On the divisors of shifted primes
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Abstract
Let 7(n) stand for the number of positive divisors of n. Given an additive

1
function f and a real number a € [0,1), let hy(«) := ) Z 1, where
T(n
{f(lfil‘)?<a
{y} stands for the fractional part of y, and consider the discrepancy A(n) :=

SUPg<q<p<t |Mn(B) —hn(a) = (B—a)|. We show that A(p+1) — 0 for almost all
lmf(a)]1?

primes p if and only if Z ———— = o for every positive integer m, where

q9€p
||z|| stands for the distance between z and its nearest integer and where the

sum runs over all primes gq.
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1 Introduction and notation

Let 7(n) stand for the number of positive divisors of n. Given an additive function

1
f and a real number a € [0,1), let h,(«a) = ) Z 1, where {y} stands for
T(n
U@ <a
the fractional part of y, and consider the discrepancy A(n) := supg<q<s1 [hn(8) —

hn(a) — (B — a)|. Tt is well known that A, (o) — « as n — oo uniformly for « € [0, 1)
if and only if lim,,_,,, A(n) = 0.



Let ||z|| stand for the distance between x and its nearest integer and let p stand
for the set of all primes. From here on, the letters p and ¢ will be used exclusively to

denote primes. In 1976, the second author [5] proved that A(n) — 0 for almost all n
2
if and only if Z M
q€p q
Observe that there is a small error in the original paper of Katai [5]: in relation (5),
the number 2 should be removed.

Here, we consider the case of shifted primes p+ 1 and show that A(p+1) — 0 for

mf(q)|?

almost all primes p if and only if Z |

= oo for every positive integer m (see Theorem A below).

= oo for every positive integer m.

qEp
Finally, we examine an interesting outcome in the particular case f(n) = logn.

2 Main result

Theorem 1. Let [ be an additive function and « € [0,1). Set h,(«) : Z 1

@)<a
and A(n) = supg<qcper [hn(B) — hn(a) — (B8 — a)|. Then, A(p+1) — 0 for almost

2
all primes p if and only Zfz Im @)l

q€p

= 00 for every positive integer m.

3 Preliminary results

Let P(n) stand for the largest prime factor of n and m(z) for the number of primes
not exceeding x.

Lemma 1. Given 6 € (0,1/2) and a large number x, set g, 5:={p<x:Plp+1)¢&
(2%, 20|} Then, for some absolute constant C; > 0,

Hops < Crom(z).
Proof. The fact that there exists an absolute constant ¢; > 0 such that
#p<z:Plp+1) >z < dn(x)

is essentially a direct application of Theorem 3.8 in the book of Halberstam and
Richert [2]. Therefore, it remains to prove that there exists an absolute constant
¢y > 0 such that

(3.1) #{p<a:Plp+1) <2’} <cdn(z).



To do so, we shall first obtain an upper bound for the sum T(z) := Z log(p + 1).

p<z
P(p+1)<af

Letting as usual 7(z;a,b) stand for #{p < z : p = b (mod a)}, then, for some
absolute constants c3 > 0, ¢4 > 0 and ¢5 > 0, we have that

Ty(x) = > (logq)m(z;q*1)

gk <z, k>1
q<w5

IN

T 1 1 1
C3logx Z(logq)( + )+'”>+O v Z pr

= g—1 q(g—1 ed

g<x

T log q x
< 01 =c50 .
Cy log " Zé 7 < Cy log - ogx C50X

qg<lzx

It follows from this last estimate that, provided x > x4(d), we have

50T 3c50x
€ [x/2,2]: P(p+1) <2’} < < :
#{p € [x/2,2] : P(p+1) <2} logﬁﬂ/i_ og «
Replacing successively in the above the value of = by z/2,2/4,2/8,..., we obtain

that, for some absolute constant cg > 0,

#{pr:P(p+1)<x5}: Z Z 1<065x

~ loga’
1<j<logz/log2 55 <p< 7oy
P(p+1)<zd

thus proving (3.1) and thereby completing the proof of Lemma 1. O
Now, assume that 0 < ¢ < 1/2 and set
pp = 1{p€lr/2,a] 12’ <P(p+1) <2’}
Given a prime p € p* with P(p + 1) = ¢, then
(3.2) p+1=mq for some positive integer m.

Let R,,(z) be the number of solutions of (3.2) with p € p*. Then, if we let ¢ stand
for the Euler totient function, we have the following result.

Lemma 2. There exists an absolute constant Cy > 0 such that

T

x
< C .

log*(z/m) ¢(m) 62 (logz)? $(m)

Proof. For a proof, see Theorem 4.6 in the book of Prachar [7]. O]

Rm(SC) < CQ

3



Lemma 3. Given any real number k € (0,1), there exists an absolute constant Cy > 0
such that, for all integers u > 1,

1
3.3 Sy 1= E —— < (C5K.
( ) u<m<2u ¢(m) ’
¢(m)/m<k

Moreover, there exists an absolute constant Cy > 0 such that

1
3.4 —— < 4k logx.
(3.4) mz oy < O
(m)/m<x

Proof. Clearly,

Km m 1 K m 2
(35) oS DL Gow W e w2 (M)‘

u<m<2u u<m<2u

Since one can easily establish that there exists a computable constant ¢; > 0 such

that )
3 (%) — (1+o()ere  (z— o),

it follows from (3.5) that, for some absolute constant cg, we have

m<x

SUSE'Cgu (u>1),
u

thus proving (3.3). Estimate (3.4) is a direct consequence of (3.3). O
Given real numbers zy, ..., 2y € [0, 1), let
1
D(zl,...,zM)::M sup Z 1—-M(5—a)
0<a<p<1 2 €laB)

stand for the discrepancy of the sequence of numbers z1, ..., z);. We have the follow-
ing result.

Lemma 4. Let z1,...,x) € [0,1) and, for ¢ =1,..., M, let xpr0 = x40 + a, where
a€[0,1). Then

D(xy,...,xopn) < D(21,...,20).

Proof. The proof follows easily from the definition of the discrepancy and will there-

fore be omitted. [
Lemma 5. Let z1,...,xp € [0,1) and let m be an arbitrary integer. Then,
R
v Z e(mz;)| < 2rmD(z1,...,25M).
j=1




Proof. Even though this is a well known inequality, let us only mention that it can
be obtained by the relation

% ; e(ma;) = —/0 ((% IZ@ 1) - u) 2mim e(mu) du

and partial integration. O

Theorem A. (Katai [5]) Let f be an additive function and o € [0,1). Further set
o) 1=~ D2 1 and ) 1= supoecoer n(8) ~ (@) = (3 = )l Then,

{f@}<a )
A(n) — 0 for almost all n if and only if » I/ @)|®

qEp

= oo for every positive integer

m.

4 Proof of the main result

Let k, 6 and e be arbitrarily small positive numbers. We shall find an upper bound
for the number of primes p € [z/2, z] for which A(p+ 1) > e.
First of all, we know from Lemma 1 that

(4.1) #ip € [x/2,2] :p & o3} < Crom().
On the other hand, it is clear that
(4.2) #{p€lx/2,2]: PP(p+1) | p+ 1} < codm(x)

for some constant ¢y > 0. Hence, we are left to consider the contribution of the other
primes.

It follows from Lemma 4 that if (3.2) holds, then A(p + 1) > € only if A(m) > «.
Now, according to Lemma 2, we may write that

T 1 T
(4.3) #{pelr/2,2]: Alp+1) >} < Cglog—2x Z 5(m) = Cglong S(x),

%,

<m<gl—9d
A(m)>e

say. Let us write S(z) = Si(x) 4+ Se(z), where the sum in S (z) runs over those m for
which ¢(m)/m > k, whereas in Sy(z) it runs over those m for which ¢(m)/m < k.
As an easy consequence of Theorem A, we have that

(4.4) Si(z) = o(log x) (x — 00).
On the other hand, it follows from inequality (3.4) in Lemma 3 that
(4.5) So(x) < Cyrlog .

5



Therefore, gathering (4.1), (4.2), (4.4) and (4.5), it follows from (4.3) that, for some
absolute constant c;g > 0,

(4.6) #{pelz/2,2] : Alp+1) > e} < croon(z) + Cyrm(x) + o(m(x)) (x — o0)

Applying this very same inequality with x replaced by /27 as j = 0,1,. .., [logz/log 2],
we easily obtain that
1
m(x)

from which it follows that

#{p<zx:Alp+1)>e} <cpd+ Cyur+o0(1) (x — 00),

1
limsup —#{p <z : Alp+1) > e} < 100 + Cyk.
T—00 77—(-77)

Since k and ¢ can be chosen arbitrarily small, this completes the proof of the sufficient
part of Theorem 1.

2
We will now show the necessity of the divergence of the series Z M To

q
9€p
do so, let us assume the contrary, that is, that there exists some positive integer m

such that
|2

(4.7) 3 w < .

q€p

Now, consider the multiplicative function g, defined by

1 ) ) ) .
gm(n) = W H (1 + 627rsz(p) + 627rsz(pQ) NS 627rsz(p )) )

p*ln
Observe that 0 < g,,(n) < 1 for all integers n > 1 and that, at primes p,

B |1 +627rimf(p)|

gm(p) 5 ,

so that

2+ 2cos2mmf(p)

; — cos T f(p),

‘gm(p)‘z

which implies that
g (p) = | cosmmf(p)|.

From this it follows that there exists an absolute constant c¢g > 0 such that, for all
primes p, 0 < 1 — gu(p) < 1= gp(p) = sin®mmf(p) < csllmf(p)||>. Hence, (4.7)
implies that

(4.8) 3 L=gm) _

pEP p



On the other hand, recall that the second author [6] has proved the analogue of the
famous Delange result [1] for shifted primes, namely the following.

Theorem B. Let g(n) be a complex-valued multiplicative function such that |g(n)| <
1 for all n € N and such that the series

converges. Let N(g) be the product

N@):H(kp%ﬁz%).
Then, .
xlg{.lom ZQ(P+ 1) = N(g).

p<zT
In light of (4.8), we may apply Theorem B to the function g,, and get that

(4.9) Jim % S gulp+ 1) = Nign).

p<z

Now we may assume that N(g,,) # 0, except in the case where g,,(2¢) = 0 for
¢ =1,2,.... Butif g,,(2) = 0, then it is easily seen that gs,,(2) # 0, which implies
that N(gam) # 0. This is why we can make the assumption that N(g,,) # 0.

On the other hand, since 0 < g,,(n) < 1 for all integers n > 1, it follows from

(4.9) that for a suitable constant A\ > 0 there exists a real number zy > 0 such that
1
S <T:gnm 1) > A > A
7T(gj)#{p <zigm(pt+1) > A}

for all x > xy. Therefore, since g, (n) < ¢;A(n) for a suitable constant ¢; > 0 (which

follows from Lemma 5), we obtain that there exists a constant A; > 0 such that
1
m#{pSI:A(p+l)>>\1}>>\ (x> xo),

thereby contradicting our assumption that A(p+1) — 0 for almost all primes p, thus
completing the proof of Theorem 1.

5 The special case f(n)=Ilogn

Consider the functions

1
)= o 1 and )= s (6) = Bife) - (5 - o)l
{log d} <o



Hall [3] proved that, given any positive number A < 1/2,

(5.1) A*(n) < for almost all n.

7(n)*

The second author [4] improved Hall’s result by showing the following.

log ™

Theorem B. Inequality (5.1) holds for any positive number \ < 5 1~ 0.651.

log

Interestingly, we can prove that the analogue of Theorem B also holds for shifted
primes. Indeed, using Theorem B and Lemma 4, similarly as Theorem 1 was deduced
from Theorem A, one can easily show the following.

1
Theorem 2. Given any positive number \ < 10g72T -1,
og
A*'(p+1) < L for almost all pri
—_ or almost all primes p.
P =2+ primes b
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