{i,\ell} \in L_{m_{i,\ell}}$ is equal to $\prod_{\substack{i=1,\ldots,r\\\ell=1,\ldots,k}} \pi(L_{m_{i,\ell}}).$

On the other hand, the size of the collection of those $Q_{i,\ell}$ which also belong to $\wp_{b_{i,\ell}}^{(i)}$ is equal to $\prod_{i=1}^{r} \pi(L_{m_{i,\ell}} \cap \wp_{b_{i,\ell}}^{(i)}).$

Now, since

$$\prod_{\substack{i=1,\dots,r\\\ell=1,\dots,k}} \frac{q_i \pi(L_{m_{i,\ell}} \cap \wp_{b_{i,\ell}}^{(i)})}{\pi(L_{m_{i,\ell}})} = (1 + O(\xi(N))), \tag{4}$$

where $\xi(N) \to 0$ as $N \to \infty$, and since (4) holds uniformly for every $M \in \mathcal{M}$, we have thus established that (3) holds. Since we can perform the same argument with the interval $[e^{\nu}, e^{\nu+1})$ instead of $[e^{\nu}, x)$, the proof of Theorem 1 is complete.

5. Final remarks

Finally, we may expand on an analogous result. Given two integers $Q \ge 2$ and $r \ge 1$ such that (Q, r) = 1, let

$$\wp_{Q,r} := \{ p \in \wp : p \equiv r \pmod{Q} \}.$$

J.-M. DE KONINCK — I. KÁTAI

Moreover, let $(\mathcal{T}^{(j)}, q_j)_{j \ge 1}$ be a sequence of regular partitions of the set of primes $\wp_{Q,r}$, with corresponding partitions

$$\wp_0^{(j)}, \wp_1^{(j)}, \dots, \wp_{q_j-1}^{(j)}, \mathcal{R}^{(j)} \qquad (j = 1, 2, \dots),$$

with $\#\mathcal{R}^{(j)} < \infty$, that is, such that

$$\wp_0^{(j)} \cup \wp_1^{(j)} \cup \ldots \cup \wp_{q_j-1}^{(j)} \cup \mathcal{R}^{(j)} = \wp_{Q,r} \qquad (j = 1, 2, \ldots)$$

and, for each $j \in \mathbb{N}$,

$$\max_{\substack{\ell=0,1,\ldots,q_j-1\\\varepsilon \le y/x \le 1}} \left| \frac{q_j \pi([x,x+y] \cap \wp_{\ell}^{(j)})}{\pi([x,x+y] \cap \wp_{Q,r})} - 1 \right| \to 0 \qquad \text{as } x \to \infty,$$

where $\varepsilon > 0$ is any preassigned small number.

Moreover, let x_N , J_N , λ_N and K_N be defined as in Section 1, and further set

$$S_N := \prod_{\pi \in K_N \cap \wp_{Q,r}} \pi \qquad \text{for each integer } N > e^e.$$

Then, let

$$N \le \pi_1(n) \le \dots \le \pi_{h(n)}(n) \le N^{\lambda_N}$$

be all the prime divisors $\pi_j(n) \equiv r \pmod{Q}$ belonging to the interval K_N , that is such that

$$n = \pi_1(n) \cdots \pi_{h(n)}(n)\nu(n), \text{ where } (\nu(n), S_N) = 1.$$

Finally, for each $j \in \mathbb{N}$, consider the integers

$$a_{j,n} := \begin{cases} \ell & \text{if} \quad \pi_j(n) \in \wp_{\ell}^{(j)} \text{ and } j \le h(n), \\ 0 & \text{if} \quad \pi_j(n) \in \mathcal{R}^{(j)} \text{ or if } j > h(n), \end{cases}$$

the real numbers

 $\beta_j = 0.a_{j,1}a_{j,2}\dots$ $(q_j - \text{ary expansion}),$

and the corresponding sequence of real numbers

$$u_{n,j} = \{\beta_j q_j^n\}$$
 $(n = 1, 2, ...).$

With this set up, one can prove that, for each fixed positive integer r, the r-dimensional sequence $(u_{n,1}, u_{n,2}, \ldots, u_{n,r})_{n \ge 1}$ is uniformly distributed modulo $[0,1)^r$.

UNIFORMLY DISTRIBUTED *r*-DIMENSIONAL SEQUENCES

REFERENCES

- J.M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, Annales mathématiques du Québec 38 (2014), No.2, 133–144.
- [2] J.M. De Koninck and I. Kátai, Prime-like sequences leading to the construction of normal numbers, Funct. Approx. Comment. Math. 49 (2013), No.2, 291-302.
- [3] J.M. De Koninck and I. Kátai, Multidimensional sequences uniformly distributed modulo 1 created from normal numbers in CONTEMPORARY MATHEMATICS, Vol. 655, AMS, 2015, pp. 77–82.

Received Accepted Dép. mathématiques et statistique Université Laval Québec G1V 0A6 Canada

E-mail: jmdk@mat.ulaval.ca

Eötvös Loránd University 1117 Budapest Pázmány Péter Sétány I/C Hungary

E-mail: katai@inf.elte.hu