Further generalisations of a classical theorem of Daboussi

Jean-Marie De Koninck
Department of mathematics
Université Laval
Québec
Québec G1V 0A6, Canada
E-mail: jmdk@mat.ulaval.ca
Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
E-mail: katai@inf.elte.hu

Dedicated to the memory of Professor Hedi Daboussi

Abstract

According to a well known theorem of Hédi Daboussi, if \mathcal{M}_{1} stands for the set of those complex valued multiplicative functions f such $|f(n)| \leq 1$ for all positive integers n and if α is an arbitrary irrational number, then $$
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{M}_{1}}\left|\frac{1}{x} \sum_{n \leq x} f(n) \exp \{2 \pi i \alpha n\}\right|=0 .
$$

Given an infinite set A of positive integers, let $A(x)$ stand for its counting function, and let α be an arbitrary irrational number. We examine various sets A along with an appropriate weight function $w(n)$ for which one can prove that $\lim _{x \rightarrow \infty} \frac{1}{A(x)} \sum_{\substack{n \leq x \\ n \in A}} w(n) \exp \{2 \pi i \alpha n\}=0$.

1 Introduction

Let \mathcal{M} stand for the set of complex valued multiplicative functions and let \mathcal{M}_{1} be the subset of those functions $f \in \mathcal{M}$ for which $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. Further set $U:=\{z \in \mathbb{C}:|z| \leq 1\}$. For short, we will write $e(y)$ for $e^{2 \pi i y}$. Finally, let \wp represent the set of all primes.

Decades ago, Daboussi [5], [6] proved that if α is an arbitrary irrational number, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{M}_{1}}\left|\frac{1}{x} \sum_{n \leq x} f(n) e(n \alpha)\right|=0 \tag{1.1}
\end{equation*}
$$

Later, in 1990, Daboussi [4] proved the following result.
Theorem A. (DABoussi) Let f be a completely multiplicative function and assume that there exists a real number $\lambda \in(0,2)$ such that $|f(p)|=\lambda$ for all $p \in \wp$. Then, given any irrational number α,

$$
\left|\sum_{n \leq x} f(n) e(n \alpha)\right|=o\left(\sum_{n \leq x}|f(n)|\right) \quad(x \rightarrow \infty)
$$

Then, in 1995, Goubin [10] proved the following.
Theorem B. (Goubin) Let f be a multiplicative function and assume that there exists a real number $\lambda>0$ such that $|f(p)| \leq \lambda$ for all $p \in \wp$. Assume also that $\sum_{p} \sum_{\nu=2}^{\infty} \frac{\left|f\left(p^{\nu}\right)\right|}{p^{\nu}}\left(\log p^{\nu}\right)^{\max (1-\lambda, 0)}<\infty$. Then, given any irrational number α,

$$
\sum_{n \leq x} f(n) e(n \alpha)=o\left(x(\log x)^{\lambda-1}\right) \quad(x \rightarrow \infty)
$$

On the other hand, in 1986, the second author [15] gave a proof of (1.1) using the Turán-Kubilius inequality. More precisely, he proved the following.
Theorem C. (KÁTAI) Let $\wp_{1} \subset \wp$ be a set of primes satisfying $\sum_{p \in \wp_{1}} \frac{1}{p}=\infty$. Let \mathcal{B} be the set of those functions $f: \mathbb{N} \rightarrow U$ for which $f(p m)=f(p) f(m)$ whenever $p \in \wp_{1}$ and $(p, m)=1$. Moreover, let $a: \mathbb{N} \rightarrow U$ be a function for which

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} a\left(p_{1} n\right) \overline{a\left(p_{2} n\right)}=0 \tag{1.2}
\end{equation*}
$$

for every distinct primes $p_{1}, p_{2} \in \wp_{1}$. Then,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{B}}\left|\frac{1}{x} \sum_{n \leq x} f(n) a(n)\right|=0 \tag{1.3}
\end{equation*}
$$

Several generalisations of Daboussi's theorem are now part of the mathematical literature. See for instance Bassily, De Koninck and Kátai [1], Bassily and Kátai [2], De Koninck and Kátai [7], [8], [9], Indlekofer and Kátai [11], [12], [13], [14], Kátai [15], [16], [17], [18], [19], [20].

Remark 1.1. It is interesting to observe that in order to obtain (1.1) and (1.3), the multiplicative character of f was only "partially" used.

Some applications of Theorem C are given in [1] and [2].
Let us now consider a set of primes \wp_{1} for which there exists a real number $\tau \in(0,1]$ such that

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ p \in \wp_{1}}} \log p=\tau x+O\left(\frac{x}{\log ^{2} x}\right) \tag{1.4}
\end{equation*}
$$

and let $\mathcal{N}\left(\wp_{1}\right)$ denote the semigroup generated by \wp_{1}. Also, let $N_{1}(x):=$ $\#\left\{n \leq x: n \in \mathcal{N}\left(\wp_{1}\right)\right\}$. The Turán-Kubilius inequality remains true for the set $\mathcal{N}\left(\wp_{1}\right)$ as well. Indeed, let \wp_{1}^{*} be any subset of \wp_{1} for which $\sum_{p \in \wp_{1}^{*}} 1 / p=$ ∞ and set

$$
A_{x}:=\sum_{\substack{p \leq \log x \\ p \in \wp_{1}^{1}}} \frac{1}{p} \quad \text { and } \quad \omega_{x}(n):=\sum_{\substack{p \mid n \\ p \leq \log x, p \in \rho_{1}^{*}}} 1 .
$$

Then, it is easy to show that there exists a positive constant C such that

$$
\frac{1}{N_{1}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}\left(\rho_{1}\right)}}\left(\omega_{x}(n)-A_{x}\right)^{2} \leq C A_{x}
$$

On the other hand, one can deduce the following analogue of Theorem C.
Theorem D. Let \wp_{1} and \wp_{1}^{*} be as above and let \mathcal{B} be the set of those functions $f: \mathcal{N}\left(\wp_{1}\right) \rightarrow U$ for which $f(p m)=f(p) f(m)$ whenever $p \in \wp_{1}^{*}$ and $(p, m)=1$. Moreover, let $a: \mathcal{N}\left(\wp_{1}\right) \rightarrow U$ be a function satisfying

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N_{1}(x)} \sum_{\substack{m \leq x \\ m \in \mathcal{N}\left(\wp_{1}\right)}} a\left(p_{1} m\right) \overline{a\left(p_{2} m\right)}=0 \tag{1.5}
\end{equation*}
$$

for every distinct primes $p_{1}, p_{2} \in \wp_{1}^{*}$. Then,

$$
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{B}}\left|\frac{1}{N_{1}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}\left(\rho_{1}\right)}} f(n) a(n)\right|=0 .
$$

Remark 1.2. It is well known that the function $a(n):=e(\alpha n)$ satisfies (1.2) for every irrational number α. On the other hand, (1.2) holds as well when $a(n)=e(P(n))$, where $P(n)=a_{0}+a_{1} n+\cdots+a_{k} n^{k}$ and at least one of the coefficients a_{1}, \ldots, a_{k} is an irrational number. In fact, there are many other functions for which (1.2) holds.

Remark 1.3. It is not known whether the function $a(n):=e(\alpha n)$ satisfies (1.5) for every irrational number α. We will however formulate the following conjecture.

Conjecture. Let \wp_{1} be a set of primes satisfying (1.4) and let $\mathcal{N}\left(\wp_{1}\right)$ be the semigroup generated by \wp_{1}. Then, given any irrational number α,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N_{1}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}\left(\rho_{1}\right)}} e(\alpha n)=0 . \tag{1.6}
\end{equation*}
$$

Observe that (1.6) does hold for almost all irrational numbers α and in fact it is known that, for any given $\varepsilon>0$,

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{N}\left(\left(\rho_{1}\right)\right.}} e(\alpha n)=O\left(x^{\frac{1}{2}+\varepsilon}\right) .
$$

This can be deduced from a 1966 theorem of Carleson [3] and a 2002 result of Murty and Sankaranarayanan [21].

In any event, we are unable to prove the above conjecture even in the case $\wp_{1}=\{p \in \wp: p \equiv 1(\bmod 4)\}$. However, we can manage by inserting a "weight" function inside the sum appearing in (1.6). For instance, we can proceed in the following manner. Let $\wp_{3}=\{p \in \wp: p \equiv 3(\bmod 4)\}$. It is clear that if $m=A^{2}+4 B^{2}$, where $(A, 2)=1$ and $\left((A, B), \mathcal{N}\left(\wp_{3}\right)\right)=1$, then $m \in \mathcal{N}\left(\wp_{1}\right)$. Then, consider the two functions

$$
r(n):=\#\left\{n=A^{2}+4 B^{2}:(A, 2)=1,(A, B) \in \mathcal{N}\left(\wp_{1}\right)\right\}
$$

and

$$
\kappa(n):=\left\{\begin{array}{lll}
1 & \text { if } & n=A^{2} \text { with } A \in \mathcal{N}\left(\wp_{1}\right) \\
0 & & \text { otherwise } .
\end{array}\right.
$$

Then, let $r_{0}(n)=r(n)+\kappa(n)$. Observe that $r_{0}(n)>0$ if and only if $n \in$ $\mathcal{N}\left(\wp_{1}\right)$ and moreover that $r_{0}(n) \leq \tau(n)$, where $\tau(n)$ stands for the number of positive divisors of n. Finally, observe that it is clear that if $n \notin \mathcal{N}\left(\wp_{1}\right)$, then $r_{0}(n)=0$. We can then prove the following.

Lemma 1.4. For every irrational number α, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} r_{0}(n) e(\alpha n)=0
$$

Proof. Since $\sum_{n \leq x} \kappa(n) e(\alpha n)=O(\sqrt{x})$, it is sufficient to show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} r(n) e(\alpha n)=0 \tag{1.7}
\end{equation*}
$$

To do so, first observe that

$$
\begin{aligned}
S(x \mid \alpha) & :=\sum_{\substack{A^{2}+4 B^{2} \leq x \\
\left(A, B \in \mathcal{N}\left(\beta_{1}\right) \\
(A, 2)=1\right.}} e\left(\alpha\left(A^{2}+4 B^{2}\right)\right) \\
& =\sum_{\substack{\delta \in \mathcal{N}\left(\wp_{3}\right)}} \mu(\delta) \sum_{\substack{A_{1}^{2}+4 B_{1}^{2} \leq x / \delta^{2} \\
\left(A_{1}, 2\right)=1}} e\left(\alpha \delta^{2}\left(A_{1}^{2}+4 B_{1}^{2}\right)\right)
\end{aligned}
$$

In light of the above representation, it is clear that in order to prove (1.7), it is sufficient to show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{U^{2}+4 V^{2} \leq x \\(U, 2)=1}} e\left(\alpha\left(U^{2}+4 V^{2}\right)\right)=0 .
$$

But it is clear that, for every irrational number γ,

$$
\begin{align*}
R(x \mid \gamma):= & \sum_{\substack{U^{2}+4 V^{2} \leq x \\
(U, 2)=1}} e\left(\gamma\left(U^{2}+4 V^{2}\right)\right) \\
= & \sum_{\substack{U \leq \sqrt{x / 2} \\
(U, 2)=1}} e\left(\gamma\left(U^{2}+4 V^{2}\right)\right) \\
& +\sum_{2 V \leq\left(x-U^{2}\right) / 4} \sum_{\substack{2 V \leq \sqrt{x / 2}}} e\left(\gamma\left(U^{2}+4 V^{2}\right)\right) \\
& \quad-\sum_{4 V^{2} \leq x / 2} e\left(4 V^{2} \gamma\right) \sum_{\substack{U^{2} \leq x / 2 \\
(U, 2)=1}} e\left(U^{2} \gamma\right) \\
= & o(x) \quad(x \rightarrow \infty) . \tag{1.8}
\end{align*}
$$

Observe that the functions $S(x \mid \alpha)$ and $R(x \mid \gamma)$ are connected through the relation

$$
S(x \mid \alpha)=\sum_{\delta \in \mathcal{N}\left(\wp_{3}\right)} \mu(\delta) R\left(\left.\frac{x}{\delta^{2}} \right\rvert\, \alpha \delta^{2}\right) .
$$

Therefore, given an arbitrarily large number (but fixed) H, we have

$$
\begin{aligned}
|S(x \mid \alpha)| & \leq\left|\sum_{\substack{\delta \in \mathcal{N}\left(\emptyset_{3}\right) \\
\delta \leq H}} \mu(\delta) R\left(\left.\frac{x}{\delta^{2}} \right\rvert\, \alpha \delta^{2}\right)\right|+\sum_{\substack{\delta \in \mathcal{N}\left(\wp_{3}\right) \\
\delta>H}}\left|R\left(\left.\frac{x}{\delta^{2}} \right\rvert\, \alpha \delta^{2}\right)\right| \\
& =o(H)+O\left(\sum_{\delta>H} \frac{x}{\delta^{2}}\right) \\
& =o(H)+O(x / H),
\end{aligned}
$$

where we used (1.8) to bound the first of the two sums. Thus, there exists an absolute constant $c>0$ such that

$$
\limsup _{x \rightarrow \infty} \frac{S(x \mid \alpha)}{x} \leq \frac{c}{H}
$$

so that

$$
\lim _{x \rightarrow \infty} \frac{S(x \mid \alpha)}{x}=0
$$

thereby completing the proof of Lemma 1.4.

Lemma 1.5. Assume that m is not a perfect square, and let p be a prime such that $(m, p)=1$ and $m p \in \mathcal{N}\left(\wp_{1}\right)$. Then, $r(p m)=2 r(m)$.

Proof. Let $p=a^{2}+4 b^{2}$ and $m=U^{2}+4 V^{2}$. then,

$$
\begin{aligned}
m p & =(a U+4 b V)^{2}+4(a V+2 b U)^{2} \\
& =(a U-4 b V)^{2}+4(a V+2 b U)^{2}
\end{aligned}
$$

Since p is a prime, we have that $b \neq 0$. If $V \neq 0$, then $(a U+4 b V \mid \neq$ $|a U-4 b V|$, and therefore,

$$
U_{1}=|a U+4 b V|, \quad U_{2}=|a U-4 b V|, \quad K=|a V+2 b U|
$$

allow for the two different representations $m p=U_{1}^{2}+4 K^{2}$ and $m p=$ $U_{2}^{2}+4 K^{2}$, thus completing the proof of Lemma 1.5.

2 Main results

Theorem 2.1. Let $\beta(n)$ stand for the sum of the binary digits of n. Let also α be an irrational number. Fix two positive integers $p<q$ and consider the function $s(n):=\beta(p n)-\beta(q n)$. Then,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e(\alpha s(n))=0 \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let $\wp_{1}=\{p \in \wp: p \equiv 1(\bmod 4)\}$ and choose a set of primes $\wp^{*} \subseteq \wp_{1}$ such that $\sum_{p \in \wp^{*}} 1 / p=\infty$. Consider the set \mathcal{D} of those functions $f: \mathcal{N}\left(\wp_{1}\right) \rightarrow U$ such that $f(p m)=f(p) f(m)$ for all $p \in \wp^{*}$ and $m \in \mathcal{N}\left(\wp_{1}\right)$ satisfying $(m, p)=1$. Then,

$$
\lim _{x \rightarrow \infty} \sup _{f \in \mathcal{D}}\left|\frac{1}{x} \sum_{\substack{n \leq x \\ n \in \mathcal{N}\left(\rho_{1}\right)}} f(n) r(n) e(n \alpha)\right|=0
$$

3 Proof of Theorem 2.1

Let k be the smallest positive integer such that $p<q<2^{k}$. Let $A=\{0,1\}$ and, for each $r \in \mathbb{N}$, we introduce the set of words of length r

$$
A^{r}=\left\{\epsilon_{1} \ldots \epsilon_{r}: \epsilon_{\nu} \in A, \nu=1, \ldots, r\right\} .
$$

At times, to indicate that a word γ is of length r, we will write $\lambda(\gamma)=r$.
Further define $q_{1}:=\frac{2^{q-1}-1}{q}$. Since $s(0)=0$ and

$$
s\left(q_{1}\right)=\beta\left(p q_{1}\right)-\beta\left(q q_{1}\right)=\beta\left(p q_{1}\right)-\beta\left(2^{q-1}-1\right)=\beta\left(p q_{1}\right)-(q-1)<0
$$

it follows that

$$
\frac{1}{2^{q-1}}\left|\sum_{m=0}^{2^{q-1}-1} e(\alpha s(m))\right|=1-\Delta \quad \text { for some } \Delta>0
$$

Let \mathcal{B}_{q} be the set of words of length $2 k+q-1=: K$

$$
0^{k} \gamma 0^{k}=\underbrace{0 \ldots 0}_{k \text { times }} \gamma \underbrace{0 \ldots 0}_{k \text { times }},
$$

where γ runs over the elements of A^{q-1}.
Assume that x is large and let N be the unique integer satisfying $2^{N-1} \leq$ $x<2^{N}$. Given an arbitrarily small number $\varepsilon>0$, any positive integer $n<2^{N}$ can be written as $n=\sum_{\nu=0}^{N-1} \epsilon_{\nu}(n) 2^{\nu}$, where each $\epsilon_{\nu}(n) \in A$. Further
let $\eta(n)=\epsilon_{0}(n) \ldots \epsilon_{N-1}(n)$, and for any given word $\gamma=\delta_{0} \delta_{1} \ldots \delta_{h-1} \in A^{h}$, let

$$
E(\gamma)=\delta_{0}+\delta_{1} \cdot 2+\cdots+\delta_{h-1} \cdot 2^{h-1}
$$

Furthermore, let $R_{1}=R_{1}(n)$ be the smallest index for which

$$
\epsilon_{R_{1}}(n) \ldots \epsilon_{R_{1}+K-1}(n) \in \mathcal{B}_{q} .
$$

Then, let $R_{2}=R_{2}(n)$ be the smallest index such that $R_{2}(n) \geq R_{1}(n)+K$ and

$$
\epsilon_{R_{2}}(n) \ldots \epsilon_{R_{2}+K-1}(n) \in \mathcal{B}_{q}
$$

and so on. In the end, let $R_{1}(n), \ldots, R_{\nu(n)}$ be the entire sequence of these indexes.

By a simple probabilistic argument, we obtain that for every fixed $T>0$,

$$
\frac{1}{2^{N}} \#\left\{n<2^{N}: \nu(n)<T\right\} \rightarrow 0 \quad(N \rightarrow \infty)
$$

and that for some fixed T there exists a bound B such that for every integer $N>N_{0}(\varepsilon)$,

$$
\frac{1}{2^{N}} \#\left\{n<2^{N}: R_{T}(n)>B\right\}<\frac{\varepsilon}{2}
$$

Assume that T is large enough so that both the conditions $(1-\Delta)^{T} \leq \varepsilon$ and $N>N_{0}(\varepsilon)$ are satisfied. Now, consider only those integers $n \leq x$ for which $\nu(n) \geq T$ and $R_{T}(n)<B$. Clearly the numbers of such integers $n<2^{N}$ is less than $\varepsilon \cdot 2^{N}$. Writing $\eta(n)$ as

$$
\eta(n)=\theta_{1} \beta_{1} \theta_{2} \beta_{2} \ldots \theta_{T} \beta_{T} \nu
$$

it is clear that

$$
\begin{array}{r}
s(n)=s\left(L\left(\theta_{1}\right)\right)+s\left(L\left(\beta_{1}\right)\right)+s\left(L\left(\theta_{2}\right)\right)+s\left(L\left(\beta_{2}\right)\right) \\
+\cdots+s\left(L\left(\theta_{T}\right)\right)+s\left(L\left(\beta_{T}\right)\right)+s(L(\nu)) .
\end{array}
$$

Further let $E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)$ be the set of those integers n for which $\beta_{1}, \ldots, \beta_{T}$ run over \mathcal{B}_{q}. If we consider those integers $n<2^{N}$, then $\# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)=$ $2^{(q-1) T}$. On the other hand, if we consider only those $n \leq x$, there are only some special ν 's for which $0<\# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)<2^{(q-1) T}$. Let \mathcal{S} be that particular collection of those sets $E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)$ for which there exist such integers n_{1}, n_{2} with $n_{1} \leq x<n_{2}$ and $\eta\left(n_{1}\right), \eta\left(n_{2}\right) \in E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)$. Setting $M:=\lambda\left(\theta_{1} \beta_{1} \ldots \theta_{T} \beta_{T}\right)$, we may write that

$$
n_{1}=u_{1}+2^{M} v, \quad n_{2}=u_{2}+2^{M} v, \quad 0 \leq u_{1}<u_{2}<2^{M}
$$

Consequently, $2^{M} v \leq x<2^{M}(v+1)$, and therefore no more than one v (and so only one $\nu=\eta(v)$) with this property exists. Since $M \leq B+K$, the number of possible $E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \in \mathcal{S}$ is less than 2^{B+K}, and therefore

$$
\sum_{E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \in \mathcal{S}} \# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \leq 2^{(q-1) T+B+K}=C
$$

for some positive constant C.
On the other hand, if $E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \notin \mathcal{S}$, then

$$
\begin{align*}
\left|\sum_{n \in E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)} e(\alpha s(n))\right| & =\left|\sum_{m=0}^{2^{q-1}-1} e(\alpha s(m))\right|^{T} \\
& \leq(1-\Delta)^{T} \# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \leq \varepsilon \# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \tag{3.1}
\end{align*}
$$

We can now estimate the size of those positive integers $n \leq x$ for which either

$$
\nu(n)<T \quad \text { or } \quad R_{T}(n)>B \quad \text { or } \quad n \in E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \in \mathcal{S} .
$$

Indeed, the total number of such $n \leq x$ is bounded by $2 \varepsilon x$, provided x is sufficiently large.

We have thus established that

$$
\left|\sum_{n \leq x} e(\alpha s(n))\right| \leq\left|\sum_{\substack{n \in E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \tag{3.2}\\
\lambda\left(\begin{array}{l}
\left.1 \\
\lambda, \ldots, \theta_{T}\right) \leq B \\
\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right) \notin \mathcal{S}
\end{array}\right.}} e(\alpha s(n))\right|+2 \varepsilon x
$$

As a consequence of (3.1), the sum on the right hand side of (3.2) is bounded by $\varepsilon \sum \# E\left(\theta_{1}, \ldots, \theta_{T} ; \nu\right)$. Consequently,

$$
\limsup _{x \rightarrow \infty} \frac{1}{x}\left|\sum_{n \leq x} e(\alpha s(n))\right| \leq 3 \varepsilon
$$

Since ε can be chosen arbitrarily small, the proof of Theorem 2.1 is complete.

4 Proof of Theorem 2.2

Consider two sequences of real numbers $\left(U_{k}\right)_{k \geq 1}$ and $\left(V_{k}\right)_{k \geq 1}$ satisfying $\lim _{k \rightarrow \infty} U_{k}=\infty$ and $U_{k}<V_{k}$ for each $k \in \mathbb{N}$. Moreover, for each integer $k \geq 1$, consider the sum $A_{k}:=\sum_{\substack{p \in \wp_{1} \\ U_{k}<p<V_{k}}} \frac{1}{p}$ and assume that $\lim _{k \rightarrow \infty} A_{k}=\infty$.

Also, for each integer $k \geq 1$, set $\omega_{k}(n):=\sum_{\substack{p / n, p \in \mathscr{Y}_{1} \\ U_{k}<p<V_{k}}}$. We can prove that, for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{n \leq x} r(n)\left(\omega_{k}(n)-2 A_{k}\right)^{2} \leq C x A_{k} \quad\left(x \geq e^{V_{k}}\right) \tag{4.1}
\end{equation*}
$$

for some positive constant C.
Indeed, first observe that it is well known that there exists a constant $C>0$ such that

$$
\begin{equation*}
D(x):=\sum_{n \leq x} r(n)=C x+O\left(x^{\beta}\right) \tag{4.2}
\end{equation*}
$$

for some positive constant $\beta<1$.
Setting $\wp_{k}^{*}=\left\{p \in \wp^{*}: U_{k}<p<V_{k}\right\}$, we have

$$
\begin{aligned}
S_{1}(x) & :=\sum_{\substack{n \leq x}} r(n) \omega_{k}(n)=\sum_{\substack{p m \leq x \\
p \in \mathscr{Q}_{k}^{*}}} r(p m) \\
& =\sum_{\substack{p m \leq x \\
p \in \mathfrak{q}_{k}^{*} \\
(p, m)=1}} r(p m)+\sum_{\substack{p m \leq x \\
\alpha \leq \sum_{n} \\
p \in \mathscr{Q}_{k}^{*}}} r\left(p^{\alpha} m\right) \\
& =2 \sum_{p \in \wp_{1}^{2}}\left(D(x / p)+O\left(\frac{x}{p^{2}}\right)\right) \\
& =2 A_{k} C x+o(x),
\end{aligned}
$$

where we used (4.2). Similarly, we obtain that

$$
\begin{aligned}
S_{2}(x) & :=\sum_{n \leq x} r(n) \omega_{k}^{2}(n)=2 \sum_{\substack{p<q \\
p, q \in \mathscr{Y}_{k}}} r(p q m)+S_{1}(x) \\
& =4 A_{k}^{2} C x+O\left(x A_{k}\right) .
\end{aligned}
$$

Using the above estimates of $S_{1}(x)$ and $S_{2}(x)$, we have proved (4.1).
Now, by using this "Turán-Kubilius type inequality", we continue as in Kátai [15]. First we set

$$
\begin{aligned}
H(x) & :=\sum_{n \leq x} r(n) f(n) e(n \alpha) \\
H_{1}(x) & :=\sum_{n \leq x} r(n) f(n) \omega_{k}(n) e(n \alpha) .
\end{aligned}
$$

In light of (4.1) and (4.2), we have, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|H(x) A_{k}-H_{1}(x)\right| & \leq \sum_{n \leq x} r(n)\left|\omega_{k}(n)-A_{k}\right| \\
& \ll\left(\sum_{n \leq x} r(n)\right)\left(\sum_{n \leq x} r(n)\left|\omega_{k}(n)-A_{k}\right|^{2}\right)^{1 / 2} \\
& \ll x \sqrt{A_{k}} .
\end{aligned}
$$

Since, using Lemma 1.5, we have $r(p m)=r(p) r(m)=2 r(m)$, we may write that

$$
\begin{aligned}
H_{1}(x) & :=\sum_{\substack{p \in \wp_{k}^{*} \\
p m \leq x,(p, m)=1}} r(p) r(m) f(p) f(m) e(\alpha p m)+O\left(\sum_{\substack{p \in \wp_{0}^{*} \\
m p^{\alpha} \leq x, \alpha \geq 2}} r\left(p^{\alpha} m\right)\right) \\
& =H_{2}(x)+O(x),
\end{aligned}
$$

where

$$
H_{2}(x)=2 \sum_{m \leq x} r(m) f(m) \sum_{\substack{p \leq x / m \\ p \in \mathcal{P}_{k}^{\leq},(p, m)=1}} f(p) e(\alpha p m)
$$

Thus

$$
\begin{aligned}
\left|H_{2}(x)\right|^{2} \leq\{4 & \left.\sum_{m \leq x} r(m)\right\} \\
& \times\left\{\sum_{\substack{p_{1}, p_{2} \in \wp_{k}^{*} \\
p_{1} \neq p_{2}}} f\left(p_{1}\right) \overline{f\left(p_{2}\right)} \sum_{\substack{m \leq \min _{\begin{subarray}{c}{ \\
\left(m, p / p_{1}, x / p_{2}\right)} }} r(m) e\left(\alpha\left(p_{1}-p_{2}\right) m\right)} \\
{ }\end{subarray}} \quad+\sum_{p \in \wp_{k}^{*}} f^{2}(p) \sum_{m \leq x / p} r(m)\right\}
\end{aligned}
$$

We have therefore established, in light of Lemma 1.5, that

$$
\left|H_{2}(x)\right|^{2} \leq O(x) \cdot\left\{o(x)+O\left(x A_{k}\right)\right\}
$$

and consequently

$$
H_{2}(x)=O\left(x \sqrt{A_{k}}\right) \quad \text { and } \quad H_{1}(x)=O\left(x \sqrt{A_{k}}\right)
$$

from which we can conclude that

$$
\limsup _{x \rightarrow \infty} \frac{|H(x)|}{x} \leq \frac{C}{\sqrt{A_{k}}}
$$

Since we have assumed that $\lim _{k \rightarrow \infty} A_{k}=\infty$, the proof of Theorem 2.2 is complete.

Acknowledgements

The research of the first author was supported in part by a grant from NSERC.

References

[1] N. Bassily, J.M. De Koninck, and I. Kátai, On a theorem of Daboussi related to the set of Gaussian integers, Mathematica Pannonica 14 (2003), 267-272.
[2] N. Bassily and I. Kátai, On the theorem of H. Daboussi over the Gaussian integers, Ann. Univ. Sci. Budapest. Sect. Comput. 35 (2011), 2533.
[3] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
[4] H. Daboussi, On some exponential sums, Analytic number theory (Allerton Park, IL, 1989), 111-118, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
[5] H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris, Ser. A 278 (1974), 245-264.
[6] H. Daboussi and H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. 26 (1982), 245-264.
[7] J.M. De Koninck and I. Kátai, On the distribution modulo 1 of the values of $F(n)+\alpha \sigma(n)$, Publicationes Mathematicae Debrecen 66 (2005), 121-128.
[8] J.M. De Koninck and I. Kátai, On a theorem of Daboussi related to the set of Gaussian integers II, Mathematica Pannonica 21 (2010), 207213.
[9] J.M. De Koninck and I. Kátai, Exponential sums and arithmetic functions at polynomial values, Lithuanian Mathematical Journal, 52 (2012), 138-144.
[10] L. Goubin, Sommes d'exponentielles et principe de l'hyperbole, Acta Arith. 73 (1995), no. 4, 303-324.
[11] K.H. Indlekofer and I. Kátai, Exponential sums with multiplicative coefficients, Acta Math. Hungar. 54 (1989), 263--268.
[12] K.H. Indlekofer and I. Kátai, On a theorem of H. Daboussi, Publ. Math. Debrecen 57 (2000), 145--152.
[13] K.H. Indlekofer and I. Kátai, A note on a theorem of Daboussi, Acta Math. Hungar. 101 (2003), 211--216.
[14] K.H. Indlekofer and I. Kátai, Some remarks on trigonometric sums, Acta Math. Hungar. 118 (2008), 313--318.
[15] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hung. 47 (1986), 223-225.
[16] I. Kátai, Uniform distribution of sequences connected with arithmetical functions, Acta Math. Hungar. 51 (1988), 401--408.
[17] I. Kátai, A remark on trigonometric sums, Acta Math. Hungar. 112 (2006), 221--225.
[18] I. Kátai, On the sum of bounded multiplicative functions over some special subsets of integers, Unif. Distrib. Theory 3 (2008), 37--43.
[19] I. Kátai, On an analogue of Daboussi's theorem on some semigroups of integers generated by some subsets of the primes, Ann. Sci. Math. Québec 35 (2011), 75--83.
[20] I. Kátai, Happy birthday Feri, happy birthday Péter, Ann. Univ. Sci. Budapest. Sect. Comput. 43 (2014), 279-286.
[21] R. Murty and A. Sankaranarayanan, Averages of exponential twists of the Liouville function, Forum Math. 14 (2002), 273--291.

