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Abstract. Let k be an arbitrary positive integer and let γ(n) stand for the

product of the distinct prime factors of n. For each integer n ≥ 2, let an and
bn stand respectively for the maximum and the minimum of the k integers

γ(n+1), γ(n+2), . . . , γ(n+k). We show that lim infn→∞ an/bn = 1. We also

prove that the same result holds in the case of the Euler function, the sum
of the divisors function as well as the functions ω(n) and Ω(n) which stand

respectively for the number of distinct prime factors of n and the total number

of prime factors of n counting their multiplicity.

1. Introduction

The local behavior of arithmetic functions has been the focus of various studies.
One of these involves comparing the values of an arithmetic function at its con-
secutive arguments. For instance, we were able to show (see our recent book [3],
Proposition 8.9) that, given any integer k ≥ 2 and letting φ stand for the Euler
function, φ(n + 1) < φ(n + 2) < · · · < φ(n + k) holds for infinitely many positive
integers n. The same type of statement can be made for the sum of divisors func-
tion σ(n). Besides these and other multiplicative functions, similar statements can
be made for additive functions. For instance, De Koninck, Friedlander and Luca
[2] proved that, given any integer k ≥ 2 and setting g(n) = ω(n) :=

∑
p|n 1 or

g(n) = Ω(n) :=
∑

pα‖n α, then

(1.1) g(n+ 1) < g(n+ 2) < · · · < g(n+ k) holds infinitely often.

See also [1]. However, such results do not provide sufficient information to conclude
that, in the above string of inequalities, g(n+k)/g(n+1) can be arbitrarily close to
1 on an infinite sequence of integers n. Here, we fill this gap for several arithmetic
functions, in particular for the kernel function γ(n) :=

∏
p|n p. More precisely, let

f : N → R+ be an arithmetic function with values in the positive reals. For each
positive integer k, let

fk = lim inf
n→∞

max{f(n+ 1), . . . , f(n+ k)}
min{f(n+ 1), . . . , f(n+ k)}

.

We show that fk = 1 for all k ≥ 1 for a variety of classical arithmetic functions like
f(n) = γ(n), φ(n), σ(n), ω(n), Ω(n).
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2. The construction for ω(n) and Ω(n)

For f(n) = ω(n), Ω(n), this is easy. By the Turán-Kubilius inequality, for
each ε > 0, the number of positive integers n ≤ x with the property that ω(n) 6∈
((1−ε) log log x, (1+ε) log log x) is O(x/ log log x). Doing this for n+1, . . . , n+k,
it follows that for

x+O(kx/ log log x) = (1 + o(1))x

positive integers n ≤ x as x→∞, we have that

ω(n+ i) ∈ ((1− ε) log log x, (1 + ε) log log x)), i = 1, . . . , k.

Thus, for such n we have that

max{f(n+ 1), . . . , f(n+ k)}
min{f(n+ 1), . . . , f(n+ k)}

∈
[
1,

1 + ε

1− ε

]
.

Making ε tend to zero we get the desired assertion. Of course, the same works for
Ω(n).

3. The construction for γ(n)

Let k ≥ 2, K = (2k + 1)!. Let n ≡ K (mod K2). Then n = K +K2m for some
nonnegative integer m. Write

n+ i = ini, where ni =

(
1 +

K

i

)
+

(
K2

i

)
m for i = 1, . . . , k.

Since i2 | (k!)2 | K, it follows that ni is coprime to all primes p ≤ k for i = 1, . . . , k.
Moreover, since K/i is a multiple of all primes p ∈ [k + 1, 2k + 1] for all i ≤ k,
it follows that ni is coprime to all primes p ∈ [k + 1, 2k + 1] as well. Thus, ni is
coprime to all primes p ≤ 2k + 1. By multiplicativity, f(n + i) = f(i)f(ni) for
all i = 1, . . . , k. Let ε > 0 be fixed. Let us put g(i) = f(i)/i. Choose a prime
p1 > 2k + 1 sufficiently large so that each of the intervals(

g(i)

g(1)
p1,

g(i)

g(1)
p1(1 + ε)

)
i = 1, . . . , k

contains a prime pi > 2k + 1 such that p1, . . . , pk are distinct primes. This is
possible if

p1 > (2k + 1)g(1) max{g(i)−1 : 1 ≤ i ≤ k},
and if

π

(
g(i)

g(1)
p1(1 + ε)

)
− π

(
g(i)

g(1)
p1

)
> k for all i = 1, . . . , k,

which holds for large p1 by the Prime Number Theorem. Impose that

n+ i ≡ p2i (mod p3i ) i = 1, . . . , k.

This puts n into a certain progression modulo M := K2(
∏k

i=1 pi)
3. Say the progres-

sion is n = N0 +M`, where N0 is the smallest positive integer in that progression.
Let x be large such that

log x > 12P logP, where P := max{p1, p2, . . . , pk}.
Note that

M = K2

(
k∏

i=1

pi

)3

< (2k + 1)4k+2 (p1 · · · pk)
3
< P 2P · P 3k < P 4P < x1/3.
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Thus, the number of such n ≤ x is≥ bx/Mc−1. We claim that a positive proportion
of them have ni/p

2
i square-free. Indeed, if not, ni cannot be divisible by squares

of primes p ≤ 2k + 1, so it must be the case that p2 | ni for some p > 2k + 1 and
p 6= pi. Clearly, p 6= pj for some j 6= i, otherwise p divides both n + i and n + j,

so their difference 0 < |j − i| < k < p, a contradiction. If p ≤
√
x/M , this puts n

into an arithmetic progression of ratio Mp2 < x, so the number of such n ≤ x is at
most

(3.1)
x

Mp2
+O(1).

If p >
√
x/M , then this puts N0+i+M` into an arithmetic progression modulo p2,

and the number of such possibilities is O(1). Thus, the number of such possibilities
is at most what is shown in (3.1) independently of p, and only p > 2k+1 is possible.
Summing this up over all p ≤ x1/2, and over all i = 1, . . . , k, we get that number
of such possibilities is

≤ kx

M

∑
p≥2k+3

1

p2
+O(k

√
x).

The first sum is at most

kx

M

∑
m≥2k+3

1

m2
<
kx

M

∑
m≥2k+3

1

m(m− 1)
=

kx

2M(k + 1)
.

Since M � x1/3, it follows that x/M � x2/3, so that k
√
x = o(x/M). Thus, for

large x the number of such n ≤ x is at most

x

M

(
k

2k + 2
+ o(1)

)
<

x

2M
.

It follows that for large x there are⌊ x
M

⌋
− 1− x

2M
>

x

3M

such positive integers n for which ni/p
2
i is squarefree. Now if f = γ, we have that

f(n+ i) = f(i)f(ni) = f(i)pi

(
n+ i

ip2i

)
=
f(i)

ipi
n(1 + o(1)) =

g(i)

pi
n(1 + o(1))

as x→∞ for i = 1, . . . , k. Since

g(i)

pi
∈
[
g(1)

p1
(1 + ε)−1,

g(1)

p1

]
,

it follows that

max{f(n+ 1), . . . , f(n+ k)}
min{f(n+ 1), . . . , f(n+ k)}

∈ [1 + o(1), 1 + ε+ o(1)]

as x → ∞. Now we make ε go to zero and x go to infinity and get the desired
result.
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4. The construction for φ(n), σ(n)

For this, we use the fact that φ(a)/a is dense in [0, 1] and the same is true for
a/σ(a). To adapt the previous construction we choose again n ≡ K (mod K2)
and such that additionally n + i ≡ ai (mod a2i ), where a1, . . . , ak are mutually
coprime positive integers, divisible only with primes > 2k + 1 and such that, for
each i = 1, . . . , k,

(4.1) g(i)
f(ai)

ai
∈
(
g(1)

f(a1)

a1
, g(1)

(
f(a1)

a1

)
(1 + ε)

)
.

This is possible by the denseness of φ(a)/a and a/σ(a) in [0, 1] even if a is required
to be coprime to primes from a fixed finite set. To find such numbers we can start
with a1 = 1, then use the denseness of φ(a)/a or a/σ(a) to find a suitable a2
coprime to K with the property (4.1), then use the denseness of φ(a)/a or a/σ(a)
to find a3 coprime to Ka2 with property (4.1), and so on. Then the proof goes as
in the preceding case except that instead of taking n + i ≡ p2i (mod p3i ), we take
n + i ≡ ai (mod a2i ). Furthermore, take Q = max{P (ai) : 1 ≤ i ≤ k}. We set
P = 0.1 log x/ log log x and ask of x to be such that P > Q. Then the inequality
x > 9P logP is satisfied for large x. We also let Q be the set of primes ≤ P not

dividing K
∏k

i=1 ai and ask of all p ∈ Q to divide n. Thus, the progression for our
Chinese Remainder Theorem has modulus

M = K2

(
k∏

i=1

ai

)2 ∏
q∈Q

q ≤ K2

 ∏
2k+1≤q≤P

q

2

< P 2P e2.5P < P 3P < x

for large x. Here, we used the Prime Number Theorem under the form

(4.2)
∏
p≤y

p = e(1+o(1))y as y →∞.

By multiplicativity,

f(n+ i) = f(i)f(ai)f

(
n+ i

iai

)
.

We can show that

(4.3) f

(
n+ i

iai

)
=

n

iai
(1 + o(1))

as x → ∞. Indeed, this is due to the fact that (n + i)/(iai) := mi is a number of
size ≤ x which has no prime factors below P = 0.1 log x/ log log x. Since n ≤ x, n
has at most 2 log x/ log log x distinct prime primes in total for large x (again by the
Prime Number Theorem (4.2)) and so

f(mi)

mi
=

∏
p|mi

(
1 +O

(
1

p

))
= exp

O
∑

p|mi

1

p


= exp

O
 ∑

c1 log x/ log log x<p<c2 log x/ log log x

1

p


= exp(o(1)) = 1 + o(1),
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as ∑
c1 log x/ log log x<p<c2 log x/ log log x

1

p
= o(1) for x→∞.

Here, c1 = 0.1 < c2 = 2. We have thus proved (4.3) and therefore established that

max{f(n), . . . , f(n+ k − 1)}
min{f(n), . . . , f(n+ k − 1)}

∈ [1 + o(1), 1 + ε+ o(1)] ,

which completes the proof of this case by making ε tend to zero and x tend to
infinity.

Added after acceptance. We have just realized that in the case f(n) = γ(n), the fact
that the associated fk satisfies fk = 1 for all k ≥ 1 is actually a consequence of the
main result in a 12-year-old paper by F. Luca and I. Shparlinski “Approximating
positive reals by ratios of consecutive integers” in Diophantine analysis and related
fields 2006, 141–149, Sem. Math. Sci., 35, Keio Univ., Yokohama, 2006. Their
proof follows a different approach and applies only to the γ(n) function.
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