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Abstract

Let Q1,...,Q: € R[x] be polynomials with no constant term for which each
linear combination m1Q1(x) + -+ + miQ¢(x), with mq,...,my € Z and not
all 0, always has an irrational coefficient. Let Iy,...,I; be sets included in
the interval [0,1), each of which being a union of finitely many subintervals
of [0,1). Furthermore, let 7 be the set of those positive integers n for which
{Qi1(n)} € I1,...,{Q:(n)} € I; holds simultaneously, where {y} stands for the
fractional part of y. Let t1,to,... be a sequence of complex numbers uniformly
summable and set T'(z) = >, . tn, and T(z|T) = ani_ tn. We prove that,
as © — oo, T(x)/z ~ T(|T)/AIL) - AL)x), where A(I) stands for the
Lebesgue measure of the set I.
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1 Introduction

We say that sequence of real numbers t,, is uniformly summable if

, 1
lliris;}px ; [t] < 6(K)
[tn]>K
for some sequence §(K') tending to 0 as K — oo.
Let I4,...,I; be sets included in the interval [0, 1), each of which being a union
of finitely many subintervals of [0,1). For each j € {1,...,t}, let ¢;(z) be a mod 1
periodic function, defined by

. 1 if%EIj,
bilz) = { 0 ifzel0,1)\1

[e.9]
It is easy to see that if Z aWe(nz) stands for the Fourier series associated with

n=—oo

l;(z) (here, e(y) stands for exp{2miy}), then

\agpg% and || <1 foralln €2, j=1,...1,
n
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where ¢; is the number of end points of the intervals occurring in the set I;.
Given a small constant A > 0, we set

N 1 A A
() = W/—A /_Aéj(aﬂ—ul + ) duy dus.

Further let

(n) = sin 27 An
)= 4 An
Then,

KE-A)(JJ) = Z bWe(nz),

bﬁf) = /f(n)a(j),

n

. ‘ 1 \?
|b,(f)| < mln(l,m) .

We further define, for each j € {1,...,t},
I = {o:(r—2A,2+2A) C I}
I® = {z:(z—20z+20)N 1 =0}

Observe that )\(IJ(A) \ IJ(_A)) < ¢;A, where A(I) stands for the Lebesgue measure of
the set I. Moreover, observe that

. —A
E(A)(x): 1 lfl‘E[J(» ), R
7 0 ifzelo,1)\ ¥
and

(&)
(1.1) 0<¢7(z) <1 forallu.

We now introduce the truncated sum

f;A’K)(l') = Z bDe(nz).

In|l<K

Choosing K > (1/A)*, we get that

(1.2) dopPI<2) (Aim < 2N

In|>K n>K
From this estimate, we can prove that, given ¢ points x1, ..., zy,
(1.3) ) (y) - 08 () — 653 (@y) - 037 ()] < 3tA2,
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To see this, we proceed as follows. First, for each j, we write

E;A)(x) = €§-A’K) () + Tj(x), so that T;(z) = Z bDe(n).

In|>K
Using (1.2), one can easily see that
(1.49) Ty (0)] < 2%
It then follows from (1.1) and (1.4) that

(1.5)

68 (@)| < Ty(a)] +

(&) (ac)’ <1+2A%
We shall now estimate the size of
Fa(@) = 67 (@) (7 (@) = 65 (@) (5 (@),

We have

Bo@) = (@) 42 @) (4200 + (@) - 629 @) - 459 @)
(1.6) = (@) (@) 42 (@) + 65 (2) Ry ().
In light of (1.1), (1.4) and (1.5), it follows from (1.6) that
(1.7) | Ra()] < 287 + (14 2A%) [Ry_y ()]

Setting C'(1) = 2 and thereafter C(h) = (1 + 2A?)C(h — 1) + 2, it follows from (1.7)
that
|Ru(x)| < C(h)A%

Since one can easily obtain from the above definition of C'(h) that
C(h) < 3h (h=1,2,...,1),

provided A is sufficiently small, (1.3) follows immediately.
So, if we introduce the notations

5(1’17---7%) = gl(ml)"'et(wt);
s (@) = 6 (1) 45 (),

SO0, m) = 6 ) 4 (@),
it follows from (1.3) that
(1.8) }S(A)(xl, ) — 8B (g, 1) < 2tA%
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Now, let the discrepancy of a sequence yy,...,y, be defined as usual as

N

1
DN(?J17~-7?JN): sup N7 ]_—(ﬁ—Oé) )
8)cio.1) |V ]21
{y;}€la.B)

where {y} stands for the fractional part of y. Then by the Erdés-Turdan Theorem [4],
it is known that there exists an absolute constant ¢ > 0 such that, given an arbitrary

positive integer 7',
T
Wil | 1
D . < E —_ 4 =
N(yh ayN>—C<k:1 L +T )

N

1
where U, = ¥ Z e(ky;).

=1

2 Main results and their proofs

Let Q1,...,Q: € R[z| be polynomials satistying ();(0) = 0 for each j € {1,...,t}
and for which each linear combination Uy, m, (2) := m1Q1(z) + - - - + mQ¢(z) (with
mi,...,my € Z with the exception of m; = --- = m; = 0) always has an irrational
coefficient.

Let T be the set of those positive integers n for which

{Q1(n)} € I1,...,{Q¢(n)} € I;  hold simultaneously.
Then, it is clear that

n € T if and only if s(Q1(n),...,Q:(n)) = 1.

Let tq,1s, ... be a sequence of complex numbers such that |t,| < 1 and set
T(z) = Zt” and  T(z|T) = Ztn.
n<x n<x
- neT

1
Let §(M) be a sequence which is such that — Z [tn] < O(M) if x > xo(M).
T

n<x
[tn|>M

Assuming that = > x¢(M), then, one can see that

T|T) = > tus(Qi(n),....Qun))

n<z
[tn|<M

— Ztns(A)(Ql(n), o, Qi(n) + O(6(M)x)

n<x



(2.1) +0 Mi > 1

I=HQ yyer N

Setting

»0) .= Z 1

{Qs(m)yerf™\ =)

and using the Erddés-Turan Theorem mentioned above, we get that, for some C' > 0,

(2.2) 20 < ¢C ( +Z Z e(kQj(n ))D—i—chx.

n<zx
Then, an old theorem of Weyl [12] tells us that, if & # 0, then

1
23 Jim 37 e(hQs(m) =
Substituting (2.3) in (2.2), it follows that
1 c;C
2.4 li -3 <A+ L=
4 R

Since T can be taken arbitrarily large, it follows, in light of (2.4), that the O(...) term
n (2.1) is < MAz.
Hence, using (1.8), estimate (2.1) becomes

T@|T) = > tus™NQu(n),...,Qun)) + O(MtA*z) + O(MAz) + O(5(M)x)
\tZI<§IM
= > tn Y Wb e(miQi(n) + -+ muQu(n))
i ek
(2.5) +O(MtA*z) + O(MAx) + O(§(M)x).

Since one can easily see that
b = ANI,)  (j=1,....1),
it follows from (2.5) that

T(|T) = A1) AI)T(x)
+ > B b0 tae(miQi(n) + -+ + myQi(n))

M5y mg n<x
(mq,..., my)#(0,..., 0) [tn|<M
Imy |<K

+O(MtA%) + O(MAz) + O(6(M)z).

b}



For convenience, from here on, let
(2.6) D = X11) - N1).

Since A can be taken arbitrarily small, and since §(1/v/A) — 0 as A — 0, we have
thus proven the following result.

Theorem 1. Let t, be a uniformly summable sequence. Assume that

iZtne(lel(n) + -+ mQi(n)) -0 asz — 0

n<x

for every t-tuple (mq,...,my) with (myq,...,my) # (0,...,0). Then,

iy (T2 2T

r—00 €T Dx

Let g stand for the set of all primes and then set

To={p:pepnT}

:th and  S(z|T,) = Zt

p<x p<z
PETp

Further set

and assume that @)1, ..., Q; are polynomials satisfying the conditions stated above.

Theorem 2. Let t, be a uniformly summable sequence and let D be as in (2.6), then,

iy (501 SEIT))

oo \ (z)  Dm(x)

The proof of Theorem 2 is very similar to that of Theorem 1 with the exception
that, instead of Weyl’s Theorem, one should use the theorem of .M. Vinogradov [11],
that is the one that states that

L Ze(ij(p)) =0 asz— oo

m(x) o

Remark 1. According to a classical theorem of Daboussi (see Daboussi and Delange
[1], as well as Daboussi and Delange [2]),

> fn)

n<x

sup— —+0asx — 00

fE./Vll

for every irrational number o. Here My stands for the set of multiplicative functions

f:N— C such that |f(n)| < 1.



This result has been generalized by Kdtai [6] who proved that, given any polynomial
F(z) = apa® + -+ + ayw € Rlx] with at least one irrational coefficient,

Later, this assertion was generalized by Indlekofer and Katai [9] for uniformly
summable multiplicative sequences f(n).
Recently, Kdtai [5] proved that

(2.7) sup—Zg ——Zg — 0 as  — oo.

geEM; T

n<zx n<z
neT

Thus, Theorem 1 in the case t, = g(n) € My has been proved earlier.

3 Applications

3.1 First set of applications

Theorem 3. Let f be an additive function for which the necessary conditions of the
Erdos-Wintner Theorem hold, namely the three conditions

Z 1< o0, Z /) is convergent, Z @ <

s’ o< P st P

Let F(y) be the limit distribution function of f. Then,

lim —#{n<x neT, f(n) <y} =F(y).

T—r00

Theorem 4. Let f be an additive function satisfying the two conditions

Zl<oo and Z f2

F@>1 P Fp)I<t

Let A(z) = Z % and

p<z

o1
F*(y) = lim —#{n < : f(n) - A(z) <y},
which exists for almost all y. Then,

lim —#{n<x neT, f(n)—Alz) <y} = F(y).

Q‘)OO



In what follows, we shall let f(n) be a strongly additive function and set

) 1/2
A(x) == Z % and B(z) := (Z fT(m> )

p<zx p<x

Following Kubilius, we shall say that f belongs to the class H if there exists a function
r = r(x) such that, as x — oo,

log r B(r)
log x s B(x) o

B(z) — oo.

And, as usual, let ®(z) be the normal distribution function, that is

" or

d(z) ! /Z e dy (z € R).

Then, the following result can be proved to be a consequence of (2.7).

Theorem 5. (Kubilius, Shapiro) Let f(n) be a strongly additive function. In order
to have

lim L#{n <z:neT, fln)—A(z) < zB(x)} = ®(2),

z—o0 x D
it 1s sufficient that for each fized € > 0,

1 12
B2 (2) ; ]Sp) —0 asx — oo.

P>
[f(p)|>eB(z)
Moreover, if f(n) belongs to the class H, then this condition is also necessary.

The above result is Theorem 12.2, with 7 = N, in the book of Elliott [3].

As a special case, we obtain the following analogue of the Erdos-Kac Theorem,
which can also be found in the book of Elliott [3]:

Theorem 6. Let f(n) be a strongly additive function which satisfies |f(p)| < 1 for
all primes p. Assume that B(x) — oo as © — oco. Then,

lim L#{n <z:neT, f(n)—A(x) < zB(x)} = ®(z).

z—o0 [

Observe that Theorems 3, 4 and 5 can be deduced directly from (2.7), namely

choosing g(n) = ¢/ and then using it for ¢, = g(n) in Theorem 3, t, = ¢ =

g(n)e~"*/™ in Theorem 4 and finally #,, = ¢\ = g(n)e~#*(f(W-A@®)/B@) in Theorem 5.



3.2 Second set of applications

Let g be a multiplicative function satisfying |g(n)| = 1 for all n € N. Given a real
number Y > 2, consider the multiplicative function gy defined on the prime powers
p* by )
oy _ J 9p") ifp<Y,
9Y(p>—{1 if p>Y.

Let h(n) be the Moebius inverse of g, that is >, h(d) = g(n). Similarly, let
gy(n) be the Moebius inverse of hy(n). Finally, let f(n) be the additive function
defined on prime powers p® by f(p®) = arg g(p®), so that g(n) = /(.

Assume that

1 —
(3.1) Z 1=9) is convergent.

> p

From the Turan-Kubilius inequality applied to the additive function f, we obtain
that

timsup = 3 g(n) — gy ()] < 5(V),

T—00
n<x

where 6(Y) — 0 as Y — oo.
Moreover, hy (p*) =0if p > Y, hy (p*) = h(p*) if p< Y.
Recalling that P(n) stands for the largest prime factor of n, observe that

1
—#{n<wx:3dn, d>Y" Pld) <Y} =0 asKy— 0.
Xz

Consequently,
Z hy (d)
a<y Ky

for all but at most §(Y')z integers n < z.

Now, consider the k linear functions L,(n) = am + b, (¢ = 1,...,k), where each
ay is a positive integer and each b, € Z, and let ¢ (n), £ = 1,..., k, be multiplicative
functions such that |g!)(n)| = 1 and satisfying condition (3.1). Then,

(3.2) —Z Hg (agn + by) — H D (agm + b)) < kS(Y)

n<x |{=1
and
k k
(3.3) T4 @en +b) > IR
=1 dy,..., dp, /=1

dglagntby, P(dg)<Y



for all but no more than (Y, Ky )z integers n < x. Here e(Y, Ky) — 0 as Y — oo
and Ky — oo.
Further set

k
t, = H g(e)(am + by).
=1
Then, ayn+b, = 0 (mod dy) holds for some residue classes modulo LCM|[dy, . . ., dy].
Let these residue classes be n = u; (mod LCM|dy,...,dg]) for j =1,..., s (here, the
u;’s may depend on dy, ..., dy).
Hence in light of (3.2) and (3.3), we get that

Ztne(lel(n) + -+ mQi(n))

n<zx
Z H hy- 0 (de) Z Z e(miQi(n) + -+ +myQy(n))
,,,,, di 0=1 n=u; (mod LCM[dl,..,,dk])
d£<YKY - D
P(dg)<Y
(3.4) LOB(Y)x) + O((Y, Ky)a).

The inner sum on the right hand side of (3.4) can be written as

(3.5) %ZZB (W) e(miQ1(n) + - - - + mQu(n)).

a=1 n<z
Since the polynomial

Yy —u;)a
% +miQ1(y) + -+ miQu(y)
has an irrational coefficient, by a classical theorem of Weyl, the sum (3.5) must be
o(z) as © — oo. We are thus in the range of the conditions of Theorem 1. Therefore,
the following result is an application of Theorem 1.

Theorem 7. Assume that condition (3.1) holds for g = g, (( = 1,...,k) and that
lge(n)| =1 for alln € N. Let

k
H(n) = Hgg(am +by)  witha; €N, by € Z.
(=1
Then,
= J311_>r£10 D_x E H(n 111_}120 . ; H(n) exists.
neT n=r
Moreover, L = L1L4, where
h(l)(dl) .o ) (dy.)
L, = di,...,d
! 2 ToMd, . dy i)

10



Lo = H m(p), where m(p) =1+ Z Z% Z (ge(p*) —1).

k
p>Y a=1 {=1

Here, Dy stands for the set of those {di,...,dy} for which P(d;) <Y andY is so
large that p(d;,d;) =0 if i # j and d;d; has a prime factor larger than Y.

As a corollary, we have the following result.

Theorem 8. Let fy(n), for ¢ = 1,...,k, be additive functions each satisfying the
three conditions

1 2
Z - < 00, Z 0 18 convergent, fé—(m < 00
w17 nwi<t P rwi<t P

Then, the distribution function
1
F(?le-w%) = 1l>m D_x#{ngx ‘n GT, fe(a€n+bf) < Y, l= 17’k}

exists for almost all y, ..., yr and, moreover,

1
F(ylauyk):xh_)lrolog#{ngx ff(a€n+bf)<y€7 621’7]{;}

for almost all yy, ..., ys.
We can also prove the following.

Theorem 9. Let fy(n), for ¢ =1,... k, be additive functions each satisfying the two
conditions

Z 1<c><> and Z M<oo,

@1 P st P

and let Ay(x) = @ Then, the distribution function
p
<z

| fe(@)I<1
F(yi,...,yx) == :}LIEODLx#{n <z:neT, fillam+0b)— Ai(z) <ys, ¢=1,....k}
exists for almost all yy, ..., yr and, moreover,
F(yy, -5 ur) leggoi#{n <z filam+b) — Ae(z) <ye, £=1,....k}

for almost all yy, ..., Y.

Following the method used in Katai [8], we can also prove the following results.
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Theorem 10. Assume that the conditions of Theorem 9 hold and that b, # 0 for
(=1,...,k. Then, the distribution function

G(yr, .- uk) = hm T)#{P <z folagp+be) — A(x) <ye, £=1,...,k}

exists for almost all yy, ..., yx and
Gy, yk) = mh_)rgo DT('( )#{p r:p €T, folagp+be) —Ap(x) <yp, £=1,...,k}
for almost all yy, ..., Y.

Theorem 11. Assume that the conditions of Theorem 8 hold and that b, # 0 for
{=1,..., k. Then, the distribution function

é(yl,...,yk) h_)rn $#{p <z: filap+by) <ye, L=1,....k}

exists for almost all yy,...,yr and
Gy, .. ye) = h_)m Dﬂ'( )#{p x:p€eT, filagp+by) <ye, L=1,...k}
for almost all yy, ..., yx.

3.3 Further applications

We can obtain the analogues of all the theorems proved in Katai [7]. To illustrate
this, we will only explicitly formulate the analogue of Theorem 5.

Theorem 12. Let Fj(x) € Z[z], j = 1,...,k, be k polynomials each of which has a
positive leading coefficient. Let xo be chosen in such a way that for all j € {1,...,k},
F;(n) > 0 if n > xo. Let also v € N be such that F;(n) =0 (mod p) and F;(n) =0
(mod p), with i # j, do not hold simultaneously if p > . (Such an integer ~ exists
(see Tamaka [10]).) Further let D, be the set of those k-tuples of natural numbers
{dv,...,dx} such that P(d;) < v for all j € {1,...,k}. Let p(dy,...,dy) stand
for the number of those n (mod LCM]|dy,...,dy]) for which F;(n) = 0 (mod d;),
j = 1,...,k, simultaneously hold. Furthermore, let X(dy,...,dy) be the number of
solutions n for which the additional condition GCD(n, H?Zl d;) =1 holds. Also, for
each j € {1,...,7}, let p;(d) be the number of solutions n of Fj(n) =0 (mod d) and
let A\j(d) be the number of solutions n for which the additional condition gcd(n,d) =
1 holds. Finally, assume that the polynomials F;(x) and F;(x) are coprime when
i # j. For each j € {1,...,k}, let v; stand for the degree of F;(x) and g;(n) be a
multiplicative function satisfying |g;(n)| = 1 for alln € N. Furthermore, assume that

L —9i(p)p;
Z( 9;(p)p;(p)

converges for j =1,...,k
p

p

12



and that

fora =1 when v; =2 and fora=1,2,...

Let

Then,

(1—g;(®"))p;(p*) = 0
,l/j -2 ZfVJ Z 3.

H(n) =[] 9;(F

J=1

as p — 0o

(n)).

1 .1
M Jim 50 2 HOn = Jim 5> Hin)

exists, and moreover

where

M= Y

M,y = m(p)

P>

n<x
neT

n<x

M = M Ma,

If we also assume that, for j =1,... k,

(1 —g;(®*))p;(p*) = 0

fora =v; —1 when v; > 2, then

as p — 0o

1
N o= Jim prey 2 HW) = Jim o> HE)
peT p<z
exists, and moreover
N = NlNZ)
where
ha(dy) - - he(dy)
Nl = Z )\(dl7 s dk’);
{d1,....dp }ED, e(LCM]dy, . .., dk])
where hj(n) = Zu(d)gj(n/d), G=1,...,k),
dln
= 1
NQ == TAfL(p)7 where m(p) =1 +Z —



3.4 Further results
Let R(x) € R[z] be a polynomial of degree k taking only positive values. Set pgo(n) =

©(n)/n, so that
wuln) =TT (1-3) =42

pln dln

Set t, = @o(R(n)) and for Y > 0, set

p<Y p
|R(n)
Then
Y) 1 1 —1/k
o<t —t, < [ (1-=)s1—= I] (1--)¢+0@G""
p<Y p Y <p<al/k p
p|R(n) L p|R(n)
(
1 1 ~1/k
= H 1——]<1—exp Z log1—— + Oz ")
<Y p pIR(n) p
p|R(n) L Y<p§zl/k
<oy seo(a)
p|R(n)
Y<p<z

Thus,

) 1-1/k @ 1-1/k cx
nzsx(tn tn)SO(x )—l—cxlDZY pe gO(x )Jr—logY‘

Now, in light of (3.6), we have

t(Y Z #

d|R(n)
P(d)<Y
so that we may write that
(3.7)
Zt(y e(miQu(n)+- - +mQ(n Z ,u Z e(miQi(n)+- - -+mQi(n)).
nsw P(ddjéY R(n)zgsfmod d)

Since the inner sum on the right hand side of (3.7) runs over some arithmetical
progression mod d and since the number of d’s is limited by 27(). then one may
conclude that

Zt e(m1Q1(n -+ mQi(n)) = o(x) as r — 0.

n<x

14



This allows us to state the following theorem.

Theorem 13. The following limits all exist:

lim —— 3 go(R(n) — lim % > eolR(n)),

z—oo D
n<w n<lz
neT
, 1 : 1
1 By 2 0N = i 5 0 ()

pE_'T
Note that a similar theorem could be proved for o¢(n) := o(n)/n instead of ¢o(n).

4 Open problems

4.1 A question related to the divisor function

Let 7(n) stand for the number of divisors of n. Is it true that

1 1
xlongT(n)_—Dxloga:ZT(n)—>O as r — 00

n<x n<x
- neT

or not ?

4.2 A question related to shifted primes

Assume that the necessary conditions of the Erdés-Kac Theorem hold, that is that f
is a strongly additive function satisfying f(p) = O(1). Letting

Az) == Z % and B*(z) = Z @

p<z p<z

and setting

1

Dw(x)#{p <z:peT, flp+1)—A(x) < 2B(z)}.

G.(2) =

Then, is it true that

for all real numbers z or not ?

15
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