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Abstract

Let τ(n) stand for the number of positive divisors of n. Given an additive

function f and a real number α ∈ [0, 1), let hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1, where

{y} stands for the fractional part of y, and consider the discrepancy ∆(n) :=
sup0≤α<β<1 |hn(β)−hn(α)−(β−α)|. We show that ∆(p+1)→ 0 for almost all

primes p if and only if
∑
q∈℘

‖mf(q)‖2

q
=∞ for every positive integer m, where

‖x‖ stands for the distance between x and its nearest integer and where the
sum runs over all primes q.
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1 Introduction and notation

Let τ(n) stand for the number of positive divisors of n. Given an additive function

f and a real number α ∈ [0, 1), let hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1, where {y} stands for

the fractional part of y, and consider the discrepancy ∆(n) := sup0≤α<β<1 |hn(β) −
hn(α)− (β−α)|. It is well known that hn(α)→ α as n→∞ uniformly for α ∈ [0, 1)
if and only if limn→∞∆(n) = 0.
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Let ‖x‖ stand for the distance between x and its nearest integer and let ℘ stand
for the set of all primes. From here on, the letters p and q will be used exclusively to
denote primes. In 1976, the second author [5] proved that ∆(n)→ 0 for almost all n

if and only if
∑
q∈℘

‖mf(q)‖2

q
=∞ for every positive integer m (see Theorem A below).

Observe that there is a small error in the original paper of Kátai [5]: in relation (5),
the number 2 should be removed.

Here, we consider the case of shifted primes p+ 1 and show that ∆(p+ 1)→ 0 for

almost all primes p if and only if
∑
q∈℘

‖mf(q)‖2

q
=∞ for every positive integer m.

Finally, we examine an interesting outcome in the particular case f(n) = log n.

2 Main result

Theorem 1. Let f be an additive function and α ∈ [0, 1). Set hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1

and ∆(n) := sup0≤α<β<1 |hn(β) − hn(α) − (β − α)|. Then, ∆(p + 1) → 0 for almost

all primes p if and only if
∑
q∈℘

‖mf(q)‖2

q
=∞ for every positive integer m.

3 Preliminary results

Let P (n) stand for the largest prime factor of n and π(x) for the number of primes
not exceeding x.

Lemma 1. Given δ ∈ (0, 1/2) and a large number x, set ℘x,δ := {p ≤ x : P (p+ 1) 6∈
[xδ, x1−δ]}. Then, for some absolute constant C1 > 0,

#℘x,δ < C1 δ π(x).

Proof. The fact that there exists an absolute constant c1 > 0 such that

#{p ≤ x : P (p+ 1) > x1−δ} < c1 δ π(x)

is essentially a direct application of Theorem 3.8 in the book of Halberstam and
Richert [2]. Therefore, it remains to prove that there exists an absolute constant
c2 > 0 such that

(3.1) #{p ≤ x : P (p+ 1) < xδ} < c2 δ π(x).
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To do so, we shall first obtain an upper bound for the sum Tδ(x) :=
∑
p≤x

P (p+1)<xδ

log(p+ 1).

Letting as usual π(x; a, b) stand for #{p ≤ x : p ≡ b (mod a)}, then, for some
absolute constants c3 > 0, c4 > 0 and c5 > 0, we have that

Tδ(x) =
∑

qk≤x, k≥1

q<xδ

(log q)π(x; qk, 1)

≤ c3
x

log x

∑
q<xδ

(log q)

(
1

q − 1
+

1

q(q − 1)
+ · · ·

)
+O

x ∑
√
x<qk<x, k≥1

q<xδ

1

qk


≤ c4

x

log x

∑
q<xδ

log q

q
≤ c5

x

log x
δ log x = c5 δ x.

It follows from this last estimate that, provided x > x0(δ), we have

#{p ∈ [x/2, x] : P (p+ 1) < xδ} < c5 δ x

log
√
x

+
√
x ≤ 3c5 δ x

log x
.

Replacing successively in the above the value of x by x/2, x/4, x/8, . . ., we obtain
that, for some absolute constant c6 > 0,

#{p ≤ x : P (p+ 1) < xδ} =
∑

1≤j≤log x/ log 2

∑
x
2j
<p≤ x

2j−1

P (p+1)<xδ

1 ≤ c6 δ x

log x
,

thus proving (3.1) and thereby completing the proof of Lemma 1.

Now, assume that 0 < δ < 1/2 and set

℘∗x := {p ∈ [x/2, x] : xδ ≤ P (p+ 1) ≤ x1−δ}.

Given a prime p ∈ ℘∗x with P (p+ 1) = q, then

(3.2) p+ 1 = mq for some positive integer m.

Let Rm(x) be the number of solutions of (3.2) with p ∈ ℘∗x. Then, if we let φ stand
for the Euler totient function, we have the following result.

Lemma 2. There exists an absolute constant C2 > 0 such that

Rm(x) < C2
x

log2(x/m) φ(m)
< C2

x

δ2 (log x)2 φ(m)
.

Proof. For a proof, see Theorem 4.6 in the book of Prachar [7].
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Lemma 3. Given any real number κ ∈ (0, 1), there exists an absolute constant C3 > 0
such that, for all integers u ≥ 1,

(3.3) Su :=
∑

u≤m≤2u
φ(m)/m<κ

1

φ(m)
< C3 κ.

Moreover, there exists an absolute constant C4 > 0 such that

(3.4)
∑
m≤x

φ(m)/m<κ

1

φ(m)
< C4 κ log x.

Proof. Clearly,

(3.5) Su ≤
∑

u≤m≤2u

κm

φ(m)
· m
u
· 1

φ(m)
=
κ

u

∑
u≤m≤2u

(
m

φ(m)

)2

.

Since one can easily establish that there exists a computable constant c7 > 0 such
that ∑

m≤x

(
m

φ(m)

)2

= (1 + o(1))c7 x (x→∞),

it follows from (3.5) that, for some absolute constant c8, we have

Su ≤
κ

u
· c8 u (u ≥ 1),

thus proving (3.3). Estimate (3.4) is a direct consequence of (3.3).

Given real numbers z1, . . . , zM ∈ [0, 1), let

D(z1, . . . , zM) :=
1

M
sup

0≤α<β<1

∣∣∣∣∣∣
∑

zν∈[α,β)

1−M(β − α)

∣∣∣∣∣∣
stand for the discrepancy of the sequence of numbers z1, . . . , zM . We have the follow-
ing result.

Lemma 4. Let x1, . . . , xM ∈ [0, 1) and, for ` = 1, . . . ,M , let xM+` = x` + a, where
a ∈ [0, 1). Then

D(x1, . . . , x2M) ≤ D(x1, . . . , xM).

Proof. The proof follows easily from the definition of the discrepancy and will there-
fore be omitted.

Lemma 5. Let x1, . . . , xM ∈ [0, 1) and let m be an arbitrary integer. Then,

1

M

∣∣∣∣∣
M∑
j=1

e(mxj)

∣∣∣∣∣ ≤ 2πmD(x1, . . . , xM).
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Proof. Even though this is a well known inequality, let us only mention that it can
be obtained by the relation

1

M

M∑
j=1

e(mxj) = −
∫ 1

0

((
1

M

∑
xν<u

1

)
− u

)
2πim e(mu) du

and partial integration.

Theorem A. (Kátai [5]) Let f be an additive function and α ∈ [0, 1). Further set

hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1 and ∆(n) := sup0≤α<β<1 |hn(β) − hn(α) − (β − α)|. Then,

∆(n)→ 0 for almost all n if and only if
∑
q∈℘

‖mf(q)‖2

q
=∞ for every positive integer

m.

4 Proof of the main result

Let κ, δ and ε be arbitrarily small positive numbers. We shall find an upper bound
for the number of primes p ∈ [x/2, x] for which ∆(p+ 1) ≥ ε.

First of all, we know from Lemma 1 that

(4.1) #{p ∈ [x/2, x] : p 6∈ ℘∗x} < C1 δ π(x).

On the other hand, it is clear that

(4.2) #{p ∈ [x/2, x] : P 2(p+ 1) | p+ 1} < c9 δ π(x)

for some constant c9 > 0. Hence, we are left to consider the contribution of the other
primes.

It follows from Lemma 4 that if (3.2) holds, then ∆(p+ 1) > ε only if ∆(m) > ε.
Now, according to Lemma 2, we may write that

(4.3) #{p ∈ [x/2, x] : ∆(p+ 1) > ε} ≤ C2
x

log2 x

∑
xδ
2 ≤m<x

1−δ
∆(m)>ε

1

φ(m)
= C2

x

log2 x
S(x),

say. Let us write S(x) = S1(x) +S2(x), where the sum in S1(x) runs over those m for
which φ(m)/m ≥ κ, whereas in S2(x) it runs over those m for which φ(m)/m < κ.
As an easy consequence of Theorem A, we have that

(4.4) S1(x) = o(log x) (x→∞).

On the other hand, it follows from inequality (3.4) in Lemma 3 that

(4.5) S2(x) ≤ C4κ log x.
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Therefore, gathering (4.1), (4.2), (4.4) and (4.5), it follows from (4.3) that, for some
absolute constant c10 > 0,

(4.6) #{p ∈ [x/2, x] : ∆(p+ 1) > ε} ≤ c10δπ(x) + C4κπ(x) + o(π(x)) (x→∞)

Applying this very same inequality with x replaced by x/2j as j = 0, 1, . . . , blog x/ log 2c,
we easily obtain that

1

π(x)
#{p ≤ x : ∆(p+ 1) > ε} ≤ c10δ + C4κ+ o(1) (x→∞),

from which it follows that

lim sup
x→∞

1

π(x)
#{p ≤ x : ∆(p+ 1) > ε} ≤ c10δ + C4κ.

Since κ and δ can be chosen arbitrarily small, this completes the proof of the sufficient
part of Theorem 1.

We will now show the necessity of the divergence of the series
∑
q∈℘

‖mf(q)‖2

q
. To

do so, let us assume the contrary, that is, that there exists some positive integer m
such that

(4.7)
∑
q∈℘

‖mf(q)‖2

q
<∞.

Now, consider the multiplicative function gm defined by

gm(n) =
1

τ(n)

∣∣∣∣∣∣
∏
pa‖n

(
1 + e2πimf(p) + e2πimf(p

2) + · · ·+ e2πimf(p
a)
)∣∣∣∣∣∣ .

Observe that 0 ≤ gm(n) ≤ 1 for all integers n ≥ 1 and that, at primes p,

gm(p) =
|1 + e2πimf(p)|

2
,

so that

|gm(p)|2 =
2 + 2 cos 2πmf(p)

4
= cos2 πmf(p),

which implies that
gm(p) = | cos πmf(p)|.

From this it follows that there exists an absolute constant c6 > 0 such that, for all
primes p, 0 ≤ 1 − gm(p) ≤ 1 − g2m(p) = sin2 πmf(p) ≤ c6‖mf(p)‖2. Hence, (4.7)
implies that

(4.8)
∑
p∈℘

1− gm(p)

p
<∞.
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On the other hand, recall that the second author [6] has proved the analogue of the
famous Delange result [1] for shifted primes, namely the following.

Theorem B. Let g(n) be a complex-valued multiplicative function such that |g(n)| ≤
1 for all n ∈ N and such that the series∑

p∈℘

g(p)− 1

p

converges. Let N(g) be the product

N(g) =
∏
p∈℘

(
1− 1

p− 1
+
∞∑
j=1

g(pj)

pj

)
.

Then,

lim
x→∞

1

π(x)

∑
p≤x

g(p+ 1) = N(g).

In light of (4.8), we may apply Theorem B to the function gm and get that

(4.9) lim
x→∞

1

π(x)

∑
p≤x

gm(p+ 1) = N(gm).

Now we may assume that N(gm) 6= 0, except in the case where gm(2`) = 0 for
` = 1, 2, . . .. But if gm(2) = 0, then it is easily seen that g2m(2) 6= 0, which implies
that N(g2m) 6= 0. This is why we can make the assumption that N(gm) 6= 0.

On the other hand, since 0 ≤ gm(n) ≤ 1 for all integers n ≥ 1, it follows from
(4.9) that for a suitable constant λ > 0 there exists a real number x0 > 0 such that

1

π(x)
#{p ≤ x : gm(p+ 1) > λ} > λ

for all x > x0. Therefore, since gm(n) < c7∆(n) for a suitable constant c7 > 0 (which
follows from Lemma 5), we obtain that there exists a constant λ1 > 0 such that

1

π(x)
#{p ≤ x : ∆(p+ 1) > λ1} > λ (x > x0),

thereby contradicting our assumption that ∆(p+1)→ 0 for almost all primes p, thus
completing the proof of Theorem 1.

5 The special case f (n) = log n

Consider the functions

h∗n(α) :=
1

τ(n)

∑
d|n

{log d}<α

1 and ∆∗(n) := sup
0≤α<β<1

|h∗n(β)− h∗n(α)− (β − α)|.
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Hall [3] proved that, given any positive number λ < 1/2,

(5.1) ∆∗(n) ≤ 1

τ(n)λ
for almost all n.

The second author [4] improved Hall’s result by showing the following.

Theorem B. Inequality (5.1) holds for any positive number λ <
log π

log 2
− 1 ≈ 0.651.

Interestingly, we can prove that the analogue of Theorem B also holds for shifted
primes. Indeed, using Theorem B and Lemma 4, similarly as Theorem 1 was deduced
from Theorem A, one can easily show the following.

Theorem 2. Given any positive number λ <
log π

log 2
− 1,

∆∗(p+ 1) ≤ 1

τ(p+ 1)λ
for almost all primes p.
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