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Abstract

We show that some sequences of real numbers involving sharp normal num-
bers or non-Liouville numbers are uniformly distributed modulo 1. In partic-
ular, we prove that if τ(n) stands for the number of divisors of n and α is a
binary sharp normal number, then the sequence (ατ(n))n≥1 is uniformly dis-
tributed modulo 1 and that if g(x) is a polynomial of positive degree with real
coefficients and whose leading coefficient is a non-Liouville number, then the
sequence (g(τ(τ(n))))n≥1 is also uniformly distributed modulo 1.

Résumé

Nous montrons que certaines suites de nombres réels impliquant des nombres
normaux robustes et des nombres non-Liouville sont uniformément réparties
modulo 1. En particulier, nous démontrons que si τ(n) représente le nombre
de diviseurs de n, alors, étant donné un nombre normal binaire robuste α, la
suite correspondante (ατ(n))n≥1 est uniformément répartie modulo 1 et nous
démontrons également que si g(x) est un polynôme à coefficients réels de degré
positif et dont le coefficient principal est un nombre non-Liouville, alors la suite
(g(τ(τ(n))))n≥1 est uniformément répartie modulo 1.
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1 Introduction and notation

Let us first recall the concept of sharp normality, recently introduced by De Koninck,
Kátai and Phong [3].

The discrepancy of a set of N real numbers x1, . . . , xN is the quantity

(1.1) D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣∣
1

N

N∑
n=1

{xn}∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ .
Here and in what follows, {y} stands for the fractional part of the real number y.
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Recall that a sequence (xn)n∈N of real numbers is said to be uniformly distributed
modulo 1 if for each subinterval [a, b) of [0, 1),

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ [a, b)} = b− a.

Recall also that, given a fixed integer q ≥ 2, an irrational number is said to be a
q-normal number if, in the base q expansion of this number, any preassigned block
of k digits appears at the expected frequency, namely 1/qk. Equivalently, given a
positive irrational number η < 1 whose base q expansion is

η = 0.a1a2a3 . . . =
∞∑
j=1

aj
qj
, where each aj ∈ {0, 1, . . . , q − 1},

we say that η is a q-normal number if the sequence ({qmη})m≥1 is uniformly distributed
in the interval [0, 1).

This paves the way for the introduction of the notions of “sharp distribution
modulo 1” and of a “sharp normal number”.

For each positive integer N , let

(1.2) M = MN = bδN
√
Nc, where δN → 0 and δN logN →∞ as N →∞.

We shall say that a sequence of real numbers (xn)n≥1 is sharply uniformly distributed
modulo 1 if

D(xN+1, . . . , xN+M)→ 0 as N →∞

for every choice of δN satisfying (1.2). Given a fixed integer q ≥ 2, we then say that
an irrational number α is a sharp normal number in base q (or a sharp q-normal
number) if the sequence (αqn)n≥1 is sharply uniformly distributed modulo 1. In [3],
it is shown that the Lebesgue measure of the set of all those real numbers α ∈ [0, 1]
which are not sharp q-normal is equal to 0.

Before we move on, we make two remarks.

Remark 1. Our original paper on sharp normality appeared in Uniform Distribution
Theory under the title “On strong normality”. After its publication, we became aware
that the term “strong normal number” had been used by other authors with a different
meaning. For instance, Adrian Belshaw and Peter Borwein [1] call α a strong normal
number in base b if every string of digits in the base b expansion of α appears with the
frequency expected for random digits and the discrepancy fluctuates as is expected by
the law of the iterated logarithm. With this concept of “strong normality”, they then
showed that almost all numbers are strong normal numbers (as we do in the present
document, but for different reasons). This being said, in order to avoid confusion, in
this paper and in other papers in which we will further expand on properties regarding
this new concept, we shall always use the term “sharp normal numbers”.
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Remark 2. Instead of choosing MN = bδN
√
Nc in (1.2), we could have chosen

MN = bδNNγc for some fixed number γ ∈ (0, 1), thereby introducing the notion of γ-
sharp distribution modulo 1 and the corresponding notion of γ-sharp normal number.
With such definitions, it can be shown that, given 0 < γ1 < γ2 < 1, any γ1-sharp
normal number is also a γ2-sharp normal number. One can then show that, given
γ ∈ (0, 1), almost all real numbers are γ-sharp normal numbers. Various alternatives
for the choice of M = MN in (1.2) are discussed in De Koninck, Kátai and Phong
[3].

We shall also need the concept of discrepancy of a set of N t-tuples y
1
, y

2
, . . . , y

N
,

where y
n

= (x
(n)
1 , . . . , x

(n)
t ) for n = 1, 2, . . . , N , with each x

(n)
i ∈ R. The discrepancy

of a set of N such vectors y
1
, . . . , y

N
is defined as the quantity

D(y
1
, . . . , y

N
) := sup

I⊆[0,1)t

∣∣∣∣∣∣∣
1

N

N∑
n=1
{y
n
}∈I

1−
t∏
i=1

(βi − αi)

∣∣∣∣∣∣∣ ,
where {y

n
} stands for ({x1}, . . . , {xn}) and where the above supremum runs over all

possible subsets I = [α1, β1)× · · · × [αt, βt) of the t-dimensional unit interval [0, 1)t.
Recall also that an irrational number β is said to be a Liouville number if for each

integer m ≥ 1, there exist two integers t and s > 1 such that

0 <

∣∣∣∣β − t

s

∣∣∣∣ < 1

sm
.

In a sense, one might say that a Liouville number is an irrational number which can
be well approximated by a sequence of rational numbers.

Here, we show that some sequences of real numbers involving sharp normal num-
bers or non-Liouville numbers are uniformly distributed modulo 1. We also study the
discrepancy of a sequence of t-tuples of real numbers involving sharp normal numbers.

Throughout this paper, ℘ stands for the set of all primes. Given an integer n ≥ 2,
we let γ(n) (resp. ω(n)) stand for the product (resp. number) of distinct prime
factors of n, with γ(1) = 1 and ω(1) = 0. Moreover, given a set B ⊆ ℘, we let

ωB(n) =
∑
p|n
p∈B

1.

We also let τ stand for the number of divisors function. More generally, given an
integer ` ≥ 2, we let τ`(n) stand for the number of ways of writing n as the product of
` positive integers. Also, we let ϕ stand for the Euler function and write e(y) for e2πiy.
Finally, by log2 x (resp. log3 x) we mean max(2, log log x) (resp. max(2, log log2 x)).
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2 Main results

If α is an irrational number, it is well known that the sequence (αn)n≥1 is uniformly
distributed modulo 1, while there is no guarantee that the sequence (ατ(n))n≥1 will
itself be uniformly distributed modulo 1. However, if α is a sharp normal number,
the situation is different, as is shown in our first result.

Theorem 1. Let q ≥ 2 be a fixed integer. If α is a sharp q-normal number, then the
sequence (ατq(n))n≥1 is uniformly distributed modulo 1.

In an earlier paper [2], we showed that if g(x) = αxk+αk−1x
k−1 + · · ·+α1x+α0 ∈

R[x] is a polynomial of positive degree, where α is a non-Liouville number, and if h
belongs to a particular set of arithmetic functions, then the sequence (g(h(n))n≥1 is
uniformly distributed modulo 1. Our next result goes along the same lines.

Theorem 2. Let g(x) = αxk+αk−1x
k−1+· · ·+α1x+α0 ∈ R[x] be a polynomial of pos-

itive degree, where α is a non-Liouville number. Then, the sequence (g(τ(τ(n))))n≥1
is uniformly distributed modulo 1.

Now, consider the following (plausible) conjecture.

Conjecture 1. Let εx be some function which tends to 0 as x → ∞. Then, if
|k−`| ≤ εx

√
log2 x, we have, uniformly for |k− log2 x| ≤ 1

εx

√
log2 x and |`− log2 x| ≤

1
εx

√
log2 x, as x→∞,

1

x
#{n ≤ x : ω(n) = k and ω(n+ 1) = `}

= (1 + o(1))
1

x
#{n ≤ x : ω(n) = k} · 1

x
#{n ≤ x : ω(n+ 1) = `}

and more generally, if |`i − `j| ≤ εx
√

log2 x for all i 6= j, then, uniformly for |`j −
log2 x| ≤ 1

εx

√
log2 x, for each j = 0, 1, . . . , t− 1, as x→∞,

1

x
#{n ≤ x : ω(n+ j) = `j, with j = 0, 1, . . . , t− 1}

= (1 + o(1))
t−1∏
j=0

1

x
#{n ≤ x : ω(n+ j) = `j}.

It is interesting to observe that, using the ideas mentioned at the beginning of
Theorem 3, the following result would follow immediately from Conjecture 1.

Let q0, q1, . . . , qt−1 be integers larger than 1 and, for each j = 0, 1, . . . , t−1,
let αj be a sharp qj-normal number. Consider the sequence of t-tuples
(xn)n≥1 defined by

xn :=
(
{α0q

ω(n)
0 }, {α1q

ω(n+1)
1 }, . . . , {αt−1qω(n+t−1)t−1 }

)
∈ [0, 1)t.

Then, the sequence (xn)n≥1 is uniformly distributed modulo [0, 1)t.
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This observation explains the importance of the following result.

Theorem 3. Let wx and Yx be two increasing functions both tending to ∞ as x→∞
and satisfying the conditions

log Yx
log x

→ 0,
Yx

log x
→∞, wx � log2 x (x→∞).

Set B = Bx = {p ∈ ℘ : wx < p < Yx} and let q0, q1 . . . , qt−1 be t integers larger than 1
and for each i = 0, 1, . . . , t− 1, let αi be a sharp normal number in base qi. Consider
the sequence of t-tuples (y

n
)n≥1 defined by

y
n

:=
(
{α0q

ωB(n)
0 }, {α1q

ωB(n+1)
1 }, . . . , {αt−1qωB(n+t−1)t−1 }

)
∈ [0, 1)t.

If Dbxc stands for the discrepancy of the set {y
1
, . . . , ybxc}, then Dbxc → 0 as x→∞.

Finally, the following result is essentially the case t = 1 of the previous theorem.

Corollary 1. Given an integer q ≥ 2, let α be a sharp q-normal number. Let wx,
Yx and B = Bx be as in Theorem 3 and consider the sequence (yn)n≥1 defined by
yn = {αqωB(n)}. Then, the discrepancy D(y1, y2, . . . , ybxc) tends to 0 as x→∞.

3 Preliminary results

Lemma 1. If α is a sharp q-normal number and m a positive integer, then mα is
also a sharp q-normal number.

Proof. Let xn ∈ [0, 1) for n = 1, 2, . . . , N and consider the corresponding numbers
yn = {mxn} for n = 1, 2, . . . , N . If we can prove the inequality

(3.1) D(y1, y2, . . . , yN) ≤ mD(x1, x2, . . . , xN),

the proof of Lemma 1 will be complete. In order to prove (3.1), first observe that,
for each integer n ∈ {1, 2, . . . , N}, we have that yn ∈ [a, b) ⊆ [0, 1) if and only if
mxn ∈

⋃m−1
`=0 [`+ a, `+ b), which is equivalent to

xn ∈
m−1⋃
`=0

[
`

m
+
a

m
,
`

m
+

b

m

)
=:

m−1⋃
`=0

J`.

Since ∣∣∣∣∣∣∣
1

N

N∑
n=1
xn∈J`

1− b− a
m

∣∣∣∣∣∣∣ ≤ D(x1, x2, . . . , xN),
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it follows that∣∣∣∣∣∣∣
1

N

N∑
n=1

yn∈[a,b)

1− (b− a)

∣∣∣∣∣∣∣ ≤
m−1∑
`=0

∣∣∣∣∣∣∣
1

N

N∑
n=1
xn∈J`

1− b− a
m

∣∣∣∣∣∣∣ ≤ mD(x1, x2, . . . , xN).

Taking the supremum of the first two of the above quantities over all possible subin-
tervals [a, b) of [0, 1), inequality (3.1) follows immediately.

The following result is Lemma 3 in Spiro [5].

Lemma 2. Let B1, B2 and B3 be three fixed positive numbers. Assume that x ≥ 3
and that both y and ` are positive integers satisfying y ≤ B1 log2 x, ` ≤ exp{logB2 x}
and γ(`) ≤ logB3 x. Then, uniformly for y and `,

π`(x, y) := #{n ≤ x : ω(n) = y, µ2(n) = 1, (n, `) = 1}

=
x(log2 x)y−1

(y − 1)! log x

{
F

(
y − 1

log2 x

)
F`

(
y − 1

log2 x

)
+OB1,B3

(
y

(log3(16`))3

(log2 x)2

)}
,

where

F (z) =
1

Γ(z + 1)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
, F`(z) =

∏
p|`

(
1 +

z

p

)−1
.

The following result is Lemma 2.1 in the book of Elliott [4].

Lemma 3. Let f(n) be a real valued non negative arithmetic function. Let an, n =
1, . . . , N , be a sequence of integers. Let r be a positive real number, and let p1 < p2 <
· · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

(3.2)
N∑
n=1

an≡0 (mod d)

f(n) = ρ(d)X +R(N, d),

where X and R(N, d) are real numbers, X ≥ 0, and ρ(d1d2) = ρ(d1)ρ(d2) whenever
d1 and d2 are co-prime divisors of Q.

Assume that for each prime p, 0 ≤ ρ(p) < 1. Setting

I(N,Q) :=
N∑
n=1

(an,Q)=1

f(n), S = S(Q) :=
∑
p|Q

ρ(p)

1− ρ(p)
log p.

then the estimate

I(N,Q) = {1 + 2θ1H}X
∏
p|Q

(1− ρ(p)) + 2θ2
∑
d|Q
d≤z3

3ω(d)|R(N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1
8

log z, where |θ1| ≤ 1, |θ2| ≤ 1, and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
.
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Lemma 4. Let wx, Yx and B = Bx be as in Theorem 3 and let N (B) be the semigroup
generated by B. Further let rx be a function which tends to ∞ as x → ∞, while
satisfying the two conditions

(3.3) rx � log3 x and lim
x→∞

rx log Yx
log x

= 0.

Moreover, let Dj ∈ N (B), j = 0, 1, . . . , t− 1, with (Di, Dj) = 1 for i 6= j, and let
(3.4)

ND0,D1,...,Dt−1(x) := #

{
n ≤ x : Dj | n+ j, j = 0, 1, . . . , t− 1,

(
n+ j

Dj

,B
)

= 1

}
.

Then, as x→∞,
(3.5)

1

x
#{n ≤ x : Dj | n+ j, j = 0, 1, . . . , t− 1 and max(D0, D1, . . . , Dt−1) > Y rx

x } → 0

and, uniformly for Dj ≤ Y rx
x , j = 0, 1, . . . , t− 1,

ND0,D1,...,Dt−1(x) = (1 + o(1))xκ(D0)κ(D1) · · ·κ(Dt−1)L
t
x

as x→∞, where κ is the multiplicative function defined on primes p by

κ(p) =
1

p
· p− t+ 1

p− t

and Lx :=
logwx
log Yx

.

Proof. First observe that (3.5) is easily proved. We may therefore assume that Dj ≤
Y rx
x for j = 0, 1, . . . , t− 1. In order to use the same notation as in Lemma 3, we set

B = {p1, . . . , ps}, Q = p1 · · · ps, E = D0D1 · · ·Dt−1, Dj | Q for j = 0, 1, . . . , t−1.

Observe that the condition Dj | n + j for (j = 0, 1, . . . , t − 1) in the definition of
ND0,D1,...,Dt−1(x) (see (3.4)) holds for exactly one residue class n (mod E). Letting
this residue class be ` (mod E), we then have

ND0,D1,...,Dt−1(x) = #

{
m ≤

⌊ x
E

⌋
:

(
`+mE + j

Dj

, Q

)
= 1, j = 0, 1, . . . , t− 1

}
+O(1).

Choose N =
⌊ x
E

⌋
and f(m) = 1, while further setting am :=

t−1∏
j=0

`+mE + j

Dj

.

Using Lemma 3 with X = N , we then get that if d | Q, relation (3.2) can be
written as

N∑
m=1

am≡0 (mod d)

1 = ρ(d)N +R(N, d).
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Here, ρ(d) is multiplicative and defined by

ρ(p) =

{
t/p if p | Q/E,
(t− 1)/p if p | E.

On the other hand, |R(N, d)| ≤ τt(d) = (t + 1)ω(d) (since d is squarefree), which
implies that∑

d|Q
d≤z3

3ω(d)|R(N, d)| ≤
∑
d|Q
d≤z3

3ω(d)τt(d) ≤
∑
d≤z3

(3(t+ 1))ω(d) ≤ Cz3 logA z,

where A and C are suitable constants depending only on t. Again, with the notation
used in Lemma 3, we have

S =
∑
p|Q

ρ(p)

1− ρ(p)
log p =

∑
p|Q/E

t log p

p(1− t/p)
+
∑
p|E

(t− 1) log p

p(1− (t− 1)/p)

= t
∑
p|Q/E

log p

p
+ (t− 1)

∑
p|E

log p

p
+O(1)

= t
∑
p|Q

log p

p
−
∑
p|E

log p

p
+O(1).(3.6)

Observing that
∑
p|E

log p

p
≤ t

rx log Yx
wx

→ 0 as x→∞ (because of (3.3)), it follows

from (3.6) that

S = t log(Yx/wx) +O

(
rx log Yx
wx

)
.

Choosing r = ps and since

s = π(Yx)− π(wx) = π(Yx)

(
1− π(wx)

π(Yx)

)
,

it follows, since log r = log s+ log log s+O(1), that

log r = log Yx +O(log log Yx).

Finally, choose z = Y 8t νx
x , where νx →∞ very slowly as x→∞. One can then easily

check that the conditions of Lemma 3 are satisfied, thus allowing us to conclude that

H = exp (−8tνx (log(8νx)− log log(8νx) +O(1))) ,

thereby implying, since νx →∞ as x→∞, that

(3.7) H = Hx,νx = o(1) (x→∞).
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Now, writing

∏
p|Q

(1− ρ(p)) =
∏
p|Q

(
1− t

p

)
·
∏
p|E

1− t−1
p

1− t/p
=: λ(E),

we may conclude from (3.7) that

(3.8) ND0,D1,...,Dt−1(x) = (1 + o(1))
x

E
λ(E) +O(z3 logA z).

It remains to check that the above error term is not too large compared to the

main term
x

E
λ(E). Indeed, if νx tends to ∞ slowly enough, this will guarantee that

z4 ≤
√
x, say, while on the other hand, in light of conditions (3.3), we have that, for

any small ε > 0,

x

E
≥ x

Y trx
x

=
x

etrx log Yx
≥ x

etε log x
=

x

xt ε
> x3/4,

say. Finally, since λ(E) ≥ C/ log Yx for some constant C > 0, we may conclude
that indeed the error term in (3.8) is of smaller order than the main term of (3.8).
Consequently, uniformly for Dj ≤ Y rx

x , j = 0, 1, . . . , t− 1, we find that

ND0,D1,...,Dt−1(x) = (1 + o(1))
x

D0D1 · · ·Dt−1

∏
p-D0D1···Dt−1

p∈B

(
1− t

p

)
·

∏
p|D0D1···Dt−1

(
1− t− 1

p

)

= (1 + o(1))
x

D0D1 · · ·Dt−1

∏
p|D0D1···Dt−1

1− t−1
p

1− t
p

·
∏
p∈B

(
1− t

p

)
.

Since ∏
p∈B

(
1− t

p

)
= (1 + o(1))Ltx (x→∞),

the proof of Lemma 4 is complete.

The following result is Lemma 1 in our paper [2].

Lemma 5. Let g(x) = αxk + αk−1x
k−1 + · · · + α1x + α0 ∈ R[x] be a polynomial of

positive degree, where α be a non-Liouville number. Then,

sup
U≥1

1

N

∣∣∣∣∣
U+N∑
n=U+1

e(g(n))

∣∣∣∣∣→ 0 as N →∞.

Lemma 6. Assume that the set of natural integers N is written as a disjoint union
of sets NK, where K runs through the elements of a particular set P of positive
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integers, that is, N =
⋃
K∈P NK. Assume that, for each K ∈ P, the counting function

NK(x) := #{n ≤ x : n ∈ NK} satisfies

lim
x→∞

NK(x)

x
= cK ,

where the cK are positive real numbers such that
∑
K∈P

cK = 1. Moreover, let (xn)n≥1

be a sequence of real numbers which is such that, for each K ∈ P, the corresponding
sequence (xn)n∈NK is uniformly distributed modulo 1, that is, for each integer h ≥ 1,

(3.9) S
(h)
K (x) :=

∑
n≤x
n∈NK

e(hxn) = o(NK(x)) as x→∞.

Then, the sequence (xn)n≥1 is uniformly distributed modulo 1.

Proof. According to an old and very important result of Weyl [6], a sequence (xn)n≥1
is uniformly distributed modulo 1 if for every non negative integer h,

lim
N→∞

1

N

N∑
n=1

e(hxn) = 0.

Therefore, in light of Weyl’s criteria, we only need to prove that, for each positive
integer h,

(3.10) S(h)(x) :=
∑
K∈P

S
(h)
K (x)→ 0 as x→∞.

Given any z > 0 and writing

S(h)(x) =
∑
K∈P
K<z

S
(h)
K (x) +

∑
K∈P
K≥z

S
(h)
K (x),

it follows that
(3.11)∣∣∣∣S(h)(x)

x

∣∣∣∣ ≤ ∑
K<z,K∈P

NK(x)

x
· 1

NK(x)
|S(h)
K (x)|+ 1

x
#

{
n ≤ x : n ∈

⋃
K∈P,K≥z

NK

}
.

Since, in light of (3.9), we have that 1
NK(x)

|S(h)
K (x)| = o(1) as x→∞, it follows from

(3.11) that, for some C > 0,

lim sup
x→∞

∣∣∣∣S(h)(x)

x

∣∣∣∣ ≤ C · (
∑

K<z,K∈P

cK) · o(1) +
∑

K≥z,K∈P

cK ,

which is as small as we want provided z is chosen large enough, thus proving (3.10).
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4 Proof of Theorem 1

An integer n is called squarefull if p | n implies that p2 | n. Let P be the set of all
squarefull numbers. For convenience, we let 1 ∈ P . To each squarefull number K, we
associate the set NK := {n = Km : (m,K) = 1, µ2(m) = 1}, where µ stands for the
Möbius function. Since each positive integer n belongs to one and only one such set
NK , we have that

N =
⋃
K∈P

NK .

For any n ∈ NK , we have τq(n) = τq(Km) = τq(K)qω(m).
Now, in light of Lemma 6, the theorem will follow if we can prove that for each

fixed K ∈ P ,

(4.1) the sequence ({ατq(n)})n∈NK is uniformly distributed modulo 1 over NK .

To prove this last statement, we use Lemma 2. First, observe that for ` = K fixed,
we have that γ(`) = γ(K) is bounded and that we can also assume that, given any
function δx which tends to 0 sufficiently slowly as x→∞, say with 1/δx < log3 x,

(4.2) |y − log2 x| ≤
1

δx

√
log2 x,

so that each of the two quantities F

(
y − 1

log2 x

)
and F`

(
y − 1

log2 x

)
is equal to 1 + o(1)

as x→∞ for y in the range (4.2). From there and the fact that α is a sharp normal
number, it is clear that (4.1) follows.

5 Proof of Theorem 2

Given a squarefull number K, let NK and P be as in the proof of Theorem 1. Any
integer n ∈ NK can be written as n = Km, where (K,m) = 1 and µ2(m) = 1.
Moreover, write τ(K) = k1 · 2ρK for some odd positive integer k1 and some non
negative integer ρK . From this set up, it follows that τ(n) = τ(Km) = k1 · 2ρK+ω(m),
from which it follows that

(5.1) τ(τ(n)) = τ(k1) (ω(m) + ρK + 1) .

Now, for n ∈ NK with ω(m) = t, we have, using (5.1),

(5.2) g(τ(τ(n))) = ατ(k1)
k(t+ ρK + 1)k + · · · = ατ(k1)

ktk + Pk−1(t),

where Pk−1(t) stands for some polynomial of degree no larger than k − 1.
We shall now use Weyl’s criteria, already stated in the proof of Lemma 6. So, let

h be an arbitrary positive integer. For each K ∈ P , set

SK(x) :=
∑
n≤x
n∈NK

e(hg(τ(τ(n)))).

11



In light of (5.2), we have, writing t for ω(m),

SK(x) =
∑
t≥1

e(hατ(k1)
ktk + Pk−1(t)) · πK(x, t),

were πk(x, t) was defined in Lemma 2. Setting R(t) := ατ(k1)
ktk + Pk−1(t), we may

write the above as
SK(x) =

∑
t≥1

e(hR(t)) · πK(x, t).

Our goal will be to establish that, given any K ∈ P ,

(5.3) SK(x) = o(x) (x→∞).

If we can accomplish this, then, in light of Lemma 6, the proof of Theorem 2 will be
complete.

To prove (5.3), we first observe that

(5.4)
∑
t≥1

|t−log2 x|>
√

log2 x/εx

πK(x, t) = o(x) (x→∞)

and furthermore that

(5.5) max
t1

|t1−log2 x|≤
√

log2 x/εx

max
t2

|t2−t1|≤εx
√

log2 x

∣∣∣∣πK(x, t1)

πK(x, t2)
− 1

∣∣∣∣→ 0 as x→∞.

Now, consider the sequence of real numbers (zn)n≥0 defined by

z0 = log2 x−
√

log2 x

εx
and for each m ≥ 1 by zm = zm−1 + εx

√
log2 x,

and, setting M =

⌊
(2/εx)

√
log2 x

εx
√

log2 x

⌋
=

⌊
2

ε2x

⌋
, further consider the intervals

Ij := [bzjc, zj+1) (j = 0, 1, . . . ,M).

Now, observe that, uniformly for j ∈ {0, 1, . . . ,M}, as x→∞,

(5.6)

∣∣∣∣∣∣
∑
t∈Ij

e(hR(t))πK(x, t)− πK(x, bzjc)
∑
t∈Ij

e(hR(t))

∣∣∣∣∣∣ ≤ o(1)
∑
t∈Ij

πK(x, t).

Using the fact that the above intervals Ij are all of the same length, say L = Lx, it
follows from Lemma 5 that, uniformly for j ∈ {0, 1, . . . ,M},

(5.7)
1

L
∑
t∈Ij

e(hR(t))→ 0 (x→∞).

12



Combining (5.6) and (5.7) allows us to conclude that∣∣∣∣∣∣
M∑
j=0

∑
t∈Ij

e(hR(t))πK(x, t)

∣∣∣∣∣∣ = o(x).

Using this last estimate and recalling estimates (5.4) and (5.5), it follows that estimate
(5.3) holds, thus completing the proof of Theorem 2.

6 Proof of Theorem 3

Given a large number x, let T = Tx :=
∑

wx≤p≤Yx

1

p
, and observe that

(6.1) T = log

(
log Yx
logwx

)
+ o(1) = logL−1x + o(1) (x→∞).

Further let δx be a function which tends to 0 as x→∞, but not too fast in the sense

that
1

δx
= O(log2 T ).

We will be using the fact that, as a consequence of Lemma 4, as x→∞,

1

x
#{n ≤ x : ωB(n+j) = kj, j = 0, 1, . . . , t−1} = (1+o(1))

t−1∏
j=0

1

x
#{n ≤ x : ωB(n) = kj}

uniformly for positive integers k0, k1, . . . , kt−1 satisfying |kj − T | ≤
1

δx

√
T and also

that
1

x
#

{
n ≤ x :

|ωB(n)− T |√
T

>
1

δx

}
→ 0 as x→∞.

We begin by obtaining an upper bound for the sum

S :=
∑

D0,D1,...,Dt−1

Dν∈N (B), Dν≤Y rxx
(Di,Dj)>1 for some i 6=j

κ(D0)κ(D1) · · ·κ(Dt−1)L
t
x,

where rx is as in Lemma 4, keeping in mind that we allow the above sum to run only
over those Dν ≤ Y rx

x , because, as was shown in (3.5), the total contribution of those
terms for which at least one of the Dν exceeds Y rx

x is negligible. So, let us fix i, j and
consider the sum

Si,j :=
∑

Di,Dj∈N (B)
(Di,Dj)>1

Di,Dj≤Y
rx
x

κ(Di)κ(Dj)L
2
x.
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Writing Di = UD′i and Dj = V D′j, where U and V have the same prime divisors,
(D′i, D

′
j) = (U,D′i) = (V,D′j) = 1, we then have

κ(Di)κ(Dj) = κ(D′i)κ(D′j)κ(U)κ(V ).

Observe also that, for some positive constant c1, we have

κ(U)κ(V ) < c1

∏
p|U

p2

−1 .
From these observations, it follows that, for some positive constant c2,

Si,j < c2

∞∑
m=2

m∈N (B)

1

m2
·

Lx ∑
D∈N (B)

κ(D)

2

= c2

∞∑
m=2

m∈N (B)

1

m2
·
∏
p∈B

(1 + κ(p))2 · L2
x.(6.2)

On the other hand, using (6.1),

∏
p∈B

(1 + κ(p)) = exp

(∑
p∈B

log(1 + κ(p))

)

= exp

(∑
p∈B

1

p
+O(1)

)
= exp(T +O(1))

= exp(− logLx +O(1)).

Using this last estimate and the fact that

∞∑
m=2

m∈N (B)

1

m2
<
∑
m>wx

1

m2
<

2

wx
,

say, it follows from (6.2) that, for some positive constant c3,

Si,j ≤
c3
wx
· 1

L2
x

· L2
x =

c3
wx
.

Moreover, in light of the fact that

Lx
∑

Dν∈N (B)
Dν≤Y rxx

for every ν=0,1,...,t−1

κ(Dν) ≤ c4
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for some absolute constant c4 > 0, we obtain after gathering our estimates that

(6.3) S = O

(
1

wx

)
.

Now, given arbitrary subsets E0, E1, . . . , Et−1 of {D : D ∈ N (B), D ≤ Y rx
x }, we

have, as x→∞, in light of (6.3),

(6.4)
∑

D0∈E0,...,Dt−1∈Et−1
(Di,Dj)=1 for i 6=j

κ(D0)κ(D1) · · ·κ(Dt−1)L
t
x =

t−1∏
j=0

Lx ∑
D∈Ej

κ(D)

+ o(x).

Observe that to the discrepancyDN := D(x1, . . . , xN) of the real numbers x1, . . . , xN
(as defined by (1.1)), one can associate the so-called star discrepancy

D∗N = D∗(x1, . . . , xN) := sup
0≤β<1

∣∣∣∣∣∣∣
1

N

N∑
i=1
{xi}<β

1− β

∣∣∣∣∣∣∣
and establish that D∗N ≤ DN ≤ 2D∗N . In light of this observation, defining the
function Hu : [0, 1)→ {0, 1} by

(6.5) Hu(y) :=

{
1 if 0 ≤ y < u,
0 if u ≤ y < 1,

one can easily establish that

D∗N = max
u∈[0,1)

(
1

N

N∑
n=1

Hu(xn)− u

)
,

implying that if we can show that this last expression tends to 0 as N → ∞, it will
allow us to conclude that DN = Dbxc → 0 as N →∞.

To do so, given real numbers u0, u1, . . . , ut−1 ∈ [0, 1), choose

Ej := {D ∈ N (B) : |ω(D)− T | ≤
√
T/δx, D ≤ Y rx

x , Huj({αjq
ω(D)
j }) = 1}

and apply estimate (6.4).
It follows from this that, if we can prove that

(6.6)
(
{αjqωB(n+j)j }

)
n≥1

is uniformly distributed modulo 1

for each j = 0, 1, . . . , t− 1, it will imply that, as x→∞,∑
Dj∈N (B)
Dj≤Y

rx
x

Huj({αjq
ω(Dj)
j })κ(Dj)Lx → uj (j = 0, 1, . . . , t− 1),
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thus allowing us to conclude that

t−1∏
j=0

 ∑
Dj∈N (B)
Dj≤Y

rx
x

Huj({αjq
ω(Dj)
j })κ(Dj)Lx

 = u0u1 · · ·ut−1 + o(1) (x→∞),

thereby establishing that the sequence (y
n
)n≥1 is uniformly distributed mod [0, 1)t.

Thus, it remains to prove (6.6). To do so, it is enough to prove Corollary 1.

7 Proof of Corollary 1

Let

A(n) :=
∏
pa‖n
p∈B

pa and Mx :=
∏
p∈B

(
1− 1

p

)
.

For every D ∈ N (B) with D ≤ Y rx
x , we have

#{n ≤ x : A(n) = D} =

(
1 +O

(
1

logwx

))
x

D
Mx (x→∞),

from which it follows that, as x→∞,

Bk(x) :=
1

x
#{n ≤ x : ωB(n) = k}

= (1 + o(1))Mx

∑
D∈N (B)
ω(D)=k

1

D
+O(Uk(x)),(7.1)

where

Uk(x) = Mx

∑
D∈N (B)
ω(D)=k

D>Y
rx
x

1

D
+

1

x
#{n ≤ x : A(n) > Y rx

x , ω(A(n)) = k},

thereby implying that

(7.2)
∑
k≥1

Uk(x)→ 0 as x→∞.

For each positive integer k, let zk = {αqk}. Further, let Hu(y) be the function
defined in the proof of Theorem 3 (see (6.5)).

In light of estimate (7.1), we have, as x→∞,

Rx :=
1

x

∑
n≤x

Hu(yn) =
∑
k≥1

Hu(zk)Bk(x)
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= (1 + o(1))
∑
k≥1

Hu(zk)Mx

∑
D∈N (B)
ω(D)=k

1

D
+O

(∑
k≥1

Uk(x)

)
.(7.3)

Observing that ∑
a≥1,p∈B

1

apa
=
∑
p∈B

1

p
+O

(
1

wx

)
allows us to write that

(7.4) Mx = exp

{
−
∑
p∈B

1

p
+O

(
1

wx

)}
= exp

{
−T +O

(
1

wx

)}
,

say. Hence, it follows from (7.2), (7.3) and (7.4) that

(7.5) Rx = (1 + o(1))
∑
k≥1

Hu(zk) exp{−T} · T
k

k!
+ o(1) (x→∞).

Now, since, for any function δx which tends to 0 as x→∞,∑
|k−T |√

T
> 1
δx

exp{−T} · T
k

k!
→ 0 as x→∞,

we obtain that (7.5) can be replaced by

(7.6) Rx = (1 + o(1))
∑

|k−T |√
T
≤ 1
δx

Hu(zk)Kk + o(1) (x→∞),

where Kk := exp{−T} · T
k

k!
.

On the other hand, observe that for any function εx which tends to 0 as x→∞,
we have

(7.7) max
k1∣∣∣∣ k1−T√T

∣∣∣∣≤ 1
δx

max
k2

|k2−k1|<εx
√
T

∣∣∣∣Kk2

Kk1

− 1

∣∣∣∣→ 0 as x→∞.

Let us now subdivide the interval [T−
√
T/δx, T+

√
T/δx] into intervals I1, I2, . . . , Is,

where s = b2/(δxεx)c, each of length εx
√
T . Since, in light of (7.7), we have

(7.8) max
j=1,...,s

max
k1,k2∈Ij

∣∣∣∣Kk2

Kk1

− 1

∣∣∣∣→ 0 as x→∞

and since α is a sharp q-normal number, it follows that, for each j ∈ {1, . . . , s},∑
k∈Ij

Hu(zk) = (1 + o(1))
∑
k∈Ij

1 (x→∞).
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Using this last statement in (7.6), recalling (7.8), and writing |Ij| for the length of
the interval Ij, we obtain that, as x→∞,

Rx = (1 + o(1))
s∑
j=1

∑
k∈Ij

Hu(zk)Kk

= (1 + o(1))
s∑
j=1

∑
k∈Ij

Hu(zk)

 1

|Ij|
∑
k1∈Ij

Kk1


= (1 + o(1))

s∑
j=1

 1

|Ij|
∑
k1∈Ij

Kk1

∑
k∈Ij

Hu(zk)

= (1 + o(1))
s∑
j=1

 1

|Ij|
∑
k1∈Ij

Kk1

 (1 + o(1))u|Ij|

= (1 + o(1))u
s∑
j=1

∑
k∈Ij

Kk

= (1 + o(1))u
∑
k

|k−T |≤
√
T/δx

Kk

= (1 + o(1))u.

Since this last estimate holds for every real u ∈ [0, 1), it follows that Rx = o(1) as
x→∞ and the proof of Corollary 1 is complete.

8 Final remarks

Using the same techniques as above, one could prove the following result regarding
the discrepancy of a t-tuples sequence.

Let f1, f2, . . . , ft ∈ R[x] be polynomials of positive degree such that the
coefficient of the leading term of each fj is some non-Liouville number αj.
Moreover, let a1, a2, . . . , at be distinct integers and let B be as in Theorem
3. Set

y
n

:= (f1(ωB(n+ a1)), f2(ωB(n+ a2)), . . . , ft(ωB(n+ at))) .

Then,
D(y

1
, y

2
, . . . , ybxc)→ 0 as x→∞

and similarly, if pi and π(x) stand respectively for the i-th prime and the
number of primes not exceeding x,

D(y
2
, y

3
, y

5
, . . . , y

pπ(x)
)→ 0 as x→∞.

18



Acknowledgements. The authors would like to thank the referee for pointing
out corrections and also for providing valuable suggestions. The research of the first
author was supported in part by a grant from NSERC.

References

[1] A. Belshaw and P. Borwein, Champernowne’s number, strong normality, and
the X chromosome, Computational and analytical mathematics, 29-44, Springer
Proc. Math. Stat., 50, Springer, New York, 2013.
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