ON THE DISTRIBUTION OF THE NUMBER OF
 PRIME FACTORS OF THE \boldsymbol{k}-FOLD ITERATE OF VARIOUS ARITHMETIC FUNCTIONS

Jean-Marie De Koninck (Québec, Canada)
Imre Kátai (Budapest, Hungary)
Dedicated to the memory of Professor Antal Iványi
Communicated by Bui Minh Phong
(Received April 16, 2017; accepted August 5, 2017)

Abstract

Given an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{N}$, let the k-fold iterate of f be defined by $f_{0}(n)=n$ and $f_{k}(n)=f\left(f_{k-1}(n)\right)$ for each integer $k \geq 1$. Let $\omega(1)=0$ and, for each integer $n \geq 2$, let $\omega(n)$ stand for the number of distinct prime factors of n. Here, we examine the distribution of the functions $\omega\left(f_{k}(n)\right)$ for various arithmetic functions f.

1. Introduction and notation

Given an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{N}$, let us consider the k-fold iterate of the function f by setting $f_{0}(n)=n$ and $f_{k}(n)=f\left(f_{k-1}(n)\right)$ for each integer $k \geq 1$. Let $\sigma(n)$ stand for the sum of the positive divisors of n, let ϕ stand for the Euler totient function, let $\psi(n)$ stand for the Dedekind function defined by $\psi(n):=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)$ and, for each fixed integer $\ell \neq 0$, let $\psi^{(\ell)}(n):=$ $:=n \prod_{p \mid n}(p+\ell)$. Moreover, let $\omega(n)$ stand for the number of distinct prime factors of the integer $n \geq 2$ with $\omega(1)=0$.

We denote by $p(n)$ and $P(n)$ the smallest and largest prime factors of n, respectively. The letters p, q, π, Q, with or without subscript, will stand exclusively for primes. In fact, we let \wp stand for the set of all primes. On the other hand, the letters c and C, with or without subscript, will stand for absolute constants but not necessarily the same at each occurrence. Moreover, we shall use the abbreviations $x_{1}=\log x, x_{2}=\log \log x$, and so on. Also, given any real number $x \geq 1$, we let $\mathcal{N}_{x}=\{1,2, \ldots,\lfloor x\rfloor\}$. The set \mathcal{M} denotes the set of multiplicative functions, while \mathcal{M}^{*} stands for the set of strongly multiplicative functions. Finally, we let

$$
\begin{equation*}
\Phi(z):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u \tag{1.1}
\end{equation*}
$$

stand for the standard Gaussian law.
We further set, for each integer $k \geq 0$,

$$
a_{k}=\frac{1}{(k+1)!}, \quad b_{k}=\frac{1}{k!\sqrt{2 k+1}}, \quad \text { and } \quad s_{k}(n \mid x)=\frac{\omega(n)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}} .
$$

In [2], we proved the following.
Theorem A. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: s_{k}\left(\phi_{k}(n) \mid x\right)<z\right\}=\Phi(z)
$$

Let $\theta \in \mathcal{M}^{*}$ be defined on primes p by $\theta(p)=p-1$ and, for each integer $k \geq 0$, consider the strongly additive function $\tau_{k}(n)$ defined recursively by $\tau_{0}(p)=1$ and $\tau_{k}(p)=\sum_{q \mid p-1} \tau_{k-1}(q)$ for each integer $k \geq 1$.

Our proof of Theorem A was essentially based on the inequalities

$$
\omega\left(\theta_{k}(n)\right) \leq \omega\left(\phi_{k}(n)\right) \leq \omega(n)+\omega(\theta(n))+\cdots+\omega\left(\theta_{k}(n)\right)
$$

and the fact that $\omega\left(\theta_{k}(n)\right)$ can be approximated by $\tau_{k}(n)$. In fact, Theorem A was deduced by the following result.

Theorem B. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\tau_{k}(n)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

Given a non zero integer ℓ such that $-\ell \notin \wp$, let $\theta^{(\ell)} \in \mathcal{M}^{*}$ be defined on the primes p by $\theta^{(\ell)}(p)=p+\ell$ and let $\theta_{k}^{(\ell)}(n)$ be the k-fold iterate of $\theta^{(\ell)}(n)$. Moreover, let $\tau_{k}^{(\ell)}$ be the strongly additive function defined recursively on primes p by $\tau_{0}^{(\ell)}(p)=1$ and $\tau_{k}^{(\ell)}(p)=\sum_{q \mid p+\ell} \tau_{k-1}(q)$ for each integer $k \geq 1$.

Here, we examine how the above theorems can be generalized to the distribution of the functions $\omega\left(\theta_{k}^{(\ell)}(n)\right), \omega\left(\tau_{k}^{(\ell)}(n)\right), \omega\left(\psi_{k}^{(\ell)}(n)\right)$ and $\omega\left(\sigma_{k}(n)\right)$.

2. Main results

Theorem 1. For each $k \in \mathbb{N}, \ell \in \mathbb{Z} \backslash\{0\}$ such that $-\ell \notin \wp$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\theta_{k}^{(\ell)}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

Theorem 2. For each $k \in \mathbb{N}, \ell \in \mathbb{Z} \backslash\{0\}$ such that $-\ell \notin \wp$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\tau_{k}^{(\ell)}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z) .
$$

Theorem 3. For each $k \in \mathbb{N}, \ell \in \mathbb{Z} \backslash\{0\}$ such that $-\ell \notin \wp$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\psi_{k}^{(\ell)}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

Theorem 4. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\sigma_{k}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z) .
$$

3. Preliminary lemmas

Lemma 1. For all integers $k \geq 1$ and ℓ, let

$$
\delta(x, k, \ell):=\sum_{\substack{p \leq x \\ p \equiv \ell(\bmod k)}} \frac{1}{p} .
$$

Then, for $\ell=1$ or $-1, k \leq x$, and $x \geq 3$, we have

$$
\delta(x, k, \ell) \leq \frac{C_{1} x_{2}}{\phi(k)}
$$

where $C_{1}>0$ is an absolute constant.
Proof. This is Lemma 2.5 in Bassily, Kátai and Wisjmuller [1].
We say that a $k+1$-tuple of primes $\left(q_{0}, q_{1}, \ldots, q_{k}\right)$ is a k-chain if $q_{i-1} \mid q_{i}+1$ for $i=1,2, \ldots, k$, in which case we write $q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k}$. We then have the following obvious result.

Lemma 2. For any fixed prime q_{0} and integer $k \geq 1$, there exist absolute constants $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
\sum_{\substack{q_{0} \rightarrow q_{1} \\ q_{1} \leq x}} \frac{1}{q_{1}} \leq \frac{c_{1} x_{2}}{q_{0}}, \quad \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow q_{2} \\ q_{2} \leq x}} \frac{1}{q_{2}} \leq \frac{c_{2} x_{2}^{2}}{q_{0}}, \quad \ldots \quad, \quad \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k} \\ q_{k} \leq x}} \frac{1}{q_{k}} \leq \frac{c_{k} x_{2}^{k}}{q_{0}}
$$

4. Proof of the Theorems

Using essentially the same techniques as those we used in [2] to establish Theorems A and B, it is somewhat easy to prove Theorems 1, 2 and 3. However, Theorem 4 needs more attention. Hence, here we shall provide a detailed proof of Theorem 4.

The general idea is to write, for all $n \leq x$ (except possibly for at most $o(x)$ integers $n \leq x$ which we can ignore),

$$
\begin{equation*}
\sigma_{k}(n)=A_{k}(n) B_{k}(n) \tag{4.1}
\end{equation*}
$$

where $\left(A_{k}(n), B_{k}(n)\right)=1, B_{k}(n)$ is squarefree and $p\left(B_{k}(n)\right)>x_{2}^{2 k}$.
We first consider the cases $k=1$ and $k=2$.
Let $\mathcal{N}_{x}:=\{1,2, \ldots,\lfloor x\rfloor\}$. Let Y_{x} be a function which tends to infinity with x but slowly enough to satisfy $Y_{x} \leq x_{5}$, say.

We then write each positive integer $n \leq x$ as

$$
\begin{equation*}
n=A_{0}(n) B_{0}(n) \tag{4.2}
\end{equation*}
$$

where $P\left(A_{0}(n)\right) \leq Y_{x}$ and $p\left(B_{0}(n)\right)>Y_{x}$. Setting

$$
\mathcal{U}_{x}^{(0)}:=\left\{n \in \mathcal{N}_{x}: A_{0}(n)>Y_{x}^{Y_{x}} \text { or } \mu\left(B_{0}(n)\right)=0\right\}
$$

it is clear $\# \mathcal{U}_{x}^{(0)}=o(x)$ as $x \rightarrow \infty$. This is why we set

$$
\mathcal{N}_{x}^{(1)}:=\mathcal{N}_{x} \backslash \mathcal{U}_{x}^{(0)}
$$

and from here on we work only with $\mathcal{N}_{x}^{(1)}$.
In light of (4.2), we then have

$$
\begin{equation*}
\sigma(n)=\sigma\left(A_{0}(n)\right) \sigma\left(B_{0}(n)\right) . \tag{4.3}
\end{equation*}
$$

To each prime number q, we associate the strongly additive function f_{q} defined on primes p by

$$
f_{q}(p)=\left\{\begin{array}{lll}
k & \text { if } & q^{k} \| p+1, \\
0 & \text { if } & q \nmid p+1 .
\end{array}\right.
$$

Using this definition of f_{q}, we can write

$$
\begin{equation*}
\sigma\left(B_{0}(n)\right)=\prod_{q \leq x_{2}^{2}} q^{f_{q}\left(B_{0}(n)\right)} \cdot \prod_{\substack{q>x^{2} \\ q^{\gamma q} \| \sigma(n)}} q^{\gamma_{q}}=s(n) \cdot B_{1}(n), \tag{4.4}
\end{equation*}
$$

say.
Observe that, in light of Lemma 1,

$$
\begin{gather*}
\sum_{n \in \mathcal{N}_{x}^{(1)}} \sum_{q \leq x_{2}^{2}}(\log q) f_{q}\left(B_{0}(n)\right) \leq \sum_{q \leq x_{2}^{2}}(\log q) \sum_{q^{k} \leq x} \sum_{q^{k} \mid p+1} \frac{x}{p} \leq \\
\leq C x x_{2} \sum_{\substack{q \leq \leq_{2}^{2} \\
q_{2}^{k} \leq x}} \frac{\log q}{\phi\left(q^{k}\right)} \leq C_{1} x x_{2} x_{3} \tag{4.5}
\end{gather*}
$$

and that, from Lemma 2,

$$
\begin{align*}
\sum_{n \in \mathcal{N}_{x}^{(1)}} \sum_{\substack{q^{2} \mid \propto(n) \\
q>x_{2}^{2}}} 1 & \leq \sum_{\substack{q>x_{2}^{2}}} \sum_{\substack{p_{1} p_{2} \leq x \\
\text { a } \\
\text { and } \\
p_{1} \neq p_{2}}}\left|\frac{x}{p_{1} p_{2}}\right| \leq \\
& \leq C x x_{2}^{2} \sum_{q>x_{2}^{2}} \frac{1}{q^{2}} \leq c x x_{2}^{2} \frac{1}{x_{2}^{2} x_{3}}=c \frac{x}{x_{3}} . \tag{4.6}
\end{align*}
$$

Hence, letting

$$
\begin{aligned}
& \mathcal{U}_{x}^{(1)}=\left\{n \in \mathcal{N}_{x}^{(1)}: s(n)>x_{2} x_{3}^{2}\right\}, \\
& \mathcal{U}_{x}^{(2)}=\left\{n \in \mathcal{N}_{x}^{(1)}: q^{2} \mid \sigma(n) \text { for some } q>x_{2}^{2}\right\},
\end{aligned}
$$

it follows from (4.5) and (4.6) that

$$
\#\left(\mathcal{U}_{x}^{(1)} \cup \mathcal{U}_{x}^{(2)}\right)=o(x) \quad(x \rightarrow \infty)
$$

and this why we set

$$
\mathcal{N}_{x}^{(2)}:=\mathcal{N}_{x}^{(1)} \backslash\left(\mathcal{U}_{x}^{(1)} \cup \mathcal{U}_{x}^{(2)}\right)
$$

and from here on we work only with $\mathcal{N}_{x}^{(2)}$.
Now, for $n \in \mathcal{N}_{x}^{(2)}$, in light of (4.3) and (4.4), we may write

$$
\begin{equation*}
\sigma(n)=A_{1}(n) B_{1}(n), \tag{4.7}
\end{equation*}
$$

where $\left(A_{1}(n), B_{1}(n)\right)=1, A_{1}(n)=\sigma\left(A_{0}(n)\right) s(n)$ and $B_{1}(n)$ is squarefree.
Observe that, for $n \in \mathcal{N}_{x}^{(2)}$, we have

$$
\begin{equation*}
\omega\left(A_{1}(n)\right) \leq \log \sigma\left(A_{0}(n)\right)+\log s(n) \leq x_{2} x_{3} x_{4}, \tag{4.8}
\end{equation*}
$$

say. Thus it follows from (4.7) and (4.8) that

$$
\begin{equation*}
\omega(\sigma(n))-\omega\left(B_{1}(n)\right)=\omega\left(A_{1}(n)\right)=O\left(x_{2} x_{3} x_{4}\right) \quad\left(n \in \mathcal{N}_{x}^{(2)}\right) . \tag{4.9}
\end{equation*}
$$

Now, by the definition of $B_{1}(n)$, we may write that

$$
\begin{equation*}
\sigma\left(B_{1}(n)\right)=\prod_{\substack{q>x_{2}^{2} \\ q \mid B_{1}(n)}}(q+1)=U(n) \cdot V(n), \tag{4.10}
\end{equation*}
$$

where

$$
U(n)=\prod_{\pi<x_{2}^{4}} \pi^{f_{\pi}\left(\sigma\left(B_{1}(n)\right)\right)}, \quad V(n)=\prod_{\substack{\pi \gamma_{\|} \| \sigma\left(B_{1}(n)\right) \\ \pi \geq x_{2}^{4}}} \pi^{\gamma_{\pi}}
$$

Using Lemma 2, we have

$$
\begin{aligned}
\sum_{n \in \mathcal{N}_{x}^{(2)}} \sum_{\pi<x_{2}^{4}} f_{\pi}\left(\sigma\left(B_{1}(n)\right)\right) \log \pi & \leq \sum_{\pi \leq x_{2}^{4}}(\log \pi) \sum_{\pi \rightarrow p_{1} \rightarrow p_{2}} f_{\pi}\left(p_{1}\right)\left\lfloor\frac{x}{p_{2}}\right\rfloor \leq \\
& \leq c_{1} x \sum_{\substack{\pi \leq x_{1}^{4} \\
\pi p_{1}^{4}}}(\log \pi) \frac{x_{2}}{p_{1}} f_{\pi}\left(p_{1}\right) \leq \\
& \leq c_{2} x x_{2}^{2} \sum_{\pi \leq x_{2}^{4}} \frac{\log \pi}{\pi} \leq c_{3} x x_{2}^{2} x_{3}
\end{aligned}
$$

and

$$
\begin{align*}
\sum_{n \in \mathcal{N}_{x}^{(2)}} \sum_{\substack{\pi^{2} \mid \sigma\left(B_{1}(n)\right) \\
\pi>x_{2}^{2}}} 1 & \leq \sum_{\substack{\pi \rightarrow p_{1} \rightarrow p_{2} \\
\pi \rightarrow Q_{1} Q_{2} \\
p_{2} Q_{2} \leq x}} \frac{x}{p_{2} Q_{2}} \leq \\
& \leq c x \sum_{\pi>x_{2}^{4}} \frac{x_{2}^{4}}{\pi^{2}} \leq c \frac{x}{x_{3}} . \tag{4.12}
\end{align*}
$$

It follows from (4.11) and (4.12) that by dropping no more than $o(x)$ integers $n \in \mathcal{N}_{x}^{(2)}$, say belonging to a set $\mathcal{U}_{x}^{(3)}$ of size $o(x)$, we may now work with the new set $\mathcal{N}_{x}^{(3)}:=\mathcal{N}_{x}^{(2)} \backslash \mathcal{U}_{x}^{(3)}$. In other words, we may now assume that
$U(n) \leq \exp \left\{x_{2}^{2} x_{3} x_{5}\right\}, \quad V(n)$ is squarefree and $(U(n), V(n))=1 \quad\left(n \in \mathcal{N}_{x}^{(3)}\right)$.
Introducing the function

$$
V^{*}(n):=\prod_{\substack{\pi>x_{2}^{4} \\ \pi \mid \sigma\left(B_{1}(n)\right) \\ \pi \nmid \sigma\left(A_{1}(n)\right)}} \pi,
$$

we can now set

$$
A_{2}(n)=\sigma\left(A_{1}(n)\right) U(n) \quad \prod_{\substack{\pi>x^{4} \\ \pi \mid\left(\sigma\left(B_{1}(n)\right), \sigma\left(A_{1}(n)\right)\right)}} \pi, \quad B_{2}(n)=V^{*}(n)
$$

and have

$$
\sigma_{2}(n)=A_{2}(n) B_{2}(n)
$$

$$
\text { with }\left(A_{2}(n), B_{2}(n)\right)=1, B_{2}(n) \text { squarefree }\left(n \in \mathcal{N}_{x}^{(3)}\right)
$$

From this it follows that

$$
\begin{gather*}
\omega\left(\sigma_{2}(n)\right)-\omega\left(B_{2}(n)\right)= \tag{4.13}\\
=\omega\left(A_{2}(n)\right) \leq 2 \log A_{1}(n)+\log U(n)=O\left(x_{2}^{2} x_{3} x_{4}\right) .
\end{gather*}
$$

Continuing in this manner, we then write

$$
\sigma\left(B_{2}(N)\right)=\prod_{q \leq x_{2}^{6}} q^{f_{q}\left(\sigma\left(B_{2}(n)\right)\right)} \cdot \prod_{q>x_{2}^{6}} q^{f_{q}\left(\sigma\left(B_{2}(n)\right)\right)}=L(n) T(n)
$$

say, with clearly $(L(n), T(n))=1$. Hence, proceeding as above, we observe that

$$
\sum_{n \leq x} \sum_{q \leq x_{2}^{6}} f_{q}\left(\sigma\left(B_{2}(n)\right)\right) \log q \leq \sum_{q \leq x_{2}^{6}}(\log q) \sum_{q \rightarrow p_{1} \rightarrow p_{2} \rightarrow p_{3}} f_{q}\left(p_{1}\right)\left\lfloor\frac{x}{p_{3}}\right\rfloor \leq c x x_{2}^{3} x_{3}
$$

and that $f_{q}\left(\sigma\left(B_{2}(n)\right)=1\right.$ or 0 for every prime $q>x_{2}^{6}$ and therefore that $\log L(n) \leq x_{2}^{3} x_{3} x_{4}$ with the possible exception of some positive integers n belonging to a set $\mathcal{U}_{x}^{(3)}$ of size at most $o(x)$. Hence, from here on we only need to consider those integers $n \in \mathcal{N}_{x}^{(4)}:=\mathcal{N}_{x}^{(3)} \backslash \mathcal{U}_{x}^{(3)}$. Therefore, for $n \in \mathcal{N}_{x}^{(4)}$, we
let

$$
\begin{aligned}
B_{3}(n) & =\prod_{\substack{q>x^{6} \\
q \mid \sigma\left(B_{2}(n)\right) \\
q \nmid \sigma\left(A_{2}(n)\right)}} q, \\
A_{3}(n) & =\sigma\left(A_{2}(n)\right) L(n) \prod_{\substack{q>x_{2}^{6} \\
q \mid\left(\sigma\left(B_{2}(n)\right), \sigma\left(A_{2}(n)\right)\right)}} q .
\end{aligned}
$$

Again, with this set up, we have

$$
\sigma_{3}(n)=A_{3}(n) B_{3}(n)
$$

with $\left(A_{3}(n), B_{3}(n)\right)=1, \quad B_{3}(n)$ squarefree $\quad\left(n \in \mathcal{N}_{x}^{(4)}\right)$
and similarly as before
(4.14) $\omega\left(\sigma_{3}(n)\right)-\omega\left(B_{3}(n)\right)=\omega\left(A_{3}(n)\right) \leq 3 \log A_{2}(n)+\log L(n)=O\left(x_{2}^{3} x_{3} x_{4}\right)$.

Pursuing in this matter, one is able to show that for every positive integer k, we have

$$
\sigma_{k}(n)=A_{k}(n) B_{k}(n), \quad \text { with }\left(A_{k}(n), B_{k}(n)\right)=1 \quad\left(n \in \mathcal{N}_{x}^{(k+1)}\right)
$$

where

$$
B_{k}(n)=\prod_{\substack{\pi>x_{2}^{k} \\ \pi \mid \sigma\left(B_{k}-1(n)\right) \\ \pi \nmid\left(A_{k-1}(n)\right)}} \pi
$$

is squarefree and, as with (4.9), (4.13) and (4.14),

$$
\begin{equation*}
\omega\left(\sigma_{k}(n)\right)-\omega\left(B_{k}(n)\right)=\omega\left(A_{k}(n)\right)=O\left(x_{2}^{k} x_{3} x_{4}\right) \tag{4.15}
\end{equation*}
$$

From estimate (4.15), it follows that $\omega\left(\sigma_{k}(n)\right)$ will be of the same order as $\omega\left(B_{k}(n)\right)$ and therefore that in order to prove Theorem 4, we only need to prove the following.

Theorem 4a. For every fixed $k \in \mathbb{N}$ and real z,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(B_{k}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

5. Proof of Theorem 4a

We will be using the same arguments as in [2] along with the same lemmas, but by modifying the strongly multiplicative functions $\theta(n)$ and $\tau_{k}(n)$ introduced in Section 1, namely by defining them on prime numbers p by $\theta(p)=p+1$ and $\tau_{0}(p)=1$ and thereafter by $\tau_{k}(p)=\sum_{q \mid p+1} \tau_{k-1}(q)$. In the same spirit, we now define a k-chain as a $k+1$-tuple of primes $q_{0}, q_{1}, \ldots, q_{k}$ which is such that $q_{i-1} \mid q_{i}+1$ for $i=1,2, \ldots, k$. A general k-chain is denoted by Q_{k}. On the other hand, a k-chain with the property that $q_{k} \mid n$ is denoted by $Q_{k}(n)$, while $Q_{k}\left(n, q_{0}\right)$ denotes those k-chains where q_{0} is fixed and $q_{k} \mid n$.

With these adapted concepts, we can use the same techniques that we developed in [2] to obtain the following.

Proposition 1. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\tau_{k}(n)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

Then, repeating the same argument that we used in Section 4, we obtain the following.

Proposition 2. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\theta_{k}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z) .
$$

Now, letting $y=x_{1}^{2}$ and proceeding as in Lemma 5.1 of [1], we have that

$$
\begin{align*}
\sum_{n \leq x} \sum_{\substack{q_{0} \leq y \\
q_{0} \theta_{k}(n)}}\left|Q_{k}\left(n, q_{0}\right)\right| & \leq x \sum_{q_{0} \leq y} \sum_{q_{1}} \cdots \sum_{q_{k}} \frac{1}{q_{k}} \ll \\
& \left.\ll x\left(C x_{2}\right)^{k}(\log \log y) \ll x\left(C x_{2}\right)^{k} x_{3}\right), \tag{5.1}
\end{align*}
$$

where we made repetitive use of Lemma 2.

Let $\theta^{(y)}$ be the strongly multiplicative function defined on primes p by

$$
\theta^{(y)}(p)=\left\{\begin{array}{lll}
p+1 & \text { if } \quad p>y \\
1 & \text { if } \quad p \leq y
\end{array}\right.
$$

As usual the function $\theta_{\ell}^{(y)}$ stands for the ℓ-fold iterate of the function $\theta^{(y)}$.

It follows from (5.1) that

$$
\begin{equation*}
0 \leq \omega\left(\theta_{k}(n)\right)-\omega\left(\theta_{k}^{(y)}(n)\right) \leq x_{2}^{k} x_{3} x_{4} \tag{5.2}
\end{equation*}
$$

for all but at most $o(x)$ integers $n \leq x$.
The following result then follows from (5.2).
Proposition 3. For each $k \in \mathbb{N}$ and every $z \in \mathbb{R}$, for $y=y(x)=x_{1}^{2}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega\left(\theta_{k}^{(y)}(n)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

Now, it is obvious that if $n \in \mathcal{N}_{k}(x)$, we have $B_{j}(n) \mid \theta_{j}(n)$ for $j=$ $=0,1, \ldots, k$, from which it follows that

$$
0 \leq \omega\left(B_{j}(n)\right) \leq \omega\left(\theta_{j}(n)\right) \quad\left(n \in \mathcal{N}_{k}(x)\right)
$$

Setting $\kappa^{(k)}(n):=\#\left\{p \in \wp: p \mid \theta_{k}^{(y)}(n)\right.$ and $\left.p \nmid B_{k}(n)\right\}$, it is enough to prove that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \in \mathcal{N}_{x}^{(k)}} \kappa^{(k)}(n)=o\left(x_{2}^{k+1 / 2}\right) \quad(x \rightarrow \infty) \tag{5.3}
\end{equation*}
$$

Before moving on, we introduce a new concept. Given a k-chain of primes $\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, we shall say that q_{0} is a bad prime if $q_{0} \mid \theta_{k}^{(y)}(n)$ while $q_{0} \nmid B_{k}(n)$, that q_{1} is a bad prime if $q_{1} \mid \theta_{k-1}^{(y)}(n)$ while $q_{1} \nmid B_{k-1}(n)$, and so on for the other primes q_{2}, \ldots, q_{k} of the k-chain. Moreover, we will say that $Q_{k}\left(n, q_{0}\right)$ is a bad chain if at least one of the q_{i} 's in $q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k}$ is a bad prime.

Now, it is obvious that

$$
\begin{equation*}
L:=\sum_{n \leq x} \kappa^{(k)}(n) \leq \sum_{n \leq x} \sum_{q_{0} \geq y} Q_{k}^{*}\left(n, q_{0}\right) \tag{5.4}
\end{equation*}
$$

where $Q_{k}^{*}\left(n, q_{0}\right)$ runs over the bad k-chains. We then have

$$
\begin{equation*}
L \leq \sum_{j=0}^{k} \sum_{\substack{q_{0} \geq y \\ q_{j} \text { bad }}} Q_{k}^{*}\left(n, q_{0}\right)=\sum_{j=0}^{k} T_{j}, \tag{5.5}
\end{equation*}
$$

say, where in T_{j}, q_{j} stands for the smallest prime which is a bad prime.

Observe that, by Lemma 2,

$$
\begin{equation*}
T_{0} \leq \sum_{\substack{q_{0} \rightarrow \ldots \rightarrow q_{k} \\ q_{0} \text { bad }}} \frac{x}{q_{k}} \leq x x_{2}^{k} \sum_{q_{0} \text { bad }} \frac{1}{q_{0}} \tag{5.6}
\end{equation*}
$$

Since the number of such $q_{0} \leq x$ is less than $C x_{2}^{k} x_{4}$, it follows that, if $p_{1}<p_{2}<\cdots$ stand for the primes in increasing order,

$$
\sum_{q_{0} \text { bad }} \frac{1}{q_{0}} \leq \sum_{j \leq C x_{2}^{k} x_{4}} \frac{1}{p_{j}} \ll x_{4}
$$

Using this estimate in (5.6), we obtain that

$$
\begin{equation*}
T_{0} \ll x x_{2}^{k} x_{4} . \tag{5.7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
T_{1} \leq \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k} \\ q_{1} \text { bad }}} \frac{x}{q_{k}} \leq x x_{2}^{k-1} \sum_{\substack{q_{0} \rightarrow q_{1} \\ q_{1} \text { bad }}} \frac{1}{q_{1}} \leq x x_{2}^{k-1} \leq \sum_{\substack{q_{1} \leq x \\ q_{1} \text { bad }}} \frac{\tau_{1}\left(q_{1}+1\right)}{q_{1}} \tag{5.8}
\end{equation*}
$$

Now, it was shown in [1] that

$$
\begin{equation*}
\sum_{p \leq x} \frac{\tau_{j}(p)}{p}=\frac{1}{j+1} x_{2}^{j+1}+O\left(x_{2}^{j}\right) \tag{5.9}
\end{equation*}
$$

Using this estimate with $j=1$, we obtain that

$$
\begin{aligned}
\sum_{\substack{q_{1} \leq x \\
q_{1} \text { bad }}} \frac{\tau_{1}\left(q_{1}+1\right)}{q_{1}} & =\sum_{\substack{q_{1} \leq x_{1} \\
q_{1} \text { bad }}} \frac{\tau_{1}\left(q_{1}+1\right)}{q_{1}}+\sum_{\substack{x_{1}<q_{1} \leq x \\
q_{1} \text { bad }}} \frac{\tau_{1}\left(q_{1}+1\right)}{q_{1}} \ll \\
& \ll x_{3}^{2}+\max _{x_{1}<q \leq x} \frac{\tau_{1}(q+1)}{q} \cdot x_{2}^{k-1} x_{4} \ll \\
& \ll x_{3}^{2}+\frac{1}{\sqrt{x_{1}}} x_{2}^{k-1} x_{4}
\end{aligned}
$$

More generally, using (5.9), we obtain that

$$
\begin{aligned}
T_{j} & \leq \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k} \\
q_{j} \text { bad }}} \frac{x}{q_{k}} \leq x x_{2}^{k-1} \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k} \\
q_{j} \text { bad }}} \frac{1}{q_{j}} \leq \\
& \leq x x_{2}^{k-j} \sum_{q_{j} \text { bad }} \frac{\tau_{j}\left(q_{j}+1\right)}{q_{j}} \leq \\
& \leq x x_{2}^{k-j} \sum_{q \leq x_{1}} \frac{\tau_{j}(q+1)}{q}+x x_{2}^{k-j} x_{2}^{j} x_{3} \max _{q>x_{1}} \frac{\tau_{j}(q+1)}{q} \leq \\
& \leq x x_{2}^{k-j} x_{2}^{j+1}+x x_{2}^{k} x_{3} \leq \\
& \ll x x_{2}^{k+1} .
\end{aligned}
$$

It follows that (5.3) holds and consequently that

$$
\left|\omega\left(\theta_{k}^{(y)}(n)\right)-\omega\left(\sigma_{k}(n)\right)\right| \leq x_{2}^{k} x_{3}
$$

thus completing the proof of Theorem 4a and thereby of Theorem 4 as well.

Acknowledgement. The research of the first author was supported in part by a grant from NSERC.

References

[1] Bassily, N.L., I. Kátai and M. Wijsmuller, Number of prime divisors of $\phi_{k}(n)$, where ϕ_{k} is the k-fold iterate of ϕ, J. Number Theory, 65(2) (1997), 226-239.
[2] De Koninck, J.-M. and I. Kátai, On the distribution of the values of additive functions over integers with a fixed number of distinct prime factors, Albanian Journal of Mathematics, 6(2) (2012), 75-86.

J.-M. De Koninck

Dép. math. et statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

I. Kátai

Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

