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Abstract

Let ϕ stand for the Euler totient function, σ(n) for the sum of the positive
divisors of n and ω(n) for the number of distinct prime factors of n. Then,
consider the functions `1(n) := ω(σ(n)) − ω(ϕ(n)), `2(n) := ω(σ(n + 1)) −
ω(σ(n)) and `3(n) := ω(ϕ(n + 1)) − ω(ϕ(n)). Here, we study the distribution
of the functions `1(n), `2(n) and `3(n), as well as that of various other related
functions.

1 Introduction

In 1940, Paul Erdős and Mark Kac proved [5] what is now known as the Erdős-Kac
theorem:

Let f : N→ R be a real valued strongly additive function and set

A(x) :=
∑
p≤x

f(p)

p
and B(x) :=

√√√√∑
p≤x

f 2(p)

p
.

Then, given any real number z,

lim
x→∞

1

x
#{n ≤ x : f(n) ≤ A(x) + zB(x)} =

1√
2π

∫ z

−∞
e−t

2/2 dt.

Here and in what follows, a strongly additive function f : N → R is an additive
function such that f(pa) = f(p) for all primes p and all integers a ≥ 1. In particular,
setting f(n) = ω(n), we find that

lim
x→∞

1

x
#{n ≤ x : ω(n) ≤ log log x+ z

√
log log x} =

1√
2π

∫ z

−∞
e−t

2/2 dt.

In a sense, the Erdős-Kac result had shown that the primes behaved like independent
random variables.

Generalisations were later obtained, namely the following. Given a real valued
strongly additive function f , consider the two expressions

A(x) :=
∑
p≤x

f(p)

p
and B2(x) :=

∑
p≤x

f 2(p)

p
.
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We will say that f belongs to the class H if there exists a function r(x) such that, as
x→∞,

log r(x)

log x
→ 0,

B(r(x))

B(x)
→ 1, B(x)→∞.

Then, we have the following result, often called the Kubilius-Shapiro theorem:

Let f ∈ H. In order to have

lim
x→∞

1

x
#

{
n ≤ x :

f(n)− A(x)

B(x)
< z

}
= Φ(z),

it is necessary and sufficient that, for any fixed ε > 0,

lim
x→∞

1

B2(x)

∑
p≤x

|f(p)|>εB(x)

f 2(p)

p
= 0.

This is Theorem 12.2 in the book of Elliott [3].
Here, we examine the distribution of some arithmetic functions evaluated at con-

secutive integers and others related to shifted primes.
More precisely, letting ϕ stand for the Euler totient function, σ(n) for the sum

of the positive divisors of n and ω(n) for the number of distinct prime factors of n,
consider the functions `1(n) := ω(σ(n))−ω(ϕ(n)), `2(n) := ω(σ(n+1))−ω(σ(n)) and
`3(n) := ω(ϕ(n + 1))− ω(ϕ(n)). Here, assuming that the famous Elliott-Halberstam
Conjecture (EHC) holds (see its statement in Section 3 below), we obtain the dis-
tribution function of each of the functions `1(n), `2(n) and `3(n), as well as that of
the functions a(n + 1) − a(n) and b(n + 1) − b(n), where a(n) :=

∑
p|n ω(p + 1) and

b(n) :=
∑

p|n ω(p− 1).

2 Main results

We let ℘ stand for the set of all primes and, from here on, the letters p, q and π,
with or without subscript, will always represent prime numbers. Also, by log2 x (resp.
log3 x) we mean max(2, log log x) (resp. max(2, log log2 x)).

For each p ∈ ℘, letting

(2.1) ∆(p) := ω(p+ 1)− ω(p− 1),

we introduce the two sums

E1(x) :=
∑
p≤x

∆(p),

A(x) :=
∑
p≤x

∆(p)

p
.
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We will be using the normal distribution function Φ(z) :=
1√
2π

∫ z

−∞
e−t

2/2 dt.

Introducing the strongly additive function ∆(n) defined on primes p by (2.1), we
then have the following result.

Theorem 1. Assuming that the EHC holds, then

lim
x→∞

1

x
#

{
n ≤ x :

∆(n)

log2 x
< z

}
= Φ(z).

Let θ+(n) and θ−(n) be the strongly multiplicative functions defined respectively
on primes p by

θ+(p) = p+ 1 and θ−(p) = p− 1.

Now, for each n ∈ N, set

ρ(n) := ω(θ+(n))− ω(θ−(n)).

Our second result is the following.

Theorem 2. Assuming that the EHC holds, then

lim
x→∞

1

x
#

{
n ≤ x :

ρ(n)

log2 x
< z

}
= Φ(z).

We also have the following.

Theorem 3. Assuming that the EHC holds, then

lim
x→∞

1

x
#

{
n ≤ x :

`1(n)

log2 x
< z

}
= Φ(z).

Recalling the definitions of the functions `2(n), `3(n), a(n) and b(n) introduced
in Section 1, and introducing the additional functions u(n) := a(n + 1) − a(n) and
v(n) := b(n+ 1)− b(n), our fourth result is as follows.

Theorem 4. Unconditionally, we have

(i) lim
x→∞

1

x
#

{
n ≤ x :

u(n)√
2/3(log2 x)3/2

< z

}
= Φ(z),

(ii) lim
x→∞

1

x
#

{
n ≤ x :

v(n)√
2/3(log2 x)3/2

< z

}
= Φ(z),

(iii) lim
x→∞

1

x
#

{
n ≤ x :

`2(n)√
2/3(log2 x)3/2

< z

}
= Φ(z),

(iv) lim
x→∞

1

x
#

{
n ≤ x :

`3(n)√
2/3(log2 x)3/2

< z

}
= Φ(z).
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3 Preliminary results

We let li(x) :=

∫ x

2

dt

log t
, π(x) :=

∑
p≤x 1 and π(x; k, `) := #{p ≤ x : p ≡ ` (mod k)}.

In 1968, Elliott and Halberstam [4] stated the following conjecture.

Elliott-Halberstam Conjecture (EHC). Given arbitrarily small ε > 0 and large
D > 0, there exists a positive constant Cε for which∑

k≤x1−ε

max
(`,k)=1

∣∣∣∣π(x; k, `)− li(x)

ϕ(k)

∣∣∣∣ < Cε
x

logD x
(x ≥ 2).

Lemma 1. If the EHC holds, then

A(x) = o(log2 x) (x→∞).

Proof. Observe that, given an arbitrarily small ε > 0, we have

E1(x) ≤
∑

q≤x1−ε

|π(x; q,−1)− π(x; q, 1)|

+
∑
a≤xε

#{q ≤ x/a : aq − 1 is prime}+
∑
a≤xε

#{q ≤ x/a : aq + 1 is prime}

= S1(x) + S2(x) + S3(x),(3.1)

say. Assuming the EHC, we have that

(3.2) S1(x) < Cε
x

log2 x
(x ≥ 2).

On the other hand, using Corollary 5.8.2 in the book of Halberstam and Richert [6],
we have that, for some absolute constants c1 > 0 and c2 > 0,

S2(x) ≤
∑
a≤xε

c1
x/a

log2(x/a)

∏
π|a

π − 1

π − 2
≤ c1x

(1− ε)2 log2 x

∑
a≤xε

1

a

∏
π|a

π − 1

π − 2

≤ c2ε
x

log x
.(3.3)

Similarly we obtain that, for some absolute constant c3 > 0,

(3.4) S3(x) < c3ε
x

log x
(x ≥ 2).

Gathering estimates (3.2), (3.3) and (3.4) in (3.1), we conclude that

(3.5) E1(x) = o

(
x

log x

)
(x→∞).
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On the other hand, it is clear that, in light of (3.5), as x→∞,

A(x) =

∫ x

2

1

u
dE1(u) =

E1(u)

u

∣∣∣∣x
2

+

∫ x

2

E1(u)

u2
du

= O(1) +

∫ u

2

o(1)

u log u
du = o(log2 x),

thereby completing the proof of Lemma 1.

Let us now introduce the two functions

E2(x) :=
∑
p≤x

∆2(p) and B2(x) :=
∑
p≤x

∆2(p)

p
.

Lemma 2. As x→∞,

(3.6) B2(x) = (log2 x)2 +O (log2 x) .

Proof. We start by estimating the size of E2(x). Let y = x1/5 and set

ωy(n) :=
∑
q|n
q<y

1, ∆y(p) := ωy(p+ 1)− ωy(p− 1) and Ry :=
∑
q<y

1

q − 1
.

By the Bombieri-Vinogradov theorem, we have

T (x) :=
∑
p≤x

∆2
y(p) =

∑
p≤x

ω2
y(p+ 1) +

∑
p≤x

ω2
y(p− 1)− 2

∑
p≤x

ωy(p+ 1)ωy(p− 1)

=
∑

q1,q2≤y
q1 6=q2

(π(x; q1q2,−1) + π(x; q1q2, 1))− 2
∑

q1,q2≤y
q1 6=q2

∑
p≤x

q1|p+1, q2|p−1

1(3.7)

+
∑
p≤x

(ωy(p+ 1) + ωy(p− 1)) +O(li(x))

= 2 li(x)(R2
y +O(1))− 2 li(x)(R2

y +O(1)) + 2 li(x)Ry +O

(
x

logD x

)
= 2 li(x)Ry +O(li(x)),(3.8)

where we used the fact that if q divides both p − 1 and p + 1, then q = 2, therefore
implying that the contribution of these terms to the sum in line (3.7) is O(li(x)).

Since y = x1/5, it is clear that Ry = log2 x+O(1), in which case we get from (3.8)
that

(3.9) T (x) = 2 li(x) log2 x+O(li(x)).

Now, observe that

(3.10) |(a+ b)2 − a2| ≤ b2 + 2|ab| for all real numbers a, b,
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while, because of our choice of y, we also have that |∆(p) − ∆y(p)| ≤ 4 for every
prime p. Therefore, choosing a = ∆y(p) and b = ∆(p)−∆y(p), it follows from (3.10)
that

(3.11)
∑
p≤x

∣∣∆2(p)−∆2
y(p)

∣∣ ≤ 25 π(x) + 10
∑
p≤x

|∆y(p)|.

Using the Cauchy-Schwarz inequality and estimate (3.9), we have that, for some
absolute constant c4 > 0,

∑
p≤x

|∆y(p)| ≤

(∑
p≤x

1

)1/2(∑
p≤x

∆2
y(p)

)1/2

≤ c4 (li(x))1/2 (li(x) log2 x)1/2

= c4 li(x)
√

log2 x.(3.12)

Combining (3.9), (3.11) and (3.12) proves that

(3.13) E2(x) = 2 li(x) log2 x+O(li(x)).

Estimate (3.6) then follows immediately from (3.13) by partial summation, and
Lemma 2 is proved.

4 Proofs of Theorems 1 and 2

Theorem 1 is an immediate consequence of Lemmas 1, 2 and of the Kubilius-Shapiro
theorem stated in the Introduction, although it remains to establish that the last
condition of the Kubilius-Shapiro theorem is satisfied.

For this, we need to prove that, for every ε > 0,

(4.1) G(x) :=
1

B2(x)

∑
p≤x

|∆(p)|≥εB(x)

∆2(p)

p
→ 0 (x→∞).

First observe that

(4.2) ∆(p)| = |ω(p+ 1)− ω(p− 1)| ≤ |ω(p+ 1)− log log p|+ |ω(p− 1)− log log p|.

On the other hand, it is well known that∑
p≤x

|ω(p+ 1)− log log p|4 � (log2 x)2π(x),

which implies that

(4.3)
∑
p≤x

|ω(p+ 1)− log log p|4

p
� (log2 x)3.
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Similarly, we obtain that

(4.4)
∑
p≤x

|ω(p− 1)− log log p|4

p
� (log2 x)3.

Finally, observe that it is obvious that, given any ε > 0,

(4.5) G(x) ≤ 1

B2(x)

∑
p≤x

∆2(p)

p
·
(

∆(p)

εB(x)

)2

.

Hence, using (4.5), (4.2), (4.3), (4.4) and Lemma 2, we obtain that, for some positive
constant c,

G(x) ≤ 1

ε2 log4
2 x

∑
p≤x

∆4(p)

p

≤ c

ε2 log4
2 x

(∑
p≤x

|ω(p+ 1)− log log p|4

p
+
∑
p≤x

|ω(p− 1)− log log p|4

p

)

≤ 2c

ε2 log4
2 x

log3
2 x

log4
2 x

a quantity which tends to 0 as x→∞. We have thus established (4.1) as requested.

In order to prove Theorem 2, we first observe that

ω(θ+(n)) ≤
∑
p|n

ω(p+ 1),

while
ω(θ+(n)) ≥

∑
p|n

p≥log2 x

ω(p+ 1)−
∑

q>log2 x

∑
p1p2|n

p1+1≡0 (mod q)
p2+1≡0 (mod q)

p1 6=p2

1,

and that
ω(θ−(n)) ≤

∑
p|n

ω(p− 1),

while
ω(θ−(n)) ≥

∑
p|n

p≥log2 x

ω(p− 1)−
∑

q>log2 x

∑
p1p2|n

p1−1≡0 (mod q)
p2−1≡0 (mod q)

p1 6=p2

1.

It follows from these observations that

1

x

∑
n≤x

|ρ(n)−∆(n)| ≤ 1

x

∑
n≤x

∑
p|n

p≤log2 x

|∆(p)|+
∑

q>log2 x

∑
q|p1+1
q|p2+1

1

p1p2
+

∑
q>log2 x

∑
q|p1−1
q|p2−1

1

p1p2
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= H1(x) +H2(x) +H3(x),(4.6)

say. On the one hand, we have that for some absolute constant c5 > 0,

H1(x) ≤
∑

p≤log log x

|∆(p)|
p

≤
∑

p≤log log x

1

p
(|ω(p+ 1)− log log p|+ |ω(p− 1)− log log p|)

≤ c5(log4 x)3/2,(4.7)

where for this last inequality, we used the known estimate∑
p≤U

|ω(p+ 1)− log log p| � U

logU

√
log2 U (U →∞).

According to Lemma 6 in Kátai [7], there exists an absolute constant c > 0 such
that ∑

k≤p≤x
p≡` (mod k)

1

p
< c

log2 x

ϕ(k)
.

We will use this result in the special cases ` = −1 and ` = 1. In particular, we easily
obtain that, for some absolute constants c6 > 0 and c7 > 0,

H2(x) ≤
∑

q>log2 x

∑
p1,p2≤x
q|p1+1
q|p2+1

1

p1p2
≤ c6(log2 x)2

∑
q>log2 x

1

q2

≤ c7(log2 x)2
1

log2 x log3 x
= c7

log2 x

log3 x
.(4.8)

Similarly, we obtain

(4.9) H3(x) ≤ c8
log2 x

log3 x
.

Combining (4.6), (4.7), (4.8) and (4.9), we obtain that

ρ(n) = ∆(n) + An,

where
1

x

∑
n≤x

|An| �
log2 x

log3 x
.

From this it follows that Theorem 2 is an immediate consequence of Theorem 1.
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5 Proof of Theorem 3

Any positive integer n can be written as n = Km, where K = K(n) is squarefull and
m = m(n) is squarefree, with (K,m) = 1. Doing so, we clearly have

0 ≤ ω(ϕ(n))− ω(ϕ(m)) ≤ ω(ϕ(K)),(5.1)

0 ≤ ω(σ(n))− ω(σ(m)) ≤ ω(σ(K))(5.2)

as well as

(5.3) ω(ϕ(m)) = ω(θ−(m)), ω(σ(m)) = ω(θ+(m)).

On the other hand, given any function s(x) which tends to ∞ arbitrarily slowly as
x→∞, we have

1

x
#{n ≤ x : K(n) > s(x)} → 0 as x→∞.

This is immediate because, letting µ stand for the Mëbius function, we have

1

x

∑
Km≤x

(m,K)=1, K>s(x)

µ2(m) =
1

x

∑
K≤x

K>s(x)

∑
m≤ x

K
(m,K)=1

µ2(m) ≤
∑
K≤x

K>s(x)

1

K
� 1√

s(x)
.

This is why we may assume that K(n) ≤ s(x), in which case, in light of (5.1), (5.2) and
(5.3), we have that ρ(n) = ρ(m) + O(s(x)) and `1(n) = `1(m) + O(s(x)). Therefore,
with n = Km and K ≤ s(x),

ρ(n) = ρ(m) +O(s(x)) = ω(θ+(m))− ω(θ−(m)) +O(s(x))

= ω(σ(m))− ω(ϕ(m)) +O(s(x)) = `1(m) +O(s(x))

= `1(n) +O(s(x)).

From this and by choosing s(x) = log3 x, we obtain that

`1(n) = ρ(n) +O(log3 x).

From this observation, Theorem 3 follows immediately from Theorem 2.

6 Proof of Theorem 4

We begin by proving part (i). We will use the “method of moments” provided in the
book of Billingsley [1].

For n ≤ x, we have a(n + 1) − a(n) =
∑

p≤xXp(n)ω(p + 1), where Xp(n) =
1p|n − 1p|n+1. Now, observe that

∑
n≤x

∣∣∣∣∣ ∑
y<p≤x

Xp(n)ω(p+ 1)

∣∣∣∣∣� (log log x) log(log x/ log y).
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Choosing y = x1/ log log x in the above implies that for almost all n, the sum
∑
y<p≤x

Xp(n)ω(p+ 1)

is smaller than the variance, so that it suffices to work only with the primes p ≤ y.
Given p, the random variable Xp takes the values 1, −1 and 0 with approximate

probabilities 1/p, 1/p and 1 − 2/p, respectively. Moreover, for different p1 and p2,
the random variables Xp1 and Xp2 are approximately independent. Now, define truly
independent random variables Yp, for p prime, such that Yp = 1 with probability 1/p,
Yp = −1 with probability 1/p, and Yp = 0 with probability 1−2/p. Clearly, E[Yp] = 0
and Var[Yp] = 2/p. Hence,

Var

[∑
p≤x

Ypω(p+ 1)

]
∼ 2

3
(log log x)3 (x→∞)

and it is easy to see that
∑
p≤x

Ypω(p+ 1)/
√

2/3 (log log x)3/2 tends to the standard

normal distribution by the Central Limit Theorem. Therefore, to complete the proof
of Theorem 4(i), it suffices to show that
(6.1)

En≤x

(∑
p≤y

Xp(n)ω(p+ 1)

)k
−E

(∑
p≤y

Ypω(p+ 1)

)k
 = o((log log x)3k/2) (x→∞).

Expanding the k-th powers, we obtain that

En≤x

(∑
p≤y

Xp(n)ω(p+ 1)

)k
− E

(∑
p≤y

Ypω(p+ 1)

)k


=
∑

p1,...,pk≤y

ω(p1 + 1) · · ·ω(pk + 1) (En≤x[Xp1(n) · · ·Xpk(n)]− E[Yp1 · · ·Ypk ]) .

Since the above innermost difference is Ok(1/x) by the Chinese Remainder Theorem,
we may conclude that (6.1) follows, thereby concluding the proof of Theorem 4(i).

It remains to prove statements (ii), (iii) and (iv) of Theorem 4. First of all, the
proof of (ii) can be treated similarly as that of (i), and we shall therefore omit it. On
the other hand, one can deduce (iv) from (ii) and (iii) from (i) by simply observing
that, given any ε > 0,

1

x
#

{
n ≤ x :

∣∣∣∣ω(σ(n))− a(n)

x3/2

∣∣∣∣ > ε

}
→ 0 (x→∞)

and
1

x
#

{
n ≤ x :

∣∣∣∣ω(ϕ(n))− b(n)

x3/2

∣∣∣∣ > ε

}
→ 0 (x→∞).
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