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Abstract
According to a well known theorem of Hédi Daboussi, if My
stands for the set of those complex valued multiplicative functions
f such |f(n)| <1 for all positive integers n and if « is an arbitrary
irrational number, then

lim sup 1 Z f(n)exp{2mian}| = 0.

Tr—00 fe./\/ll €T <

Given an infinite set A of positive integers, let A(z) stand for its
counting function, and let « be an arbitrary irrational number. We ex-
amine various sets A along with an appropriate weight function w(n)

for which one can prove that mh_{rolo M ; w(n) exp{2mian} = 0.
neA
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1 Introduction

Let M stand for the set of complex valued multiplicative functions and let
M be the subset of those functions f € M for which |f(n)| < 1 for all
n € N. Further set U := {z € C : |z| < 1}. For short, we will write e(y) for
e?™ Finally, let  represent the set of all primes.

Decades ago, Daboussi |5], [6] proved that if « is an arbitrary irrational
number, then

(1.1) lim sup = 0.

T—>00 fEMl

L3 f(mgeno)

n<zx

Later, in 1990, Daboussi [4] proved the following result.

Theorem A. (DABOUSSI) Let f be a completely multiplicative function
and assume that there exists a real number A\ € (0,2) such that |f(p)| = A
for all p € p. Then, given any irrational number «,

—0 (Zuw) (2 = 00).

n<x

> f(n)e(na)

n<x

Then, in 1995, Goubin [10] proved the following.

Theorem B. (GOUBIN) Let f be a multiplicative function and assume that
there exists a real number X\ > 0 such that |f(p)| < A for all p € p. Assume

also that ZZ )] (log p*)"ex(1=20) < oo Then, given any irrational
pV

p v=2
number «,

Z f(n)e(na) = o (z(logz)*") (r — 00).

n<x

On the other hand, in 1986, the second author [15] gave a proof of (1.1)
using the Turan-Kubilius inequality. More precisely, he proved the following.

1
Theorem C. (KATAI) Let p; C p be a set of primes satisfying Z - = 0.
PEPL
Let B be the set of those functions f : N — U for which f(pm) = f(p)f(m)
whenever p € @, and (p,m) = 1. Moreover, let a : N — U be a function for

which

(1.2) lim = 3" a(prn)a(pan) = 0

rT—o0 U
n<x
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for every distinct primes py,ps € @1. Then,

3" f(ma(n)

n<x

(1.3) lim sup

T—>r00 fEB

Several generalisations of Daboussi’s theorem are now part of the mathe-
matical literature. See for instance Bassily, De Koninck and Kéatai [1]|, Bass-
ily and Katai [2], De Koninck and Katai [7], [8], 9], Indlekofer and Katai
[11], [12], [13], [14], Katai [15], [16], [17], [18], [19], [20].

Remark 1.1. It is interesting to observe that in order to obtain (1.1) and

(1.3), the multiplicative character of f was only “partially” used.
Some applications of Theorem C are given in [1] and [2].

Let us now consider a set of primes g; for which there exists a real
number 7 € (0, 1] such that

(1.4) Zlogp27x+0( ’ )

2
= log” x
PEPL

and let N (p;) denote the semigroup generated by ;. Also, let Ny(x) :=
#{n <z :n € N(p1)}. The Turan-Kubilius inequality remains true for the
set V(1) as well. Indeed, let i be any subset of g, for which Zpep{ 1/p=
oo and set

A, = Z }9 and we(n) == Z L.

p<logx pln
pEPT p<logz, pEp]

Then, it is easy to show that there exists a positive constant C' such that

D (waln) — A)* < CA,.

n<x

neN (p1)

Ni(z)

On the other hand, one can deduce the following analogue of Theorem C.

Theorem D. Let p; and pj be as above and let B be the set of those
functions f : N(p1) — U for which f(pm) = f(p)f(m) whenever p € p}
and (p,m) = 1. Moreover, let a : N'(p1) — U be a function satisfying

1
(1.5) lim

e—00 Ny () Z a(pim)a(pam) = 0

m<ax

meN (p1)
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for every distinct primes py,py € pj. Then,

1
lim su n)a(n)| = 0.
Jimsup | s 3 Sogato
neN(p1)
Remark 1.2. It is well known that the function a(n) := e(an) satisfies

(1.2) for every irrational number a. On the other hand, (1.2) holds as well
when a(n) = e(P(n)), where P(n) = ag+ ain + - - - + ain® and at least one
of the coefficients aq, . .., a; is an irrational number. In fact, there are many
other functions for which (1.2) holds.

Remark 1.3. It is not known whether the function a(n) := e(an) satisfies
(1.5) for every irrational number . We will however formulate the following

conjecture.

Conjecture. Let p; be a set of primes satisfying (1.4) and let N'(p;1) be
the semigroup generated by 1. Then, given any irrational number «,

) 1
(1.6) a}i)rgom Z e(an) = 0.

n<z

neN (p1)

Observe that (1.6) does hold for almost all irrational numbers o and in
fact it is known that, for any given € > 0,

Z e(an) =0 <x%+5> .

n<x

neN(p1)

This can be deduced from a 1966 theorem of Carleson [3| and a 2002 result
of Murty and Sankaranarayanan [21].

In any event, we are unable to prove the above conjecture even in the
case p1 = {p € p : p =1 (mod 4)}. However, we can manage by inserting
a “weight” function inside the sum appearing in (1.6). For instance, we can
proceed in the following manner. Let p3 = {p € p : p = 3 (mod 4)}. It is
clear that if m = A% +4B? where (4,2) =1 and ((A4, B),N(p3)) = 1, then
m € N(p1). Then, consider the two functions

r(n) = #{n =A% +4B%*: (A,2) =1, (A,B) € N(p1)}
and

0 otherwise.

() ::{ 1 if n=A%?with A€ N(p),
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Then, let r9(n) = r(n) + k(n). Observe that ro(n) > 0 if and only if n €
N (p1) and moreover that ro(n) < 7(n), where 7(n) stands for the number
of positive divisors of n. Finally, observe that it is clear that if n & N (p1),
then ro(n) = 0. We can then prove the following.

Lemma 1.4. For every irrational number o, we have

.1
Ih_}rgo - Zro(n)e(an) =0.

n<x
Proof. Since ) _ r(n)e(an) = O(y/z), it is sufficient to show that

1

(1.7) xh_)rgo - Z: r(n)e(an) = 0.
To do so, first observe that
S(zla) == Y e(a(A’+4B%)
A244B2<a
(4,B)EN (1)
(A,2)=1
= > w0 ) e(ad’(A}+4BY))
SeN (p3) A?4+4B?<z/62

(A1,2)=1

In light of the above representation, it is clear that in order to prove (1.7),

it is sufficient to show that

But it is clear that, for every irrational number -,

R(zly) = Y e(y(U?+4V?))

U244V2<g
(U,2)=1

= > Y (U +4v?)
U<y/z/2 v<(z—U?)/4
(U,2)=1
+ Z Z 6(")/<U2+4V2))

U<(z—4V2)/4
V<A /2 2yt

= ) e(dVPy) Y e(Uy)

4Vv2<z/2 U2<a/2
(U,2)=1

(1.8) = o(x) (x — 00).
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Observe that the functions S(z|a) and R(x|y) are connected through the

relation

S(zla)= Y u@)R <%’a52> .

deN (p3)

Therefore, given an arbitrarily large number (but fixed) H, we have

S@la) < | S u(&)R(%]aﬁ) + Y ‘R(%’(w?)

SeEN (p3) SeN (p3)
6<H

— o(H)+O0 (Z %)

0>H

= o(H)+O(x/H),

where we used (1.8) to bound the first of the two sums. Thus, there exists
an absolute constant ¢ > 0 such that

lims S(zla) <
im su —
r—>oop x - H’
so that
lim 2EY _
T—00 €T
thereby completing the proof of Lemma 1.4. ]

Lemma 1.5. Assume that m is not a perfect square, and let p be a prime
such that (m,p) =1 and mp € N(p1). Then, r(pm) = 2r(m).

Proof. Let p = a® + 4b*> and m = U? + 4V2. then,

mp = (aU +4bV)* + 4(aV + 20U)?
= (aU — 4bV)* + 4(aV + 20U)*.

Since p is a prime, we have that b # 0. If V' # 0, then (aU + 4bV| #
laU — 4bV'|, and therefore,

Uy = |aU +4bV|, Us = |aU —4bV|, K = |aV + 2bU|

allow for the two different representations mp = UZ + 4K? and mp =
U2 + 4K?, thus completing the proof of Lemma 1.5. ]



Generalisations of a theorem of Daboussi 7

2 Main results

Theorem 2.1. Let f(n) stand for the sum of the binary digits of n. Let
also a be an irrational number. Fix two positive integers p < q and consider
the function s(n) := S(pn) — B(qn). Then,

(2.1) mhﬁlrgo é Ze(as(n)) =0.

Theorem 2.2. Let p; = {p € p : p = 1 (mod 4)} and choose a set of
primes ©* C @y such that Zpep* 1/p = oo. Consider the set D of those
functions f : N(p1) = U such that f(pm) = f(p)f(m) for all p € p* and
m € N (p1) satisfying (m,p) = 1. Then,

:}Lrgloitelg i Z fm)r(n)e(na)| = 0.

n<x
neN(p1)

3 Proof of Theorem 2.1

Let k be the smallest positive integer such that p < ¢ < 2%. Let A = {0,1}
and, for each r € N, we introduce the set of words of length r

A" ={e ..., € Av=1,...,1}

At times, to indicate that a word 7 is of length r, we will write A(y) = r.
Further define ¢; := %. Since s(0) = 0 and

s(q) = Bpa) — Blaq) = Blpgr) — B2 —1) = B(pgx) — (¢ — 1) <0,

it follows that

20—1 1

1
241

e(as(m))‘ =1-A for some A > 0.

[e=]

m=

Let B, be the set of words of length 2k + ¢ — 1 =: K

k k __
0" v0F=0...0~0...0,

k times k times

where v runs over the elements of A971,

Assume that z is large and let NV be the unique integer satisfying 2V=1 <
x < 2%, Given an arbitrarily small number ¢ > 0, any positive integer
n < 2% can be written as n = Zi\:ol €,(n)2", where each €,(n) € A. Further
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let n(n) = €(n)...ex—1(n), and for any given word v = dydy ... 0,1 € A",
let
E(fy):60+51'2—|—...+5h71.2h71‘

Furthermore, let Ry = R;(n) be the smallest index for which

€R, (n) ce €R1+K,1(n) € Bq.

Then, let Ry = Ry(n) be the smallest index such that Ry(n) > Ri(n) + K
and

€R, (n) e 632+K_1(n) S Bq,

and so on. In the end, let Ri(n),..., Ry») be the entire sequence of these
indexes.

By a simple probabilistic argument, we obtain that for every fixed 7' > 0,
1
2—N#{n<2N:1/(n)<T}—>O (N — o0)

and that for some fixed T" there exists a bound B such that for every integer
N > Ny(e),

3

3

Assume that 7T is large enough so that both the conditions (1—A)? < ¢ and
N > Ny(e) are satisfied. Now, consider only those integers n < x for which
v(n) > T and Rr(n) < B. Clearly the numbers of such integers n < 2% is
less than ¢ - 2. Writing 7(n) as

%#{n <2 Rp(n) > B} <

n(n) = 6161026 ... Orfrv,

it is clear that

s(n) = s(L(6h)) + s(L(B1)) + s(L(62)) + s(L(52))
+-oo+5(L(0r)) + s(L(Br)) + s(L(v)).

Further let E(04,. .., 0r;v) be the set of those integers n for which gy, ..., Gr
run over B,. If we consider those integers n < 2V, then #E(0,...,0r;v) =
2(@=DT On the other hand, if we consider only those n < z, there are only
some special v’s for which 0 < #E(0y,...,0r;v) < 2@ D7 Let S be that
particular collection of those sets E(6y, ..., 0r;v) for which there exist such
integers ny, ny with ny < x < ng and n(ny),n(ng) € E(64,...,07;v). Setting
M := X615, ...0rPr), we may write that

n1:u1+2MU, ngqu—i—QMv, 0<u <uy<2M.
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Consequently, 2Mv < 2 < 2M(v + 1), and therefore no more than one v
(and so only one v = n(v)) with this property exists. Since M < B+ K, the
number of possible E(fy,...,0p;v) € S is less than 287X and therefore

Z HEB,...,0p;v) < 20" VTHBHE _ &

for some positive constant C.
On the other hand, if F(6,,...,07;v) € S, then

2011 T
Z e(as(n))| = Z e(as(m))
n€B(01,....0mv) m=0
(31) < (1—A)T#E(91,,9T,V) SZ—:#E(Ql,...,QT;V).

We can now estimate the size of those positive integers n < x for which
either

vin)<T or Rp(n)>B or neE6,...,0rv)eS.

Indeed, the total number of such n < x is bounded by 2z, provided x is
sufficiently large.
We have thus established that

< Z e(as(n))| + 2ex.

As a consequence of (3.1), the sum on the right hand side of (3.2) is bounded
by e #E(61,...,0r;v). Consequently,

> elas(n))

n<x

) 1
lim sup —
r—oc0 L

< 3e.

Since € can be chosen arbitrarily small, the proof of Theorem 2.1 is complete.

4 Proof of Theorem 2.2

Consider two sequences of real numbers (Uy)r>1 and (V)r>1 satisfying

limg .o, Up = 0o and Uy < Vj for each k£ € N. Moreover, for each integer

1
k > 1, consider the sum A := Z — and assume that limy_,, A = 00o.

p

PEPL
Up<p<Vj
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Also, for each integer k > 1, set wi(n) Z 1. We can prove that, for
Ut
each k € N,
(4.1) Zr —2A;)? < Oz A, (x> )
n<lx

for some positive constant C.
Indeed, first observe that it is well known that there exists a constant
C > 0 such that

(4.2) D(x) =Y r(n) = Cz+ Oz

n<x

for some positive constant § < 1.

Setting py = {p € " : Up <p < Vi}, we have

Si(z) = Zr(n)wk(n) = Z r(pm)

n<lz pm<x

PEP]
= > rpm)+ > r(p*m)
pm<z pm<z
pEPF a>2
(pfng)il PEQL
= 2 Z < (x/p) +O< >>
pEKJk p
= 2A,Cz + o(x),

where we used (4.2). Similarly, we obtain that

So(x) = Z ) =2 Z r(pgm) + Si(x)

n<x p<q
P,9EPL

= 4A7Cz 4+ O(z Ap).

Using the above estimates of S () and Sa(z), we have proved (4.1).
Now, by using this “Turdn-Kubilius type inequality”, we continue as in
Kéatai [15]. First we set

H(x) = 3 r(n)f(n)e(na),

n<x

Hy(z) = Y r(n)f(n)wi(n)e(na).

n<x
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In light of (4.1) and (4.2), we have, by the Cauchy-Schwarz inequality,

[H(2)Ar — Hi(2)] <Y r(n)wn(n) — Ayl

n<x

1/2
< <Z7’(n)> <ZT(H)M(”) —Ak\2>
< /A

Since, using Lemma 1.5, we have r(pm) = r(p)r(m) = 2r(m), we may
write that

Hy(x) = Y. rrm)fp) fme(apm) + 0| Y r(p*m)

PEP], PEP],
pm<az, (p,m)=1 mp® <z, a>2

—  Hy(x)+Ola),

where
Hy(x) =2 r(m)f(m) > f(p)e(apm).
m<zx p<wz/m
pEQf, (pm)=1
Thus
@) < {43 rm)}
LS el > rmealm - p)m)
s e/ /e
Y P Y rmy
PEQ;, m<z/p

We have therefore established, in light of Lemma 1.5, that
|[Ha(2)]* < O(x) - {o(x) + O(zAx)}
and consequently
Hy() = O(e/Ay) and  Hy(x) = Oy/Ay),
from which we can conclude that
|H(z)| _ _C

lim sup <

T—00 x vV Ak ‘

Since we have assumed that limy_,., Ar = oo, the proof of Theorem 2.2 is

complete.
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