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Abstract

We study the distribution of the number of distinct prime factors of the
k-fold iterate of the Euler totient function at consecutive arguments. We also
examine the analogous problem for shifted primes.
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1 Introduction and notation

For each integer k ≥ 1, let ϕk = ϕ ◦ϕk−1, with ϕ0(n) = n for all n ∈ N, stand for the
k-fold iterate of the Euler ϕ function. Let also ω(n) stand for the number of distinct
prime divisors of the integer n ≥ 2, setting ω(1) = 0.

Writing Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt (z ∈ R) for the normal distribution function,

and setting

ak =
1

(k + 1)!
, bk =

1

k!
√

2k + 1
(k = 1, 2, . . .),

Bassily, Kátai and Wijsmuller [1] proved that

lim
x→∞

1

x
#

{
n ≤ x :

ω(ϕk(n))− ak(log log x)k+1

bk (log log x)k+1/2
< z

}
= Φ(z),(1.1)

lim
x→∞

1

π(x)
#

{
p ≤ x :

ω(ϕk(p− 1))− (log log x)k+1

bk (log log x)k+1/2
< z

}
= Φ(z),(1.2)

where π(x) stands for the number of primes p ≤ x.

As usual, we let li(x) :=

∫ x

2

dt

log t
and let π(x; k, `) be the number of primes p ≤ x

such that p ≡ ` (mod k). We let p(n) stand for the smallest prime factor of n ≥ 2 and
P (n) for the largest prime factor of n ≥ 2, with p(1) = P (1) = 1. For convenience,
we shall write x1 for max(1, log x), x2 for max(1, log log x), and so on. From here on,
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the letter c, with or without subscript, stands for an absolute positive constant, but
not necessarily the same at each occurrence, while the letters p, q, π, with or without
subscript, will always denote primes.

2 Main results

Fix k ∈ N. For each positive integer n ≤ x, let

(2.1) `n :=
ω(ϕk(n))− akxk+1

2

bkx
k+ 1

2
2

.

We can prove that, given distinct non zero integers e1, e2, . . . , er and arbitrary real
numbers z1, z2, . . . , zr,

lim
x→∞

1

x
#{n ≤ x : `n+ej < zj, j = 1, 2, . . . , r} = Φ(z1)Φ(z2) · · ·Φ(zr)

and

lim
x→∞

1

π(x)
#{p ≤ x : `p+ej < zj, j = 1, 2, . . . , r} = Φ(z1)Φ(z2) · · ·Φ(zr).

For the sake of simplicity, we will only prove the following two results.

Theorem 1. Given arbitrary real numbers z1 and z2,

(2.2) lim
x→∞

1

x
#{n ≤ x : `n < z1, `n+1 < z2} = Φ(z1)Φ(z2).

Moreover, given any real number z,

(2.3) lim
x→∞

1

x
#{n ≤ x : `n+1 − `n <

√
2 z} = Φ(z).

Theorem 2. Given arbitrary real numbers z1 and z2,

(2.4) lim
x→∞

1

π(x)
#{p ≤ x : `p−1 < z1, `p+1 < z2} = Φ(z1)Φ(z2).

Moreover, given any real number z,

(2.5) lim
x→∞

1

π(x)
#{p ≤ x : `p+1 − `p−1 <

√
2 z} = Φ(z).
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3 Preliminary results

In preparation for the proof of Theorem 1, we introduce some preliminary results.
Let f(t) := e−t

2/2 be the characteristic function of the Gaussian normal law.
Using basic concepts from probability theory, it is easily seen that statement (1.1) is
equivalent to the statement

(3.1) lim
x→∞

1

x

∑
n≤x

eit`n = f(t),

where the convergence is uniform in |t| ≤ R for any given real number R > 0, and
that (2.2) is equivalent to the statement

(3.2) lim
x→∞

1

x

∑
n≤x

ei(t1`n+t2`n+1) = f(t1)f(t2)

uniformly for |t1| ≤ R, |t2| ≤ R.
In [1], the authors introduced the following arithmetic functions. First, let θ be

the completely multiplicative function defined on primes p by θ(p) = p − 1. Then,
define the k-fold iterate of θ by θ0(n) = n and thereafter, for each integer k ≥ 1, by
θk(n) = θk−1(θ(n)). Moreover, for each integer k ≥ 0, consider the strongly additive
function τk defined on primes p by

τ0(p) = 1, τk(p) =
∑
q|p−1

τk−1(q),

so that in particular τ0(n) = ω(n). In [1], the authors proved (see Lemmas 5.1 and
5.2) that, given any arbitrarily small ε > 0,

(3.3) lim
x→∞

1

x

{
n ≤ x :

∣∣∣∣∣ω(θk(n))− τk(n)

x
k+ 1

2
2

∣∣∣∣∣ > ε

}
= 0

and

(3.4) lim
x→∞

1

π(x)

{
p ≤ x :

∣∣∣∣∣ω(θk(p+ a))− τk(p+ a)

x
k+ 1

2
2

∣∣∣∣∣ > ε

}
= 0,

where a is any given non zero integer.
Now, for each positive integer n ≤ x, let

hn :=
τk(n)− akxk+1

2

bk x
k+ 1

2
2

.

Therefore, in light of (3.3), in order to prove Theorem 1, it is sufficient to prove (3.1)
and (3.2) with hn in place of `n.
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Finally, before we proceed with the proof of Theorem 1, let us introduce the notion
of a k-chain which was also introduced in [1]. We say that a (k + 1)-tuple of primes
(q0, q1, . . . , qk) is a k-chain if qi−1 | qi − 1 for i = 1, 2, . . . , k, in which case we write

q0 → q1 → · · · → qk.

We will need the following, which is a particular case of Lemma 2.5 in Bassily,
Kátai and Wisjmuller [1].

Lemma 1. Letting δ(x, k) :=
∑
p≤x

p≡1 (mod k)

1

p
, there exists an absolute constant c > 0 such

that
δ(x, k) ≤ cx2

ϕ(k)
,

provided k ≤ x and x ≥ 3.

We will also be using the following standard results from analytic number theory.

Lemma 2. (Brun-Titchmarsh Inequality) There exists a positive constant c
such that

π(x; k, `) < c
x

ϕ(k) log(x/k)
for all k < x.

Proof. For a proof, see the book of Halberstam and Richert [3].

Lemma 3. (Bombieri-Vinogradov Theorem) Given any fixed number A > 0,
there exists a number B = B(A) > 0 such that∑

k≤
√
x/(logB x)

max
(k,`)=1

max
y≤x

∣∣∣∣π(x; k, `)− li(x)

ϕ(k)

∣∣∣∣ = O

(
x

logA x

)
.

Moreover, an appropriate choice for B(A) is 2A+ 6.

Proof. For a proof, see the book of Iwaniec and Kowalski [4].

Before concluding this section, we state the following result of Elliott.

Lemma 4. Let f(n) be a real valued non negative arithmetic function. Let an, n =
1, . . . , N , be a sequence of integers. Let r be a positive real number, and let p1 < p2 <
· · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

(3.5)
N∑
n=1

an≡0 (mod d)

f(n) = κ(d)X + T (N, d),

where X and T (N, d) are real numbers, X ≥ 0, and κ(d1d2) = κ(d1)κ(d2) whenever
d1 and d2 are co-prime divisors of Q.
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Assume that for each prime p, 0 ≤ κ(p) < 1. Setting

I(N,Q) :=
N∑
n=1

(an,Q)=1

f(n),

then the estimate

I(N,Q) = {1 + 2θ1H}X
∏
p|Q

(1− κ(p)) + 2θ2
∑
d|Q
d≤z3

3ω(d)|T (N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1
8

log z, where |θ1| ≤ 1, |θ2| ≤ 1, and

(3.6) H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
and

S =
∑
p|Q

κ(p)

1− κ(p)
log p.

When these conditions are satisfied, there exists an absolute positive constant c such
that 2H ≤ c < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [2].

4 The proof of Theorem 1

Let x be a large number. Define Yx implicitly by log Yx = exp{−x1/32 }·x1 and consider
the three sets

B := {n ≤ x : P (n) < x3k2 },
E := {n ≤ x : x3k2 ≤ p(n) ≤ P (n) ≤ Yx},
D := {n ≤ x : p(n) > Yx}.

We can then write each positive integer n ≤ x as

n = B(n)C(n)D(n),

where B(n) ∈ B, C(n) ∈ E and D(n) ∈ D.
Using the concept of k-chain introduced in Section 3, it follows that

τk(n) = #{q0 | n : q0 → q1 → · · · → qk}.

Thus, using Lemma 1, we obtain that

(4.1)
∑
n≤x

τk(B(n)) ≤
∑
q0≤x3k2

q0→···→qk

⌊
x

qk

⌋
≤

∑
q0≤x3k2

q0→···→qk

x

qk
≤ cxxk2x4.
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Similarly, we have

(4.2)
∑
n≤x

τk(D(n)) ≤
∑

Yx<qk≤x
q0→q1···→qk

⌊
x

qk

⌋
≤ x

∑
Yx<qk≤x

q0→q1···→qk

1

qk
.

To estimate the right hand side of (4.2) for fixed q0, q1, . . . , qk−1, observe that

(4.3)
∑

Yx<qk<x

1

qk
<

 c
qk−1

log
(

log x
log Yx

)
≤ c

x
1/3
2

qk−1
if qk−1 ≤ Y

1/2
x ,

cx2
qk−1

if qk−1 > Y
1/2
x .

We can then use (4.3) to estimate the inner sum in (4.2) and get

(4.4)
∑

Yx<qk≤x, qk−1≤Y
1/2
x

q0→q1···→qk

1

qk
< cx

1/3
2

∑
q0→···→qk−1≤x

1

qk−1

and

(4.5)
∑

Yx<qk≤x, qk−1>Y
1/2
x

q0→q1···→qk

1

qk
< cx2

∑
q0→···→qk−1≤x

qk−1>Y
1/2
x

1

qk−1
.

Iterating the above procedure provided by (4.4) and (4.5), it follows that (4.2) yields

(4.6)
∑
n≤x

τk(D(n)) ≤ cxx
k+ 1

3
2 .

Combining estimates (4.6) and (4.1), we obtain that

1

x
#{n ≤ x : |hn − hC(n)| > ε} → 0 (x→∞)

for every ε > 0, which allows us to claim that

(4.7)
1

x

∑
n≤x

eithn =
1

x

∑
n≤x

eithC(n) + o(1) (x→∞)

uniformly for |t| ≤ R for an arbitrary R > 0.
Now, since one can easily see that, given a function rx which tends to∞ arbitrarily

slowly as x→∞,

(4.8)
1

x
#{n ≤ x : C(n) > Y rx

r } → 0 (x→∞),

we can now estimate

yC :=
1

x
#{n ≤ x : C(n) = C}
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for those C ∈ E such that C ≤ Y rx
x .

Using the Eratosthenian sieve we have that

(4.9) yC = (1 + o(1))
x

C

∏
x3k2 ≤π<Yx

(
1− 1

π

)
(x→∞).

Setting

µ(Y ) :=
∏
π<Y

(
1− 1

π

)
,

estimate (4.9) can be written as

(4.10) yC = (1 + o(1))
x

C

µ(Yx)

µ(x3k2 )
(x→∞).

Now, in light of (4.7), of the expression for f(t) given in (3.1) and of our comments
given in Section 3, we have that

(4.11) f(t) = (1 + o(1))
1

x

∑
C≤Y rxx
C∈E

yC e
ithC (x→∞).

Therefore, it follows from (4.10) and (4.11) that

(4.12) f(t) = (1 + o(1))
µ(Yx)

µ(x3k2 )

∑
C≤Y rxx
C∈E

eithC

C
(x→∞).

Let us now consider the counting function

z(B1, C1;B2, C2) := #{n ≤ x : B(n) = B1, C(n) = C1, B(n+1) = B2, C(n+1) = C2}.

If a particular integer n ≤ x is counted by z(B1, C1;B2, C2), then we must have
(B1, B2) = (C1, C2) = 1. By the Eratosthenian sieve, we have

(4.13) z(B1, C1;B2, C2) = (1 + o(1))
x

B1B2C1C2

∏
π<Yx

(
1− ρ(π)

π

)
(x→∞),

where ρ(π) is the function defined for each prime π < Yx by

(4.14) ρ(π) =

{
1 if π | B1C1B2C2,
2 if π - B1C1B2C2.

Indeed, since n and n+ 1 can be written as

(4.15) n = B1C1w1, n+ 1 = B2C2w2, for some w1, w2 ∈ D,
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if we let w
(0)
1 , w

(0)
2 correspond to the smallest solution of (4.15), then all the other

solutions of (4.15) are those

w1 = w
(0)
1 + tB2C2, w2 = w

(0)
2 + tB1C1

for which g(t) := (w
(0)
2 + tB1C1)(w

(0)
1 + tB2C2) belongs to D, thus establishing (4.14).

It follows from this observation and (4.13) that, as x→∞,

(4.16)
1

x

∑
B1,B2

z(B1, C1;B2, C2) = (1 + o(1))
1

C1C2

∏
x3k2 <π<Yx

(
1− ρ(π)

π

)
· S0(x),

where

(4.17) S0(x) =
∑

(B1,B2)=1

1

B1B2

∏
π|B1B2

(
1− 1

π

) ∏
π-B1B2
π<x3k2

(
1− 2

π

)
.

Now, let us show that

(4.18) S0(x) = 1 + o(1) (x→∞).

Indeed, observe first that since 2 | B1B2, it follows that the sum in S0(x) is symmetric
in B1, B2. Therefore, we may assume that B1 is even and B2 is odd and then double
the sum in the end. So, let B1 = 2αB′1, where α ≥ 1 and B′1 is odd, in which case we
have

S0(x) = 2

(
1

2
+

1

22
+ · · ·

)
1

2

∑
(B′1,B2)=1

1

B′1B2

∏
π|B′1B2

1− 1/π

1− 2/π
·
∏

2<π<x3k2

(
1− 2

π

)
+ o(1)

=
∑

(B′1,B2)=1

1

B′1B2

∏
π|B′1B2

π − 1

π − 2
·
∏

2<π<x3k2

(
1− 2

π

)
+ o(1)

=
∏

2<π<x3k2

(
1 + 2

(
1

π
+

1

π2
+ · · ·

)
π − 1

π − 2

)
·
∏

2<π<x3k2

(
π − 2

π

)
+ o(1)

=
∏

2<π<x3k2

(
1 +

2

π − 2

)
·
∏

2<π<x3k2

(
π − 2

π

)
+ o(1) = 1 + o(1),

where the term o(1) comes from the fact that on the first and third of the above five
lines of equations, we assumed that the sum of the reciprocals of the powers of 2 and
the sum of the reciprocals of the powers of π were infinite series, while in reality they
are finite sums. We have thus established (4.18). Using this, we can replace estimate
(4.16) by

(4.19)
1

x

∑
B1,B2

z(B1, C1;B2, C2) = (1 + o(1))
1

C1C2

∏
x3k2 <π<Yx

(
1− ρ(π)

π

)
.
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Writing the last product appearing in (4.19) as L(C1, C2), we have

L(C1, C2) =

(
µ(Yx)

µ(x3k2 )

)2

·
∏

x3k2 <π<Yx

π-C1C2

1− 2/π

(1− 1/π)2
·
∏

x3k2 <π<Yx

π|C1C2

1− 1/π

(1− 1/π)2

=

(
µ(Yx)

µ(x3k2 )

)2

· U(C1C2) · V (C1C2),(4.20)

say. Now, on the one hand, it is clear that

logU−1(C1C2) ≤ c
∑
π>x3k2

1

π2
≤ c

x3k2
,

so that

(4.21) 1 ≥ U(C1C2) ≥ 1− c

x3k2
.

On the other hand, using the fact that ω(C1) ≤ τk(n)� xk+1
2 and ω(C2) ≤ τk(n+1)�

xk+1
2 , we have that the inequalities

(4.22) 0 ≤ log V (C1C2) =
∑
π>x3k2
π|C1C2

log
1

1− 1/π
≤
∑
π>x3k2
π|C1C2

1

π
� 1

x22

hold for almost all positive integers n ≤ x.
Substituting (4.21) and (4.22) in (4.20), we obtain that, as x→∞,

L(C1, C2) = (1 + o(1))

(
µ(Yx)

µ(x3k2 )

)2

for every n ≤ x with at most o(x) exceptions.
Using this last estimate, we have thus established that, as x→∞,

1

x

∑
n≤x

ei(t1hn+t2hn+1) =
∑

C1,C2∈E
(C1,C2)=1

ei(t1hC1
+t2hC2

)

C1C2

· (1 + o(1))

(
µ(Yx)

µ(x3k2 )

)2

+ o(1)

= (1 + o(1))

{∑
C1∈E

eit1hC1

C1

µ(Yx)

µ(x3k2 )

}{∑
C2∈E

eit1hC2

C2

µ(Yx)

µ(x3k2 )

}
+ o(1) + E(x),(4.23)

where E(x) stands for the error term generated from the product of those terms for
which C1, C2 ∈ E with (C1, C2) > 1. In fact, the size of this error term can be
estimated as follows.

(4.24) E(x) ≤
(
µ(Yx)

µ(x3k2 )

)2

 ∑
C′1,C

′
2∈E

1

C ′1C
′
2




∑
d>1

p(d)>x3k2

1

d2

 .
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It is clear that ∑
C′1,C

′
2∈E

1

C ′1C
′
2

≤
∏

x3k2 <π<Yx

(
1 +

2

π
+

2

π2
+ · · ·

)
,

so that

(4.25)

(
µ(Yx)

µ(x3k2 )

)2

 ∑
C′1,C

′
2∈E

1

C ′1C
′
2

 = O(1),

while

(4.26)
∑
d>1

p(d)>x3k2

1

d2
� 1

x3
.

Substituting (4.25) and (4.26) in (4.24), it follows that E(x) = o(1) as x→∞. Using
this in (4.23), we have thus established that

(4.27) lim
x→∞

1

x

∑
n≤x

ei(t1hn+t2hn+1) = f(t1)f(t2) = e−
t21
2
− t

2
2
2 ,

thereby proving that (2.2) holds. To complete the proof of Theorem 1, it remains to
prove (2.3). But this is a direct consequence of (2.2). Indeed, by choosing t2 = −t1
in (4.27), it follows that

lim
x→∞

1

x

∑
n≤x

eit(hn−hn+1) = e−t
2

,

which is precisely the characteristic function of the Gaussian law with mean value 0
and variance

√
2. This establishes (2.3) and therefore completes the proof of Theo-

rem 1.

5 The proof of Theorem 2

The proof of Theorem 2 goes along the same lines as that of Theorem 1. Therefore,
we shall not provide all the details. The proof is essentially based on the Brun-
Titchmarsh inequality, the Bombieri-Vinogradov theorem and a result of Elliott on
arithmetic functions, which are all stated in Section 3.

First of all, let B, E , and D be the subsets of integers introduced in Section 4. We
start by writing the shifted primes as

p− 1 = B(p− 1)C(p− 1)D(p− 1),

p+ 1 = B(p+ 1)C(p+ 1)D(p+ 1),
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where B(p± 1) ∈ B, C(p± 1) ∈ E , and D(p± 1) ∈ D.
As earlier, we find that

(5.1)
∑
p≤x

τk(B(p± 1)) =
∑
qk<x

3k
2

q0→···→qk

π(x; qk,±1)� li(x) · xk2 · x3.

Observe that we can drop those primes p ≤ x for which

(5.2) P (p− 1) > x1−1/x3 or P (p+ 1) > x1−1/x3 ,

since the number of those p ≤ x satisfying (5.2) is o(li(x)), as x → ∞. We can
therefore assume that q = P (p± 1) ≤ x1−1/x3 , in which case we have, by Lemma 2,

π(x; q,±1) ≤ c li(x) · x3.

Using this inequality and proceeding as we did to estimate the sum in (4.2) and obtain
the upper bound given in (4.6), we find that∑

P (p±1)≤x1−1/x3

τk(D(p± 1)) ≤
∑

Yx<qk≤x
1−1/x3

q0→···→qk

π(x; qk,±1)

≤ c li(x)x3
∑

Yx<qk≤x
1−1/x3

q0→···→qk

1

qk

≤ c li(x)x3 x
k+1/3
2 .

As before, we can conclude from these inequalities that

(5.3)
1

π(x)

∑
p≤x

eithp±1 =
1

π(x)

∑
p≤x

eithC(p±1) + o(1) (x→∞).

We therefore need to estimate the two quantities

y
(+,−)
R := #{p ≤ x : C(p±1) = R} = #

p ≤ x : R | p± 1,

p± 1

R
,
∏

x3k2 <π≤Yx

π

 = 1

 .

To do so, we apply Lemma 4. To simplify the notation, we will only consider the case
of the shifted primes p+ 1.

Using the notation of Lemma 4, we have

Q =
∏

x3k2 <π<Yx

π,
∑
p≤x

p+1≡0 (mod dR)

1 = π(x; dR,−1),

implying that equation (3.5) will be written as

(5.4) π(x; dR,−1) = κ(d)π(x;R,−1) + T (d,R),

11



where κ is the multiplicative function defined on prime powers pα by

κ(pα) =

{
1/ϕ(pα) if (p,R) = 1,
1/pα if p | R.

Setting

∆(x, k) := max
` (mod k)

(`,k)=1

∣∣∣∣π(x; k, `)− li(x)

ϕ(k)

∣∣∣∣ ,
it follows from (5.4) that

(5.5) T (d,R) ≤ ∆(x, dR) + κ(d)∆(x,R).

Therefore, it follows from Lemma 4 that

#{p ≤ x : C(p+ 1) = R} = (1 + 2θ1H)π(x;R,−1)
∏
p|R

(
1− 1

p

)∏
p-R
p|Q

(
1− 1

p− 1

)

+2θ2
∑
d≤z3
d|Q

3ω(d)T (d,R).(5.6)

Then, with H as in (3.6), we have the following representation for S:

(5.7) S =
∑
p|Q

κ(p)

1− κ(p)
log p =

∑
x3k2 <p<Yx

log p

p− 2
+
∑
p|R

(
1

p− 1
− 1

p− 2

)
log p.

Since the first of these last two sums is clearly log Yx + O(x3), while the second one
is O(1), it follows from (5.7) that

(5.8) S = log Yx +O(x3).

On the other hand, by definition,

r = π(Yx)− π(x3k2 ),

so that

(5.9) log r = log Yx +O(x2).

Choosing z so that log z =
S

δx
, where δx is a function tending to 0 very slowly, it

follows from (5.8) and (5.9) that

(5.10)
log z

log r
=

1

δx

S

log r
=

1

δx

log Yx +O(x3)

log Yx +O(x2)
=

1

δx

(
1 +O

(
x2
x1

))
.

12



Using (5.10) in (3.6), we obtain

H = exp

{
−(1 + o(1))

1

δx
(log(1/δx)− log log(1/δx)− 2δx)

}
(x→∞),

so that by choosing δx = 1/x3, we have that

H = exp{−(1 + o(1))x3x4} = o(1) as x→∞.

Using this last estimate along with (5.5), we obtain that, letting tx be a function
which tends to ∞ very slowly,

1

π(x)

∑
p≤x

eithC(p+1) =
1

π(x)

∑
R∈E

eithR#{p ≤ x : C(p+ 1) = R}

= (1 + o(1))
∑

R∈E,R≤Y txx
R squarefree

eithR
π(x;R,−1)

π(x)

ϕ(R)

R

∏
p-R
p|Q

(
1− 1

p− 1

)

+
2θ2
π(x)

∑
R∈E,R≤Y txx
R squarefree

∑
d≤z3
d|Q

zω(d)T (d,R)

= (1 + o(1))S1(x) + S2(x),(5.11)

say. As we will see, the main contribution will come from S1(x).
We start by estimating S2(x). We have, using (5.5),

S2(x) ≤ 1

π(x)


∑

R∈E,R≤Y txx
R squarefree

∑
d≤z3
d|Q

zω(d)∆(x, dR) + κ(d)∆(x,R)


≤ 1

π(x)


∑

R∈E,R≤Y txx
R squarefree

∆(x,R)
∑
d≤z3
d|Q

κ(d) +
∑
M

∆(x,M)
∑
d|M
d|Q

zω(d)

 .(5.12)

Since ∑
d≤z3
d|Q

κ(d) ≤
∑
d≤z3

1

ϕ(d)
� log z

and ∑
d|M
d|Q

zω(d) ≤ 4ω(M),

it follows from (5.12) that

(5.13) S2(x)� 1

π(x)

log z
∑

R∈E,R≤Y txx
R squarefree

∆(x,R) +
∑

M≤Y txx z3

4ω(M)∆(x,M)

 .
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From Lemma 3, we have that

(5.14)
∑

R∈E,R≤Y txx
R squarefree

∆(x,R)� x

logA x

and that∑
M≤Y txx z3

4ω(M)∆(x,M) =
∑

M≤Y txx z3

ω(M)≤10x2

4ω(M)∆(x,M) +
∑

M≤Y txx z3

ω(M)>10x2

4ω(M)∆(x,M)

= S3(x) + S4(x).(5.15)

say. By Lemma 3,

(5.16) S3(x)� 410x2
x

logA x
Y tx
x z

3 = o

(
x

log x

)
,

while using Lemma 2,

S4(x) ≤ c
x

log x

∑
M≤Y txx z3

ω(M)>10x2

4ω(M)

ϕ(M)
� x

log x
2−20x2

∑
M≤Y txx z3

4ω(M)

ϕ(M)

� x

log x
2−20x2

∏
p|Q

(
1 +

8

p− 1

)
� x

log x
2−20x2(log(Y tx

x z
3))8

� x

log x

1

(log x)20 log 2
t8x · log8 x · x82 = o

(
x

log x

)
.(5.17)

Gathering estimates (5.16) and (5.17) in (5.15), which combined with (5.14) in (5.13)
yields

(5.18) S2(x) = o(1) (x→∞).

On the other hand,

S1(x) = (1 + o(1))


∑

R∈E,R≤Y txx
R squarefree

eithR

R

∏
p|R

p− 1

p− 2

 ·
∏
p|Q

(
1− 1

p− 1

)

+O

 1

π(x)

∑
R∈E,R≤Y txx
R squarefree

∆(x,R)

 .(5.19)

It is easily shown that

∏
p|Q

(
1− 1

p− 1

)∑
R|Q

1

R

∏
p|R

p− 1

p− 2
− 1

→ 0 (x→∞).
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Therefore, from (5.19) and in light of (5.11) and (5.18), it follows that

(5.20)
1

π(x)

∑
p≤x

eithC(p+1) =
∏
p|Q

(
1− 1

p− 1

) ∑
R|Q

R≤Y txx

eithR

R
+ o(1) (x→∞).

Observe that (5.20) remains valid if we drop the two conditions R ≤ Y tx
x and R

squarefree, and if we replace
∏
p|Q

(
1− 1

p− 1

)
by
∏
p|Q

(
1− 1

p

)
.

Therefore,

(5.21)
1

π(x)

∑
p≤x

eithC(p+1) =
∏
p|Q

(
1− 1

p

)∑
R∈E

eithR

R
+ o(1) (x→∞).

It was proved in [1] (see (1.2)) that, for each t ∈ R,

(5.22)
1

π(x)

∑
p≤x

eithp−1 → e−t
2/2 (x→∞).

It is clear that this estimate is still true if we replace p− 1 by p+ 1. Therefore,

(5.23)
1

π(x)

∑
p≤x

eithp+1 → e−t
2/2 (x→∞).

Hence, it follows from (5.21), (5.22), and (5.23) that, for each ε > 0,

1

π(x)
#{p ≤ x : |hp±1 − hC(p±1)| > ε} → 0 (x→∞),

which implies that, as x→∞,

e−t
2/2 + o(1) =

1

π(x)

∑
p≤x

eithC(p+1)

=
∏
π|Q

(
1− 1

π

)∑
R∈E

eithR

R
+ o(1).(5.24)

Proceeding in the same manner, we obtain that, as x→∞,

e−t
2/2 + o(1) =

1

π(x)

∑
p≤x

eithC(p−1)

=
∏
π|Q

(
1− 1

π

)∑
R∈E

eithR

R
+ o(1),(5.25)

Combining (5.24) and (5.25) completes the proof of (2.4).
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It remains to prove (2.5). First write

(5.26)
1

π(x)

∑
p≤x

ei(t1hp+1+t2hp−1) =
∑

R1,R2∈E

ei(t1hR1
+t2hR2

) ·WR1,R2 ,

where

WR1,R2 =
1

π(x)
#

{
p ≤ x : R1 | p+ 1, R2 | p− 1,

(
p+ 1

R1

, Q

)
= 1,

(
p− 1

R2

, Q

)
= 1

}
.

Using Lemma 4 and proceeding as in the proof of (2.4), we obtain that, assuming
(R1, R2) = 1 and R1, R2 ≤ Y tx

x , we obtain that

WR1,R2 =
∏
π|Q

(
1− 2

π

)
1

R1R2

+ E(R1, R2),

where the error term E(R1, R2) is o(1) as x→∞. Moreover, accounting for the fact
that ∑

max(R1,R2)>Y
tx
x or (R1,R2)>1

WR1,R2 = o(1) (x→∞),

we then deduce, as we did in the proof of Theorem 1, that the left hand side of (5.26)
is

(1 + o(1))e−t
2
1/2 · e−t22/2 (x→∞),

thus establishing (2.5) and therefore completing the proof of Theorem 2.
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