On the divisors of shifted primes

Jean-Marie DE KONINCK
Departement of mathematics
Université Laval
Quebec G1V 0A6
CANADA
email: jmdk@mat.ulaval.ca
ImRe KÁTAI
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
HUNGARY

Edition of February 15, 2019

Abstract

Let $\tau(n)$ stand for the number of positive divisors of n. Given an additive function f and a real number $\alpha \in[0,1)$, let $h_{n}(\alpha):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\\{f(d)\}<\alpha}} 1$, where $\{y\}$ stands for the fractional part of y, and consider the discrepancy $\Delta(n):=$ $\sup _{0 \leq \alpha<\beta<1}\left|h_{n}(\beta)-h_{n}(\alpha)-(\beta-\alpha)\right|$. We show that $\Delta(p+1) \rightarrow 0$ for almost all primes p if and only if $\sum_{q \in \wp} \frac{\|m f(q)\|^{2}}{q}=\infty$ for every positive integer m, where $\|x\|$ stands for the distance between x and its nearest integer and where the sum runs over all primes q.

AMS Subject Classification numbers: 11A25, 11N37, 11N58
Keywords: Sum of divisors function, shifted primes

1 Introduction and notation

Let $\tau(n)$ stand for the number of positive divisors of n. Given an additive function f and a real number $\alpha \in[0,1)$, let $h_{n}(\alpha):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\\{f(d)\}<\alpha}} 1$, where $\{y\}$ stands for the fractional part of y, and consider the discrepancy $\Delta(n):=\sup _{0 \leq \alpha<\beta<1} \mid h_{n}(\beta)-$ $h_{n}(\alpha)-(\beta-\alpha) \mid$. It is well known that $h_{n}(\alpha) \rightarrow \alpha$ as $n \rightarrow \infty$ uniformly for $\alpha \in[0,1)$ if and only if $\lim _{n \rightarrow \infty} \Delta(n)=0$.

Let $\|x\|$ stand for the distance between x and its nearest integer and let \wp stand for the set of all primes. From here on, the letters p and q will be used exclusively to denote primes. In 1976, the second author [5] proved that $\Delta(n) \rightarrow 0$ for almost all n if and only if $\sum_{q \in \zeta_{\zeta}} \frac{\|m f(q)\|^{2}}{q}=\infty$ for every positive integer m (see Theorem A below). Observe that there is a small error in the original paper of Kátai [5]: in relation (5), the number 2 should be removed.

Here, we consider the case of shifted primes $p+1$ and show that $\Delta(p+1) \rightarrow 0$ for almost all primes p if and only if $\sum_{q \in \wp} \frac{\|m f(q)\|^{2}}{q}=\infty$ for every positive integer m.

Finally, we examine an interesting outcome in the particular case $f(n)=\log n$.

2 Main result

Theorem 1. Let f be an additive function and $\alpha \in[0,1)$. Set $h_{n}(\alpha):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\\{f(d)\}<\alpha}} 1$ and $\Delta(n):=\sup _{0 \leq \alpha<\beta<1}\left|h_{n}(\beta)-h_{n}(\alpha)-(\beta-\alpha)\right|$. Then, $\Delta(p+1) \rightarrow 0$ for almost all primes p if and only if $\sum_{q \in \wp_{\wp}} \frac{\|m f(q)\|^{2}}{q}=\infty$ for every positive integer m.

3 Preliminary results

Let $P(n)$ stand for the largest prime factor of n and $\pi(x)$ for the number of primes not exceeding x.

Lemma 1. Given $\delta \in(0,1 / 2)$ and a large number x, set $\wp_{x, \delta}:=\{p \leq x: P(p+1) \notin$ $\left.\left[x^{\delta}, x^{1-\delta}\right]\right\}$. Then, for some absolute constant $C_{1}>0$,

$$
\# \wp_{x, \delta}<C_{1} \delta \pi(x)
$$

Proof. The fact that there exists an absolute constant $c_{1}>0$ such that

$$
\#\left\{p \leq x: P(p+1)>x^{1-\delta}\right\}<c_{1} \delta \pi(x)
$$

is essentially a direct application of Theorem 3.8 in the book of Halberstam and Richert [2]. Therefore, it remains to prove that there exists an absolute constant $c_{2}>0$ such that

$$
\begin{equation*}
\#\left\{p \leq x: P(p+1)<x^{\delta}\right\}<c_{2} \delta \pi(x) \tag{3.1}
\end{equation*}
$$

To do so, we shall first obtain an upper bound for the $\operatorname{sum} T_{\delta}(x):=\sum_{\substack{p \leq x \\ P(p+1)<x^{\delta}}} \log (p+1)$.
Letting as usual $\pi(x ; a, b)$ stand for $\#\{p \leq x: p \equiv b(\bmod a)\}$, then, for some absolute constants $c_{3}>0, c_{4}>0$ and $c_{5}>0$, we have that

$$
\begin{aligned}
T_{\delta}(x) & =\sum_{\substack{q^{k} \leq x, k \geq 1 \\
q<x^{\delta}}}(\log q) \pi\left(x ; q^{k}, 1\right) \\
& \leq c_{3} \frac{x}{\log x} \sum_{q<x^{\delta}}(\log q)\left(\frac{1}{q-1}+\frac{1}{q(q-1)}+\cdots\right)+O\left(x \sum_{\substack{\sqrt{x}<q^{k<x}, k \geq 1 \\
q<x^{\delta}}} \frac{1}{q^{k}}\right) \\
& \leq c_{4} \frac{x}{\log x} \sum_{q<x^{\delta}} \frac{\log q}{q} \leq c_{5} \frac{x}{\log x} \delta \log x=c_{5} \delta x .
\end{aligned}
$$

It follows from this last estimate that, provided $x>x_{0}(\delta)$, we have

$$
\#\left\{p \in[x / 2, x]: P(p+1)<x^{\delta}\right\}<\frac{c_{5} \delta x}{\log \sqrt{x}}+\sqrt{x} \leq \frac{3 c_{5} \delta x}{\log x}
$$

Replacing successively in the above the value of x by $x / 2, x / 4, x / 8, \ldots$, we obtain that, for some absolute constant $c_{6}>0$,

$$
\#\left\{p \leq x: P(p+1)<x^{\delta}\right\}=\sum_{1 \leq j \leq \log x / \log 2} \sum_{\substack{\frac{x}{2 j}<p \leq \frac{x}{2 j-1} \\ P(p+1)<x^{\delta}}} 1 \leq \frac{c_{6} \delta x}{\log x}
$$

thus proving (3.1) and thereby completing the proof of Lemma 1.
Now, assume that $0<\delta<1 / 2$ and set

$$
\wp_{x}^{*}:=\left\{p \in[x / 2, x]: x^{\delta} \leq P(p+1) \leq x^{1-\delta}\right\} .
$$

Given a prime $p \in \wp_{x}^{*}$ with $P(p+1)=q$, then

$$
\begin{equation*}
p+1=m q \quad \text { for some positive integer } m \tag{3.2}
\end{equation*}
$$

Let $R_{m}(x)$ be the number of solutions of (3.2) with $p \in \wp_{x}^{*}$. Then, if we let ϕ stand for the Euler totient function, we have the following result.

Lemma 2. There exists an absolute constant $C_{2}>0$ such that

$$
R_{m}(x)<C_{2} \frac{x}{\log ^{2}(x / m) \phi(m)}<C_{2} \frac{x}{\delta^{2}(\log x)^{2} \phi(m)} .
$$

Proof. For a proof, see Theorem 4.6 in the book of Prachar [7].

Lemma 3. Given any real number $\kappa \in(0,1)$, there exists an absolute constant $C_{3}>0$ such that, for all integers $u \geq 1$,

$$
\begin{equation*}
S_{u}:=\sum_{\substack{u \leq m \leq 2 u \\ \phi(m) / m<\kappa}} \frac{1}{\phi(m)}<C_{3} \kappa . \tag{3.3}
\end{equation*}
$$

Moreover, there exists an absolute constant $C_{4}>0$ such that

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ \phi(m) / m<\kappa}} \frac{1}{\phi(m)}<C_{4} \kappa \log x . \tag{3.4}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{equation*}
S_{u} \leq \sum_{u \leq m \leq 2 u} \frac{\kappa m}{\phi(m)} \cdot \frac{m}{u} \cdot \frac{1}{\phi(m)}=\frac{\kappa}{u} \sum_{u \leq m \leq 2 u}\left(\frac{m}{\phi(m)}\right)^{2} . \tag{3.5}
\end{equation*}
$$

Since one can easily establish that there exists a computable constant $c_{7}>0$ such that

$$
\sum_{m \leq x}\left(\frac{m}{\phi(m)}\right)^{2}=(1+o(1)) c_{7} x \quad(x \rightarrow \infty)
$$

it follows from (3.5) that, for some absolute constant c_{8}, we have

$$
S_{u} \leq \frac{\kappa}{u} \cdot c_{8} u \quad(u \geq 1)
$$

thus proving (3.3). Estimate (3.4) is a direct consequence of (3.3).
Given real numbers $z_{1}, \ldots, z_{M} \in[0,1)$, let

$$
D\left(z_{1}, \ldots, z_{M}\right):=\frac{1}{M} \sup _{0 \leq \alpha<\beta<1}\left|\sum_{z_{\nu} \in[\alpha, \beta)} 1-M(\beta-\alpha)\right|
$$

stand for the discrepancy of the sequence of numbers z_{1}, \ldots, z_{M}. We have the following result.

Lemma 4. Let $x_{1}, \ldots, x_{M} \in[0,1)$ and, for $\ell=1, \ldots, M$, let $x_{M+\ell}=x_{\ell}+a$, where $a \in[0,1)$. Then

$$
D\left(x_{1}, \ldots, x_{2 M}\right) \leq D\left(x_{1}, \ldots, x_{M}\right)
$$

Proof. The proof follows easily from the definition of the discrepancy and will therefore be omitted.

Lemma 5. Let $x_{1}, \ldots, x_{M} \in[0,1)$ and let m be an arbitrary integer. Then,

$$
\frac{1}{M}\left|\sum_{j=1}^{M} e\left(m x_{j}\right)\right| \leq 2 \pi m D\left(x_{1}, \ldots, x_{M}\right)
$$

Proof. Even though this is a well known inequality, let us only mention that it can be obtained by the relation

$$
\frac{1}{M} \sum_{j=1}^{M} e\left(m x_{j}\right)=-\int_{0}^{1}\left(\left(\frac{1}{M} \sum_{x_{\nu}<u} 1\right)-u\right) 2 \pi i m e(m u) d u
$$

and partial integration.

Theorem A. (Kátai [5]) Let f be an additive function and $\alpha \in[0,1)$. Further set $h_{n}(\alpha):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\\{f(d)\}<\alpha}} 1$ and $\Delta(n):=\sup _{0 \leq \alpha<\beta<1}\left|h_{n}(\beta)-h_{n}(\alpha)-(\beta-\alpha)\right|$. Then,
$\Delta(n) \rightarrow 0$ for almost all n if and only if $\sum_{q \in \wp} \frac{\|m f(q)\|^{2}}{q}=\infty$ for every positive integer m.

4 Proof of the main result

Let κ, δ and ε be arbitrarily small positive numbers. We shall find an upper bound for the number of primes $p \in[x / 2, x]$ for which $\Delta(p+1) \geq \varepsilon$.

First of all, we know from Lemma 1 that

$$
\begin{equation*}
\#\left\{p \in[x / 2, x]: p \notin \wp_{x}^{*}\right\}<C_{1} \delta \pi(x) . \tag{4.1}
\end{equation*}
$$

On the other hand, it is clear that

$$
\begin{equation*}
\#\left\{p \in[x / 2, x]: P^{2}(p+1) \mid p+1\right\}<c_{9} \delta \pi(x) \tag{4.2}
\end{equation*}
$$

for some constant $c_{9}>0$. Hence, we are left to consider the contribution of the other primes.

It follows from Lemma 4 that if (3.2) holds, then $\Delta(p+1)>\varepsilon$ only if $\Delta(m)>\varepsilon$. Now, according to Lemma 2, we may write that

$$
\begin{equation*}
\#\{p \in[x / 2, x]: \Delta(p+1)>\varepsilon\} \leq C_{2} \frac{x}{\log ^{2} x} \sum_{\substack{\frac{x^{\delta}}{2} \leq m<x^{1-\delta} \\ \Delta(m)>\varepsilon}} \frac{1}{\phi(m)}=C_{2} \frac{x}{\log ^{2} x} S(x) \tag{4.3}
\end{equation*}
$$

say. Let us write $S(x)=S_{1}(x)+S_{2}(x)$, where the sum in $S_{1}(x)$ runs over those m for which $\phi(m) / m \geq \kappa$, whereas in $S_{2}(x)$ it runs over those m for which $\phi(m) / m<\kappa$. As an easy consequence of Theorem A, we have that

$$
\begin{equation*}
S_{1}(x)=o(\log x) \quad(x \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

On the other hand, it follows from inequality (3.4) in Lemma 3 that

$$
\begin{equation*}
S_{2}(x) \leq C_{4} \kappa \log x . \tag{4.5}
\end{equation*}
$$

Therefore, gathering (4.1), (4.2), (4.4) and (4.5), it follows from (4.3) that, for some absolute constant $c_{10}>0$,

$$
\begin{equation*}
\#\{p \in[x / 2, x]: \Delta(p+1)>\varepsilon\} \leq c_{10} \delta \pi(x)+C_{4} \kappa \pi(x)+o(\pi(x)) \quad(x \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

Applying this very same inequality with x replaced by $x / 2^{j}$ as $j=0,1, \ldots,\lfloor\log x / \log 2\rfloor$, we easily obtain that

$$
\frac{1}{\pi(x)} \#\{p \leq x: \Delta(p+1)>\varepsilon\} \leq c_{10} \delta+C_{4} \kappa+o(1) \quad(x \rightarrow \infty)
$$

from which it follows that

$$
\limsup _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\{p \leq x: \Delta(p+1)>\varepsilon\} \leq c_{10} \delta+C_{4} \kappa .
$$

Since κ and δ can be chosen arbitrarily small, this completes the proof of the sufficient part of Theorem 1 .

We will now show the necessity of the divergence of the series $\sum_{q \in \wp} \frac{\|m f(q)\|^{2}}{q}$. To do so, let us assume the contrary, that is, that there exists some positive integer m such that

$$
\begin{equation*}
\sum_{q \in \wp} \frac{\|m f(q)\|^{2}}{q}<\infty \tag{4.7}
\end{equation*}
$$

Now, consider the multiplicative function g_{m} defined by

$$
g_{m}(n)=\frac{1}{\tau(n)}\left|\prod_{p^{a} \| n}\left(1+e^{2 \pi i m f(p)}+e^{2 \pi i m f\left(p^{2}\right)}+\cdots+e^{2 \pi i m f\left(p^{a}\right)}\right)\right| .
$$

Observe that $0 \leq g_{m}(n) \leq 1$ for all integers $n \geq 1$ and that, at primes p,

$$
g_{m}(p)=\frac{\left|1+e^{2 \pi i m f(p)}\right|}{2}
$$

so that

$$
\left|g_{m}(p)\right|^{2}=\frac{2+2 \cos 2 \pi m f(p)}{4}=\cos ^{2} \pi m f(p),
$$

which implies that

$$
g_{m}(p)=|\cos \pi m f(p)| .
$$

From this it follows that there exists an absolute constant $c_{6}>0$ such that, for all primes $p, 0 \leq 1-g_{m}(p) \leq 1-g_{m}^{2}(p)=\sin ^{2} \pi m f(p) \leq c_{6}\|m f(p)\|^{2}$. Hence, (4.7) implies that

$$
\begin{equation*}
\sum_{p \in \wp} \frac{1-g_{m}(p)}{p}<\infty \tag{4.8}
\end{equation*}
$$

On the other hand, recall that the second author [6] has proved the analogue of the famous Delange result [1] for shifted primes, namely the following.
Theorem B. Let $g(n)$ be a complex-valued multiplicative function such that $|g(n)| \leq$ 1 for all $n \in \mathbb{N}$ and such that the series

$$
\sum_{p \in \wp} \frac{g(p)-1}{p}
$$

converges. Let $N(g)$ be the product

$$
N(g)=\prod_{p \in \wp}\left(1-\frac{1}{p-1}+\sum_{j=1}^{\infty} \frac{g\left(p^{j}\right)}{p^{j}}\right) .
$$

Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} g(p+1)=N(g)
$$

In light of (4.8), we may apply Theorem B to the function g_{m} and get that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} g_{m}(p+1)=N\left(g_{m}\right) . \tag{4.9}
\end{equation*}
$$

Now we may assume that $N\left(g_{m}\right) \neq 0$, except in the case where $g_{m}\left(2^{\ell}\right)=0$ for $\ell=1,2, \ldots$. But if $g_{m}(2)=0$, then it is easily seen that $g_{2 m}(2) \neq 0$, which implies that $N\left(g_{2 m}\right) \neq 0$. This is why we can make the assumption that $N\left(g_{m}\right) \neq 0$.

On the other hand, since $0 \leq g_{m}(n) \leq 1$ for all integers $n \geq 1$, it follows from (4.9) that for a suitable constant $\lambda>0$ there exists a real number $x_{0}>0$ such that

$$
\frac{1}{\pi(x)} \#\left\{p \leq x: g_{m}(p+1)>\lambda\right\}>\lambda
$$

for all $x>x_{0}$. Therefore, since $g_{m}(n)<c_{7} \Delta(n)$ for a suitable constant $c_{7}>0$ (which follows from Lemma 5), we obtain that there exists a constant $\lambda_{1}>0$ such that

$$
\frac{1}{\pi(x)} \#\left\{p \leq x: \Delta(p+1)>\lambda_{1}\right\}>\lambda \quad\left(x>x_{0}\right)
$$

thereby contradicting our assumption that $\Delta(p+1) \rightarrow 0$ for almost all primes p, thus completing the proof of Theorem 1.

5 The special case $f(n)=\log n$

Consider the functions

$$
h_{n}^{*}(\alpha):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\\{\log d\}<\alpha}} 1 \quad \text { and } \quad \Delta^{*}(n):=\sup _{0 \leq \alpha<\beta<1}\left|h_{n}^{*}(\beta)-h_{n}^{*}(\alpha)-(\beta-\alpha)\right| .
$$

Hall [3] proved that, given any positive number $\lambda<1 / 2$,

$$
\begin{equation*}
\Delta^{*}(n) \leq \frac{1}{\tau(n)^{\lambda}} \quad \text { for almost all } n \tag{5.1}
\end{equation*}
$$

The second author [4] improved Hall's result by showing the following.
Theorem B. Inequality (5.1) holds for any positive number $\lambda<\frac{\log \pi}{\log 2}-1 \approx 0.651$.
Interestingly, we can prove that the analogue of Theorem B also holds for shifted primes. Indeed, using Theorem B and Lemma 4, similarly as Theorem 1 was deduced from Theorem A, one can easily show the following.

Theorem 2. Given any positive number $\lambda<\frac{\log \pi}{\log 2}-1$,

$$
\Delta^{*}(p+1) \leq \frac{1}{\tau(p+1)^{\lambda}} \quad \text { for almost all primes } p
$$

Acknowledgements. The authors would like to thank the referees for their valuable comments which helped improve the quality of this paper. Research of the first author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

[1] H. Delange, Un théorème sur les fonctions arithmétiques multiplicatives et ses applications. Ann. Sci. École Norm. Sup. 1961; 78: 1-29.
[2] H.H. Halberstam and H.E. Richert, Sieve Methods. London: Academic Press, 1974.
[3] R.R. Hall, The divisors of integers I. Acta Arith. 1974; 26: 41-46.
[4] I. Kátai, The distribution of divisors mod 1. Acta Math. Acad. Sci. Hung. 1976; 27: 149-152.
[5] I. Kátai, Distribution mod 1 of additive functions on the set of divisors. Acta Arith. 1976; 30: 209-212.
[6] I. Kátai, On distribution of arithmetical functions on the set prime plus one. Compositio Math. 1968; 19, no. 4: 278-289.
[7] K. Prachar, Primzahlverteilung. Berlin-Göttingen-Heidelberg: Springer Verlag, 1957.

