On the number of prime factors of the k-fold iterate of the Euler function at consecutive arguments

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai

Édition du 30 décembre 2016

Abstract

We study the distribution of the number of distinct prime factors of the k-fold iterate of the Euler totient function at consecutive arguments. We also examine the analogous problem for shifted primes.

AMS Subject Classification numbers: 11N37, 11N64, 11K65, 11N36
Key words: number of distinct prime factors, Euler function, shifted primes

1 Introduction and notation

For each integer $k \geq 1$, let $\varphi_{k}=\varphi \circ \varphi_{k-1}$, with $\varphi_{0}(n)=n$ for all $n \in \mathbb{N}$, stand for the k-fold iterate of the Euler φ function. Let also $\omega(n)$ stand for the number of distinct prime divisors of the integer $n \geq 2$, setting $\omega(1)=0$.

Writing $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t(z \in \mathbb{R})$ for the normal distribution function, and setting

$$
a_{k}=\frac{1}{(k+1)!}, \quad b_{k}=\frac{1}{k!\sqrt{2 k+1}} \quad(k=1,2, \ldots)
$$

Bassily, Kátai and Wijsmuller [1] proved that

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\varphi_{k}(n)\right)-a_{k}(\log \log x)^{k+1}}{b_{k}(\log \log x)^{k+1 / 2}}<z\right\} & =\Phi(z) \tag{1.1}\\
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \frac{\omega\left(\varphi_{k}(p-1)\right)-(\log \log x)^{k+1}}{b_{k}(\log \log x)^{k+1 / 2}}<z\right\} & =\Phi(z) \tag{1.2}
\end{align*}
$$

where $\pi(x)$ stands for the number of primes $p \leq x$.
As usual, we let $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$ and let $\pi(x ; k, \ell)$ be the number of primes $p \leq x$ such that $p \equiv \ell(\bmod k)$. We let $p(n)$ stand for the smallest prime factor of $n \geq 2$ and $P(n)$ for the largest prime factor of $n \geq 2$, with $p(1)=P(1)=1$. For convenience, we shall write x_{1} for $\max (1, \log x), x_{2}$ for $\max (1, \log \log x)$, and so on. From here on,

[^0]the letter c, with or without subscript, stands for an absolute positive constant, but not necessarily the same at each occurrence, while the letters p, q, π, with or without subscript, will always denote primes.

2 Main results

Fix $k \in \mathbb{N}$. For each positive integer $n \leq x$, let

$$
\begin{equation*}
\ell_{n}:=\frac{\omega\left(\varphi_{k}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+\frac{1}{2}}} \tag{2.1}
\end{equation*}
$$

We can prove that, given distinct non zero integers $e_{1}, e_{2}, \ldots, e_{r}$ and arbitrary real numbers $z_{1}, z_{2}, \ldots, z_{r}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \ell_{n+e_{j}}<z_{j}, j=1,2, \ldots, r\right\}=\Phi\left(z_{1}\right) \Phi\left(z_{2}\right) \cdots \Phi\left(z_{r}\right)
$$

and

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \ell_{p+e_{j}}<z_{j}, j=1,2, \ldots, r\right\}=\Phi\left(z_{1}\right) \Phi\left(z_{2}\right) \cdots \Phi\left(z_{r}\right)
$$

For the sake of simplicity, we will only prove the following two results.
Theorem 1. Given arbitrary real numbers z_{1} and z_{2},

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \ell_{n}<z_{1}, \ell_{n+1}<z_{2}\right\}=\Phi\left(z_{1}\right) \Phi\left(z_{2}\right) \tag{2.2}
\end{equation*}
$$

Moreover, given any real number z,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \ell_{n+1}-\ell_{n}<\sqrt{2} z\right\}=\Phi(z) \tag{2.3}
\end{equation*}
$$

Theorem 2. Given arbitrary real numbers z_{1} and z_{2},

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \ell_{p-1}<z_{1}, \quad \ell_{p+1}<z_{2}\right\}=\Phi\left(z_{1}\right) \Phi\left(z_{2}\right) \tag{2.4}
\end{equation*}
$$

Moreover, given any real number z,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \ell_{p+1}-\ell_{p-1}<\sqrt{2} z\right\}=\Phi(z) \tag{2.5}
\end{equation*}
$$

3 Preliminary results

In preparation for the proof of Theorem 1, we introduce some preliminary results.
Let $f(t):=e^{-t^{2} / 2}$ be the characteristic function of the Gaussian normal law. Using basic concepts from probability theory, it is easily seen that statement (1.1) is equivalent to the statement

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e^{i t \ell_{n}}=f(t) \tag{3.1}
\end{equation*}
$$

where the convergence is uniform in $|t| \leq R$ for any given real number $R>0$, and that (2.2) is equivalent to the statement

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e^{i\left(t_{1} \ell_{n}+t_{2} \ell_{n+1}\right)}=f\left(t_{1}\right) f\left(t_{2}\right) \tag{3.2}
\end{equation*}
$$

uniformly for $\left|t_{1}\right| \leq R,\left|t_{2}\right| \leq R$.
In [1], the authors introduced the following arithmetic functions. First, let θ be the completely multiplicative function defined on primes p by $\theta(p)=p-1$. Then, define the k-fold iterate of θ by $\theta_{0}(n)=n$ and thereafter, for each integer $k \geq 1$, by $\theta_{k}(n)=\theta_{k-1}(\theta(n))$. Moreover, for each integer $k \geq 0$, consider the strongly additive function τ_{k} defined on primes p by

$$
\tau_{0}(p)=1, \quad \tau_{k}(p)=\sum_{q \mid p-1} \tau_{k-1}(q)
$$

so that in particular $\tau_{0}(n)=\omega(n)$. In [1], the authors proved (see Lemmas 5.1 and 5.2) that, given any arbitrarily small $\varepsilon>0$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x}\left\{n \leq x:\left|\frac{\omega\left(\theta_{k}(n)\right)-\tau_{k}(n)}{x_{2}^{k+\frac{1}{2}}}\right|>\varepsilon\right\}=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)}\left\{p \leq x:\left|\frac{\omega\left(\theta_{k}(p+a)\right)-\tau_{k}(p+a)}{x_{2}^{k+\frac{1}{2}}}\right|>\varepsilon\right\}=0, \tag{3.4}
\end{equation*}
$$

where a is any given non zero integer.
Now, for each positive integer $n \leq x$, let

$$
h_{n}:=\frac{\tau_{k}(n)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+\frac{1}{2}}} .
$$

Therefore, in light of (3.3), in order to prove Theorem 1, it is sufficient to prove (3.1) and (3.2) with h_{n} in place of ℓ_{n}.

Finally, before we proceed with the proof of Theorem 1, let us introduce the notion of a k-chain which was also introduced in [1]. We say that a $(k+1)$-tuple of primes $\left(q_{0}, q_{1}, \ldots, q_{k}\right)$ is a k-chain if $q_{i-1} \mid q_{i}-1$ for $i=1,2, \ldots, k$, in which case we write

$$
q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k} .
$$

We will need the following, which is a particular case of Lemma 2.5 in Bassily, Kátai and Wisjmuller [1].

Lemma 1. Letting $\delta(x, k):=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod k)}} \frac{1}{p}$, there exists an absolute constant $c>0$ such that

$$
\delta(x, k) \leq \frac{c x_{2}}{\varphi(k)}
$$

provided $k \leq x$ and $x \geq 3$.
We will also be using the following standard results from analytic number theory.
Lemma 2. (Brun-Titchmarsh Inequality) There exists a positive constant c such that

$$
\pi(x ; k, \ell)<c \frac{x}{\varphi(k) \log (x / k)} \quad \text { for all } k<x
$$

Proof. For a proof, see the book of Halberstam and Richert [3].
Lemma 3. (Bombieri-Vinogradov Theorem) Given any fixed number $A>0$, there exists a number $B=B(A)>0$ such that

$$
\sum_{k \leq \sqrt{x} /\left(\log ^{B} x\right)} \max _{(k, \ell)=1} \max _{y \leq x}\left|\pi(x ; k, \ell)-\frac{l i(x)}{\varphi(k)}\right|=O\left(\frac{x}{\log ^{A} x}\right) .
$$

Moreover, an appropriate choice for $B(A)$ is $2 A+6$.
Proof. For a proof, see the book of Iwaniec and Kowalski [4].
Before concluding this section, we state the following result of Elliott.
Lemma 4. Let $f(n)$ be a real valued non negative arithmetic function. Let $a_{n}, n=$ $1, \ldots, N$, be a sequence of integers. Let r be a positive real number, and let $p_{1}<p_{2}<$ $\cdots<p_{s} \leq r$ be prime numbers. Set $Q=p_{1} \cdots p_{s}$. If $d \mid Q$, then let

$$
\begin{equation*}
\sum_{\substack{n=1 \\ a_{n} \equiv 0 \\(\bmod d)}}^{N} f(n)=\kappa(d) X+T(N, d), \tag{3.5}
\end{equation*}
$$

where X and $T(N, d)$ are real numbers, $X \geq 0$, and $\kappa\left(d_{1} d_{2}\right)=\kappa\left(d_{1}\right) \kappa\left(d_{2}\right)$ whenever d_{1} and d_{2} are co-prime divisors of Q.

Assume that for each prime $p, 0 \leq \kappa(p)<1$. Setting

$$
I(N, Q):=\sum_{\substack{n=1 \\\left(a_{n}, Q\right)=1}}^{N} f(n)
$$

then the estimate

$$
I(N, Q)=\left\{1+2 \theta_{1} H\right\} X \prod_{p \mid Q}(1-\kappa(p))+2 \theta_{2} \sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)}|T(N, d)|
$$

holds uniformly for $r \geq 2$, $\max (\log r, S) \leq \frac{1}{8} \log z$, where $\left|\theta_{1}\right| \leq 1,\left|\theta_{2}\right| \leq 1$, and

$$
\begin{equation*}
H=\exp \left(-\frac{\log z}{\log r}\left\{\log \left(\frac{\log z}{S}\right)-\log \log \left(\frac{\log z}{S}\right)-\frac{2 S}{\log z}\right\}\right) \tag{3.6}
\end{equation*}
$$

and

$$
S=\sum_{p \mid Q} \frac{\kappa(p)}{1-\kappa(p)} \log p
$$

When these conditions are satisfied, there exists an absolute positive constant c such that $2 H \leq c<1$.

Proof. This result is Lemma 2.1 in the book of Elliott [2].

4 The proof of Theorem 1

Let x be a large number. Define Y_{x} implicitly by $\log Y_{x}=\exp \left\{-x_{2}^{1 / 3}\right\} \cdot x_{1}$ and consider the three sets

$$
\begin{aligned}
\mathcal{B} & :=\left\{n \leq x: P(n)<x_{2}^{3 k}\right\}, \\
\mathcal{E} & :=\left\{n \leq x: x_{2}^{3 k} \leq p(n) \leq P(n) \leq Y_{x}\right\}, \\
\mathcal{D} & :=\left\{n \leq x: p(n)>Y_{x}\right\} .
\end{aligned}
$$

We can then write each positive integer $n \leq x$ as

$$
n=B(n) C(n) D(n),
$$

where $B(n) \in \mathcal{B}, C(n) \in \mathcal{E}$ and $D(n) \in \mathcal{D}$.
Using the concept of k-chain introduced in Section 3, it follows that

$$
\tau_{k}(n)=\#\left\{q_{0} \mid n: q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k}\right\} .
$$

Thus, using Lemma 1, we obtain that

$$
\begin{equation*}
\sum_{n \leq x} \tau_{k}(B(n)) \leq \sum_{\substack{q_{0} \leq x_{2}^{3 k} \\ q_{0} \rightarrow \cdots q_{k}}}\left\lfloor\frac{x}{q_{k}}\right\rfloor \leq \sum_{\substack{q_{0} \leq x^{3 k} \\ q_{0} \rightarrow \ldots \rightarrow q_{k}}} \frac{x}{q_{k}} \leq c x x_{2}^{k} x_{4} . \tag{4.1}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{n \leq x} \tau_{k}(D(n)) \leq \sum_{\substack{Y_{x}<q_{k} \leq x \\ q_{0} \rightarrow q_{1} \\ \rightarrow q_{k}}}\left\lfloor\frac{x}{q_{k}}\right\rfloor \leq x \sum_{\substack{Y_{x}<q_{k} \leq x \\ q_{0} \rightarrow q_{1} \ldots q_{k}}} \frac{1}{q_{k}} \tag{4.2}
\end{equation*}
$$

To estimate the right hand side of (4.2) for fixed $q_{0}, q_{1}, \ldots, q_{k-1}$, observe that

$$
\sum_{Y_{x}<q_{k}<x} \frac{1}{q_{k}}< \begin{cases}\frac{c}{q_{k-1}} \log \left(\frac{\log x}{\log Y_{x}}\right) \leq c \frac{x_{2}^{1 / 3}}{q_{k-1}} & \text { if } q_{k-1} \leq Y_{x}^{1 / 2} \tag{4.3}\\ \frac{c x_{2}}{q_{k-1}} & \text { if } q_{k-1}>Y_{x}^{1 / 2}\end{cases}
$$

We can then use (4.3) to estimate the inner sum in (4.2) and get

$$
\begin{equation*}
\sum_{\substack{Y_{x}<q_{k} \leq x, q_{k-1} \leq Y_{x}^{1 / 2} \\ q_{0} \rightarrow q_{1} \rightarrow q_{k}}} \frac{1}{q_{k}}<c x_{2}^{1 / 3} \sum_{\substack{q_{0} \rightarrow \ldots \rightarrow q_{k-1} \leq x}} \frac{1}{q_{k-1}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{Y_{x}<q_{k} \leq x, q_{k-1}>Y_{x}^{1 / 2} \\ q_{0} \rightarrow q_{1} \ldots \rightarrow q_{k}}} \frac{1}{q_{k}}<c x_{2} \sum_{\substack{q_{0} \rightarrow \ldots \rightarrow q_{k-1} \leq x \\ q_{k-1}>Y_{x}^{1 / 2}}} \frac{1}{q_{k-1}} . \tag{4.5}
\end{equation*}
$$

Iterating the above procedure provided by (4.4) and (4.5), it follows that (4.2) yields

$$
\begin{equation*}
\sum_{n \leq x} \tau_{k}(D(n)) \leq c x x_{2}^{k+\frac{1}{3}} \tag{4.6}
\end{equation*}
$$

Combining estimates (4.6) and (4.1), we obtain that

$$
\frac{1}{x} \#\left\{n \leq x:\left|h_{n}-h_{C(n)}\right|>\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

for every $\varepsilon>0$, which allows us to claim that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} e^{i t h_{n}}=\frac{1}{x} \sum_{n \leq x} e^{i t h_{C(n)}}+o(1) \quad(x \rightarrow \infty) \tag{4.7}
\end{equation*}
$$

uniformly for $|t| \leq R$ for an arbitrary $R>0$.
Now, since one can easily see that, given a function r_{x} which tends to ∞ arbitrarily slowly as $x \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: C(n)>Y_{r}^{r_{x}}\right\} \rightarrow 0 \quad(x \rightarrow \infty) \tag{4.8}
\end{equation*}
$$

we can now estimate

$$
y_{C}:=\frac{1}{x} \#\{n \leq x: C(n)=C\}
$$

for those $C \in \mathcal{E}$ such that $C \leq Y_{x}^{r_{x}}$.
Using the Eratosthenian sieve we have that

$$
\begin{equation*}
y_{C}=(1+o(1)) \frac{x}{C} \prod_{x_{2}^{3 k} \leq \pi<Y_{x}}\left(1-\frac{1}{\pi}\right) \quad(x \rightarrow \infty) \tag{4.9}
\end{equation*}
$$

Setting

$$
\mu(Y):=\prod_{\pi<Y}\left(1-\frac{1}{\pi}\right)
$$

estimate (4.9) can be written as

$$
\begin{equation*}
y_{C}=(1+o(1)) \frac{x}{C} \frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)} \quad(x \rightarrow \infty) \tag{4.10}
\end{equation*}
$$

Now, in light of (4.7), of the expression for $f(t)$ given in (3.1) and of our comments given in Section 3, we have that

$$
\begin{equation*}
f(t)=(1+o(1)) \frac{1}{x} \sum_{\substack{C \leq \backslash_{\mathcal{r}}^{r_{x}^{x}}}} y_{C} e^{i t h_{C}} \quad(x \rightarrow \infty) \tag{4.11}
\end{equation*}
$$

Therefore, it follows from (4.10) and (4.11) that

$$
\begin{equation*}
f(t)=(1+o(1)) \frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)} \sum_{\substack{C \leq \bigcup_{\mathcal{r}}^{r_{x} x}}} \frac{e^{i t h_{C}}}{C} \quad(x \rightarrow \infty) \tag{4.12}
\end{equation*}
$$

Let us now consider the counting function
$z\left(B_{1}, C_{1} ; B_{2}, C_{2}\right):=\#\left\{n \leq x: B(n)=B_{1}, C(n)=C_{1}, B(n+1)=B_{2}, C(n+1)=C_{2}\right\}$.
If a particular integer $n \leq x$ is counted by $z\left(B_{1}, C_{1} ; B_{2}, C_{2}\right)$, then we must have $\left(B_{1}, B_{2}\right)=\left(C_{1}, C_{2}\right)=1$. By the Eratosthenian sieve, we have

$$
\begin{equation*}
z\left(B_{1}, C_{1} ; B_{2}, C_{2}\right)=(1+o(1)) \frac{x}{B_{1} B_{2} C_{1} C_{2}} \prod_{\pi<Y_{x}}\left(1-\frac{\rho(\pi)}{\pi}\right) \quad(x \rightarrow \infty) \tag{4.13}
\end{equation*}
$$

where $\rho(\pi)$ is the function defined for each prime $\pi<Y_{x}$ by

$$
\rho(\pi)= \begin{cases}1 & \text { if } \pi \mid B_{1} C_{1} B_{2} C_{2} \tag{4.14}\\ 2 & \text { if } \pi \nmid B_{1} C_{1} B_{2} C_{2}\end{cases}
$$

Indeed, since n and $n+1$ can be written as

$$
\begin{equation*}
n=B_{1} C_{1} w_{1}, \quad n+1=B_{2} C_{2} w_{2}, \quad \text { for some } w_{1}, w_{2} \in \mathcal{D} \tag{4.15}
\end{equation*}
$$

if we let $w_{1}^{(0)}, w_{2}^{(0)}$ correspond to the smallest solution of (4.15), then all the other solutions of (4.15) are those

$$
w_{1}=w_{1}^{(0)}+t B_{2} C_{2}, \quad w_{2}=w_{2}^{(0)}+t B_{1} C_{1}
$$

for which $g(t):=\left(w_{2}^{(0)}+t B_{1} C_{1}\right)\left(w_{1}^{(0)}+t B_{2} C_{2}\right)$ belongs to \mathcal{D}, thus establishing (4.14).
It follows from this observation and (4.13) that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{x} \sum_{B_{1}, B_{2}} z\left(B_{1}, C_{1} ; B_{2}, C_{2}\right)=(1+o(1)) \frac{1}{C_{1} C_{2}} \prod_{x_{2}^{3 k}<\pi<Y_{x}}\left(1-\frac{\rho(\pi)}{\pi}\right) \cdot S_{0}(x) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{0}(x)=\sum_{\left(B_{1}, B_{2}\right)=1} \frac{1}{B_{1} B_{2}} \prod_{\pi \mid B_{1} B_{2}}\left(1-\frac{1}{\pi}\right) \prod_{\substack{\pi \nmid B_{1} B_{2} \\ \pi<x_{2}^{3 k}}}\left(1-\frac{2}{\pi}\right) . \tag{4.17}
\end{equation*}
$$

Now, let us show that

$$
\begin{equation*}
S_{0}(x)=1+o(1) \quad(x \rightarrow \infty) \tag{4.18}
\end{equation*}
$$

Indeed, observe first that since $2 \mid B_{1} B_{2}$, it follows that the sum in $S_{0}(x)$ is symmetric in B_{1}, B_{2}. Therefore, we may assume that B_{1} is even and B_{2} is odd and then double the sum in the end. So, let $B_{1}=2^{\alpha} B_{1}^{\prime}$, where $\alpha \geq 1$ and B_{1}^{\prime} is odd, in which case we have

$$
\begin{aligned}
S_{0}(x) & =2\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right) \frac{1}{2} \sum_{\left(B_{1}^{\prime}, B_{2}\right)=1} \frac{1}{B_{1}^{\prime} B_{2}} \prod_{\pi \mid B_{1}^{\prime} B_{2}} \frac{1-1 / \pi}{1-2 / \pi} \cdot \prod_{2<\pi<x_{2}^{3 k}}\left(1-\frac{2}{\pi}\right)+o(1) \\
& =\sum_{\left(B_{1}^{\prime}, B_{2}\right)=1} \frac{1}{B_{1}^{\prime} B_{2}} \prod_{\pi \mid B_{1}^{\prime} B_{2}} \frac{\pi-1}{\pi-2} \cdot \prod_{2<\pi<x_{2}^{3 k}}\left(1-\frac{2}{\pi}\right)+o(1) \\
& =\prod_{2<\pi<x_{2}^{3 k}}\left(1+2\left(\frac{1}{\pi}+\frac{1}{\pi^{2}}+\cdots\right) \frac{\pi-1}{\pi-2}\right) \cdot \prod_{2<\pi<x_{2}^{3 k}}\left(\frac{\pi-2}{\pi}\right)+o(1) \\
& =\prod_{2<\pi<x_{2}^{3 k}}\left(1+\frac{2}{\pi-2}\right) \cdot \prod_{2<\pi<x_{2}^{3 k}}\left(\frac{\pi-2}{\pi}\right)+o(1)=1+o(1)
\end{aligned}
$$

where the term $o(1)$ comes from the fact that on the first and third of the above five lines of equations, we assumed that the sum of the reciprocals of the powers of 2 and the sum of the reciprocals of the powers of π were infinite series, while in reality they are finite sums. We have thus established (4.18). Using this, we can replace estimate (4.16) by

$$
\begin{equation*}
\frac{1}{x} \sum_{B_{1}, B_{2}} z\left(B_{1}, C_{1} ; B_{2}, C_{2}\right)=(1+o(1)) \frac{1}{C_{1} C_{2}} \prod_{x_{2}^{3 k}<\pi<Y_{x}}\left(1-\frac{\rho(\pi)}{\pi}\right) \tag{4.19}
\end{equation*}
$$

Writing the last product appearing in (4.19) as $L\left(C_{1}, C_{2}\right)$, we have

$$
\begin{align*}
L\left(C_{1}, C_{2}\right) & =\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2} \cdot \prod_{\substack{x_{2}^{3 k}<\pi<Y_{x} \\
\pi \nmid C_{1} C_{2}}} \frac{1-2 / \pi}{(1-1 / \pi)^{2}} \cdot \prod_{\substack{x_{2}^{33<}<\pi<Y_{x} \\
\pi \mid C_{1} C_{2}}} \frac{1-1 / \pi}{(1-1 / \pi)^{2}} \\
& =\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2} \cdot U\left(C_{1} C_{2}\right) \cdot V\left(C_{1} C_{2}\right), \tag{4.20}
\end{align*}
$$

say. Now, on the one hand, it is clear that

$$
\log U^{-1}\left(C_{1} C_{2}\right) \leq c \sum_{\pi>x_{2}^{3 k}} \frac{1}{\pi^{2}} \leq \frac{c}{x_{2}^{3 k}}
$$

so that

$$
\begin{equation*}
1 \geq U\left(C_{1} C_{2}\right) \geq 1-\frac{c}{x_{2}^{3 k}} \tag{4.21}
\end{equation*}
$$

On the other hand, using the fact that $\omega\left(C_{1}\right) \leq \tau_{k}(n) \ll x_{2}^{k+1}$ and $\omega\left(C_{2}\right) \leq \tau_{k}(n+1) \ll$ x_{2}^{k+1}, we have that the inequalities

$$
\begin{equation*}
0 \leq \log V\left(C_{1} C_{2}\right)=\sum_{\substack{\pi>x_{3}^{3 k} \\ \pi \mid C_{1} C_{2}}} \log \frac{1}{1-1 / \pi} \leq \sum_{\substack{\pi>x_{2}^{3 k} \\ \pi \mid C_{1} C_{2}}} \frac{1}{\pi} \ll \frac{1}{x_{2}^{2}} \tag{4.22}
\end{equation*}
$$

hold for almost all positive integers $n \leq x$.
Substituting (4.21) and (4.22) in (4.20), we obtain that, as $x \rightarrow \infty$,

$$
L\left(C_{1}, C_{2}\right)=(1+o(1))\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2}
$$

for every $n \leq x$ with at most $o(x)$ exceptions.
Using this last estimate, we have thus established that, as $x \rightarrow \infty$,

$$
\begin{align*}
& \begin{aligned}
\frac{1}{x} \sum_{n \leq x} e^{i\left(t_{1} h_{n}+t_{2} h_{n+1}\right)}= & \sum_{\substack{C_{1}, C_{2} \in \mathcal{E} \\
\left(C_{1}, C_{2}\right)=1}} \frac{e^{i\left(t_{1} h_{C_{1}}+t_{2} h_{C_{2}}\right)}}{C_{1} C_{2}} \cdot(1+o(1))\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2}+o(1) \\
= & (1+o(1))\left\{\sum_{C_{1} \in \mathcal{E}} \frac{e^{i t_{1} h_{C_{1}}}}{C_{1}} \frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right\}\left\{\sum_{C_{2} \in \mathcal{E}} \frac{e^{i t_{1} h_{C_{2}}}}{C_{2}} \frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right\} \\
& \quad+\quad o(1)+E(x),
\end{aligned} \\
& (4.23) \quad
\end{align*}
$$

where $E(x)$ stands for the error term generated from the product of those terms for which $C_{1}, C_{2} \in \mathcal{E}$ with $\left(C_{1}, C_{2}\right)>1$. In fact, the size of this error term can be estimated as follows.

$$
\begin{equation*}
E(x) \leq\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2}\left\{\sum_{C_{1}^{\prime}, C_{2}^{\prime} \in \mathcal{E}} \frac{1}{C_{1}^{\prime} C_{2}^{\prime}}\right\}\left\{\sum_{\substack{d>1 \\ p(d)>x_{2}^{3 k}}} \frac{1}{d^{2}}\right\} \tag{4.24}
\end{equation*}
$$

It is clear that

$$
\sum_{C_{1}^{\prime}, C_{2}^{\prime} \in \mathcal{E}} \frac{1}{C_{1}^{\prime} C_{2}^{\prime}} \leq \prod_{x_{2}^{3 k}<\pi<Y_{x}}\left(1+\frac{2}{\pi}+\frac{2}{\pi^{2}}+\cdots\right)
$$

so that

$$
\begin{equation*}
\left(\frac{\mu\left(Y_{x}\right)}{\mu\left(x_{2}^{3 k}\right)}\right)^{2}\left\{\sum_{C_{1}^{\prime}, C_{2}^{\prime} \in \mathcal{E}} \frac{1}{C_{1}^{\prime} C_{2}^{\prime}}\right\}=O(1) \tag{4.25}
\end{equation*}
$$

while

$$
\begin{equation*}
\sum_{\substack{d>1 \\ p(d)>x_{2}^{3 k}}} \frac{1}{d^{2}} \ll \frac{1}{x_{3}} \tag{4.26}
\end{equation*}
$$

Substituting (4.25) and (4.26) in (4.24), it follows that $E(x)=o(1)$ as $x \rightarrow \infty$. Using this in (4.23), we have thus established that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e^{i\left(t_{1} h_{n}+t_{2} h_{n+1}\right)}=f\left(t_{1}\right) f\left(t_{2}\right)=e^{-\frac{t_{1}^{2}}{2}-\frac{t_{2}^{2}}{2}} \tag{4.27}
\end{equation*}
$$

thereby proving that (2.2) holds. To complete the proof of Theorem 1, it remains to prove (2.3). But this is a direct consequence of (2.2). Indeed, by choosing $t_{2}=-t_{1}$ in (4.27), it follows that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} e^{i t\left(h_{n}-h_{n+1}\right)}=e^{-t^{2}}
$$

which is precisely the characteristic function of the Gaussian law with mean value 0 and variance $\sqrt{2}$. This establishes (2.3) and therefore completes the proof of Theorem 1.

5 The proof of Theorem 2

The proof of Theorem 2 goes along the same lines as that of Theorem 1. Therefore, we shall not provide all the details. The proof is essentially based on the BrunTitchmarsh inequality, the Bombieri-Vinogradov theorem and a result of Elliott on arithmetic functions, which are all stated in Section 3.

First of all, let \mathcal{B}, \mathcal{E}, and \mathcal{D} be the subsets of integers introduced in Section 4. We start by writing the shifted primes as

$$
\begin{aligned}
& p-1=B(p-1) C(p-1) D(p-1) \\
& p+1=B(p+1) C(p+1) D(p+1)
\end{aligned}
$$

where $B(p \pm 1) \in \mathcal{B}, C(p \pm 1) \in \mathcal{E}$, and $D(p \pm 1) \in \mathcal{D}$.
As earlier, we find that

$$
\begin{equation*}
\sum_{p \leq x} \tau_{k}(B(p \pm 1))=\sum_{\substack{q_{k}<x_{2}^{3 k} \\ q_{0} \rightarrow \cdots q_{k}}} \pi\left(x ; q_{k}, \pm 1\right) \ll \operatorname{li}(x) \cdot x_{2}^{k} \cdot x_{3} \tag{5.1}
\end{equation*}
$$

Observe that we can drop those primes $p \leq x$ for which

$$
\begin{equation*}
P(p-1)>x^{1-1 / x_{3}} \quad \text { or } \quad P(p+1)>x^{1-1 / x_{3}} \tag{5.2}
\end{equation*}
$$

since the number of those $p \leq x$ satisfying (5.2) is $o(\mathrm{li}(x))$, as $x \rightarrow \infty$. We can therefore assume that $q=P(p \pm 1) \leq x^{1-1 / x_{3}}$, in which case we have, by Lemma 2,

$$
\pi(x ; q, \pm 1) \leq c \operatorname{li}(x) \cdot x_{3}
$$

Using this inequality and proceeding as we did to estimate the sum in (4.2) and obtain the upper bound given in (4.6), we find that

$$
\begin{aligned}
\sum_{P(p \pm 1) \leq x^{1-1 / x_{3}}} \tau_{k}(D(p \pm 1)) & \leq \sum_{\substack{Y_{x}<q_{k} \leq x^{1-1 / x_{3}} \\
q_{0} \rightarrow \ldots \rightarrow q_{k}}} \pi\left(x ; q_{k}, \pm 1\right) \\
& \leq c \operatorname{li}(x) x_{3} \sum_{\substack{Y_{x}<q_{k} \leq x^{1-1 / x_{3}} \\
q_{0} \rightarrow \ldots \rightarrow q_{k}}} \frac{1}{q_{k}} \\
& \leq c \operatorname{li}(x) x_{3} x_{2}^{k+1 / 3} .
\end{aligned}
$$

As before, we can conclude from these inequalities that

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{p \pm 1}}=\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p \pm 1)}}+o(1) \quad(x \rightarrow \infty) . \tag{5.3}
\end{equation*}
$$

We therefore need to estimate the two quantities
$y_{R}^{(+,-)}:=\#\{p \leq x: C(p \pm 1)=R\}=\#\left\{p \leq x: R \mid p \pm 1, \quad\left(\frac{p \pm 1}{R}, \prod_{x_{2}^{3 k_{<}<\pi \leq Y_{x}}} \pi\right)=1\right\}$.
To do so, we apply Lemma 4. To simplify the notation, we will only consider the case of the shifted primes $p+1$.

Using the notation of Lemma 4, we have

$$
Q=\prod_{x_{2}^{3 k}<\pi<Y_{x}} \pi, \quad \sum_{\substack{p \leq x \\ p+1 \equiv 0}} 1=\pi(x ; d R,-1)
$$

implying that equation (3.5) will be written as

$$
\begin{equation*}
\pi(x ; d R,-1)=\kappa(d) \pi(x ; R,-1)+T(d, R) \tag{5.4}
\end{equation*}
$$

where κ is the multiplicative function defined on prime powers p^{α} by

$$
\kappa\left(p^{\alpha}\right)= \begin{cases}1 / \varphi\left(p^{\alpha}\right) & \text { if }(p, R)=1 \\ 1 / p^{\alpha} & \text { if } p \mid R .\end{cases}
$$

Setting

$$
\Delta(x, k):=\max _{\substack{(\bmod k) \\(\ell, k)=1}}\left|\pi(x ; k, \ell)-\frac{\operatorname{li}(x)}{\varphi(k)}\right|,
$$

it follows from (5.4) that

$$
\begin{equation*}
T(d, R) \leq \Delta(x, d R)+\kappa(d) \Delta(x, R) \tag{5.5}
\end{equation*}
$$

Therefore, it follows from Lemma 4 that

$$
\begin{align*}
& \#\{p \leq x: C(p+1)=R\}=\left(1+2 \theta_{1} H\right) \pi(x ; R,-1) \prod_{p \mid R}\left(1-\frac{1}{p}\right) \prod_{\substack{p \nmid R \\
p \mid Q}}\left(1-\frac{1}{p-1}\right) \\
& (5.6) \quad+2 \theta_{2} \sum_{\substack{d \leq z^{3} \\
d \mid Q}} 3^{\omega(d)} T(d, R) . \tag{5.6}
\end{align*}
$$

Then, with H as in (3.6), we have the following representation for S :

$$
\begin{equation*}
S=\sum_{p \mid Q} \frac{\kappa(p)}{1-\kappa(p)} \log p=\sum_{x_{2}^{3 k}<p<Y_{x}} \frac{\log p}{p-2}+\sum_{p \mid R}\left(\frac{1}{p-1}-\frac{1}{p-2}\right) \log p \tag{5.7}
\end{equation*}
$$

Since the first of these last two sums is clearly $\log Y_{x}+O\left(x_{3}\right)$, while the second one is $O(1)$, it follows from (5.7) that

$$
\begin{equation*}
S=\log Y_{x}+O\left(x_{3}\right) \tag{5.8}
\end{equation*}
$$

On the other hand, by definition,

$$
r=\pi\left(Y_{x}\right)-\pi\left(x_{2}^{3 k}\right),
$$

so that

$$
\begin{equation*}
\log r=\log Y_{x}+O\left(x_{2}\right) \tag{5.9}
\end{equation*}
$$

Choosing z so that $\log z=\frac{S}{\delta_{x}}$, where δ_{x} is a function tending to 0 very slowly, it follows from (5.8) and (5.9) that

$$
\begin{equation*}
\frac{\log z}{\log r}=\frac{1}{\delta_{x}} \frac{S}{\log r}=\frac{1}{\delta_{x}} \frac{\log Y_{x}+O\left(x_{3}\right)}{\log Y_{x}+O\left(x_{2}\right)}=\frac{1}{\delta_{x}}\left(1+O\left(\frac{x_{2}}{x_{1}}\right)\right) . \tag{5.10}
\end{equation*}
$$

Using (5.10) in (3.6), we obtain

$$
H=\exp \left\{-(1+o(1)) \frac{1}{\delta_{x}}\left(\log \left(1 / \delta_{x}\right)-\log \log \left(1 / \delta_{x}\right)-2 \delta_{x}\right)\right\} \quad(x \rightarrow \infty)
$$

so that by choosing $\delta_{x}=1 / x_{3}$, we have that

$$
H=\exp \left\{-(1+o(1)) x_{3} x_{4}\right\}=o(1) \quad \text { as } x \rightarrow \infty .
$$

Using this last estimate along with (5.5), we obtain that, letting t_{x} be a function which tends to ∞ very slowly,

$$
\begin{aligned}
& \frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p+1)}=} \frac{1}{\pi(x)} \sum_{R \in \mathcal{E}} e^{i t h_{R}} \#\{p \leq x: C(p+1)=R\} \\
&=(1+o(1)) \sum_{\substack{R \in \mathcal{E}, R \leq Y_{1}^{t} x \\
R \text { squarefree }}} e^{i t h_{R}} \frac{\pi(x ; R,-1)}{\pi(x)} \frac{\varphi(R)}{R} \prod_{\substack{p \nmid R \\
p \mid Q}}\left(1-\frac{1}{p-1}\right) \\
& \left.+\frac{2 \theta_{2}}{\pi(x)} \sum_{\substack{R \in \mathcal{E}, R \leq Y_{x}^{t x} \\
R s q u a r e f r e e ~}} \sum_{d \leq z^{3}}^{\substack{Q}} \right\rvert\, \\
& z^{\omega(d)} T(d, R) \\
&=(1+o(1)) S_{1}(x)+S_{2}(x),
\end{aligned}
$$

say. As we will see, the main contribution will come from $S_{1}(x)$.
We start by estimating $S_{2}(x)$. We have, using (5.5),

$$
\begin{aligned}
S_{2}(x) & \leq \frac{1}{\pi(x)}\left\{\sum_{\substack{R \in \mathcal{E}, R \leq Y^{t} x^{\prime} x \\
R \text { squarefriee }}} \sum_{\substack{d \leq z^{3} \\
\bar{d} \mid}} z^{\omega(d)} \Delta(x, d R)+\kappa(d) \Delta(x, R)\right\} \\
& \leq \frac{1}{\pi(x)}\left\{\sum_{\substack{R \in \mathcal{E}, R \leq Y^{t} x^{x} \\
R \text { squarefree }}} \Delta(x, R) \sum_{\substack{d \leq z^{3} \\
d \mid Q}} \kappa(d)+\sum_{M} \Delta(x, M) \sum_{\substack{d|M \\
d| Q}} z^{\omega(d)}\right\} .
\end{aligned}
$$

Since

$$
\sum_{\substack{d \leq z^{3} \\ d \mid Q}} \kappa(d) \leq \sum_{d \leq z^{3}} \frac{1}{\varphi(d)} \ll \log z
$$

and

$$
\sum_{\substack{d|M \\ d| Q}} z^{\omega(d)} \leq 4^{\omega(M)}
$$

it follows from (5.12) that

$$
\begin{equation*}
S_{2}(x) \ll \frac{1}{\pi(x)}\left\{\log z \sum_{\substack{R \in \mathcal{E}, R \leq Y_{x}^{t x} \\ R \text { squarefree }}} \Delta(x, R)+\sum_{M \leq Y_{x}^{t_{x}} z^{3}} 4^{\omega(M)} \Delta(x, M)\right\} . \tag{5.13}
\end{equation*}
$$

From Lemma 3, we have that

$$
\begin{equation*}
\sum_{\substack{R \in \mathcal{E}, R \leq Y^{t} x \\ R \text { squarefree }}} \Delta(x, R) \ll \frac{x}{\log ^{A} x} \tag{5.14}
\end{equation*}
$$

and that

$$
\begin{align*}
\sum_{M \leq Y_{x}^{t x} z^{3}} 4^{\omega(M)} \Delta(x, M) & =\sum_{\substack{M \leq Y_{x}^{t x} z^{3} \\
\omega(M) \leq 10 x_{2}}} 4^{\omega(M)} \Delta(x, M)+\sum_{\substack{M \leq Y_{x}^{t x} z^{3} \\
\omega(M)>10 x_{2}}} 4^{\omega(M)} \Delta(x, M) \\
& =S_{3}(x)+S_{4}(x) . \tag{5.15}
\end{align*}
$$

say. By Lemma 3,

$$
\begin{equation*}
S_{3}(x) \ll 4^{10 x_{2}} \frac{x}{\log ^{A} x} Y_{x}^{t_{x}} z^{3}=o\left(\frac{x}{\log x}\right), \tag{5.16}
\end{equation*}
$$

while using Lemma 2,

$$
\begin{align*}
S_{4}(x) & \leq c \frac{x}{\log x} \sum_{\substack{M \leq Y_{x}^{t x_{x}} \\
\omega(M)>10 x_{2}}} \frac{4^{\omega(M)}}{\varphi(M)} \ll \frac{x}{\log x} 2^{-20 x_{2}} \sum_{M \leq Y_{x}^{t_{x}} z^{3}} \frac{4^{\omega(M)}}{\varphi(M)} \\
& \ll \frac{x}{\log x} 2^{-20 x_{2}} \prod_{p \mid Q}\left(1+\frac{8}{p-1}\right) \ll \frac{x}{\log x} 2^{-20 x_{2}}\left(\log \left(Y_{x}^{t_{x}} z^{3}\right)\right)^{8} \\
& \ll \frac{x}{\log x} \frac{1}{(\log x)^{20 \log 2} t_{x}^{8} \cdot \log ^{8} x \cdot x_{2}^{8}=o\left(\frac{x}{\log x}\right) .} \text {. } \tag{5.17}
\end{align*}
$$

Gathering estimates (5.16) and (5.17) in (5.15), which combined with (5.14) in (5.13) yields

$$
\begin{equation*}
S_{2}(x)=o(1) \quad(x \rightarrow \infty) \tag{5.18}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
S_{1}(x)=(1+o(1)) & \left\{\sum_{\substack{R \in \mathcal{E}, R \leq Y_{x}^{t x} \\
R \text { squarefree }}} \frac{e^{i t h_{R}}}{R} \prod_{p \mid R} \frac{p-1}{p-2}\right\} \cdot \prod_{p \mid Q}\left(1-\frac{1}{p-1}\right) \\
& +O\left(\frac{1}{\pi(x)} \sum_{\substack{R \in \mathcal{E}, R \leq Y_{x}^{t_{x}} \\
R \text { squarefree }}} \Delta(x, R)\right) . \tag{5.19}
\end{align*}
$$

It is easily shown that

$$
\prod_{p \mid Q}\left(1-\frac{1}{p-1}\right) \sum_{R \mid Q} \frac{1}{R}\left(\prod_{p \mid R} \frac{p-1}{p-2}-1\right) \rightarrow 0 \quad(x \rightarrow \infty)
$$

Therefore, from (5.19) and in light of (5.11) and (5.18), it follows that

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p+1)}}=\prod_{p \mid Q}\left(1-\frac{1}{p-1}\right) \sum_{\substack{R \mid Q \\ R \leq Y_{x}^{t x}}} \frac{e^{i t h_{R}}}{R}+o(1) \quad(x \rightarrow \infty) \tag{5.20}
\end{equation*}
$$

Observe that (5.20) remains valid if we drop the two conditions $R \leq Y_{x}^{t_{x}}$ and R squarefree, and if we replace $\prod_{p \mid Q}\left(1-\frac{1}{p-1}\right)$ by $\prod_{p \mid Q}\left(1-\frac{1}{p}\right)$.

Therefore,

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p+1)}}=\prod_{p \mid Q}\left(1-\frac{1}{p}\right) \sum_{R \in \mathcal{E}} \frac{e^{i t h_{R}}}{R}+o(1) \quad(x \rightarrow \infty) . \tag{5.21}
\end{equation*}
$$

It was proved in [1] (see (1.2)) that, for each $t \in \mathbb{R}$,

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{p-1}} \rightarrow e^{-t^{2} / 2} \quad(x \rightarrow \infty) \tag{5.22}
\end{equation*}
$$

It is clear that this estimate is still true if we replace $p-1$ by $p+1$. Therefore,

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{p+1}} \rightarrow e^{-t^{2} / 2} \quad(x \rightarrow \infty) \tag{5.23}
\end{equation*}
$$

Hence, it follows from (5.21), (5.22), and (5.23) that, for each $\varepsilon>0$,

$$
\frac{1}{\pi(x)} \#\left\{p \leq x:\left|h_{p \pm 1}-h_{C(p \pm 1)}\right|>\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

which implies that, as $x \rightarrow \infty$,

$$
\begin{align*}
e^{-t^{2} / 2}+o(1) & =\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p+1)}} \\
& =\prod_{\pi \mid Q}\left(1-\frac{1}{\pi}\right) \sum_{R \in \mathcal{E}} \frac{e^{i t h_{R}}}{R}+o(1) \tag{5.24}
\end{align*}
$$

Proceeding in the same manner, we obtain that, as $x \rightarrow \infty$,

$$
\begin{align*}
e^{-t^{2} / 2}+o(1) & =\frac{1}{\pi(x)} \sum_{p \leq x} e^{i t h_{C(p-1)}} \\
& =\prod_{\pi \mid Q}\left(1-\frac{1}{\pi}\right) \sum_{R \in \mathcal{E}} \frac{e^{i t h_{R}}}{R}+o(1) \tag{5.25}
\end{align*}
$$

Combining (5.24) and (5.25) completes the proof of (2.4).

It remains to prove (2.5). First write

$$
\begin{equation*}
\frac{1}{\pi(x)} \sum_{p \leq x} e^{i\left(t_{1} h_{p+1}+t_{2} h_{p-1}\right)}=\sum_{R_{1}, R_{2} \in \mathcal{E}} e^{i\left(t_{1} h_{R_{1}}+t_{2} h_{R_{2}}\right)} \cdot W_{R_{1}, R_{2}} \tag{5.26}
\end{equation*}
$$

where

$$
W_{R_{1}, R_{2}}=\frac{1}{\pi(x)} \#\left\{p \leq x: R_{1}\left|p+1, R_{2}\right| p-1,\left(\frac{p+1}{R_{1}}, Q\right)=1,\left(\frac{p-1}{R_{2}}, Q\right)=1\right\}
$$

Using Lemma 4 and proceeding as in the proof of (2.4), we obtain that, assuming $\left(R_{1}, R_{2}\right)=1$ and $R_{1}, R_{2} \leq Y_{x}^{t_{x}}$, we obtain that

$$
W_{R_{1}, R_{2}}=\prod_{\pi \mid Q}\left(1-\frac{2}{\pi}\right) \frac{1}{R_{1} R_{2}}+E\left(R_{1}, R_{2}\right)
$$

where the error term $E\left(R_{1}, R_{2}\right)$ is $o(1)$ as $x \rightarrow \infty$. Moreover, accounting for the fact that

$$
\sum_{\max \left(R_{1}, R_{2}\right)>Y_{x}^{t_{x}} \text { or }\left(R_{1}, R_{2}\right)>1} W_{R_{1}, R_{2}}=o(1) \quad(x \rightarrow \infty)
$$

we then deduce, as we did in the proof of Theorem 1, that the left hand side of (5.26) is

$$
(1+o(1)) e^{-t_{1}^{2} / 2} \cdot e^{-t_{2}^{2} / 2} \quad(x \rightarrow \infty)
$$

thus establishing (2.5) and therefore completing the proof of Theorem 2.

References

[1] N. L. Bassily, I. Kátai, M. Wijsmuller, Number of prime divisors of $\varphi_{k}(n)$, where φ_{k} is the k-fold iterate of φ, J. Number Theory 65 (1997), No. 2, 226-239.
[2] P.D.T.A.Elliott, Probabilistic Number Theory I, Mean Value Theorems, Springer-Verlag, Berlin, 1979.
[3] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
[4] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, Vol. 53, 2004.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 30 décembre 2016; fichier: iterates-euler-consecutive-arguments-dec-2016.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.

