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JEAN-MARIE DE KONINCK AND PATRICK LETENDRE

Abstract. Let τ(n) stand for the number of divisors of the positive
integer n. We obtain upper bounds for τ(n) in terms of log n and the
number of distinct prime factors of n.

1. Introduction and notation

Let τ(n) stand for the number of divisors of the positive integer n and

ω(n) stand for the number of prime factors of the positive integer n. We

shall also be using the functions

γ(n) :=
∏
p|n

p, β(n) :=
∏
p|n

1

log p
.

In 1915, Ramanujan [8, (3)] obtained the inequality

(1.1) τ(n) ≤
(

log(nγ(n))

ω(n)

)ω(n)
β(n) (n ≥ 2).

In this paper, we compute explicitly some interesting limit cases of (1.1)

and show that for k = ω(n) ≥ 74,

τ(n) <

(
1 +

log n

k log k

)k
.

We also provide another proof of (1.1) in Corollary 4.5.

From here on, for each integer k ≥ 0, we let

nk := p1p2 · · · pk, the product of the first k primes (with n0 = 1).

Also, when we write log+ x, we mean log max(2, x).

Finally, given the factorization of an integer n = qα1
1 · · · q

αk
k with q1 <

· · · < qk, we call the vector (α1, . . . , αk) the exponent vector of n.
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2. Background results

It is well known that

(2.1) 2ω(n) ≤ τ(n) ≤
(

1 +
Ω(n)

ω(n)

)ω(n)
(n ≥ 2),

where Ω(n) stands for the number of prime divisors of n counting their

multiplicity. Here, the lower bound is best possible in general and the upper

bound, which follows from the inequality between arithmetic and geometric

means, is of great interest. For instance, it is known that the quotient
Ω(n)

ω(n)
is near 1 for almost all integers n, as was shown for instance by the first

author in [2]. In fact, one can use (2.1) and the estimate

|{n ≤ x : Ω(n) ≥ κω(n)}| � x(log log x)(log x)2
1−κ−1

valid for all κ ≥ 1 and x ≥ 3 (see Corollary 3.6 p.436 in Tenenbaum [11]

or for an even sharper estimate, Balazard [1, Théorème 3]) to show that for

every fixed ε > 0,

τ(n) ≤ (2 + ε)ω(n) for almost all n.

We are motivated by the fact that, since Wigert [12], we know that

log τ(n) ≤ (log 2)(log n)

log log n
+O

(
log n

(log log n)2

)
,

and by the fact that it has been proved by Nicolas and Robin [6] that the

maximum value of the function

(2.2) n 7→ log(τ(n)) log log n

log 2 log n
(n ≥ 3)

is attained at n = 6 983 776 800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19 = 720n8 and

that its value is approximately 1.5379. Much more is known on the ratio

(2.2), as explained in [5]. But, meanwhile, those large values are almost

never attained since it has been proved by Erdős and Nicolas [4] that, given

any real ϑ ∈ (0, 1), the cardinality of the set of those n ≤ x for which

ω(n) ≥ ϑ
log x

log log x

is � x1−ϑ+o(1) as x→∞. Furthermore, this set corresponds exactly to the

set of values where τ(n) is large. This can be deduced from inequality (1.1).

That is, if we define ϑ by ω(n) = ϑ logn
log logn

for n ≥ 16, then we find

τ(n) ≤ exp

(
ϑ log

(
1 +

1

ϑ

)
log n

log log n

(
1 +O

(
log log log n

log log n

)))
.



NEW UPPER BOUNDS FOR THE NUMBER OF DIVISORS FUNCTION 3

Observe that the function ϑ 7→ ϑ log

(
1 +

1

ϑ

)
is strictly increasing from 0

to log 2 as ϑ goes from 0 to 1.

Robin [9] also designed an algorithm that allows one to easily obtain the

list of all highly composite numbers with less than k prime factors, which

yields the absolute best estimate for τ(n) for every n ≤ x for any given x.

Before stating our main results, we introduce the function λ(n) defined

implicitly by

τ(n) =

(
1 +

λ(n) log n

k log k

)k
,

where k = ω(n) ≥ 2. Therefore, for each integer n ≥ 2 with ω(n) = k ≥ 2,

we set

(2.3) λ(n) :=
(τ(n)1/k − 1)k log k

log n
.

3. Main results

Theorem 3.1. For every integer n ≥ 2,

(3.1) τ(n) ≤
(

η2 log n

ω(n) log+ ω(n)

)ω(n)
,

where

η2 := exp

(
1

6
log 96− log

(
log 60060

6 log 6

))
= 2.0907132 . . .

Theorem 3.2. For every integer n > 24n16 = 782139803452561073520,

(3.2) τ(n) ≤
(

2 log n

ω(n) log+ ω(n)

)ω(n)
.

Moreover, the inequality remains true for all n ≥ 2 with ω(n) ≤ 3.

Theorem 3.3. For every integer n ≥ 2,

(3.3) τ(n) ≤
(

1 + η3
log n

ω(n) log+ ω(n)

)ω(n)
where

η3 := λ(720n7) =
(11521/7 − 1)7 log 7

log 367567200
= 1.1999953 . . .

Theorem 3.4. For every positive integer n with k = ω(n) ≥ 74,

(3.4) τ(n) <

(
1 +

log n

k log k

)k
.
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Remark 3.5. The number

n′ = 213 · 38 · 55 · 74 · 113 · 133 · 173 · 192 · · · 532 · 59 · · · 367,

whose prime factors are the first 73 prime numbers, shows that Theorem

3.4 is best possible since λ(n′) = 1.0008832 . . . In fact, one can find similar

examples n (that is, with λ(n) > 1) for each ω(n) = k ∈ [3, 73]. Also, the

methods used in the proof of Theorem 3.4 allow one to show that the largest

value of λ(n), with ω(n) = 74, is attained only by the number

n′′ = 213 · 38 · 55 · 74 · 113 · 133 · 173 · 192 · · · 532 · 59 · · · 373

and for which λ(n′′) = 0.99991077 . . . (Observe that the number n′ realizes

the unique maximum of the function λ among the integers n with exactly

73 distinct prime factors.)

By comparing the lower bound in (2.1) with (3.4) and after some com-

putation, one can show that the inequality

n ≥ ω(n)ω(n) (n ≥ 2)

holds for each n satisfying ω(n) /∈ [4, 12] or n > 43n11. This helps to under-

stand why Theorem 3.4 is more powerful than Theorem 3.2.

Theorem 3.6. The largest integer n with k = ω(n) ≥ 44 for which λ(n) ≥ 1

is the integer made up of the first 44 primes that has the exponent vector

(3.5)

(354,223,152,125,102,95,86,83,77,72,71,67,65,64,63,61,59,59,57,57,56,

55,55,54,53,52,52,52,51,51,50,49,49,49,48,48,48,47,47,47,46,46,46,46).

There are infinitely many integers n for which λ(n) > 1. Most of them

satisfies ω(n) = 43, see the final remarks of this paper for more informations.

4. Preliminary lemmas

Definition 4.1. Let xi, with i ∈ {1, . . . , k}, be fixed real numbers that

satisfy 0 < x1 ≤ · · · ≤ xk. Let

µ :=
x1 + · · ·+ xk

k

and

$ :=
k∑
i=1

|xi − µ|.
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Assume also that x1 ≤ · · · ≤ xm ≤ µ ≤ xm+1 ≤ · · · ≤ xk for a fixed

m ∈ {1, . . . , k − 1} where k ≥ 2. Further set

µ1 :=
x1 + · · ·+ xm

m
= µ− $

2m
,

µ2 :=
xm+1 + · · ·+ xk

k −m
= µ+

$

2(k −m)

and also

$1 :=
m∑
i=1

|xi − µ1|

and

$2 :=
k∑

i=m+1

|xi − µ2|.

Example 4.2. Here it is how this notation is used throughout the proof of

Theorem 3.6. Let’s fix an integer n = qα1
1 · · · q

αk
k . For each i ∈ {1, 2, . . . , k},

we define θi implicitly by nθi = qαii , so that θ1 + · · ·+ θk = 1. We write

(4.1) xi :=
(αi + 1) log qi

log n

and assume that the primes qi are ordered in such a way that (4.7) holds.

In this case we have

(4.2) µ =
1

k

(
1 +

log γ(n)

log n

)
,

$ =
1

k

k∑
i=1

∣∣∣∣(αi + 1)k log qi − log γ(n)

log n
− 1

∣∣∣∣ =:
$′

k
,

µ1 =
1

k

(
1 +

log γ(n)

log n

)
− $′

2km
, µ2 =

1

k

(
1 +

log γ(n)

log n

)
+

$′

2k(k −m)
,

(4.3) $1 =
1

k

m∑
i=1

∣∣∣∣(αi + 1)k log qi − log γ(n)

log n
− 1 +

$′

2m

∣∣∣∣ =:
$′1
k

and

(4.4) $2 =
1

k

k∑
i=m+1

∣∣∣∣(αi + 1)k log qi − log γ(n)

log n
− 1− $′

2(k −m)

∣∣∣∣ =:
$′2
k
.

Lemma 4.3. (i) For k ≥ 1 we have

(4.5) x1 · · ·xk ≤ µk.

(ii) For k ≥ 2 we have

(4.6) x1 · · ·xk ≤ µm1 µ
k−m
2 .
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(iii) For k ≥ 4, let m ∈ {2, . . . , k−2}, m1 ∈ {1, . . . ,m−1}, m2 ∈ {1, . . . , k−
m− 1} and assume that

(4.7) 0<x1≤···≤xm1≤µ1≤xm1+1≤···≤xm≤µ≤xm+1≤···≤xm+m2≤µ2≤xm+m2+1≤···≤xk.

Then,

(4.8) x1···xk≤
(
µ1− $1

2m1

)m1
(
µ1+

$1
2(m−m1)

)m−m1
(
µ2− $2

2m2

)m2
(
µ2+

$2
2(k−m−m2)

)k−m−m2
.

Proof. In each case, we simply use the arithmetic-geometric inequality for

the corresponding sub-product of variables for which we know the average.

�

Lemma 4.4. Let k ≥ 1 be an integer, zi > 0 and θi ≥ −1
zi

be real numbers

for i = 1, . . . , k, and assume that

θ1 + · · ·+ θk = 1.

Then,

(4.9)
k∏
i=1

(1 + θizi) ≤
k∏
i=1

(zi
k

)(
1 +

k∑
j=1

1

zj

)k
,

with equality if and only if

θi =
1

k

(
1 +

k∑
j=1

1

zj

)
− 1

zi
(i = 1, . . . , k).

Proof. Using the arithmetic geometric mean inequality, the hypothesis zi >

0 and the fact that for each i we have 1 + θizi ≥ 0, we can write

k∏
i=1

(1 + θizi) =

(
k∏
i=1

zi

)(
k∏
j=1

(
θj +

1

zj

))

≤
k∏
i=1

(zi
k

)( k∑
j=1

(
θj +

1

zj

))k

=
k∏
i=1

(zi
k

)(
1 +

k∑
j=1

1

zj

)k

.

We have equality if and only if

θi +
1

zi
=

1

k

(
1 +

k∑
j=1

1

zj

)
(i = 1, . . . , k),

thus completing the proof. �

Corollary 4.5. Assume the above notation. Then, for every integer n ≥ 2,

(4.10) τ(n) ≤
(

log n

ω(n)

)ω(n)(
1 +

log γ(n)

log n

)ω(n)
β(n)
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and

(4.11) τ(n) ≤
(

2 log n

ω(n)

)ω(n)
β(n).

Proof of Corollary 4.5. We write n = qα1
1 · · · q

αk
k and nθi = qαii as in Exam-

ple 4.2. Using inequality (4.9) with zi = logn
log qi

we have

τ(n) =
k∏
i=1

(1 + αi) =
k∏
i=1

(
1 +

θi log n

log qi

)

≤
(

log n

k

)k (
1 +

log γ(n)

log n

)k∏
p|n

1

log p
,

which proves (4.10). Since log γ(n) ≤ log n, inequality (4.11) follows imme-

diately from (4.10). �

In any event, observe that it follows from Corollary 4.5 that

(4.12) λ(n) ≤
(∏
p|n

log k

log p

)1/k

+
log γ(n)

log n

(∏
p|n

log k

log p

)1/k

− k log k

log n
.

Lemma 4.6. (i) Assume that µ > 0, m ≥ 1 and k − m ≥ 1. Then, the

function

(4.13) $ 7→
(
µ− $

2m

)m(
µ+

$

2(k −m)

)k−m
decreases when $ increases from 0 to 2mµ.

(ii) Assume that µ > 0, $1 ≥ 0, $2 ≥ 0, m ≥ 1, k−m ≥ 1, m1 ≥ 1, m2 ≥
1, m−m1 ≥ 1, k−m−m2 ≥ 1, µ− $

2m
− $1

2m1
> 0 and µ+ $

2(k−m)
− $2

2m2
> 0.

Then, the function

f($) :=
(
µ− $

2m
− $1

2m1

)m1
(
µ− $

2m
+

$1
2(m−m1)

)m−m1(4.14)

×
(
µ+ $

2(k−m)
− $2

2m2

)m2
(
µ+ $

2(k−m)
+

$2
2(k−m−m2)

)k−m−m2

has the property that if f ′($0) < 0 for some $0 > 0, then f($) < f($0)

for each $ > $0.

(iii) Assume that A > 0, B > 0, C > 0, γ1 ≥ 0, γ2 ≥ 0, %1 ≥ 0, %2 ≥ 0,

%1 + %2 = 1 and C < AB. Then, the function

(4.15) z 7→ B

(
γ1 +

A

z

)%1 (
γ2 +

A

z

)%2
− C

z

decreases when z increases for z > 0.

(iv) Assume that A > 0, B > 0, C > 0, z > 0, γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0,

γ4 ≥ 0, %1 ≥ 0, %2 ≥ 0, %3 ≥ 0, %4 ≥ 0, %1 + %2 + %3 + %4 = 1 and C < AB.
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Then, the expression

(4.16) B

(
γ1 +

A

z

)%1 (
γ2 +

A

z

)%2 (
γ3 +

A

z

)%3 (
γ4 +

A

z

)%4
− C

z

decreases when z increases.

Proof. (i) Since the function (4.13) is assumed to be positive, it follows

that its derivative with respect to $ has the same sign than its logarithmic

derivative with respect to $. Then, since the logarithmic derivative is

−1

2µ− $
m

+
1

2µ+ $
k−m

,

it is clearly strictly negative when 0 < $ < 2mµ.

(ii) Again, the function f is assumed to be positive in which case its de-

rivative with respect to $ has the same sign than its logarithmic derivative

with respect to $. Also, we have(
f ′($)

f($)

)′
= −m1

m2

(
2µ−$m−

$1
m1

)2− m−m1

m2

(
2µ−$m+

$1
m−m1

)2
− m2

(k−m)2

(
2µ+ $

k−m−
$2
m2

)2− k−m−m2

(k−m)2

(
2µ+ $

k−m+
$2

k−m−m2

)2
which is clearly negative. We deduce that if f ′($0) < 0 for some $0 > 0,

then f ′($) < 0 for each $ > $0 which in turn implies

f($)− f($0) =

∫ $

$0

f ′(t)dt < 0

for each $ > $0, thus establishing our claim.

(iii) We take the derivative of (4.15) with respect to z and multiply by z2.

We then see that the wanted property is equivalent to

(4.17) C < AB

(
γ1 +

A

z

)%1 (
γ2 +

A

z

)%2 ( %1

γ1 + A
z

+
%2

γ2 + A
z

)
.

Now, from Jensen’s inequality for the exponential function, we have

1

z%11 z
%2
2

≤ %1
z1

+
%2
z2

(z1, z2 > 0).

We deduce that the hypothesis C < AB implies (4.17). (iv) is done in the

same manner and the proof is complete. �

Lemma 4.7. Let A and B be fixed positive real constants. Consider the

function ψ := Z× R∗ × R→ R≥0 defined by

(4.18) ψ(α, x, ϕ) =

∣∣∣∣(α + 1)B − A
x

− ϕ
∣∣∣∣ .
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(i) Assume that x1, ϕ1 > 0. The minimum of the function ψ(α, x, ϕ) for

α ∈ Z, x ∈ [x1, x2] and ϕ ∈ [ϕ1, ϕ2] is either 0 or is given by the minimum

over the eight possibilities provided by

α ∈
{⌊

x2ϕ2 + A

B

⌋
− 1,

⌈
x1ϕ1 + A

B

⌉
− 1

}
, x ∈ {x1, x2} and ϕ ∈ {ϕ1, ϕ2}.

The minimum is 0 if and only if

(4.19)

⌈
x1ϕ1 + A

B

⌉
≤
⌊
x2ϕ2 + A

B

⌋
.

(ii) Let δ > 0 be a fixed real number and assume that x1, ϕ1 > 0. The

minimum of the function ψ(α, x, 1) for

x ∈ [x1, x2] and α ∈ Z\
{⌈

(1− δ)x1 + A

B

⌉
− 1, . . . ,

⌊
(1 + δ)x2 + A

B

⌋
− 1

}
is given by the minimum over the four possibilities provided by

α ∈
{⌈

(1− δ)x1 + A

B

⌉
− 2,

⌊
(1 + δ)x2 + A

B

⌋}
and x ∈ {x1, x2}.

Proof. (i) First, assume that the minimum is 0. Choose (α, x, ϕ) that real-

izes 0. We deduce that α + 1 = xϕ+A
B

and then it is equivalent to having

(4.19). Now, assume that the minimum is not zero. In this case,
⌊
x2ϕ2+A

B

⌋
<⌈

x1ϕ1+A
B

⌉
=
⌊
x2ϕ2+A

B

⌋
+ 1. Also, if (α, x, ϕ) realizes the minimum then

there are two cases. We either have (α+1)B−A
x

− ϕ ≥ 0, in which case

α + 1 ≥
⌈
x1ϕ1+A

B

⌉
, or we have (α+1)B−A

x
− ϕ ≤ 0 , in which case we

have α + 1 ≤
⌊
x2ϕ2+A

B

⌋
. It is then clear that the minimum is attained for

α ∈
{⌊

x2ϕ2+A
B

⌋
− 1,

⌈
x1ϕ1+A

B

⌉
− 1
}

. To conclude, we remark that, once α is

fixed, (α+1)B−A
x

−ϕ attained its extremum at the edges of the intervals since

it is a sum of independent monotone functions.

(ii) The choice for α is clear. Also, if we assume that the minimum is not

0 then the choice for x is also clear. Now, assume the contrary, that the

minimum is 0 and that it is attained at (α, x) with α =
⌈
(1−δ)x1+A

B

⌉
− 2 =

(1−δ)x1+A
B

− 2 + ξ for some ξ ∈ [0, 1]. In this case,

(α+1)B−A
x

=

(
(1−δ)x1+A

B
−2+ξ+1

)
B−A

x
=

(1−δ)x1+(ξ−1)B
x

≤1−δ<1

and similarly for the other choice of α. This shows that the minimum is not

0 and the proof is complete. �

Lemma 4.8. We have

(4.20)
k∑
i=1

log pi ≤ k(log k + log log k − 3/4) for k ≥ 8,
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(4.21)
k∑
i=1

log log pi ≥ k

(
log log k +

log log k − 5/4

log k

)
for k ≥ 319

and

(4.22) β(nk) ≤ (log k)−k for k ≥ 44.

Proof. We first prove inequality (4.21) using induction. We verify using a

computer that it holds for each k ∈ [319, 900 000]. Then, we assume that

inequality (4.21) holds for some k ≥ 900 000 and we want to establish it for

k + 1. Let’s define the function

W (x) := x

(
log log x+

log log x− 5/4

log x

)
(x ≥ e).

It will be enough to show that

log log pk+1 ≥ W (k + 1)−W (k) (k ≥ 900 000)

On one hand, it is known that pj ≥ j log j (see for instance Rosser and

Schoenfeld [10]) for each j ≥ 1, so that

log log pk+1 ≥ log log(k + 1) +
log log(k + 1)

log(k + 1)
− 1

2

(
log log(k + 1)

log(k + 1)

)2

.

Also, from the mean value theorem we know that there is a value of ξ ∈
(k, k + 1) for which W (k + 1) − W (k) = W ′(ξ). Since exp(exp(9/4)) <

900 000, we deduce that inequality (4.21) holds at k + 1 if

1

4
≥ 1

2

(log log(k + 1))2

log(k + 1)

which is the case for k ≥ 900 000. The proof is complete.

Inequality (4.20) can be done using a similar method or one can also

use the sharper result of Massias and Robin, see [7, (1.14)], along with a

verification using a computer for k = 8, . . . , 13. Finally, (4.22) follows from

(4.21) and an easy verification with a computer. �

Let us further introduce the function

(4.23) t(n) :=
τ(n)1/k

log n
(n ≥ 2).

Lemma 4.9. Let n ≥ 2 be an integer, 2 ≤ k = ω(n) and p be a prime

number. If pα‖n with α ≥ 2, then

(4.24)
λ(n)

λ(n/p)
≤
(

1 +
2

kα

)(
1− log p

log n

)
and

(4.25)
t(n)

t(n/p)
≤
(

1 +
1

kα

)(
1− log p

log n

)
.
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Also, for ` ∈ {1, 2}, we have

(4.26)

(
1 +

`

kα

)(
1− log p

log n

)
< 1⇐⇒ p > n

`
αk+`

and

(4.27) α = max

(
2,

⌈
`

k

(
log n

log p
− 1

)⌉)
=⇒

(
1 +

`

kα

)(
1− log p

log n

)
< 1.

Proof. We write n = pαm, so that (p,m) = 1 and therefore,

λ(n)

λ(n/p)
=

τ(n)1/k − 1

τ(n/p)1/k − 1

log n/p

log n

=

(
1 +

τ(n)1/k − τ(n/p)1/k

τ(n/p)1/k − 1

)(
1− log p

log n

)
=

(
1 +

τ(m)1/k

τ(n/p)1/k − 1
((α + 1)1/k − α1/k)

)(
1− log p

log n

)
≤

(
1 +

τ(n/p)1/k

τ(n/p)1/k − 1

1

kα

)(
1− log p

log n

)
,

where the last inequality follows from the fact that

(α + 1)1/k − α1/k ≤ sup
ξ∈[α,α+1]

ξ1/k

kξ
=
α1/k

kα
.

Since the function z → z
z−1 is strictly decreasing for z > 1, the result

then follows from the fact that τ(n/p)1/k ≥ 2. The proof of inequality

(4.25) is similar and the proofs of (4.26) and (4.27) follow from an easy

computation. �

Lemma 4.10. For any real z > 1 and integer n = qα1
1 · · · q

αk
k ≥ 2, let

(4.28) υ(n, z) := log k

(
1 +

log γ(n)

log z

)
β(n)1/k − k log k

log z
.

Then,

(4.29)
d

dz
υ(n, z) ≤ 0 (n ≥ 2)

with strict inequality if ω(n) ≥ 2. Also,

(4.30) υ(nk, nk) < 1 (k ≥ 95).

Proof. To prove (4.29), we first observe that

d

dz
υ(n, z) = − log k

log γ(n)

z log2 z
β(n)1/k +

k log k

z log2 z
,

which implies that (4.29) is equivalent to

k ≤ β(n)1/k log γ(n),
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which itself is a consequence of the arithmetic geometric mean inequality

applied to the numbers log p for p | n.

To prove (4.30), by observing that γ(nk) = nk, we must show that

(4.31) 2 <

(
k

log nk
+

1

log k

)
β(nk)

−1/k.

Using inequalities (4.21) and (4.20) we see that the right hand side of (4.31)

is

≥
(
exp

(
log log k +

log log k − 5/4

log k

))
·
(

1

log k
+

1

log k + log log k − 3/4

)
=

(
exp

(
log log k − 5/4

log k

))
·
(
1 +

log k

log k + log log k − 3/4

)
>

(
1 +

log log k − 5/4

log k

)
·
(
1 +

log k

log k + log log k − 3/4

)
= 2 +

log log k − 5/4

log k
− 1/2

log k + log log k − 3/4
> 2,

for each k ≥ 319. On the other hand, using a computer, one can easily check

that (4.30) holds for each integer k ∈ [95, 318], thus completing the proof

of (4.30). �

Lemma 4.11. Let α ∈ (0, 1), c1, c2 ∈ R with c1 > 0, c2 > 0 and I :=

(c
−1/α
1 + c2,∞). Consider the function g : I → R defined by

g(z) :=
c1(z − c2)α − 1

z
.

Then, g attains its unique maximum at some point z0 > c
−1/α
1 + c2.

Proof. Consider the function h : I → R given by

(4.32) h(z) := z2(z − c2)1−αg′(z) = c1αz − c1(z − c2) + (z − c2)1−α.

It follows from this that h and g′ have the same sign and the same zeros in

I. Moreover, h(c
−1/α
1 + c2) is positive and h(∞) = −∞. On the other hand,

h′(z) = c1(α− 1) +
1− α

(z − c2)α
,

in which case,

h′(z) = 0 ⇐⇒ 1 = c1(z − c2)α,

which is impossible for z ∈ I. Now, because h′(∞) < 0, this means that

h′(z) < 0 for z ∈ I. The result follows. �
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5. Proof of Theorem 3.1

It is easy to verify that (3.1) holds when ω(n) = 1. For any n with

ω(n) ≥ 2, we introduce the function r(n) defined implicitly by

τ(n) =

(
er(n) log n

ω(n) logω(n)

)ω(n)
.

Hence, for any n with ω(n) ≥ 2, we have

(5.1) r(n) :=
1

ω(n)

(
log τ(n)− ω(n) log

(
log n

ω(n) logω(n)

))
.

Observe that for n∗ := 60060 = 22 · 3 · 5 · 7 · 11 · 13 we have r(n∗) =

0.737505 . . . = log η2. We claim that n∗ is the only integer n with ω(n) ≥ 2

that maximizes the function r (this function is bounded, as it will become

clear below). To prove it, we proceed by contradiction. Assume that, for

some k ≥ 2, there exists an integer n′ 6= n∗ with ω(n′) = k for which (3.1)

is false and moreover that r(n′) is maximal. It is clear that the factorization

of n′ takes the form

(5.2) n′ =
k∏
i=1

pαii with α1 ≥ α2 ≥ · · · ≥ αk,

where the pi’s are the primes in ascending order.

Using (4.11) (from Corollary 4.5) and (4.22) (from Lemma 4.8), one

easily see that r(n′) < log 2 = 0.693 . . . if k ≥ 44 which is non sense since

r(n∗) = 0.737 . . . Thus we must have k ≤ 43. Now, it follows from (4.11)

that

(5.3) τ(n′) ≤
(

2 log n′

k

)k
β(n′) ≤

(
2 log n′

k

)k
β(nk).

Inserting (5.3) in (5.1), we then get

r(n′) ≤ 1

k

(
log β(nk) + k log

(
2 log n′

k

)
− k log

(
log n′

k log k

))
= log 2 + log log k +

log β(nk)

k
,

a quantity which depends only on k. On the other hand, using a computer

reveals that r(n′) < log η2 for each k ∈ [2, 3] ∪ [25, 43]. This contradicts

the choice of n′. Therefore we only need to consider the cases when k ∈
{4, . . . , 24}.

Now, inserting (4.10) in (5.1), we have that

r(n′) ≤ 1

k

(
log β(nk) + k log

(
logn′

k

)
+ k log

(
1 +

lognk
logn′

)
− k log

(
logn′

k log k

))
=

log β(nk)

k
+ log log k + log

(
1 +

lognk
logn′

)
= r1(n

′, k),
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where

(5.4) r1(z, k) :=
log β(nk)

k
+ log log k + log

(
1 +

log nk
log z

)
.

We observe that the function r1(z, k) decreases when z increases. Thus,

defining zk as the unique solution in z of r1(z, k) = log η2, we obtain that

n′ ≤ zk given that ω(n′) = k.

We now consider the function

(5.5) u(x) := max
`≥0
{` : n` ≤ x}.

Observe that, since n′ is of the form (5.2), u(zk/nk) is an upper bound for

the rank j of the largest prime pj such that p2j | n′. One may verify that

for each k ∈ {4, . . . , 24} we have u(zk/nk) ≤ 3 implying that j ≤ 3. Now,

recalling the definition of t(n) given in (4.23), we may write

r(n) = log t(n) + log(ω(n) logω(n)).

Hence, for a fixed value of k = ω(n), it follows that r(n) increases or de-

creases along with t(n). Therefore, our hypothesis implies that t(n′) is max-

imal. Thus for each j ∈ {1, 2, 3}, using inequality (4.25) and the maximality

of t(n′), we can write

1 ≤ t(n′)

t(n′/pj)
≤
(

1 +
1

kα

)(
1− log pj

log n′

)
≤
(

1 +
1

kα

)(
1− log pj

log zk

)
,

and we obtain the desired contradiction if this last expression is less than 1,

which will happen if the integer α ≥ 2 satisfying pαj ‖n′ is large enough. Using

(4.27) we get an upper bound for each of the first three components in the

exponent vector of n′. In fact, one may verify that, for each k ∈ {4, . . . , 24},

(4, 2, 2, 1, . . . , 1︸ ︷︷ ︸
k−3

)

is an upper bound (in each of its coordinates) for the exponent vector of n′,

implying that there are just a small number of cases to verify. After all the

computations are done, we obtain a finite set of pairs (n, r(n)) including

(n∗, r(n∗)) and find that all the other pairs in this set satisfy r(n) < r(n∗).

This contradicts the existence of n′ and completes the proof of Theorem

3.1.

6. Proof of Theorem 3.2

We first verify that (3.2) does not hold for the integer

n∗ := 782139803452561073520 = 24n16.
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If n is any integer such that ω(n) ≥ 44, then it follows from Corollary 4.5

and Lemma 4.8 that inequality (3.2) is satisfied (see the proof of Theorem

3.1). Since it is clear that (3.2) holds when ω(n) = 1, it remains only to

consider the set of integers n such that 2 ≤ ω(n) ≤ 43. For any such k, let

zk be the unique solution in z to

r1(z, k) = log 2,

where r1(z, k) is the function defined in (5.4).

We proceed by contradiction by assuming that there exists an integer n′

such that ω(n′) ∈ {17, . . . , 43} and for which (3.2) is false. We may also

assume that n′ realizes the maximum of the function r and moreover that

n′ is of the form (5.2). As in Theorem 3.1, we have n′ ≤ zk and one can

verify that u(zk/nk) ≤ 5. Thus, the exact same method that we used in the

proof of Theorem 3.1 leads to an upper bound for the exponent vector of n′

given by

(5, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸
k−4

).

One can then verify, using a computer, that neither of these finite num-

ber of possibilities leads to a number n that does not satisfy (3.2), thus

contradicting the existence of n′.

We can therefore assume that 2 ≤ k ≤ 16. Since z2 = 3.25 . . . , z3 =

36.12 . . . and r(30) < log 2, we deduce that in the particular cases k = 2

and k = 3, there is no counterexample in integers n of the form (5.2) to

inequality (3.2). Thus, there is no counterexample in integers n ≥ 2 with

ω(n) ≤ 3. For 4 ≤ k ≤ 16 there are counterexamples to (3.2) and thus we

need to focus our attention on getting a good upper bound for every such

integer in terms of k only. In order to do this, we first exhibit the values of

uk := u(zk/nk) (easily obtained using a computer) in Table 1.

k 4 5 6 7 8 9 10 11 12 13 14 15 16
uk 1 2 3 3 3 4 4 4 4 4 5 5 5

Table 1

We can use this information to obtain an upper bound for τ(n) for any

such counterexample n of (3.2). Indeed, by using the multiplicativity of the

function τ and inequality (4.10), we get that for any such n with ω(n) = k,

τ(n) ≤ dk :=
2k−ukβ(nuk)

uukk

(
log

zkn
2
uk

nk

)uk
.

A priori this inequality is valid only for integers n of the form (5.2), but it

is then clearly also true for any counterexample to (3.2) since any general

counterexample to (3.2) has an associated counterexample of the type (5.2)
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with the same exponent vector once the prime factors are properly ordered.

We use this inequality in (5.1) and introduce the function

r2(z, k) :=
1

k

(
log dk − k log

(
log z

k log k

))
.

Now, let z′k be the unique solution in z to

r2(z, k) = log 2.

Since d
dz
r2(z, k) < 0, we deduce that z′k is an upper bound for the largest

possible counterexample n to (3.2) with an hypothetic value of τ(n) equal

to dk; clearly this is the largest among those we find with any smaller value

of τ(n). We then find, using a computer, that z′k is smaller than 24n16 for

each k ∈ {4, . . . , 15}.
For k = 16, the situation is somewhat different. Instead, we verify by

using z′16 that there are only three possible exponent vectors, namely

(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)(6.1)

(4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

that yield a counterexample to (3.2) in integers n of the type (5.2). For

each of these, the smallest number strictly larger than the basic form is

obtained by replacing the largest prime factor p16 = 53 by 59. We then

obtain numbers n which give r(n) < log 2. We deduce that 24n16 (which

corresponds to the last exponent vector in (6.1)) is the largest of these. The

proof of Theorem 3.2 is then complete.

7. Proof of Theorem 3.3

We first verify that for n∗ := 720n7 we have λ(n∗) = 1.1999953 . . . := η3.

We will show that n∗ is the only integer that maximizes λ. In order to

reach a contradiction, we will assume that there exists n′ 6= n∗ for which

λ(n′) ≥ λ(n∗). Again, it is clear that the maximal value of λ exists and is

attained by an integer of the form (5.2). Therefore we will assume that n′

is of this form with ω(n′) = k. From (4.12) and (4.22), it follows that the

inequality

λ(n′) ≤ 1 +

∑k
i=1 log pi − k log k

log n′

is valid for each k ≥ 44. On the other hand, we cannot have

(7.1)

∑k
i=1 log pi − k log k

log n′
> η3 − 1
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if k ≥ 44, the reason being that since n′ has k prime factors, it must satisfy

log n′ ≥ log nk =
∑k

i=1 log pi in which case (7.1) would imply

(7.2) (2− η3)
k∑
i=1

log pi > k log k.

But, using (4.20), it is easy to verify that (7.2) is impossible when k ≥ 44.

This proves that we must have k ≤ 43. Considering (4.12), we let zk be the

unique solution in z of

υ(nk, z) =

(∏
p|nk

log k

log p

)1/k

+
log nk
log z

(∏
p|nk

log k

log p

)1/k

− k log k

log z
= η3,

where υ(n, z) is the function defined in (4.28). Since d
dz
υ(nk, z) < 0 by

(4.29), we deduce that n′ ≤ zk. We find that the only possibilities for n′ are

those with k ∈ {5, . . . , 13}, since otherwise we would have n′ ≤ zk < nk

which is impossible since by hypothesis we have nk | n′.
Now, for 5 ≤ k ≤ 13 and from the fact that n′ is of the form (5.2)

with ω(n′) = k, we deduce that n′ = snk ≤ zk for some integer s which

satisfies nj|s with j ≤ k. One can calculate that the largest ratio zk/nk (for

5 ≤ k ≤ 13) is less than 264 507. This forces j ≤ 6. Now, consider the set

U := {s ≤ 264 507 : P (s) ≤ 13},

where P (s) stands for the largest prime factor of s, and the set V :=

{(snk, λ(snk)) : s ∈ U and 5 ≤ k ≤ 13}. By computation, we observe

that V contains the element (n∗, r(n∗)) and that for any other n we have

r(n) < r(n∗). This contradicts the existence of n′ and the proof of Theorem

3.3 is then complete.

8. Proof of Theorem 3.4

In order to reach a contradiction, let us assume that there exists an

integer n′ with ω(n′) = k, for some k ≥ 74, for which (3.4) does not hold.

For fixed values of ω(n) and τ(n), we see by definition (2.3) that the function

λ(n) decreases as n increases. For this reason, we will assume that n′ is of

the form (5.2). We will also assume that λ(n′) is maximal.

For k ≥ 95, we deduce from (4.12), (4.28), (4.29) and (4.30) that

λ(n′) ≤ υ(n′, n′) ≤ υ(nk, nk) < 1.

This means that, inequality (3.4) holds for k ≥ 95.

For each integer k ∈ {74, . . . , 94}, we cannot conclude since υ(nk, nk) >

1. However, since by Lemma 4.10 we have d
dz
υ(nk, z) ≤ 0 and υ(nk,∞) < 1,
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we can define zk implicitly by υ(nk, zk) = 1, in which case n′ ≤ zk. Also, by

computation, observe that

log zk/ log nk < 2

for each k. This last inequality implies that the largest prime factor of n′

has its corresponding exponent equal to 1.

As we have already seen, uk := u(zk/nk) provides an upper bound for

the rank j of the largest prime pj such that p2j | n′ since n′ is of the form

(5.2). Our goal from now on is to verify all the remaining possibilities. To

do so, we proceed in four steps. In the first step, we introduce a variable

j1 that will take the values 0, 1, . . . , uk and a variable j2 that will take the

values 0, 1, . . . ,min(j1, uk). Then, we assume that

(8.1) n′ = pα1
1 · · · p

αj2
j2
· p2j2+1 · · · p2j1 · pj1+1 · · · pk

for some integers αi ≥ 3 and that n′ is of the form (5.2). Now, if 0 < j2 ≤ j1,

by using the multiplicativity of the function τ together with (4.12), recalling

the definition of λ in (2.3), we are lead to consider the function

f1(j2, j1, k, z) :=
(c1(j2, j1, k)(log z − c2(j2, j1, k))j2/k − 1)k log k

log z

where

c1 = c1(j2, j1, k) := 2(k−j1)/k3(j1−j2)/k 1

j
j2/k
2

β(nj2)
1/k

and

c2 = c2(j2, j1, k) := log(nknj1/(nj2)
3).

Assume for now that each constant c2 that will be considered through this

proof satisfies

(8.2) c2 > 0.

Then, using Lemma 4.11, we have

λ(n′) ≤ f1(j2, j1, k, n
′) ≤ max

z>c2(j2,j1,k)
f1(j2, j1, k, z).

Therefore, we will get the desired contradiction if n′ is of the type (8.1)

and the unique maximum of f1(j2, j1, k, z) is proven to be less than 1 (see

Remark 8.1 for more details). The cases with j2 = 0 or j1 = 0 must be

verified directly.

The values of uk are recorded in Table 2.

k 74 75 76 77 78 79 80 81 82 83 84
uk 45 43 41 39 37 35 33 30 29 26 25

k 85 86 87 88 89 90 91 92 93 94
uk 23 21 19 17 15 13 11 8 6 2

Table 2
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All the computations being done, one is left with a reduced set of possibilities

for the form of n′. In fact, we now have that k ∈ {74, 75, 76, 77} and also

that the number of values that j1 can take is significantly reduced. The final

result is given in Table 3.

k 74 75 76 77
j1 ∈ {14, . . . ,28} {16, . . . ,26} {18, . . . ,25} {20, . . . ,23}

Table 3

What we mean here is that a fixed pair (k, j1) is not in Table 3 if for all

j2 ≤ min(j1, uk) we have max
z>c2(j2,j1,k)

f1(j2, j1, k, z) < 1.

This is where the second step of verifications starts. We now assume that

n′ = pα1
1 · · · p

αj3
j3
· p3j3+1 · · · p3j2 · p

2
j2+1 · · · p2j1 · pj1+1 · · · pk

for some integers αi ≥ 4 and we use the same argument as before to define

the well suited function

f2(j3, j2, j1, k, z) :=
(c1(j3, j2, j1, k)(log z − c2(j3, j2, j1, k))j3/k − 1)k log k

log z
,

where

c1(j3, j2, j1, k) := 2(k−j1)/k3(j1−j2)/k4(j2−j3)/k 1

j
j3/k
3

β(nj3)
1/k

and

c2(j3, j2, j1, k) := log(nknj1nj2/(nj3)
4).

We still have the chain of inequalities

λ(n′) ≤ f2(j3, j2, j1, k, n
′) ≤ max

z>c2(j3,j2,j1,k)
f2(j3, j2, j1, k, z).

This time, we run this over the remaining values of j1, and for

j2 ∈ {1, . . . ,min(j1, u(zk/(nj1nk)))}

and

j3 ∈ {1, . . . ,min(j2, u(zk/(nj2nj1nk)))}.
The cases with j3 = 0 must be treated separately. Once again, these compu-

tations lead to further progress. We record in Table 4 the remaining values

which need to be examined.
k 74 75 76
j1 ∈ {14, . . . ,23} {16, . . . ,21} {18,19}

Table 4

We are now ready to begin the third step of verifications. We assume that

n′ = pα1
1 · · · p

αj4
j4
· p4j4+1 · · · p4j3 · p

3
j3+1 · · · p3j2 · p

2
j2+1 · · · p2j1 · pj1+1 · · · pk

for some integers αi ≥ 5 and define the function f3(j4, j3, j2, j1, k, z) in a

similar manner by using the same ideas. However, we do introduce a new
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idea in the way of reducing the number of values that the variables js (s ≥ 3)

can take. We first assume that pα‖n′ for a fixed α ≥ 2, then we use (4.24),

the fact that n′ ≤ zk and the maximality of λ(n′) in order to write

1 ≤ λ(n′)

λ(n′/p)
≤
(

1 +
2

kα

)(
1− log p

log n′

)
≤
(

1 +
2

kα

)(
1− log p

log zk

)
.

We find a contradiction if p is large enough to force the last expression to

be less than 1. In particular, we get an upper bound for the rank j of such

a prime pj. Since this upper bound decreases when α increases, we obtain

an upper bound for the rank j of any prime pj for which pαj | n′. Thus, by

using (4.26), we obtain Table 5.

α�k 74 75 76

4 11 11 10
5 7 6 6
6 4 4 4

Table 5

Using this, we let j1 take the values in Table 4, and we let

j2 ∈ {1, . . . ,min(j1, u(zk/(nj1nk)))},

j3 ∈ {1, . . . ,min(j2, u(zk/(nj2nj1nk)), 11 or 10)}

and

j4 ∈ {1, . . . ,min(j3, u(zk/(nj3nj2nj1nk)), 7 or 6)}.

Again, we treat the cases with j4 = 0 independently. The computations lead

to the result that we must have k = 74 and j1 ∈ {16, 17, 18}. We rule out

these cases by defining f4(j5, j4, j3, j2, j1, k, z) and by using Table 5 to limit

the range of the variables j3, j4 and j5. This completes the verifications.

It remains to prove (8.2). To do so, we use the fact that js+1 ≤ js and

that

njs ≤
zk

nknj1 · · ·njs−1

and −c2(js, . . . , j1, k) = log njs+log
nsjs

nknj1 · · ·njs−1

,

from which we deduce that

−c2(js, . . . , j1, k) ≤ log
zk

nknj1 · · ·njs−1

+ log
nsjs

nknj1 · · ·njs−1

≤ log
zk

nknj1
+ log

njs
nk

≤ log
zk
n2
k

< −159.6

by direct computation, which proves (8.2).
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We also observe that

−c2(js, . . . , j1, k) = log
ns+1
js

nknj1 · · ·njs−1

> log
1

nknj1 · · ·njs−1

> log
1

nsk
> −5 log n94 > −2342.

This completes the proof of Theorem 3.4.

Remark 8.1. We now provide some key details concerning the computa-

tions used in the proof of Theorem 3.4. The information provided through

the previous proof may differ with other information obtained with another

strategy. We used 50 decimals of precision for all computations. We used

the criterion fs(. . . ) < 0.999999 (for s = 1, 2, 3 or 4) for each comparison

in the four steps of the computation and we kept a pair (k, j1) if we found

fs(. . . ) ≥ 0.999999 somewhere in the process. By considering the function

h defined in (4.32), we approximated c1 and c2 with 50 decimals and we

called c′1 and c′2 these approximations. Then we solved for z1 in h(z1) = 0.

From

0 = c′1αz1 − c′1(z1 − c′2) + (z1 − c′2)1−α > c′1αz1 − c′1(z1 − c′2),

α ≥ 1/94 and c′2 > 159, we deduced that z1 − c′2 > 1.61. The same is true

also for the solution z of

0 = c1αz − c1(z − c2) + (z − c2)1−α.

It is easy to see that we always have c1 < 6!/ log 2 < 1039. With this

information at hand and using the mean value theorem, one finds that∣∣∣∣c′1(z1 − c′2)α − 1

z1
− c1(z1 − c2)α − 1

z1

∣∣∣∣ < 10−43,

thus concluding that the two functions are of about the same size for all

values of z or z1 such that z1 − c′2 > 1.6 or z − c2 > 1.6. From the fact that

94 log 94 < 428 and that an error of about z1 · 10−50 on z1 cost less than

10−45 in the evaluation of
c′1(z1−c′2)α−1

z1
, we end up with an error of at most

10−40. This is small enough for the criterion we used.

9. Proof of Theorem 3.6

First, we verify that the integer n∗ defined in the statement of the the-

orem satisfies λ(n∗) > 1 and is of size exp(10640.8428 . . . ). Then, we claim

that n∗ is the largest integer n with ω(n) ≥ 44 and λ(n) ≥ 1. To do so, we

proceed by contradiction and assume that there exists an integer n′ such

that n′ > n∗ with λ(n′) ≥ 1 and ω(n′) ≥ 44. The argument is done in

several steps.
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9.1. Preliminary steps. The first step consists in showing that we must

have ω(n′) = 44. For this, we use (4.12), (4.28) and (4.29) to deduce that

if we define zk by υ(nk, zk) = 1 then we must have n′ ≤ zk. We verify that

zk ≤ exp(4569.68) < n∗ for each k ∈ {45, . . . , 73} and then we conclude

using Theorem 3.4.

We then want to show that γ(n′) = n44. This is done in two steps. We

first assume that n′ is made of a choice of a set S of 44 distinct primes

in {p1, . . . , p45} and that this choice is not S ′ := {p1, . . . , p44}. There are

44 possibilities and if we write nS :=
∏
p∈S

p, then using again the same

argument as previously, we define zS by υ(nS, zS) = 1 and verify that zS ≤
exp(9927.67) < n∗ for each S.

Now, we assume that n′ has a general set of prime factors which has

not been previously considered (and is not S ′), implying that there exists

an integer n′′ < n′ such that τ(n′′) = τ(n′) and such that the set of prime

divisors of n′′ is S for some S 6= S ′. We then have

λ(n′) < λ(n′′) < 1

if n′′ > zS. This proves that the set of prime factors of n′ must be S ′.

We solve for z in the equation υ(n44, z) = 1 to find that n′<exp(10758.21).

We have thus proved that

10640.8 < log n′ < 10758.8.

Consider the intervals Ij := [10639.8+j, 10640.8+j] for each j = 1, . . . , 118.

From now on, we want to show that log n′ cannot be in any of these Ij.

9.2. A first argumentation. Recall the notation in (4.1) and (4.2), that

is xi (i = 1, . . . , 44), µ, µ1, µ2, $ and $′. The first argument that we use to

eliminate some intervals Ij relies on the inequality (4.6) and on the proof

of Corollary 4.5. For a value of m ∈ {1, . . . , 43}, we have

τ(n′) ≤ log44 n′β(n44)µ
m
1 µ

44−m
2

= β(n44)
(

logn′
44

)44(
1+

logn44
logn′ −

$′
2m

)m(
1+

logn44
logn′ +

$′
2(44−m)

)44−m

so that if we write

υm(z,w) := β(n44)
1
44 log 44(1+ logn44

z
− w

2m)
m
44 (1+ logn44

z
+ w

2(44−m))
1−m44

− 44 log 44
z

(9.1)

then we have

λ(n′) ≤ max
m∈{1,...,43}

υm(log n′, $′).
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Thus, we define zm,$ by υm(zm,$, $) = 1. We have seen that zm,0 =

10758.2 . . . From (i) and (iii) of Lemma 4.6, we know that zm,w decreases

when w increases. We record in Table 6 a value of w := w(j) such that

max
m∈{1,...,43}

zm,w(j) < 10639.8 + j

for the first 39 values of j.

j 1 2 3 4 5 6 7 8
w 0.2137 0.2128 0.2119 0.2109 0.2100 0.2091 0.2081 0.2072

j 9 10 11 12 13 14 15 16
w 0.2062 0.2053 0.2043 0.2034 0.2024 0.2014 0.2004 0.1995

j 17 18 19 20 21 22 23 24
w 0.1985 0.1975 0.1965 0.1955 0.1945 0.1935 0.1925 0.1914

j 25 26 27 28 29 30 31 32
w 0.1904 0.1894 0.1884 0.1873 0.1863 0.1852 0.1841 0.1831

j 33 34 35 36 37 38 39
w 0.1820 0.1809 0.1799 0.1788 0.1777 0.1766 0.1755

Table 6

In the opposite direction, a lower bound for $′(= $′(n′)) can be com-

puted for n′ assuming that log n′ is in Ij. To do so, we split the interval Ij

in 210 subintervals of length 1
210

that we call Ij,j1 where 1 ≤ j1 ≤ 210. We

use Lemma 4.7 (i) with ϕ = 1 term by term to compute

min
z∈Ij,j1

44∑
i=1

min
αi∈Z

∣∣∣∣(αi + 1)44 log pi − log n44

z
− 1

∣∣∣∣
and take the minimum over the variable j1 to get the lower bound for $′(n′)

for log n′ in Ij. We record the result in Table 7.

j 1 2 3 4 5 6 7 8
$′ 0.1814 0.1812 0.1810 0.1808 0.1804 0.1802 0.1800 0.1798

j 9 10 11 12 13 14 15 16
$′ 0.1797 0.1797 0.1798 0.1800 0.1800 0.1800 0.1798 0.1797

j 17 18 19 20 21 22 23 24
$′ 0.1797 0.1798 0.1800 0.1800 0.1800 0.1798 0.1796 0.1792

j 25 26 27 28 29 30 31 32
$′ 0.1788 0.1784 0.1781 0.1779 0.1777 0.1775 0.1773 0.1771

j 33 34 35 36 37 38 39
$′ 0.1769 0.1765 0.1763 0.1761 0.1755 0.1751 0.1748

Table 7

Also, we verify that for each j ∈ {40, . . . , 118} we have $′(j) > w(j),

thereby implying that there exist no n′ with log n′ in Ij.

All of this gives rise to a new concept that will be crucial for the re-

maining of the proof. This is the difference between the upper and lower
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bounds for $′. Just saying that here the difference when j = 1, that is

0.2137 − 0.1814 = 0.0323, is too large for us. In fact, it will be convenient

to work with a slightly different concept. Consider the function defined on

primes p by

(9.2) εj(p) := min
z∈Ij

min
α∈Z

∣∣∣∣(α + 1)44 log p− log n44

z
− 1

∣∣∣∣ .
The value of εj(p) is computed by using Lemma 4.7 (i). For each j ∈
{1, . . . , 39} we sum the εj(pi) for i ∈ {1, . . . , 44} and subtract the answer

from the upper bound w(j). We call these value δ′(= δ′(j)) and record them

in Table 8.
j 1 2 3 4 5 6 7
δ′ 0.03422 0.03353 0.03283 0.03203 0.03142 0.03083 0.03005

j 8 9 10 11 12 13 14
δ′ 0.02936 0.02848 0.02753 0.02638 0.02536 0.02436 0.02340

j 15 16 17 18 19 20 21
δ′ 0.02253 0.02178 0.02075 0.01958 0.01846 0.01748 0.01650

j 22 23 24 25 26 27 28
δ′ 0.01561 0.01481 0.01398 0.01340 0.01279 0.01216 0.01133

j 29 30 31 32 33 34 35
δ′ 0.01053 0.00964 0.00874 0.00795 0.00705 0.00618 0.00547

j 36 37 38 39
δ′ 0.00458 0.00392 0.00331 0.00258

Table 8

The value δ′ is to be interpreted as an upper bound to the extra error that

can produce n′.

9.3. A first verification. We want to make some direct verifications to

prove that λ(n′) ≥ 1 is impossible if the exponent vector of n′ is of a certain

type. Consider the sets

(9.3)

Jδ(p, j) :=
{⌈

(1−δ)(10639.8+j)+logn44

44 log p

⌉
− 1, . . . ,

⌊
(1+δ)(10640.8+j)+logn44

44 log p

⌋
− 1
}
.

The set Jδ(p, j) has the property that if∣∣∣∣(α + 1)44 log p− log n44

log n
− 1

∣∣∣∣ ≤ δ with log n ∈ Ij

then α ∈ Jδ(p, j).
We divide the verifications into two distinct types. Type 1 concerns the

sets

Sj(δ) := Jδ(p1, j)× · · · × Jδ(p44, j).
We take δ = 0.011 for j ∈ {1, . . . , 4} and δ = 0.01 for j ∈ {5, . . . , 14}. Also,

to speed up the process, we consider the union term-by-term of S1(0.011),
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. . . , S4(0.011) to get a new set S1 say, so that S1 = J0.011(2, 1) ∪ · · · ∪
J0.011(2, 4) × . . . We do the same with S5(0.01), . . . , S14(0.01) to get S2.
These sets have respectively 92160 and 53760 elements. For each vector

v = (α1, . . . , α44) in each of these two sets, we take one of the 946 possible

choices of two elements in a set of 44 elements, say (i1, i2), and construct

the new set

{α1}×···×{αi1−1}×Jεj(pi1 )+δ′(j)(pi1 ,j)×{αi1+1}×···×{αi2−1}×Jεj(pi2 )+δ′(j)(pi2 ,j)×{αi2+1}×···×{α44}.

We verify that all these exponent vectors v give rise to an integer n such

that λ(n) < 1, log n < 10640.8 or is itself n∗.

Type 2 concerns the sets

S ′j(δ) := Jεj(p1)+δ(p1, j)× · · · × Jεj(p44)+δ(p44, j).

This time, we take δ = 0.0055 for j ∈ {1, . . . , 6}, δ = 0.0054 for j ∈
{7, . . . , 9} and j ∈ {10, . . . , 13}, δ = 0.005 and j ∈ {14, . . . , 19}, δ = 0.0044

for j ∈ {20, . . . , 23}, δ = 0.004 for j ∈ {24, 25, 26}, δ = 0.0035 for j ∈
{27, 28, 29} and δ = 0.003 for j ∈ {30, . . . , 39}. Again, to speed up the

process, we consider the unions term-by-term the same way, so that we

have S ′1 = Jε1(2)+0.0055(2, 1) ∪ · · · ∪ Jε6(2)+0.0055(2, 6) × . . . and the same for

S ′2, . . . ,S ′8. These sets have respectively 98304, 73728, 49152, 49152, 32768,

32768, 32768 and 24576 elements. For each vector v, we do the exact same

process as for the type 1.

At the end of these verifications, we know that there are at least three

entries in the exponent vector that produce a large error and this occurs in

both type 1 and 2.

9.4. Reducing the upper bound for δ′. Our strategy begins with a lower

bound for $′1 and $′2. For each j, there are four cases to consider depending

on the position of the xi (4.1) compared to µ (4.2). Indeed, we have seen

in the previous section, with the type 1 verification, that there are at least

three xi that are far from µ but this does not tell us where they are. So any

lower bound for $′1 and $′2 will come in pair ($′1, $
′
2) with the total number

m of xi that are less than or equal to µ and with a position signature s in

{0, 1, 2, 3} that tells us that the number of xi that are less than µ in these

three we assume to have. This number m can be shown to take the values

we recorded in Table 9.

j ∈ {1,. . . ,6} {7} {8,. . . ,12} {13} {14}
m ∈ {11,. . . ,33} {12,. . . ,33} {12,. . . ,32} {13,. . . ,32} {13,. . . ,31}

Table 9
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To do so, we use Table 7 and verify that zm,$′(j) < 10639.8 + j (see section

9.2) for all the values of m not listed in Table 9.

Also, the definition of $′1 and $′2 in (4.3) and (4.4) includes the ex-

act value of $′, something that we cannot know precisely. So we assume

an interval containing the value of $′, and look for a contradiction. More

precisely, we will assume, for j ∈ {1, . . . , 14}, that $′ belongs to W (j) :=

[w(j)− 0.01, w(j)].

To get these lower bounds, we fix j, m and a signature s. Then, we split

the interval Ij in 30 subintervals Ij,r1 (r1 = 1, . . . , 30) of equal length and

we split the interval W (j) in 80 subintervals W (j, r2) (r2 = 1, . . . , 80) of

equal length.

We fix Ij,r1 and W (j, r2) and begin with $′1. At first, we focus on the s

points xi that are less than µ. We will show that in this case the minimum

of

(9.4)

∣∣∣∣(α + 1)44 log p− log n44

x
− 1 +

$′

2m

∣∣∣∣
is attained with α :=

⌈
(1−δ)(10639.8+j)+logn44

44 log p

⌉
−2 and, as in Lemma 4.7 (ii), at

the extremity of the intervals Ij,r1 and W (j, r2). In fact, from the definition

of Jδ, it is enough to show that (α+1)44 log p−logn44

x
− 1 + $′

2m
< 0 and this

follows from

(α+1)44 log p−logn44
x

−1+$′
2m

=

(⌈
(1−δ)(10639.8+j)+logn44

44 log p

⌉
−1

)
44 log p−logn44

x
−1+$′

2m

=

(
(1−δ)(10639.8+j)+logn44

44 log p
+ξ−1

)
44 log p−logn44

x
−1+$′

2m

=
(1−δ)(10639.8+j)

x
− (1−ξ)44 log p

x
−1+$′

2m

≤ −δ+$′
2m

<0

since 2mδ ≥ 0.22 > $′ from our choices, where 0 ≤ ξ < 1 and both $′ and

x are seen as fixed. We keep the s smallest such values among the 44 prime

numbers.

Then, we compute the minimum value of (9.4), without any constraint

on α, using Lemma 4.7 (i). We keep the m− s smallest ones among the 44

prime numbers. We sum the m values we have kept so far and we take the

minimum among the 30 ·80 = 2400 possible values of (r1, r2) and this is the

wanted lower bound for $′1 in I(j) with this value of m and s. We do the

same for $′2 with 3 − s values of xi greater than µ along with the choice

α :=
⌊
(1+δ)(10640.8+j)+logn44

44 log p

⌋
instead and the function

(9.5)

∣∣∣∣(α + 1)44 log p− log n44

x
− 1− $′

2(44−m)

∣∣∣∣
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as in the definition of $′2 in (4.4). The proof is similar. We obtain the value

for $′2 in Ij with parameters 3 − s and 44 −m instead. We keep the pair

($′1, $
′
2)(= ($′1(j,m, s), $

′
2(j,m, s))). For example, here is the output we

get as lower bound with j = 1 and m = 11:

(0.010296421544, 0.093154520284), (0.010296421544, 0.089438737225),

(0.011179764497, 0.087104430865), (0.012637967643, 0.085223479629)

for ($′1, $
′
2) when s = 0, 1, 2, 3 respectively. Note that these values are just

stated as an example, they are sensitive to the way the program is done.

Now, using the same reasoning as we did to get to (9.1), we are led to

consider

υm,m1,m2 (z,w,w1,w2) := β(n44)
1
44 log 44

(
1+

logn44
z
− w

2m
− w1

2m1

)m1
44

·
(
1+

logn44
z
− w

2m
+

w1
2(m−m1)

)m−m1
44

·
(
1+

logn44
z

+ w
2(44−m)

− w2
2m2

)m2
44

·
(
1+

logn44
z

+ w
2(44−m)

+
w2

2(44−m−m2)

)1−m+m2
44

− 44 log 44
z

(9.6)

for fixed values of m1 ∈ {1, . . . ,m− 1} and m2 ∈ {1, . . . , 43−m}. We also

define zj,m,m1,m2,s implicitly by

υj,m,m1,m2,s(zj,m,m1,m2,s, w(j)− 0.01, $′1(j,m, s), $
′
2(j,m, s)) = 1.

and verify that

max
m

max
s∈{0,...,3}

max
m1∈{1,...,m−1}

max
m2∈{1,...,43−m}

zj,m,m1,m2,s < 10639.8 + j,

where the maximum is taken over the values of m appearing in Table 9. We

justify that zj,m,m1,m2,s is the appropriate choice by using Lemma 4.6 part

(i), (ii) and (iv) (there is a condition to verify in part (ii)). We find that

υm,m1,m2 would be smaller with larger values of the variables. This is the

contradiction we were looking for. So we have in fact that $′ /∈ W (j) and

a new upper bound for δ′ recorded in Table 10.

j 1 2 3 4 5 6 7
δ′ 0.02422 0.02353 0.02283 0.02203 0.02142 0.02083 0.02005

j 8 9 10 11 12 13 14
δ′ 0.01936 0.01848 0.01753 0.01638 0.01536 0.01436 0.01340

Table 10
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9.5. The last verification. Our strategy of verification begins with a pre-

liminary computation. We use the type 2 computations that we did previ-

ously to prove that at least three points xi defined in (4.1) are far from µ

defined in (4.2). We first want to show that, among the 13244 possibilities

of triplets of primes, at most a few hundreds can produce these three values

of xi.

To do so, we fix j and split the interval Ij into 25 subintervals Ij,r of

equal length. We also fix a triplet (q1, q2, q3). Now, the type 2 computations

reveal that the exponent of a prime p ∈ {q1, q2, q3} that divide exactly n′ is

not in Jδ+εj(p)(p, j) where δ = δ(j) can be found in section 9.3. We are thus

in the exact situation of Lemma 4.7 (ii). So that we compute and sum the

three minimal errors, we take the minimum over r = 1, . . . , 25 and call this

minimum ζ(= ζ(q1, q2, q3)). If

ζ − εj(q1)− εj(q2)− εj(q3) > δ′(j)

then the triplet (q1, q2, q3) is rejected. Otherwise, we keep

(q1, q2, q3, ζ(q1, q2, q3)− εj(q1)− εj(q2)− εj(q3))

to the last verification in a set T (j), say. The value of δ′ is picked from in

Table 10 if j ≤ 14 and from Table 8 if 15 ≤ j ≤ 39.

Now, for the very last verification, after all the T (j) have been computed,

we use a new idea. We assume that j is fixed. For a prime p in a fixed vector

(q1, q2, q3, ρ) ∈ T (j), we observe that it is enough to check the integers n

with the exponent in Jδ′(j)+εj(p)(p, j). Then, for the remaining 41 primes p,

it is enough to verify with the exponent in the set

Jδ′(j)/2−ρ/2+εj(p)(p, j)

for all but one prime p for which it can be in Jδ′(j)−ρ+εj(p)(p, j).

With these observations in mind, we design an algorithm. We compute

the largest fourth component in any of the vectors in T (j) and call it t.

Then we consider only the vectors such that the fourth component is in

[t−u/1000, t− (u− 1)/1000] for a fixed u ∈ {1, . . . , 7}, which we denote by

Tu(j). With u fixed, we store in memory all the vectors in

Jδ′(j)/2−(t−u/1000)/2+εj(2)(2, j)× · · · × Jδ′(j)/2−(t−u/1000)/2+εj(193)(193, j)

to which we add two dimensions: one of which is the value of τ(n)1/44 of

the integer n with this exponent vector whereas the other is its logarithm.

Then, for all such vectors, only four exponents have to be modified at each

verification and thus the last two informations need only a small adjustment

to be used to compute the value of λ in each case. So, for each vector of
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46 dimensions, for each exponent in Jδ′(j)+εj(p)(p, j) of each prime p in each

triplet (in a vector) in Tu(j) and for each exponent in Jδ′(j)−ρ+εj(p)(p, j) of

each other 41 prime p we compute the corresponding value of λ. We try

each value of u and then all the values of j.

After all these verifications, no value of n′ has been found. This is the

contradiction we were searching for and thus n∗ is the largest number n

such that λ(n) > 1 and ω(n) ≥ 44. The proof is complete.

10. Final remarks

One can show that∑
n≤x

∣∣∣∣λ(n)− log log x log log log x

log x

∣∣∣∣2 � x log log x(log log log x)2

log2 x
,

from which we may conclude that for almost all n ≤ x,

λ(n) = (1 + o(1))
log log x log log log x

log x
(x→∞).

On the other hand, we can show that there are infinitely many n for which

λ(n) > 1. Indeed, to any set S of primes satisfying∏
p∈S

log k

log p
> 1 and #S = k,

we can associate a sequence of integers l1, l2, . . . such that their exponent

at each prime factor, and then the associated θi as defined in Corollary

4.5, is as close as possible to the optimal value as defined in Lemma 4.4.

Precisely, for each p ∈ S, we can choose lj to be an integer for which the

exponent of p, αp, is the closest integer to
log zj
k log p

for a fixed large zj. One

verifies that

λ(lj)→
(∏
p∈S

log k

log p

)1/k

(zj →∞).

Finally, we can also show that the set of limit points of λ(n) is the interval

[0, β(6)1/6 log 6] = [0, 1.145206 . . . ] and that there exists a positive constant

η such that

#{n ≤ x| λ(n) ≥ 1} = η log43 x+O(log42 x) (x→∞).

Moreover, we have

sup
ω(n)=k

λ(n) = 1− log log k − 1

log k
+

(log log k)2 − 3 log log k

log2 k
+O

(
1

log2 k

)
(k →∞).
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1987, éditeurs G. E. Andrews, R. A. Askey, B. C. Berndt, K. G. Ramanathan,

R. A. Rankin.

[6] J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs

de n, Canad. Math. Bull. Vol. 26 (1983), no. 4, 485–492.

[7] J.-P. Massias and G. Robin, Bornes effectives pour certaines fonctions concernant
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[11] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres,
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