
Consecutive Integers Divisible by a Power

of their Largest Prime Factor

Jean-Marie De Koninck
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Abstract

We construct families of consecutive polynomials with integer coefficients which
allow for the discovery of consecutive integers divisible by a power of their largest
prime factor.

1 Introduction

Let P (n) stand for the largest prime factor of an integer n ≥ 2 and set P (1) = 1. Given
an arbitrary positive integer ` and k distinct primes p0, p1, . . . , pk−1, the Chinese remainder
theorem guarantees the existence of infinitely many integers n such that p`i | n + i for
i = 0, 1, . . . , k − 1. However, this theorem does not guarantee that such integers n will also
have the property that P (n+ i) = pi for i = 0, 1, . . . , k−1, although such is the case in some
particular instances. For example when ` = 2, k = 3 and n = 1 294 298, we indeed have

1 294 298 = 2 · 61 · 1032,

1 294 299 = 34 · 19 · 292,

1 294 300 = 22 · 52 · 7 · 432.
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In fact, one can show that the above number n is the smallest positive integer with that
property. This motivates the following definitions. Given fixed integers k ≥ 2 and ` ≥ 2, set

Ek,` := {n ∈ N : P (n+ i)` | n+ i for each i = 0, 1, . . . , k − 1}
Ek,`(x) := #{n ≤ x : n ∈ Ek,`}.

Many elements of E2,2, E2,3, E2,4, E2,5 and E3,2 are given in the 2009 book of the first
author [2], whereas no elements of the sets E3,3, E2,6 and E4,2 were known at that time. But,
in 2014, Burcsi and Gévay (private communication), found the 77-digit number n0 which
satisfies

n0 − 1 = 27 · 53 · 4253 · 27631 · 27953 · 1546327 · 2535271

·17603683 · 1472289739 · 164769527993,

n0 = 36 · 19 · 37 · 787 · 711163 · 2181919 · 137861107

·318818473 · 937617607 · 73230901333,

n0 + 1 = 2 · 12899 · 133451 · 421607 · 2198029 · 8046041

·19854409 · 555329197 · 329539055993,

thereby establishing that n0−1 ∈ E3,3. Perhaps, this number is the smallest element of E3,3,
but this has not been shown.

Even though no elements of Ek,` for k ≥ 4 and ` ≥ 2 are known, it seems reasonable
to conjecture that, given any fixed integers k ≥ 2 and ` ≥ 2, the corresponding set Ek,` is
infinite.

The fact that #Ek,` = ∞ is certainly true in the particular case k = ` = 2, as it is an
immediate consequence of the fact that the Fermat-Pell equation a2 − 2b2 = 1 has infinitely
many integer solutions (a, b), thereby also ensuring that E2,2(x) � log x. However, E2,2(x)
can be proved to be much larger. Indeed, De Koninck, Doyon, and Luca [3] focused their
attention on the size of E2,2(x) and proved that

x1/4/ log x� E2,2(x)� x exp{−c
√

2 log x log log x},

where c = 25/24 ≈ 1.042. Note that de la Bretèche and Drappeau [5] have recently showed
that one can choose c = 4/

√
5 ≈ 1.789, whereas, as we will see in Section 9, one can expect

that the true order of E2,2(x) is x exp{−(1 + o(1))2
√

2 log x log log x} as x→∞.

At this point, we introduce additional notation. Given k integers `0, `1, . . . , `k−1, each
≥ 2, consider the set

F (`0, `1, . . . , `k−1) := {n ∈ N : P (n+ i)`i | n+ i for i = 0, 1, . . . , k − 1},

so that in particular Ek,` = F (`, . . . , `︸ ︷︷ ︸
k

). Also, for each integer ` ≥ 2, we set G` := {n ∈ N :

P (n)` | n} and G`(x) := #{n ≤ x : n ∈ G`}.
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Most likely, each set F (`0, `1, . . . , `k−1) is infinite, but besides the set F (2, 2), no such
statement has been proved.

Here, we first show that if we assume that there exist infinitely many primes of the
form 9k2 + 6k + 2 (respectively 4k2 + 2k + 1), then the set F (3, 2) (respectively F (4, 2)) is
infinite. We then explore some identities involving consecutive polynomials whose algebraic
structure provides the potential for revealing infinitely many members of Ek,` for any given
pair of integers k ≥ 2, ` ≥ 2 and of F (`0, `1, . . . , `k−1) for any given k-tuple of integers
`0 ≥ 2, `1 ≥ 2, . . . , `k−1 ≥ 2.

2 Preliminary results and conjectures

2.1 Friable numbers and the Dickman function

For 2 ≤ y ≤ x, the function Ψ(x, y) := #{n ≤ x : P (n) ≤ y}, which counts the number
of “y-friable” or “y-smooth” numbers not exceeding x, has been studied extensively. In
particular, it is known (see for instance Hildebrand and Tenenbaum [7]), that, given ε > 0
and setting u = log x/ log y,

Ψ(x, y) = xρ(u)

(
1 +Oε

(
log(u+ 1)

log y

))
uniformly for x ≥ 3, exp{(log log x)

5
3
+ε} ≤ y ≤ x, where ρ(u) stands for the Dickman func-

tion defined for 0 ≤ u ≤ 1 by ρ(u) = 1 and for u > 1 by the differential equation
uρ′(u) = −ρ(u − 1). It can also be shown (see for instance Corollary 9.18 in the book
of De Koninck and Luca [4]) that

ρ(u) = exp{−u(log u+ log log u− 1 + o(1))} (u→∞),

indicating that ρ(u) decreases very rapidly as u → ∞. In fact the following table provides
the approximate values of ρ(u) for u = 1, 2, . . . , 7.

u 1 2 3 4 5 6 7
ρ(u) 1.0 0.3068 0.0486 0.00491 0.000354 0.0000196 0.00000087

Table 1

Related to the above is the difficult problem of estimating the number of friable (or
smooth) values of polynomials. To do so, given a polynomial f ∈ Z[x] with positive leading
coefficient, we set

Ψ(f ;x, y) := #{n ≤ x : P (f(n)) ≤ y}.

Now, given k irreducible polynomials f1, . . . , fk ∈ Z[x], consider the polyonimal f(t) :=
f1(t) · · · fk(t). Then, as stated by Martin [10], if we assume that the multiplicative properties
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of the various fi(n) are independent of one another, we are led to the probabilistic prediction
that

Ψ(f ;x, y) ∼ x
k∏

i=1

ρ

(
log fi(x)

log y

)
(x→∞). (1)

As we will later see in Section 9, this probabilistic relation will prove useful in estimating
the expected size of the smallest elements of the various sets Ek,`.

2.2 Estimates for the size of G`(x)

It was established by Ivić and Pomerance [9] that

G2(x) = x exp{−(1 + o(1))
√

2 log x log log x} (x→∞). (2)

Observe that a more explicit expression for the right hand side of (2) was later obtained
by Ivić [8]. Now, the technique used in [9] can be used to establish a more general result,
namely that, for any fixed integer ` ≥ 2,

G`(x) = x exp{−(1 + o(1))
√

2(`− 1) log x log log x} (x→∞). (3)

2.3 The Bunyakovsky conjecture

As we will see in the next section, there is an unexpected connection between the size of
the sets F (3, 2) and F (4, 2) and a particular case of an old conjecture of Bunyakovsky [1],
which essentially says that any irreducible polynomial with no fixed prime divisor contains
infinitely many prime values.

Conjecture A (Bunyakovsky). Let f ∈ Z[x] be an irreducible polynomial of posi-
tive degree and with positive leading coefficient such that the greatest common divisor of
f(1), f(2), f(3), . . . is 1. Then there exist infinitely many values of n for which f(n) is prime.

In trying to prove that F (4, 2) is infinite and as will be seen in Section 3, it would be
helpful if we could say that there are infinitely many primes p such that P (p2 + 1) < p.
However, no such claim has been proved, so far. Interestingly, although one can easily show
that the sequence (n2 + 1)n≥1 is such that P (n2 + 1) < n for infinitely many integers n
(simply consider the subsequence n = 2m2, m = 1, 2, . . ., for which n2 + 1 = 4m4 + 1 =
(2m2+2m+1)(2m2−2m+1), and observe that 5 | 2m2+2m+1 provided m ≡ 1, 3 (mod 5),
in which case P (2m2 + 2m + 1) < n, whereas P (2m2 − 2m + 1) < n for all m), it seems to
be much more difficult to prove that P (p2 + 1) < p for infinitely many primes p. However,
if Conjecture A is true, this will indeed be the case.

3 On the infinitude of the sets F (3, 2) and F (4, 2)

Using a computer one can check that the smallest four elements of F (3, 2) are 8, 6 859, 12 167
and 101 250, whereas the smallest four elements of F (4, 2) are 101 250, 11 859 210, 23 049 600
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and 32 580 250. Further calculations seem to indicate that the two sets F (3, 2) and F (4, 2)
are indeed infinite. However, no such claim has yet been proved. Nevertheless, we can prove
the following.

Theorem 1. Assuming that Conjecture A is true, then each of the sets F (3, 2) and F (4, 2)
is infinite.

Proof. First consider the identity

(2m3 + 1)2 − 1 = 4m3(m+ 1)(m2 −m+ 1) (m = 1, 2, . . .). (4)

It is clear that if m = p, a prime, and if the largest prime factor of p2 − p+ 1 is less than p,
then it follows from (4) that n = 4p3(p3 + 1) ∈ F (3, 2). Now, assuming Conjecture A, there
exist infinitely many positive integers k such that 9k2 + 6k + 2 is prime. For each such k,
write p = 9k2 + 6k + 2, in which case p− 1 = (3k + 1)2. Since p ≡ 2 (mod 3), we have that
p+ (3k + 1) ≡ 0 (mod 3). We may thus write

p2 − p+ 1 = (p−
√
p− 1)(p+

√
p− 1) = 3(p− (3k + 1))

p+ (3k + 1)

3
.

Clearly p− (3k + 1) < p. On the other hand,

p+ (3k + 1)

3
=

1

3
(p+

√
p− 1) < p,

thereby implying that P (p2 − p+ 1) < p, thus completing the proof of the first assertion of
the theorem.

Using a similar argument, one can show that F (4, 2) is infinite. Indeed, first observe that
for every prime p,

(2p4 − 1)2 − 1 = 4p4(p+ 1)(p− 1)(p2 + 1). (5)

Assuming Conjecture A, there exist infinitely many integers k such that 4k2+2k+1 is prime.
For each such k, write

p = 4k2 + 2k + 1, (6)

in which case we have p2 + 1 = 2(4k2 + 1)(2k2 + 2k + 1). Now clearly, 4k2 + 1 < p and
2k2 + 2k + 1 < p, implying that P (p2 + 1) < p for each prime p ≥ 3, thereby implying that
if we set n = (2p4 − 1)2 − 1 as p runs through the primes of the form (6), it follows that
P (n)4 | n and P (n+ 1)2 | n, and therefore that n ∈ F (4, 2) for infinitely integers n, thereby
establishing the second assertion of the theorem.

4 Searching for elements of E3,2

In order to generate elements of E3,2, one can use a computer to find all the members of that
set say with fifteen digits or less, thus obtaining the 60 numbers
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1 294 298, 9 841 094, 158 385 500, 1 947 793 550, 5 833 093 013, 11 587 121 710, 20 944 167 840,
22 979 821 310, 24 604 784 814, 267 631 935 500, 290 672 026 412, 956 544 588 350, 987 988 937 343,
2 399 283 556 900, 2 816 075 601 855, 4 174 608 151 758, 4 322 550 249 043, 6 789 218 799 999,
10 617 595 679 778, 16 036 630 184 409, 22 869 997 335 620, 23 153 476 981 634, 23 480 833 955 320,
23 614 828 289 298, 24 126 198 551 098, 24 694 738 692 960, 31 456 704 045 166, 51 739 297 269 174,
52 898 121 606 525, 58 983 108 265 025, 71 709 481 909 254, 85 685 045 024 449, 113 707 706 201 375,
121 263 390 681 828, 122 169 948 877 430, 131 369 477 978 033, 133 959 037 005 774, 173 673 369 470 573,
176 664 623 046 273, 182 814 446 304 023, 209 744 971 905 458, 233 128 603 089 248, 237 464 160 321 408,
255 379 708 116 026, 280 778 107 745 620, 295 087 727 328 448, 313 232 585 684 886, 329 032 104 424 099,
360 853 931 895 982, 366 044 187 876 124, 467 683 999 401 022, 472 490 089 634 815, 480 138 936 005 168,
508 162 109 136 976, 593 047 972 159 008, 628 665 479 832 194, 638 506 456 514 625, 660 115 890 581 849,
906 165 826 118 135, 931 393 753 411 195.

The above list can be generated in a few hours using a powerful computer. However,
in order to generate say thousands of members of E3,2, one needs another approach. One
efficient way is to identify polynomials f(x), g(x) and h(x) with squared factors and such
that g(x) = f(x) + 1 and h(x) = f(x) + 2, with the hope that adequate choices of x will
reveal members of E3,2. Our first choice for such consecutive polynomials is given by

f(x) = x2(2x3 + 5x2 − 5),

g(x) = f(x) + 1 = (x2 + x− 1)2(2x+ 1), (7)

h(x) = f(x) + 2 = (x+ 1)2(2x3 + x2 − 4x+ 2).

Setting x = 3802 reveals the three consecutive 19-digit integers

1 589 922 788 612 140 124 = 22 · 59 · 61 · 71 · 239 · 1801 · 19012,

1 589 922 788 612 140 125 = 32 · 53 · 112 · 132 · 1512 · 17412,

1 589 922 788 612 140 126 = 2 · 103 · 701 · 809 · 941 · 38032.

As x runs through positive integers up to 2 000 000, we thus find a total of 33 members of
E3,2; much work for little outcome. Other approaches can be more fruitful. Indeed, first
consider the system

f(x) = (2x2 + 1)2(x− 1)(x+ 1),

g(x) = f(x) + 1 = x2(4x4 − 3), (8)

h(x) = f(x) + 2 = (2x2 − 1)2(x2 + 1).

With x = 5087, we find the somewhat larger 23-digit numbers

69 315 509 064 481 032 011 329 = 26 · 37 · 53 · 53 · 2543 · 19168572,

69 315 509 064 481 032 011 330 = 11 · 71 · 769 · 1163 · 1321 · 2903 · 50872,

69 315 509 064 481 032 011 331 = 2 · 5 · 72 · 17 · 292 · 1672 · 181 · 442732.
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However, letting x run up to 2 000 000 reveals 252 elements of E3,2, a score better than the
one obtained through system (7). Many more elements of E3,2 can be obtained with a small
modification to system (8). Indeed, in (8), replacing x2 by x, we find the new system

g(x)− 1 = (2x+ 1)2(x− 1),

g(x) = x(4x2 − 3), (9)

g(x) + 1 = (2x− 1)2(x+ 1).

Although at first sight, system (9) appears to be useless in the quest to find elements of
E3,2, observe that since mP (m) ∈ G2 for each integer m ≥ 2, if we substitute x = mP (m)
in system (9) and let m run up to 2 000 000, we find 261 elements of E3,2 and running m
up to 30 000 000, we find 4 473 elements of E3,2. One reason for the numerous elements of
E3,2 found using system (9) is that the polynomials involved are of degree 3 while those in
systems (7) and (8) are of degree 5 and 6 respectively.

Remark 1. It has recently come to the attention of the authors that in 1986 Hildebrand [6]
also came up with system (9) but for a different purpose and in a different context.

5 Searching for elements of F (2, `, 2)

Consider the consecutive polynomials

g(x)− 1 = 2(x+ 1)2(24x3 + 12x2 + 2x− 1),

g(x) = (2x+ 1)3(6x2 + 6x− 1), (10)

g(x) + 1 = 2x2(24x3 + 60x2 + 50x+ 15).

This set up is of particular interest because it allows for a rapid search for elements in
F (2, 3, 2). For instance, using a computer and letting x run through the primes p, we find
that the prime p = 6 158 923 yields the 36-digit number n1 which is such that

n1 − 1 = 25 · 139 · 331 · 1627 · 3457 · 73019 · 296729 · 15397312,

n1 = 33 · 11 · 137 · 40433 · 3735181 · 41059493,

n1 + 1 = 2 · 17 · 23 · 463 · 107251 · 433259 · 666529 · 61589232.

Many other elements of F (2, 3, 2) can also be obtained from the polynomials in (10).
A smaller element of F (2, 3, 2) can be obtained by considering another configuration of

the same kind but with greater symmetry, namely

g(x)− 1 = (2x+ 1)2(12x3 − 12x2 + 4x− 1),

g(x) = 4x3(12x2 − 5), (11)

g(x) + 1 = (2x− 1)2(12x3 + 12x2 + 4x+ 1).
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This scenario allows us to find the 34-digit number n2 ∈ F (2, 3, 2) which is such that

n2 − 1 = 33 · 17 · 113 · 239 · 12829 · 13679 · 321109 · 12421212,

n2 = 22 · 24121 · 32203 · 53629 · 18631813,

n2 + 1 = 7211 · 17977 · 689237 · 868691 · 37263612.

Remark 2. The fact that the numbers n1 and n2 are large is in part due to the fact that
they each are solutions of a system of polynomials with a very specific algebraic structure.
Therefore, one will not be surprised to learn that smaller elements of F (2, 3, 2) do exist. For
instance, a judicious computer search reveals that the much smaller 16 and 20 digit numbers
3 858 290 162 662 516 and 67 500 618 671 796 179 920 are both elements of F (2, 3, 2).

The three polynomials given in (11) can also be put to good use to find an element of
F (2, 6, 2). Indeed by considering positive integers r of the form r = mP (m), that is members
of G2, we automatically get that r3 ∈ G6, implying that if 2r−1 =: p and (2r+1)/3 =: q are
both primes and if the three conditions P (12r3−12r2+4r−1) < q, P (12r3+12r2+4r+1) < p
and P (12r2 − 5) < P (m) are simultaneously satisfied, then we are guaranteed that the
number 4r3(12r2 − 5)− 1 belongs to F (2, 6, 2). In fact by choosing m = 79 311 205, that is
r = 5 · 17 · 933 0732 and thus substituting the value x = 74 003 143 982 965 in (11), we find
the 72-digit integer n which satisfies

n = 34 · 3171439637 · 5982121049 · 91023709109 · 312912616603 · 493354293219772,

n+ 1 = 22 · 54 · 72 · 173 · 43 · 223 · 599 · 3607 · 66977 · 227089 · 851231 · 9330736,

n+ 2 = 121327 · 13747920817 · 49470595193983 · 58937287195613 · 1480062879659292.

Of course, this also reveals a number in F (2, 5, 2) and in F (2, 4, 2). However, for the same
reason as the one mentioned in Remark 2, smaller elements of F (2, 5, 2) and F (2, 4, 2) most
certainly exist.

6 Elements of E3,3

In the hope of finding elements of E3,3 using consecutive polynomials, one might search for
three consecutive polynomials f(x)−1, f(x), f(x) + 1 which are respectively divisible by say
(2x−1)3, x3, (2x+1)3. If this is possible, then, since the original polynomials only differ by a
constant, they must share the same derivative f ′(x). But then, clearly, (2x−1)2, x2, (2x+1)2

are three factors of f ′(x). This means that assuming that f(x) is of degree 7, then we must
have that for some constant a ∈ N,

f(x) =

∫
a · (2x− 1)2 · x2 · (2x+ 1)2 dx =

∫
ax2(4x2 − 1)2 dx.
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It turns out that, by choosing a = 105, we find the three consecutive polynomials

f(x)− 1 = (2x− 1)3(30x4 + 45x3 + 24x2 + 6x+ 1),

f(x) = x3(240x4 − 168x2 + 35), (12)

f(x) + 1 = (2x+ 1)3(30x4 − 45x3 + 24x2 − 6x+ 1),

which certainly have the potential of revealing several elements of E3,3. In fact, setting
x = 39 682 272 446 in (12), we find the 77-digit number n1 which is such that

n1 − 1 = 33 · 137 · 251 · 49253 · 6892241 · 1400173417 · 1749071927 · 2602138829 · 264548482973,

n1 = 23 · 1162 · 31 · 3301 · 92639 · 376627 · 474994139 · 573384841 · 5057839271 · 198411362233,

n1 + 1 = 13 · 23 · 41 · 613 · 233 · 3767 · 9551 · 977719 · 5076637 · 367839041 · 396464197 · 13010581133,

so that n1 − 1 ∈ E3,3. Observe that although n1 is larger than the number n0 appearing
in Section 1, it has the same number of digits. Similarly, setting x = 39 874 762 919 in (12),
we find another 77-digit number belonging to E3,3. Many more can be obtained with larger
values of x.

7 The particular case E2,`

Given an integer ` ≥ 2, are there two consecutive polynomials which can help one find
positive integers n such that P (n)` | n and P (n + 1)` | n + 1 ? The answer is “yes” and an
explicit answer is given by the following result.

Theorem 2. Let ` ≥ 2 be a fixed integer. Then, there exist g1(x), g2(x) ∈ Z[x] each of degree
`− 1 such that

x` · g1(x) + (−1)` = (x− 1)` · g2(x). (13)

Proof. First observe that, using repeated integration by parts one easily obtains that∫ 1

0

tr(t− 1)r dt = (−1)r
r! · r!

(2r + 1)!
= (−1)r C (r = 1, 2, . . .) (14)

where C =
r! · r!

(2r + 1)!
.

In order to prove (13), we first consider the case ` even and set r = ` − 1. Computing
the primitive of the function xr(x− 1)r, that is

g(x) :=

∫ x

0

1

C
tr(t− 1)r dt, (15)

9



we obtain, since r is odd,

g(x) =

∫ x

0

1

C
tr
(
tr −

(
r

1

)
tr−1 +

(
r

2

)
tr−2 − · · ·+

(
r

r − 1

)
t− 1

)
dt

=

∫ x

0

1

C

(
t2r −

(
r

1

)
t2r−1 +

(
r

2

)
t2r−2 − · · ·+

(
r

r − 1

)
tr+1 − tr

)
dt

=
1

C

(
x2r+1

2r + 1
−
(
r

1

)
x2r

2r
+

(
r

2

)
x2r−1

2r − 1
− · · ·+

(
r

r − 1

)
xr+2

r + 2
− xr+1

r + 1

)
= xr+1

{
1

C

(
xr

2r + 1
−
(
r

1

)
xr−1

2r
+

(
r

2

)
xr−2

2r − 1
− · · ·+

(
r

r − 1

)
x

r + 2
− 1

r + 1

)}
= xr+1g1(x), (16)

which corresponds to the first term on the left hand side of (13). Setting

h(x) := g(x) + 1, (17)

it follows from (16) and (14) that

h(1) = g(1) + 1 =

∫ 1

0

1

C
tr(t− 1)r dt+ 1 =

1

C
(−1)r C + 1 = −1 + 1 = 0,

thereby implying that x − 1 is a factor of h(x). In order to complete the proof of (13), it
is sufficient to prove that (x − 1)`−1 = (x − 1)r is a factor of the derivative of h(x). But
recalling the definitions of g and h given by (15) and (17), it follows that

h′(x) = g′(x) = xr(x− 1)r,

thereby implying that (x− 1)r is indeed a factor of h′(x) as requested.
The case ` odd can be treated in a similar manner.

Since, as mentioned in Section 1, no elements of E2,6 have been previously discovered,
let us illustrate the above method in the case ` = 6. Applying Theorem 2, we find the two
consecutive polynomials

g(x) = x6(252x5 − 1386x4 + 3080x3 − 3465x2 + 1980x− 462),

g(x) + 1 = (x− 1)6(252x5 + 126x4 + 56x3 + 21x2 + 6x+ 1).

Choosing x = 20 905 825 364, we obtain the 116-digit integer n which satisfies

n = 213 · 5 · 83 · 22157 · 127139 · 12177577 · 17565259 · 372289003

1659308773 · 3257215037 · 52264563416,

n+ 1 = 569 · 32939 · 122489 · 146359 · 50300881 · 919974911

4166729363 · 15532846993 · 209058253636.

Choosing x = 86 459 129 774, we find another element of E2,6, this time with 123 digits.
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8 Consecutive polynomials generating elements of the

sets Ek,`

In the previous sections, we were successful in generating two or three consecutive integer
coefficient polynomials each divisible by a power of some linear polynomial. We will now
show that this can be done for an arbitrarily long sequence of consecutive polynomials each
divisible by the `-th power of some linear polynomial.

Theorem 3. Given fixed integers k ≥ 2 and ` ≥ 2, there exist k consecutive polynomials
Li(x) ∈ Z[x], i = 0, 1, . . . , k− 1, that is Li+1(x)−Li(x) = 1 for i = 0, 1, . . . , k− 2, such that
each Li(x) is divisible by the `-th power of some linear polynomial.

Proof. We only give the proof in the case ` = 2 and arbitrary k ≥ 2, the general case
being similar. Our proof is constructive. First, choose k − 1 linear polynomials cix + di,
where ci, di ∈ Q and ci > 0 for i = 1, . . . , k − 1, in such a way that the k linear polynomials
x, c1x+d1, . . . , ck−1x+dk−1 are pairwise linearly independent over Q. We shall first construct
k consecutive polynomials Qi(x) with rational coefficients, namely

Q0(x) = x2
2k−1∑
r=0

arx
r, Qi(x) = (cix+ di)

2

2k−1∑
r=0

bi,rx
r (i = 1, . . . , k − 1), (18)

where each Qi(x) ∈ Q[x] and Qi(x) = Q0(x) + i for i = 1, . . . , k − 1.
In order for the equation Q1(x) = Q0(x) + 1 to hold for all x, that is for the equation

(c1x+ d1)
2(b1,0 + b1,1x+ · · ·+ b1,2k−1x

2k−1) = 1 + a0x
2 + a1x

3 + · · ·+ a2k−1x
2k+1 (19)

to hold, we need to equate the respective coefficients of xr, r = 0, 1, . . . , 2k+1, on both sides
of the above identity. Equating the coefficients of x0 and of x1, we find

d21b1,0 = 1 and d21b1,1 + 2c1d1b1,0 = 0,

which allows us to express the values of b1,0 and b1,1 in terms of c1 and d1. Equating the
coefficients of x2, x3, . . . , x2k+1 on both sides of (19), we find that

a0 = d21b1,2 + 2c1d1b1,1 + c21b1,0,

a1 = d21b1,3 + 2c1d1b1,2 + c21b1,1,
...

...

a2k−3 = d21b1,2k−1 + 2c1d1b1,2k−2 + c21b1,2k−3,

a2k−2 = 2c1d1b1,2k−1 + c21b1,2k−2,

a2k−1 = c21b1,2k−1.

We then move to equation Q2(x) = Q0(x) + 2 and again equate coefficients. Equating the
coefficients of x0 and of x1, we find

d22b2,0 = 2 and d22b2,1 + 2c2d2b2,0 = 0,
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which allows us to express b2,0 and b2,1 in terms of c2 and d2. Equating the coefficients of
x2, x3, . . . , x2k+1, we find that

a0 = d22b2,2 + 2c2d2b2,1 + c22b2,0,

a1 = d22b2,3 + 2c2d2b2,2 + c22b2,1,
...

...

a2k−3 = d22b1,2k−1 + 2c2d2b2,2k−2 + c22b2,2k−3,

a2k−2 = 2c2d2b2,2k−1 + c22b2,2k−2,

a2k−1 = c22b2,2k−1.

Similarly, we construct k − 3 other systems each with 2k equations. Then, from these k − 1
systems, we see that

a0 = d21b1,2+2c1d1b1,1+c21b1,0 = d22b2,2+2c2d2b2,1+c22b2,0 = · · · = d22bk−1,2+2c2d2bk−1,1+c22bk−1,0

and obtain analogous identities for a1, a2, . . . , a2k−1. Hence, recalling that c1, . . . , ck−1 and
d1, . . . , dk−1 are given, in all we obtain 2k(k − 2) equations involving a total of 2(k − 1)2

unknowns, namely bi,j where 1 ≤ i ≤ k − 1 and 2 ≤ j ≤ 2k − 1. To summarize, we have
constructed a system of 2k2 − 4k linear equations involving 2k2 − 4k + 2 unknowns. This
means that if we fix any two of these unknowns, we will obtain a unique solution for the set
of bi,j’s.

Finally, having obtained the values of bi,j for 1 ≤ i ≤ k − 1 and 2 ≤ j ≤ 2k − 1, we can
use any of the k− 1 systems of equations to determine the unique values of a0, a1, . . . , a2k−1.

Moreover, since all of the above equations are linear and involve rational coefficients, the
coefficients ar are also rational. Let us then write each ar as

ar =
pr
qr

where pr, qr ∈ Z, (pr, qr) = 1, qr > 0 and set D := lcm[q1, . . . , qr]

and consider the polynomials

Li(x) := Qi(Dx) (i = 0, . . . , k − 1).

We then have

L0(x) = Q0(Dx) = D2 x2
2k−1∑
r=0

arD
r · xr = D · x2

2k−1∑
r=0

D · ar · (Dx)r.

By the nature of D, the coefficients of L0(x)/x2 are therefore all integers. This implies
that each of the polynomials L0(x), . . . , Lk−1(x) has integer coefficients. Moreover, these
polynomials are clearly consecutive. We have thus created an infinite family of consecutive
polynomials each with a squared factor, as required.

12



Example. In the case (k, `) = (4, 2), the above construction yields the four consecutive
polynomials

L0(x) = x2
(

17220 + a− 5b+ (815440 + 52a− 248b)x+ (14339520 + 1108a− 4916b)x2

+(120865536 + 12384a− 48624b)x3 + (494346240 + 76608a− 234432b)x4

+(789626880 + 248832a− 324864b)x5 + (331776a+ 1327104b)x6 + 3981312bx7
)

and L1(x), L2(x) and L3(x) whose squared factors are (6x + 1)2, (8x + 1)2 and (12x + 1)2,
respectively. We have thus constructed infinitely many such quadruples with parameters a
and b. Choosing a = b = 0 allows for the more simple quadruple

L0(x) = x2
(

17220 + 815440x + 14339520x2 + 120865536x3 + 494346240x4 + 789626880x5
)

L1(x) = L0(x) + 1 = (1 + 6x)2
(

1− 12x + 17328x2 + 607936x3 + 6420480x4 + 21934080x5
)

L2(x) = L0(x) + 2 = 2(1 + 8x)2
(

1− 16x + 8802x2 + 267912x3 + 2319840x4 + 6168960x5
)

L3(x) = L0(x) + 3 = (1 + 12x)2
(

3− 72x + 18516x2 + 381424x3 + 2519040x4 + 5483520x5
)

Using the method of proof of Theorem 3, the following result also holds.

Theorem 4. Given arbitrary integers `i ≥ 2, i = 0, 1, . . . , k − 1, there exist k consecutive
polynomials L0(x), L1(x), . . . , Lk−1(x) ∈ Z[x] such that each Li(x), i = 0, 1, . . . , k − 1, is
divisible by the `i-th power of some linear polynomial.

Proof. We only provide a sketch of the proof. The idea is to let s := `0 + · · ·+ `k−1, to set

Q0(x) := x`0
s−`0−1∑
r=0

arx
r and Qi(x) := (cix+ di)

`i

s−`i−1∑
r=0

bi,rx
r for i = 1, . . . , k − 1

and then to search for the coefficients ar ∈ Q and bi,r ∈ Q in the same manner as we did in
the proof of Theorem 3. This allows us to obtain k consecutive polynomials Q0(x), Q1(x),
. . ., Qk−1(x) ∈ Q[x] with the property that Q0(x) is divisible by x`0 whereas each Qi(x),
for i = 1, . . . , k − 1, is divisible by the `i-th power of a linear polynomial cix + di with
ci, di ∈ Q, ci > 0. Using these k polynomials with rational coefficients, we proceed as in the
proof of Theorem 3 and obtain k consecutive polynomials L0(x), L1(x), . . . , Lk−1(x) ∈ Z[x]
with the same properties.

Remark 3. It follows from Theorems 3 and 4 that if Martin’s probabilistic prediction (1) is
true, then each one of the sets Ek,` and F (`0, `1, . . . , `k−1) is infinite.
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9 Final remarks and heuristics

Let us now examine the expected size of the smallest elements of Ek,`.
A consequence of estimate (3) is that the probability that a given large integer n is such

that P (n)` divides n is approximately 1/e
√

2(`−1) logn log logn.
On the other hand, given an arbitrary integer k ≥ 2, it is reasonable to assume that

P (n), P (n+ 1), . . . , P (n+ k − 1) are independent events and therefore to conclude that the

probability that P (n+ i)` | n+ i for i = 0, 1, . . . , k − 1 is around 1/ek
√

2(`−1) logn log logn.
Using this approach, one can expect the smallest element of E3,3 to have around 82 digits

(that is, roughly the size of the numbers n0 and n1 obtained in Sections 1 and 6, respectively)
and that the smallest element of E4,2 to have around 71 digits.

On the other hand, in line with our algebraic approach, the following system (similar to
the one displayed in Section 8, but with smaller coefficients for each of the four degree 5
polynomials) clearly has the potential of generating infinitely many elements of E4,2:

f(x) = 4x2(184896x5 + 292320x4 + 172500x3 + 46500x2 + 5501x+ 195),

f(x) + 1 = (2x+ 1)2(184896x5 + 107424x4 + 18852x3 + 792x2 − 4x+ 1),

f(x) + 2 = 2(4x+ 1)2(23112x5 + 24984x4 + 7626x3 + 438x2 − 8x+ 1),

f(x) + 3 = (6x+ 1)2(20544x5 + 25632x4 + 10052x3 + 1104x2 − 36x+ 3).

Unfortunately, in order to find a number n1 ∈ E4,2 using the above four polynomials, one
would need much computer time since, in light of the conjectured estimate (1) and of Table
1, one can expect, as x runs through the positive integers, that the probability that each
of the above degree 5 co-factors has its largest prime factor smaller than the largest prime
factor of their respective squared factors is smaller than ρ(5) ≈ 0.000354, implying that the
smallest integer x meeting these four requirements would be larger than 1/ρ(5)4 > 1014 and
therefore that

n1 = f(x) > 4 · x2 · 184896 · x5 > 739584 · (1014)7 > 10103.

Of course, one could perhaps come up with a smaller element of E4,2 using a totally new
approach.

Finally, if Martin’s probabilistic estimate (1) could be proved, not only would each set Ek,`

be infinite (as already mentioned in Remark 3), but one could hope to find the approximate
size of Ek,`(x).
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