PARTITIONING THE SET OF PRIMES TO CREATE r-DIMENSIONAL SEQUENCES WHICH ARE UNIFORMLY DISTRIBUTED MODULO $[0,1)^{r}$

Jean-Marie De Koninck - Imre Kátai

Abstract

Expanding on our previous results, we show that by partitioning the set of primes into a finite number of subsets of roughly the same size, we can create r-dimensional sequences of real numbers which are uniformly distributed modulo $[0,1)^{r}$.

Communicated by

1. Introduction

In previous papers, we used the factorization of integers to generate large families of normal numbers; see for instance [1] and 2]. Along the same lines, letting $q \geq 3$ be a prime number, we showed in a recent paper 3] how one can create an infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$ of normal numbers in base $q-1$ such that, for any fixed integer $r \geq 1$, the r-dimensional sequence $\left(\left\{\alpha_{1}(q-1)^{n}\right\}, \ldots,\left\{\alpha_{r}(q-1)^{n}\right\}\right)$ is uniformly distributed on $[0,1)^{r}$, where $\{y\}$ stands for the fractional part of y. Here, given an appropriate partition of the primes, we create an r-dimensional sequence of real numbers which is uniformly distributed modulo $[0,1)^{r}$.

First, we introduce some basic notation. Given an integer $q \geq 3$, let $A_{q}:=$ $\{0,1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{q}$, is called a finite word of length t. The symbol Λ will denote the empty word, so that if we concatenate the words α, Λ, β, then, instead of writing $\alpha \Lambda \beta$, we simply write $\alpha \beta$.

Let \wp stand for the set of all primes. Given an integer $q \geq 3$, a partition \mathcal{T} of \wp into sets of primes $\wp_{0}, \wp_{1}, \ldots, \wp_{q-1}, \mathcal{R}$, noted ($\left.\mathcal{T}, q\right)$, is said to be a regular partition if $\wp_{0} \cup \wp_{1} \cup \ldots \cup \wp_{q-1} \cup \mathcal{R}=\wp$, where \mathcal{R} is finite (possibly empty) and

[^0]where the sets \wp_{i} 's are roughly of the same size in the sense that, for every fixed $\varepsilon>0$,
$$
\max _{\substack{j=0,1, \ldots,--1 \\ \varepsilon \leq y / x \leq 1}}\left|\frac{q \pi\left([x, x+y] \cap \wp_{j}\right)}{\pi([x, x+y])}-1\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

The following provide examples of regular partitions of primes:
(1) Given an arbitrary integer $k \geq 2$, let $\ell_{0}, \ell_{1}, \ldots, \ell_{\varphi(k)-1}$ be the reduced residues mod k (here φ stands for the Euler totient function). Setting

$$
\begin{array}{rll}
\wp_{\nu} & :=\left\{p \in \wp: p \equiv \ell_{\nu} \quad(\bmod k)\right\} \quad(\nu=0,1, \ldots, \varphi(k)-1), \\
\mathcal{R} & :=\{p \in \wp: p \mid k\},
\end{array}
$$

Using the prime number theorem for arithmetic progressions, one can easily show that $\wp_{0}, \wp_{1}, \ldots, \wp_{\varphi(k)-1}, \mathcal{R}$ represents a regular partition of the primes.
(2) Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Given an integer $q \geq 2$, let $I_{0}, I_{1}, \ldots, I_{q-1}$ be disjoint intervals each of length $1 / q$ such that $[0,1)=I_{0} \cup I_{1} \cup \cdots \cup I_{q-1}$. Setting $\wp_{\nu}=\left\{p \in \wp:\{\alpha p\} \in I_{\nu}\right\}$ for $\nu=0,1, \ldots, q-1$ and $\mathcal{R}=\emptyset$, we easily obtain a regular partition of the primes.
(3) Let $p_{1}<p_{2}<\cdots$ represent the sequence of all primes. Given a fixed integer k, then for each integer $\ell=0,1, \ldots, k-1$, consider the set of primes $\wp_{\ell}:=\left\{p_{m k+\ell}: m=0,1,2, \ldots\right\}$ and let $\mathcal{R}=\emptyset$, then one can show that $\wp_{0}, \wp_{1}, \ldots, \wp_{k-1}, \mathcal{R}$ constitutes a regular partition of the primes.
Let λ_{N} be a function such that $\lambda_{N} \rightarrow \infty$ as $N \rightarrow \infty$. Then, for each integer $N>e^{e}$, we introduce the intervals $J_{N}=\left[e^{N}, e^{N+1}\right)$ and $K_{N}=\left[N, N^{\lambda_{N}}\right]$, as well as the particular product of primes $Q_{N}:=\prod_{p \in K_{N}} p$. Now, we write each integer $n \in J_{N}$ as

$$
\begin{equation*}
n=\pi_{1}(n) \pi_{2}(n) \cdots \pi_{h(n)}(n) \nu(n) \tag{1}
\end{equation*}
$$

where $\pi_{1}(n) \leq \pi_{2}(n) \leq \cdots \leq \pi_{h(n)}$ are those prime factors of n located in the interval K_{N} and $\nu(n)$ stands for the product of the other prime factors of n, namely those which are relatively prime to Q_{N}.

2. Main result

Theorem 1. Let $\left(\mathcal{T}^{(j)}, q_{j}\right)_{j \geq 1}$ be an arbitrary sequence of regular partitions of the primes, with corresponding partitions

$$
\wp_{0}^{(j)}, \wp_{1}^{(j)}, \ldots, \wp_{q_{j}-1}^{(j)}, \mathcal{R}^{(j)} \quad(j=1,2, \ldots)
$$

J.-M. DE KONINCK — I. KÁTAI

Given $j, n \in \mathbb{N}$, let

$$
a_{j, n}=\left\{\begin{array}{lll}
\ell & \text { if } & \pi_{j}(n) \in \wp_{\ell}^{(j)} \text { with } j \leq h(n), \\
0 & \text { if } & \pi_{j}(n) \in \mathcal{R}^{(j)} \text { or if } j>h(n),
\end{array}\right.
$$

where $h(n)$ is as in (1). For each integer $j \geq 1$, consider the number β_{j} whose q_{j}-ary expansion is

$$
\beta_{j}=0 . a_{j, 1} a_{j, 2} \ldots
$$

and further consider the sequence

$$
u_{n, j}=\left\{\beta_{j} q_{j}^{n}\right\} \quad(n=1,2, \ldots)
$$

Then, for each fixed integer $r \geq 1$, the r-dimensional sequence

$$
\left(u_{n, 1}, u_{n, 2}, \ldots, u_{n, r}\right)_{n \geq 1}
$$

is uniformly distributed modulo $[0,1)^{r}$.

3. The approach and some preliminary lemmas

Fix positive integers r and k. Then, consider the real $r \times k$ matrix

$$
S=\left(\begin{array}{lll}
b_{1,1} & \cdots & b_{1, k} \\
b_{2,1} & \cdots & b_{2, k} \\
\vdots & & \vdots \\
b_{r, 1} & \cdots & b_{r, k}
\end{array}\right)
$$

where each $b_{i, j}$ belongs to $A_{q_{j}}$, and, moreover, for each positive integer n, consider the real $r \times k$ matrix

$$
\kappa(n)=\left(\begin{array}{lll}
a_{1, n+1} & \cdots & a_{1, n+k} \\
a_{2, n+1} & \cdots & a_{2, n+k} \\
\vdots & & \vdots \\
a_{r, n+1} & \cdots & a_{r, n+k}
\end{array}\right),
$$

where the elements $a_{j, m}$ are those appearing in the q_{j}-ary expansion of β_{j}. Then, set $T:=\left(\prod_{j=1}^{r} q_{j}\right)^{k}$.

In order to prove Theorem 1, it is sufficient to prove that, given any small number $\varepsilon>0$, for every matrix S (as the one above), we have

$$
\begin{equation*}
\limsup _{x \rightarrow \infty}\left|\frac{T}{x} \#\{n \leq x: \kappa(n)=S\}-1\right| \leq \varepsilon . \tag{2}
\end{equation*}
$$

UNIFORMLY DISTRIBUTED r-DIMENSIONAL SEQUENCES

Indeed, fixing $\varepsilon>0$ and assuming that we can establish that for $e^{N} \leq x \leq e^{N+1}$, we have

$$
\begin{equation*}
\left|T \#\left\{n \in\left[e^{N}, x\right): \kappa(n)=S\right\}-\left(x-e^{N}\right)\right| \leq \varepsilon x+O(1) \tag{3}
\end{equation*}
$$

and similarly also with $\left[e^{\nu}, e^{\nu+1}\right)$ instead of $\left[e^{N}, x\right)$ for $\nu=k, k+1, \ldots, N-1$, we have

$$
\begin{aligned}
\#\{n \leq x: \kappa(n)=S\}=\sum_{\nu=k}^{N-1} & \#\left\{n \in J_{\nu}: \kappa(n)=S\right\} \\
& +\#\left\{n \in\left[e^{N}, x\right): \kappa(n)=S\right\}+O(1),
\end{aligned}
$$

then we easily see that (2) follows (3).
Lemma 1. Let y_{x} be a function of x which tends to infinity with x. Then, the number of those positive integers $n \leq x$ which have two prime divisors p_{1}, p_{2} such that $y_{x} \leq p_{1}<p_{2}<2 p_{1}$ and p_{2} divides $\mid \prod_{-k \leq j \leq k}(n+j)$ is $o(x)$ as $x \rightarrow \infty$.

Proof. It is clear that amongst those positive integers $n \leq x$, the situation $p_{1}\left|n, p_{2}\right| n+j$ for some $j \in[-k, k]$ and $y_{x} \leq p_{1}<p_{2}<2 p_{1}$ occurs at most $x \sum_{y_{x} \leq p_{1}<p_{2}<2 p_{1}<x} \frac{1}{p_{1} p_{2}}=o(x)$ times, thus establishing our claim.
Lemma 2. With y_{x} as in Lemma 1, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: p^{2} \mid n, p \geq y_{x}\right\}=0
$$

Proof. This is immediate if one observes that

$$
\#\left\{n \leq x: p^{2} \mid n, p \geq y_{x}\right\} \leq \sum_{p \geq y_{x}} \frac{x}{p^{2}} \ll \frac{x}{y_{x}}
$$

Lemma 3. As $N \rightarrow \infty$,

$$
\frac{1}{e^{N}} \#\left\{n \in J_{N}: \min _{-k \leq \ell \leq k} h(n+\ell) \leq r\right\} \rightarrow 0
$$

Proof. This is an immediate consequence of the Turán-Kubilius inequality.
Lemma 4. Let $J=\left[e^{N}, x\right]$, where $e^{N}<x \leq e^{N+1}$. Let r and k be fixed positive integers. Let $Q_{i, \ell}$, for $i=1, \ldots, r$ and $\ell=1, \ldots, k$ be distinct primes belonging to K_{N} such that $Q_{1, \ell}<Q_{2, \ell}<\cdots<Q_{r, \ell}$. Moreover, let $S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=\right.$ $1, \ldots, k)$ be the number of those integers $n \in J$ for which $\pi_{i}(n+\ell)=Q_{i, \ell}$. Also,

J.-M. DE KONINCK — I. KÁTAI

for each integer $r \geq 1$, let $\sigma(1), \ldots, \sigma(k)$ be the permutation of the set $\{1, \ldots, k\}$ which allows us to write

$$
Q_{r, \sigma(1)}<Q_{r, \sigma(2)}<\cdots<Q_{r, \sigma(k)} .
$$

Then, given any small $\varepsilon>0$ and provided $x-e^{N} \geq \varepsilon e^{N}$, we have, as $N \rightarrow \infty$,

$$
\begin{aligned}
& S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right) \\
& \quad=(1+o(1)) \frac{x-e^{N}}{\prod_{\substack{1 \leq i \leq r \\
1 \leq \ell \leq k}} Q_{i, \ell}} \cdot \prod_{N \leq \pi<Q_{r, \sigma(k)}}\left(1-\frac{\rho(\pi)}{\pi}\right),
\end{aligned}
$$

where

$$
\rho(\pi)=\left\{\begin{array}{llc}
k & \text { if } & N \leq \pi<Q_{r, \sigma(1)}, \\
k-1 & \text { if } & Q_{r, \sigma(1)}<\pi<Q_{r, \sigma(2)}, \\
\vdots & & \vdots \\
1 & \text { if } & Q_{r, \sigma(k-1)}<\pi<Q_{r, \sigma(k)}, \\
0 & \text { if } & \pi \in\left\{Q_{i, \ell}: i=1, \ldots, r, \quad \ell=1, \ldots, k\right\} .
\end{array}\right.
$$

Proof. This is relation (2.1) in our paper (3).

4. Proof of Theorem 1

Let $\delta \in(0,1 / 4)$ be fixed and set $\eta=1+\delta$. Further let N be a large number and let $\nu_{0}=\nu_{0}(N)$ be an integer satisfying

$$
\nu_{0} \delta>\frac{1}{\varepsilon} \log N
$$

Then, for each $m \in\left\{0,1, \ldots, \nu_{0}\right\}$, consider the interval

$$
L_{m}=\left[\eta^{m} N, \eta^{m+1} N\right] .
$$

Further consider the set \mathcal{M} of matrices

$$
M=\left(\begin{array}{lll}
m_{1,1} & \cdots & m_{1, k} \\
m_{2,1} & \cdots & m_{2, k} \\
\vdots & & \vdots \\
m_{r, 1} & \cdots & m_{r, k}
\end{array}\right)
$$

where $0 \leq m_{1, \ell}<m_{2, \ell}<\cdots<m_{r, \ell} \leq \nu_{0}(N)$ for $\ell=1,2, \ldots, k$ and $m_{u_{1}, v_{1}} \neq$ $m_{u_{2}, v_{2}}$ if $\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$.

With J as in the statement of Lemma 4 and given $n \in J$, write

$$
\tau(n)=M \quad \text { if } \pi_{i}(n+\ell) \in L_{m_{i, \ell}} \quad(\ell=1, \ldots, k, i=1, \ldots, r)
$$

Let us drop all those integers $n \in J$ which can be neglected in light of of Lemmas 1, 2] or 3. Then, the size of the set of those $n \leq x$ thus dropped is $o(x)$ as $x \rightarrow \infty$. Hence, for those $n \in J$ which are not dropped, we have that $\tau(n)=M$ holds for one and only one element of M. Let us fix a matrix $M \in \mathcal{M}$. Observe that if $Q_{i, \ell}$ is a prime in the interval $L_{m_{i, \ell}}$, then, according to Lemma 4, the expression $S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right)$ tends to a constant as $N \rightarrow \infty$, since in fact it is

$$
(1+o(1)) \frac{x-e^{N}}{N^{r k} \prod \eta^{\sum m_{i, \ell}}} \prod_{N<\pi<N \eta^{\max m_{i, \ell}}}\left(1-\frac{\rho^{*}(\pi)}{\pi}\right)
$$

where $\rho^{*}(\pi)$ is defined by

$$
\rho^{*}(\pi)=\left\{\begin{array}{ccc}
k & \text { if } & N \leq \pi<N \eta^{m_{r, \sigma(1)}} \\
k-1 & \text { if } & N \eta^{m_{r, \sigma(1)} \leq \pi<N \eta^{m_{r, \sigma(2)}}} \\
\vdots & & \vdots \\
1 & \text { if } & N \eta^{m_{r, \sigma(k-1)} \leq \pi<N \eta^{m_{r, \sigma(k)}}} .
\end{array}\right.
$$

The size of the collection of those primes $Q_{i, \ell} \in L_{m_{i, \ell}}$ is equal to $\prod_{\substack{i=1, \ldots, r \\ \ell=1, \ldots, k}} \pi\left(L_{m_{i, \ell}}\right)$. On the other hand, the size of the collection of those $Q_{i, \ell}$ which also belong to $\wp_{b_{i, \ell}}^{(i)}$ is equal to $\prod_{\substack{i=1, \ldots, r \\ \ell=1, \ldots, k}} \pi\left(L_{m_{i, \ell}} \cap \wp_{b_{i, \ell}}^{(i)}\right)$.

Now, since
where $\xi(N) \rightarrow 0$ as $N \rightarrow \infty$, and since (4) holds uniformly for every $M \in \mathcal{M}$, we have thus established that (3) holds. Since we can perform the same argument with the interval $\left[e^{\nu}, e^{\nu+1}\right)$ instead of $\left[e^{\nu}, x\right)$, the proof of Theorem 1 is complete.

5. Final remarks

Finally, we may expand on an analogous result.
Given two integers $Q \geq 2$ and $r \geq 1$ such that $(Q, r)=1$, let

$$
\wp_{Q, r}:=\{p \in \wp: p \equiv r \quad(\bmod Q)\}
$$

J.-M. DE KONINCK - I. KÁTAI

Moreover, let $\left(\mathcal{T}^{(j)}, q_{j}\right)_{j \geq 1}$ be a sequence of regular partitions of the set of primes $\wp_{Q, r}$, with corresponding partitions

$$
\wp_{0}^{(j)}, \wp_{1}^{(j)}, \ldots, \wp_{q_{j}-1}^{(j)}, \mathcal{R}^{(j)} \quad(j=1,2, \ldots),
$$

with $\# \mathcal{R}^{(j)}<\infty$, that is, such that

$$
\wp_{0}^{(j)} \cup \wp_{1}^{(j)} \cup \ldots \cup \wp_{q_{j}-1}^{(j)} \cup \mathcal{R}^{(j)}=\wp_{Q, r} \quad(j=1,2, \ldots)
$$

and, for each $j \in \mathbb{N}$,

$$
\max _{\substack{\ell=0,1, \ldots, q_{j}-1 \\ \varepsilon \leq y / x \leq 1}}\left|\frac{q_{j} \pi\left([x, x+y] \cap \wp_{\ell}^{(j)}\right)}{\pi\left([x, x+y] \cap \wp_{Q, r}\right)}-1\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

where $\varepsilon>0$ is any preassigned small number.
Moreover, let $x_{N}, J_{N}, \lambda_{N}$ and K_{N} be defined as in Section 1, and further set

$$
S_{N}:=\prod_{\pi \in K_{N} \cap \wp Q, r} \pi \quad \text { for each integer } N>e^{e}
$$

Then, let

$$
N \leq \pi_{1}(n) \leq \cdots \leq \pi_{h(n)}(n) \leq N^{\lambda_{N}}
$$

be all the prime divisors $\pi_{j}(n) \equiv r(\bmod Q)$ belonging to the interval K_{N}, that is such that

$$
n=\pi_{1}(n) \cdots \pi_{h(n)}(n) \nu(n), \quad \text { where }\left(\nu(n), S_{N}\right)=1
$$

Finally, for each $j \in \mathbb{N}$, consider the integers

$$
a_{j, n}:=\left\{\begin{array}{lll}
\ell & \text { if } & \pi_{j}(n) \in \wp_{\ell}^{(j)} \text { and } j \leq h(n), \\
0 & \text { if } & \pi_{j}(n) \in \mathcal{R}^{(j)} \text { or if } j>h(n),
\end{array}\right.
$$

the real numbers

$$
\beta_{j}=0 . a_{j, 1} a_{j, 2} \ldots \quad\left(q_{j}-\text { ary expansion }\right)
$$

and the corresponding sequence of real numbers

$$
u_{n, j}=\left\{\beta_{j} q_{j}^{n}\right\} \quad(n=1,2, \ldots)
$$

With this set up, one can prove that, for each fixed positive integer r, the r dimensional sequence $\left(u_{n, 1}, u_{n, 2}, \ldots, u_{n, r}\right)_{n \geq 1}$ is uniformly distributed modulo $[0,1)^{r}$.

REFERENCES

[1] J.M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, Annales mathématiques du Québec 38 (2014), No.2, 133-144.
[2] J.M. De Koninck and I. Kátai, Prime-like sequences leading to the construction of normal numbers, Funct. Approx. Comment. Math. 49 (2013), No.2, 291-302.
[3] J.M. De Koninck and I. Kátai, Multidimensional sequences uniformly distributed modulo 1 created from normal numbers in Contemporary Mathematics, Vol. 655, AMS, 2015, pp. $77-82$.

Received
Accepted

Dép. mathématiques et statistique
Université Laval
Québec G1V 0A6
Canada

E-mail: jmdk@mat.ulaval.ca
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
E-mail: katai@inf.elte.hu

[^0]: 2010 Mathematics Subject Classification: 11K16, 11J71.
 Keywords: Uniform distribution modulo one.

