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Abstract

Let ϕ stand for the Euler totient function. Garcia and Luca have proved
that, given any positive integer `, the set of those primes p such that ϕ(p +
`)/ϕ(p − `) > 1 has the same density as the set of those primes p for which
ϕ(p + `)/ϕ(p − `) < 1. Here we prove this result using classical results from
probabilistic and analytic number theory. We then establish similar results for
the sum of divisors function and for the k-fold iterate of the Euler function. We
also examine the modulus of continuity of some arithmetical functions. Finally,
we provide a general result regarding the existence of the distribution function
for the function s(p) := f(p + `) − f(p − `) for any fixed positive integer `
provided the additive function f satisfies certain conditions.

AMS Subject Classification numbers: 11N60, 11N25, 26A15
Key words: Euler totient function, distribution function, modulus of continuity

1 Introduction

Let ϕ stand for the Euler totient function and π(x) for the number primes not ex-
ceeding x. The distribution function of ϕ(n)/n as n runs through shifted primes has
been widely studied in the literature; see for instance the work of Deshouillers and
Hassani [1]. Recently, Garcia and Luca [6] proved that

lim
x→∞

1

π(x)
#

{
p ≤ x :

ϕ(p+ `)

ϕ(p− `)
> 1

}
=

1

2
,(1.1)

lim
x→∞

1

π(x)
#

{
p ≤ x :

ϕ(p+ `)

ϕ(p− `)
< 1

}
=

1

2
,(1.2)

lim
x→∞

1

π(x)
#

{
p ≤ x :

ϕ(p+ `)

ϕ(p− `)
= 1

}
= 0.(1.3)

Actually, in their paper [6], the authors obtain other results, including a proof that

#{p ≤ x : ϕ(p− `) = ϕ(p+ `)} �

{
x

log3 x
if ` = 4n − 1,

x

elog
1/3 x

otherwise.

Here, we start by showing how one can obtain their main result (1.1)–(1.3) in the case
` = 1 using classical results in probabilistic and analytic number theory. We then
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establish similar results for the sum of divisors function and for the k-fold iterate of
the Euler function. We also examine the modulus of continuity of some arithmetical
functions. Finally, we provide a general result regarding the existence of the distribu-
tion function for the function s(p) := f(p+ `)− f(p− `) for any fixed positive integer
` provided the additive function f satisfies certain conditions, a consequence of which
are estimates (1.1), (1.2) and (1.3).

2 Preliminary results

2.1 Limiting distribution and independent random variables

Let A be the set of real-valued additive functions. In what follows, the letters p and
q with or without subscript always stand for primes.

In 1939, Erdős and Wintner [5] proved that if f ∈ A and if the three series

(2.1)
∑
|f(p)|≤1

f(p)

p
,

∑
|f(p)|≤1

f 2(p)

p
and

∑
|f(p)|>1

1

p
converge,

then f has a limiting distribution, or in other words, there exists a distribution
function F : R→ [0, 1] such that

1

x
#{n ≤ x : f(n) ≤ u} → F (u) as x→∞

for every real number u which is a point of continuity of F .

To this distribution function F , we associate its characteristic function Ψ(τ) de-
fined by

Ψ(τ) = ΨF (τ) =
∏
p

(
1− 1

p

)(
1 +

∞∑
a=1

eiτf(pa)

pa

)
.

Observe that F can be interpreted as the distribution function of the random
variable η :=

∑
p ξp where ξp are independent random variables with purely discrete

distribution and

Ψξp :=

(
1− 1

p

)(
1 +

∞∑
a=1

eiτf(pa)

pa

)
.

Note that in 1931, Lévy [11] proved that if η is the convergent sum of the inde-
pendent random variables ξp, that is η =

∑
p ξp, then its distribution function Fη is

continuous (everywhere) if and only if

(2.2)
∑
p

P (ξp 6= 0) =∞.

In 1960, Lukács [12] proved that if condition (2.2) holds, then Fη is of pure type,
either absolutely continuous or singular.
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2.2 Continuity modulus

Let ξ be a random variable with continuous distribution function F . We now set

Qξ(h) := QF (h) = sup
x∈R

(F (x+ h)− F (x))

and call it the continuity modulus of ξ. We will say that the continuity modulus of ξ1

and ξ2 are equivalent if

c1 <
Qξ1(h)

Qξ2(h)
< c2

for some suitable positive constants c1 and c2.

2.3 Limiting distribution on the set of shifted primes

In 1968, the second author [10] proved that if f is a function in A for which the three
series condition (2.1) holds, then f has a limiting distribution on the set of shifted
primes p+ 1. In particular, the characteristic function ΨF (τ) of f(p+ 1) can then be
written as

ΨF (τ) =

(
∞∑
a=1

eiτf(2a)

2a

)∏
q≥3

(
1− 1

q − 1
+
∞∑
a=1

eiτf(qa)

qa

)
.

Observe that in 1989, Hildebrand [7] proved that if f ∈ A has a limiting distribu-
tion on the set of shifted primes, then the three series condition (2.1) holds.

2.4 Equivalence of continuity modulus

As an immediate consequence of Wiener’s theorem, one can prove that if Ψ1 and
Ψ2 are two characteristic functions and if κ(τ) := Ψ1(τ)/Ψ2(τ) 6= 0, |κ(τ)| > c for
some positive constant c and κ(τ) is an almost periodic function with absolutely
convergent series of Fourier coefficients, then the continuity modulus of FΨ1 and FΨ2

are equivalent.

Moreover, as already observed by Indlekofer and Kátai [9], if γ1 and γ2 are inde-
pendent random variables, then, setting γ := γ1 + γ2, we have

Qγ(h) ≤ min(Qγ1(h), Qγ2(h)),

and, if the distribution function of γ1 is purely discrete, then Qγ2 and Qγ are equiva-
lent.
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2.5 Multiplicative functions evaluated at shifted primes

Let M be the set of multiplicative functions. The following results follow using the
methods used by the second author in [10].

Theorem A. Let g1, g2 ∈M be such that |gi(n)| ≤ 1 for i = 1, 2 and assume that

(2.3)
∑
p

1− gi(p)
p

converges for i = 1, 2.

Then,

lim
x→∞

1

π(x)

∑
p≤x

g1(p+ 1)g2(p− 1) = D(2)
∏
q≥3

(
1− 2

q − 1
+
∞∑
a=1

g1(qa) + g2(qa)

qa

)
,

where

D(2) = g2(2)
∞∑
a=2

g1(2a)

2a
+ g1(2)

∞∑
a=2

g2(2a)

2a
.

In particular, given g ∈M, let g1(n) = g(n) and g2(n) = g(n), we then have

lim
x→∞

1

π(x)

∑
p≤x

g(p+ 1)g(p− 1) = D∗(2)
∏
q≥3

(
1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)
,

where

D∗(2) = g(2)
∞∑
a=2

g(2a)

2a
+ g(2)

∞∑
a=2

g(2a)

2a
.

One can even prove a more general result, namely the following.

Theorem B. Let g1, . . . , gk ∈M. Consider a set of k pairs of integers {(ai, bi) : ai >

0,GCD(ai, bi) = 1, i = 1, . . . , k} which is such that
ain+ bi
ajn+ bj

6= constant for bi 6= 0,

i = 1, . . . , k. Then, assuming that (2.3) holds for i = 1, . . . , k, the limit

lim
x→∞

1

π(x)

∑
p≤x

k∏
j=1

gj(ajp+ bj) =: M(g1, . . . , gk)

exists and, if we set R := {q : q | aibj − ajbi for some i 6= j}, we have

M(g1, . . . , gk) = E
∏
q-R

(
1− 1

q − 1
+
∞∑
a=1

1

qa

k∑
j=1

gj(q
a)

)
,

where the constant E depends only on the values g1(qa), . . . , gk(q
a), with q ∈ R and

a ∈ N.
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2.6 Primes in arithmetical progressions and sieve results for
shifted primes

The proofs of our theorems are based on three well known inequalities in prime number
theory and one sieve estimate regarding shifted primes, which we state as follows.

Theorem C. (Brun-Titchmarsh inequality) Given a fixed real number δ ∈
(0, 1), there exists a positive constant c = c(δ) such that the estimate

π(x; q, `) := #{p ≤ x : p ≡ ` (mod q) ≤ c x

ϕ(q) log x

holds uniformly for all integers 1 ≤ ` < q with (q, `) = 1 and q < x1−δ.

Theorem D. (Siegel-Walfisz theorem) Let A > 0 be a fixed constant. Then,
there exists a positive constant B = B(A) such that for large x the estimate

π(x; q, `) =
π(x)

ϕ(q)
+O

(
x

exp(B
√

log x)

)
holds uniformly for 1 ≤ ` < q with (q, `) = 1 and q < logA x.

Theorem E. (Bombieri-Vinogradov theorem) Let A > 0 be a fixed constant.
Then, there exists a positive constant B = B(A) such that for large x,∑

q<
√
x/ logB x

max
1≤`<q
(q,`)=1
y≤x

∣∣∣∣π(y; q, `)− li(y)

ϕ(q)

∣∣∣∣ < x

logA x
,

where li(x) :=

∫ x

2

dt

log t
.

Theorem F. Let P (n) stand for the largest prime factor of n. Given any ε > 0 and a
fixed positive integer `, there exists a positive number c(ε) satisfying limε→0 c(ε) = 0
and such that

#

{
p ≤ x :

logP (p± `)
log x

< ε

}
+ #

{
p ≤ x :

logP (p± `)
log x

> 1− ε
}
≤ c(ε)π(x).

3 An alternative proof of the Garcia and Luca re-

sult

Let us set

ϕ0(n) :=
ϕ(n)

n
and f(n) := logϕ0(n) (n = 1, 2, . . .).

5



Clearly, f ∈ A and f(q) = log(1− 1/q) for each prime q. Let us further set

g(n) := eiτf(n) (n = 1, 2, . . .) and `p := f(p+ 1)− f(p− 1) for each prime p.

In light of the above Theorem A, it follows that

lim
x→∞

1

π(x)

∑
p≤x

g(p+ 1)g(p− 1) =
∏
q≥3

(
1− 2

q − 1
+
g(q) + g(q)

q − 1

)
=: Ψ(τ).

Now let η :=
∑

q≥3Xq, where Xq are independent random variables defined by

P (Xq = 0) = 1− 2/(q − 1),

P (Xq = f(q)) = 1/(q − 1),

P (Xq = −f(q)) = 1/(q − 1).

Set F (u) := P (η < u) and let Ψ(τ) be the characteristic function of F . We know that
F is continuous since

∑
q≥3 P (Xq 6= 0) =∞. Moreover, Ψ(−τ) = Ψ(τ), which clearly

implies that F (u) = 1−F (1−u), from which we may conclude that F (0) = 1/2. We
have thus established that

lim
x→∞

1

π(x)
#{p ≤ x : `p < 0} = lim

x→∞

1

π(x)
#

{
p ≤ x :

ϕ0(p+ 1)

ϕ0(p− 1)
< 1

}
=

1

2
.

Taking into account that

ϕ(p+ 1)

ϕ(p− 1)
=
ϕ0(p+ 1)

ϕ0(p− 1)
· p+ 1

p− 1
,

which in turn implies that

log
ϕ(p+ 1)

ϕ(p− 1)
= `p +O

(
1

p

)
,

we have thus completed the proof of Garcia and Luca’s estimates (1.1), (1.2) and
(1.3) in the case ` = 1. The general case will be examined in Section 7.

4 The k-fold iterate of the Euler function at shifted

primes

Let ϕ0(n) = n, ϕ1(n) = ϕ(n) and ϕk(n) = ϕ(ϕk−1(n)) for each integer k ≥ 2.

The behaviour of the quotient
ϕk+1(n)

ϕk(n)
as n becomes large was widely studied; in

particular, see Indlekofer and Kátai [8]. In fact, one can prove that, given any fixed
positive integer k, for almost all primes p ≤ x,

ϕk+1(p± 1)

ϕk(p± 1)
= (1 + o(1))

∏
q<(log log x)k

(
1− 1

q

)
(x→∞).
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Using this, the following result follows.

Theorem 1. Given any fixed k ∈ N, for almost all primes p,

ϕk+1(p+ 1)

ϕk+1(p− 1)
= (1 + o(1))

ϕ(p+ 1)

ϕ(p− 1)
(p→∞),

thereby implying that, given any fixed k ∈ N,

lim
x→∞

1

π(x)
#

{
p ≤ x :

ϕk(p+ 1)

ϕk(p− 1)
< eu

}
= F (u)

for every u ∈ R.

5 Analogous results for the sum of divisors func-

tion

Let σ(n) stand for the sum of the positive divisors of n. Consider the following three
functions:

σ0(n) =
σ(n)

n
=
∏
qa‖n

(
1 +

1

q
+ · · ·+ 1

qa

)
, f(n) = log σ0(n), g(n) = eiτf(n).

The distribution function of σ(n)/n was extensively studied, in particular by Erdős
[2]. Here, we are interested in the values of σ(n)/n as n runs through shifted primes

p+ 1 and p− 1. First of all, setting S(x) :=
1

π(x)

∑
p≤x

g(p+ 1)g(p− 1), one can prove

that, as x→∞,

S(x) = (1+o(1))

(
g(2)

∞∑
a=2

g(2a)

2a
+ g(2)

∞∑
a=2

g(2a)

2a

)
·
∏
q≥3

(
1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)
.

It follows from this that limx→∞ S(x) = Ψ(τ) with Ψ(τ) = Ψ(−τ). Now let η =∑
q≥2Xq, where the Xq are independent random variables defined by

P (X2 = f(2a)− f(2)) =
1

2a
(a = 2, 3, . . .)

P (X2 = f(2)− f(2a)) =
1

2a
(a = 2, 3, . . .)

and, for each prime q ≥ 3, by

P (Xq = 0) = 1− 2/(q − 1)

P (Xq = f(qa)) =
1

qa
(a = 1, 2, . . .)
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P (Xq = −f(qa)) =
1

qa
(a = 1, 2, . . .).

In light of the above, the following result can be obtained.

Theorem 2. We have

lim
x→∞

1

π(x)
#

{
p ≤ x :

σ0(p+ 1)

σ0(p− 1)
< eu

}
= F (u),

where F (u) := P (η < u) is a continuous distribution function with F (0) = 1/2.
Moreover, since

σ(p+ 1)

σ(p− 1)
= (1 + o(1))

σ0(p+ 1)

σ0(p− 1)
(p→∞),

we have

lim
x→∞

1

π(x)
#

{
p ≤ x :

σ(p+ 1)

σ(p− 1)
< eu

}
= F (u).

Remark. By setting σ2(n) := σ(σ(n)), one can show that the above result also holds
for σ2 in place of σ. Indeed, first observe that

σ2(p+ 1)

σ2(p− 1)
=
σ2(p+ 1)

σ(p+ 1)
· σ(p− 1)

σ2(p− 1)
· σ(p+ 1)

σ(p− 1)
= Ap ·Bp · Cp,

say. Since, for almost all primes p ≤ x, we have

σ2(p± 1)

σ(p± 1)
= (1 + o(1))

∏
q<log log x

1

1− 1/q
(x→∞),

it follows that Ap ·Bp = 1 + o(1) as p→∞, implying that

σ2(p+ 1)

σ2(p− 1)
= (1 + o(1))

σ(p+ 1)

σ(p− 1)
(p→∞),

thereby implying that these last two quotients have the same distribution function,
thus proving our claim.

6 Remarks on the modulus of continuity of some

arithmetical functions

Recall the definitions ϕ0(n) = ϕ(n)/n and σ0(n) = σ(n)/n. Tjan [13] proved that
there exists a positive constant c1 such that

Qϕ0

(
1

t

)
<

c1

log t
,

8



whereas Erdős [3] proved that there exists a positive constant c2 such that

Qσ0

(
1

t

)
<

c2

log t
.

On the other hand, Erdős and Kátai [4] proved that if g is a strongly additive

function satisfying
∑
p

|g(p)|
p

<∞ and such that, for suitable positive constants A

and δ, we have
∑
p>tA

|g(p)|
p

<
1

t
and |g(p1)−g(p2)| > 1/t for all p1 6= p2 with p1, p2 < tδ,

then
1

log t
� Qg(1/t)�

1

log t
.

Observe that one can drop the “strongly” condition by simply assuming that
g(pa) = O(1) for all primes p and integers a ≥ 2.

Now, using Theorem A in Indlekofer and Kátai [9], we can deduce the following.

Theorem 3. Let F be the distribution function for which

lim
x→∞

1

π(x)
#

{
p ≤ x :

ϕ(p+ 1)

ϕ(p− 1)
< eu

}
= F (u).

Then, there exist some positive constants c3 and c4 such that
c3

log2 t
≤ QF (1/t) ≤ c4

log2 t
.

Similarly, if G is defined by

lim
x→∞

1

π(x)
#

{
p ≤ x :

σ(p+ 1)

σ(p− 1)
< eu

}
= G(u),

then, there exist some positive constants c5 and c6 such that
c5

log2 t
≤ QG(1/t) ≤ c6

log2 t
.

On the other hand, repeating the argument used in Section 5 of Indlekofer and
Kátai [9], one can prove the following.

Theorem 4. Let ϕ0(n) = ϕ(n)/n and σ0(n) = σ(n)/n. For each prime p, let

ap := σ0(p−1)+σ0(p+1), bp := ϕ0(p−1)+ϕ0(p+1), cp := σ0(p−1)+ϕ0(p+1),

with Fa, Fb and Fc standing for their respective distribution functions. Then,

QFa(1/t) �
1

log t
,

whereas

QFb(1/t) � QFc(1/t) �
1

log2 t
.
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7 The general case

In our next result regarding functions f ∈ A, the condition of the convergence of the
first series in the three series condition (2.1) is not required. Indeed, we shall prove
the following result.

Theorem 5. Let f ∈ A be such that

(7.1)
∑
|f(p)|≤1

f 2(p)

p
and

∑
|f(p)|>1

1

p
converge.

Let ` > 0 be a fixed integer and, for each prime p, set s(p) := f(p + `) − f(p − `).
Then, the limit

lim
x→∞

1

π(x)
#{p ≤ x : s(p) < u} =: F`(u)

exists and its characteristic function Ψ`(τ) is given by

Ψ`(τ) := D`(τ)
∏
q≥3
q-`

(
1− 2

q − 1
+
∞∑
a=1

eiτf(qa) + e−iτf(qa)

qa

)
,

where

D`(τ) =

{
1 if ` is even,

2<
(
eiτf(2)

∑∞
a=2

e−iτf(2
a)

2a

)
if ` is odd.

In other words, the distribution function F`(u) is defined as follows:

F`(u) =

 P
(∑

q≥3
q-`
ξq < u

)
if ` is even,

P
(
ξ2 +

∑
q≥3
q-`
ξq < u

)
if ` is odd,

where the ξq’s are independent random variables defined by

P (ξ2 = f(2a)− f(2)) =
1

2a
(a = 2, 3, . . .),

P (ξ2 = f(2)− f(2a)) =
1

2a
(a = 2, 3, . . .)

and, for each prime q ≥ 3, by

P (ξq = 0) = 1− 2/(q − 1),

P (ξq = f(qa)) =
1

qa
(a = 1, 2, . . .),

P (ξq = −f(qa)) =
1

qa
(a = 1, 2, . . .).
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Moreover, if
∑
f(p)6=0

1

p
=∞, then F`(u) is everywhere continuous and F`(0) = 1/2.

As a consequence of Theorem 5, it is clear that the general Garcia and Luca
estimates (1.1)–(1.3) follow immediately.

Proof of Theorem 5. Let Yx be a function which goes to infinity with x but slowly
enough so that Yx = O(log log log x). Let ε > 0 be a small but fixed real number and
consider the following subsets of {p ≤ x}:

E1 = {p ≤ x : ∃qK | p+ ` or qK | p− ` where q ≤ Yx, K > Yx},
E2 = {p ≤ x : P (p+ `) > x1−ε or P (p− `) > x1−ε},
E3 = {p ≤ x : ∃q ∈ (Yx, x

1−ε) such that q | p+ ` or q | p− ` and |f(q)| > ε},
E4 = {p ≤ x : ∃q > Yx such that q2 | p+ ` or q2 | p− `}.

In light of conditions (7.1) (to estimate the size of E3) and of Theorem F (to estimate
the size of E2), we easily find that there exists an absolute constant c7 > 0 such that

(7.2) #E1 + #E2 + #E3 + #E4 < c7 ε π(x).

We now let
f(n) = f1(n) + f2(n),

where f1 ∈ A is defined on prime powers qk by f1(qk) = f(qk) if q ≤ Yx and 0
otherwise, and where f2 ∈ A is defined implicitly. Now consider the function g(n) =
g1(n)g2(n), where gj(n) = eiτfj(n) for j = 1, 2. From here on, we shall assume that `
is an even integer, since the case where ` is odd can be handled in a similar manner.

First observe that we can deduce from Theorem D that, as x→∞,

1

π(x)

∑
p≤x

g1(p+ `)g1(p− `) = (1 + o(1))
∏

3≤q≤Yx
q-`

(
1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)

+ O

(
#E1

π(x)

)
,(7.3)

where we have taken into account the fact that∑
q<Yx

∑
a>Yx

|g(qa) + g(qa)|
qa

�
∑
q

1

qYx
� 1

2Yx
.

The convergence as Yx → ∞ of the product appearing on the right hand side of
(7.3) is guaranteed by the following argument. First observe that in the case where
|f(q)| ≤ 1, we have

eiτf(q) = 1 + iτf(q) +
1

2
τ 2f 2(q) + · · · ,
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e−iτf(q) = 1− iτf(q) +
1

2
τ 2f 2(q)− · · · ,

which implies in particular that, for some positive absolute constant c8,∣∣eiτf(q) − (1 + iτf(q))
∣∣ ≤ c8|τ |f 2(q),∣∣e−iτf(q) − (1− iτf(q))
∣∣ ≤ c8|τ |f 2(q),

from which it follows that, if |f(q)| ≤ 1,∣∣∣eiτf(q) + e−iτf(q) − 2
∣∣∣ ≤ 2c8|τ |f 2(q),

whereas, in the case where a ≥ 2 or a = 1 and |f(q)| > 1, we have the trivial
inequality ∣∣eiτf(qa) + e−iτf(qa) − 2

∣∣ ≤ 4.

Therefore, we may write that∣∣∣∣∣
(

1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)
− 1

∣∣∣∣∣ ≤ min (2c1|τ |f 2(q), 4)

q
+

4

q2
.

In light of the two conditions stated in (7.1), this last estimate guarantees the con-
vergence of the product appearing in (7.3) as Yx →∞. From this observation and of
the fact that the error term in (7.3) is no larger than c7ε (by (7.2)), we may conclude
that, as x→∞,

(7.4)
1

π(x)

∑
p≤x

g1(p+ `)g1(p− `) = (1 + o(1))
∏
q≥3
q-`

(
1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)
.

Now recall that our ultimate goal is to show that, as x→∞,

(7.5)
1

π(x)

∑
p≤x

g(p+`)g(p− `) = (1+o(1))
∏

3≤q≤Yx
q-`

(
1− 2

q − 1
+
∞∑
a=1

g(qa) + g(qa)

qa

)
.

But if we can prove that there exists some positive constant c9 such that

(7.6)
1

π(x)

∑
p≤x

∣∣∣g2(p+ `)g2(p− `)− 1
∣∣∣2 < c9 ε,

provided that x ≥ x(ε), then (7.5) will follow. Indeed, if (7.6) holds, then

1

π(x)

∣∣∣∣∣∑
p≤x

g(p+ `)g(p− `)−
∑
p≤x

g1(p+ `)g1(p− `)

∣∣∣∣∣
12



≤ 1

π(x)

∑
p≤x

∣∣∣g2(p+ `)g2(p− `)− 1
∣∣∣ ≤ √c10ε

for some positive constant c10, thereby implying, in light of (7.4) that (7.5) holds as
well, as required.

Therefore, it remains to prove (7.6). To do so, it is enough to consider the above
sum only for those primes p ≤ x which do not belong to any of the sets E1, E2, E3

or E4. So, let us now introduce the additive function h(n) defined by h(qk) = 0 if q
satisfies anyone of the four conditions: (1) q ≤ Yx, (2) |f(q)| > ε when q ∈ (Yx, x

1−ε),
(3) q > x1−ε , (4) k ≥ 2, while otherwise we set h(qk) = f(q).

Furthermore, let us introduce the strongly additive function h0(n) defined by

h0(q) :=

{
h(q) if q ≤ x1/5,
0 otherwise.

Then, consider the two functions defined on primes p by

tp := h(p+ `)− h(p− `) and t∗p := h0(p+ `)− h0(p− `),

so that
tp = t∗p +O(ε),

thereby implying that
t2p ≤ (t∗p)

2 +O(ε2).

Further set
Sx :=

∑
p≤x

t2p and S∗x :=
∑
p≤x

(t∗p)
2,

so that, for some absolute constant c11 > 0,

(7.7) Sx ≤ S∗x + c11 ε π(x).

By the definition of t∗p, we have

(7.8) S∗x ≤
∑
p≤x

(
h2

0(p+ `) + h2
0(p− `)

)
− 2

∑
p≤x

h0(p+ `)h0(p− `).

On the other hand,∑
p≤x

h2
0(p+ `) =

∑
q1 6=q2≤x1/5

q1|p+`
q2|p+`

h0(q1)h0(q2) +
∑
q≤x1/5
q|p+`

h2
0(q),(7.9)

∑
p≤x

h2
0(p− `) =

∑
q1 6=q2≤x1/5

q1|p−`
q2|p−`

h0(q1)h0(q2) +
∑
q≤x1/5
q|p−`

h2
0(q),(7.10)

13



whereas

(7.11)
∑
p≤x

h0(p+ `)h0(p− `) =
∑

q1 6=q2≤x1/5
q1|p+`
q2|p−`

h0(q1)h0(q2).

Gathering estimates (7.9), (7.10) and (7.11) in (7.8), using (7.7) and taking into
account (7.2), we then obtain, in light of Theorem C, that, for some positive constant
c12,

Sx ≤
∑

q1 6=q2≤x1/5
q1q2|p+`

h0(q1)h0(q2) (π(x; q1q2,−`) + π(x; q1q2, `)− 2π(x; q1q2, ρ(`)))

+
∑
q≤x1/5

h2
0(q) (π(x; q,−`) + π(x; q, `)) + c12 ε π(x)

≤
∑

q1 6=q2≤x1/5
max

r (mod q1q2)

∣∣∣∣π(x; q1q2, r)−
li(x)

ϕ(q1q2)

∣∣∣∣+
∑
q>Yx

h2
0(q)

ϕ(q)
li(x) + c12 ε π(x),(7.12)

where the expression ρ(`) is the integer solution p ≡ ρ(`) (mod q1q2) of the system
of congruences p ≡ −` (mod q1) and p ≡ ` (mod q2).

Using Theorem E, it follows from (7.12) that

Sx ≤

 ∑
q>Yx
|f(q)|≤1

f 2(q)

q

 · li(x) + c12 επ(x).

Hence, in light of (7.1),

lim
x→∞

Sx
π(x)

≤ c12 ε,

thereby establishing (7.6), and the theorem follows.
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