# Normal numbers in generalized number systems in Euclidean spaces 

Jean-Marie De Koninck and Imre Kátai

Dedicated to Professor Antal Iványi on the occasion of his 75-th birthday

Édition du 26 mai 2017


#### Abstract

We introduce the notion of normal numbers for generalized number systems in Euclidean spaces and then explore the relevance of certain conjectures to normality.


AMS Subject Classification numbers: 11K16, 11A67
Key words: number systems, normal numbers

## 1 Generalized number systems in Euclidean spaces

Given a positive integer $k$, let $\mathbb{R}_{k}$ and $\mathbb{Z}_{k}$ stand respectively for the $k$-dimensional real Euclidean space and the ring of $k$-dimensional vectors with integer entries. Fix $k$ and let $M$ be a $k \times k$ matrix with integer elements. Assume that $M$ has $k$ distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{k}\right|>1$. Let $\mathcal{L}:=M \mathbb{Z}_{k}$. Then, $\mathcal{L}$ is a subgroup of $\mathbb{Z}_{k}$ and let $t$ stand for the order of $\mathbb{Z}_{k} / \mathcal{L}$, so that $t=|\operatorname{det} M|$. Further let $A_{0}, A_{1}, \ldots, A_{t-1}$ stand for the residue classes $\bmod \mathcal{L}$ and let $A_{0}=\mathcal{L}$. For each $j \in\{0,1, \ldots, t-1\}$, choose an arbitrary element $\underline{a}_{j} \in A_{j}$ such that the vector $\underline{a}_{0}$ is the zero vector $\underline{0}=(0,0, \ldots, 0)$, and then write

$$
\mathcal{A}:=\left\{\underline{a}_{0}, \underline{a}_{1}, \ldots, \underline{a}_{t-1}\right\} .
$$

If the norm $\|\underline{n}\|$ of $\underline{n}=\left(n_{1}, \ldots, n_{k}\right)$ is $\|\underline{n}\|=\max _{1 \leq i \leq k}\left|n_{i}\right|$ or $\|\underline{n}\|=\sum_{1 \leq i \leq k}\left|n_{i}\right|$, then the operator norm $\|\cdot\|$ of $M^{-1}$ is $1 /\left|\lambda_{k}\right|$ while that of $M$ is $\left|\lambda_{1}\right|$.

Let us now introduce the function $J: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}$ as follows. Since for each $\underline{n} \in \mathbb{Z}_{k}$, there exist a unique $\underline{b}_{0} \in \mathcal{A}$ for which $\underline{n}-\underline{b}_{0} \in \mathcal{L}$ and a unique $\underline{n}_{1} \in \mathbb{Z}_{k}$ for which $\underline{n}=\underline{b}_{0}+M \underline{n}_{1}$, that is, $\underline{n}_{1}=M^{-1}\left(\underline{n}-\underline{b}_{0}\right)$, we define $J: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}$ by $J(\underline{n})=\underline{n}_{1}$.

We further define the real numbers $K, \xi$ and $L$ by

$$
K=\max _{b \in \mathcal{A}}\|b\|, \quad \xi=\frac{1}{\min _{1 \leq j \leq k}\left|\lambda_{j}\right|}=\left|M^{-1}\right|, \quad L=\frac{K \xi}{1-\xi}
$$

In [3], the following result was proved.
Lemma 1. (a) If $\|\underline{n}\|>L$, then $\|J(\underline{n})\|<\|\underline{n}\|$.
(b) If $\|\underline{n}\| \leq L$, then $\|J(\underline{n})\| \leq L$.

Since the disks contain only a finite number of elements of $\mathbb{Z}_{k}$, it follows that the path

$$
\underline{n}, \quad J(\underline{n}), \quad J^{2}(\underline{n}), \ldots
$$

is ultimately periodic.
Now, let $\mathcal{P}$ stand for the set of periodic elements. Then, $\underline{n} \in \mathcal{P}$ if there is an integer $j \geq 1$ such that $J^{j}(\underline{n})=\underline{n}$. The directed graph (over $\mathcal{P}$ ) is defined by $\underline{n} \rightarrow J(\underline{n})$ $(\underline{n} \in \mathcal{P})$. It is clear that $\underline{n} \in \mathcal{P}$ implies that $J(\underline{n}) \in \mathcal{P}$ and that the directed graph $J \mathcal{P} \rightarrow \mathcal{P}$, which we denote by $G(\mathcal{P})$, is the union of disjoint directed circles (allowing for loops). Moreover, $\underline{0}(\rightarrow \underline{0}) \in \mathcal{P}$, and if $\pi \in \mathcal{P}$, then $\|\pi\| \leq L$.

Now, for each $\underline{n} \in \mathbb{Z}_{k}$ and integer $h \geq 1$, we have

$$
\begin{aligned}
\underline{n} & =\underline{b}_{0}+M \underline{b}_{1}+\cdots+M^{h-1} \underline{b}_{h-1}+M^{h} \underline{n}_{h} \\
\underline{n}_{h} & =J^{h}\left(\underline{n}_{0}\right), \quad \underline{b}_{\nu} \in \mathcal{A}
\end{aligned}
$$

Further define

$$
\ell(\underline{n}):=\left\{\begin{array}{lll}
0 & \text { if } & \underline{n} \in \mathcal{P} \\
h & \text { if } & \underline{n} \notin \mathcal{P}
\end{array}\right.
$$

where $h$ is the smallest integer for which $\underline{n}_{h} \in \mathcal{P}$. For this reason, we will say and write that the standard expansion of $\underline{n}$ is $\left(\underline{b}_{0}, \underline{b}_{1}, \ldots, \underline{b}_{h-1} \mid \pi\right)$, where $\pi=\underline{n}_{h}$. In the special case where $\underline{n}=\pi \in \mathcal{P}$, the expansion is written as $(* \mid \pi)$.

We say that $(\mathcal{A}, M)$ is a number system (written for short as NS) in $\mathbb{Z}_{k}$ if each $\underline{n} \in \mathbb{Z}_{k}$ can be written as

$$
\underline{n}=\underline{b}_{0}+M \underline{b}_{1}+\cdots+M^{h-1} \underline{b}_{h-1} .
$$

In other words, $(\mathcal{A}, M)$ is a number system in $\mathbb{Z}_{k}$ if and only if $\mathcal{P}=\{\underline{0}\}$.
Let $H$ be the set of those $\underline{z} \in \mathbb{R}_{k}$ which can be expanded as

$$
\underline{z}=\sum_{\nu=1}^{\infty} M^{-\nu} \underline{b}_{\nu}, \quad \underline{b}_{\nu} \in \mathcal{A} .
$$

The set $H$ is called the fundamental region with respect to $(\mathcal{A}, M)$.
For each integer $h \geq 0$, let

$$
\Gamma_{h}:=\left\{\underline{n}: \underline{n}=\sum_{j=0}^{h} M^{j} \underline{b}_{j}, \quad \underline{b}_{j} \in \mathcal{A}\right\}
$$

so that in particular $\Gamma_{h} \subseteq \Gamma_{h+1}$. Letting $\Gamma=\bigcup_{h=0}^{\infty} \Gamma_{h}$, we have that $\Gamma \subseteq \mathbb{Z}_{k}$ and one can easily see that $\Gamma=\mathbb{Z}_{k}$ if and only $(\mathcal{A}, M)$ is a number system.

Since we can write the fundamental region $H$ as

$$
H=\bigcup_{\underline{a} \in \mathcal{A}}\left(M^{-1} \underline{a}+M^{-1} H\right)
$$

it is easily seen that $H$ is a compact set.
The following result was proved in [3].

Theorem A. Let $\lambda$ stand for the Lebesgue measure in $\mathbb{R}_{k}$.
(a) We have $\bigcup_{\underline{n} \in \mathbb{Z}_{k}}(H+\underline{n})=\mathbb{R}_{k}$.
(b) If $\underline{n}_{1}, \underline{n}_{2} \in \Gamma, \underline{n}_{1} \neq \underline{n}_{2}$, then

$$
\lambda\left(H+\underline{n}_{1} \cap H+\underline{n}_{2}\right)=0 .
$$

(c) If $\Gamma=\mathbb{Z}_{k}$, that is if $(\mathcal{A}, M)$ is a number system, then

$$
\lambda\left(H+\underline{n}_{1} \cap H+\underline{n}_{2}\right)=0
$$

for every $\underline{n}_{1}, \underline{n}_{2} \in \mathbb{Z}_{k}$ with $\underline{n}_{1} \neq \underline{n}_{2}$.

## 2 Just touching covering system

We now introduce the concept of just touching covering system. We say that ( $\mathcal{A}, M$ ) is a just touching covering system (for short JTCS) if $\lambda\left(H+\underline{n}_{1} \cap H+\underline{n}_{2}\right)=0$ for every $\underline{n}_{1}, \underline{n}_{2} \in \mathbb{Z}_{k}$ with $\underline{n}_{1} \neq \underline{n}_{2}$.

Interestingly, if $(\mathcal{A}, M)$ is a JTCS, then

$$
\lambda\left(M^{-h} \underline{n}_{1}+M^{-h} H \cap M^{-h} \underline{n}_{2}+M^{-h} H\right)=0
$$

for every $\underline{n}_{1}, \underline{n}_{2} \in \mathbb{Z}_{k}$ with $\underline{n}_{1} \neq \underline{n}_{2}$.
The next two results reveal interesting properties regarding JTCS.
Theorem B. ([4]) The number system $(\mathcal{A}, M)$ is a JTCS if $\Gamma-\Gamma=\mathbb{Z}_{k}$, that is if every $\underline{n} \in \mathbb{Z}_{k}$ can be written as $\underline{n}_{1}-\underline{n}_{2}$, where $\underline{n}_{1}, \underline{n}_{2} \in \mathbb{Z}_{k}$.

Theorem C. ([6]) Given $D \in \mathbb{Z} \backslash\{0\}$, let $A=\left\{a_{0}, a_{1}, \ldots, a_{|D|-1}\right\}$ (where $a_{0}=$ 0 ) be a complete residue system $\bmod D$. Then, $(\mathcal{A}, D)$ is a JTCS if and only if $\operatorname{gcd}\left(a_{1}, \ldots, a_{|D|-1}\right)=1$.

Let $(\mathcal{A}, M)$ be a JTCS and let

$$
\xi=\sum_{\ell=-r}^{\infty} M^{-\ell} \underline{c}_{\ell} \quad\left(\underline{c}_{\ell} \in \mathcal{A}\right) .
$$

We write the "integer part" and "fractional part" of $\xi$ as follows:

$$
\lfloor\xi\rfloor=\sum_{\ell=-r}^{0} M^{-\ell} \underline{c}_{\ell} \quad\left(\in \mathbb{Z}_{k}\right)
$$

$$
\{\xi\}=\sum_{\ell=1}^{\infty} M^{-\ell} \underline{c}_{\ell} \quad(\in H)
$$

Observe that it is clear that

$$
\left\{M^{u} \xi\right\}=\sum_{\ell=1}^{\infty} M^{-\ell} \underline{c}_{u+\ell} \quad(\in H)
$$

Moreover, letting $\beta=\underline{b}_{1} \underline{b}_{2} \ldots \underline{b}_{k}$, let us define

$$
H_{\beta}:=\left\{\eta: \eta=\sum_{\ell=1}^{\infty} M^{-\ell} \underline{c}_{\ell}: \underline{c}_{\ell}=\underline{b}_{\ell} \text { for } \ell=1,2, \ldots, k\right\} .
$$

It is clear that, for a fixed $k$, any two $H_{\beta_{1}}$ and $H_{\beta_{2}}$ will be isomorphic since

$$
H=\sum_{\ell=1}^{k} M^{-\ell} \underline{b}_{\ell}+M^{-k} H
$$

and
(i) $H=\bigcup_{\beta \in A^{k}} H_{\beta}$,
(ii) $\lambda\left(H_{\beta_{1}} \cap H_{\beta_{2}}\right)=0$,
(iii) $\lambda\left(H_{\beta_{1}}\right)=\lambda\left(H_{\beta_{2}}\right)$,
(iv) $\lambda\left(H_{\beta}\right) t^{k}=\lambda(H)$.

## 3 Normal sequences and normal numbers in $\mathbb{R}$

Let $A=\left\{a_{1}, \ldots, a_{N}\right\}$ be a finite set of letters. Let $A^{*}$ be the set of finite words over $A$. Given a word $\alpha \in A^{*}$, we write $\lambda(\alpha)$ to denote its length (that is, the number of letters in the word $\alpha$ ). We let $\Lambda$ stand for the empty word and write $\lambda(\Lambda)=0$. The operation $(\alpha, \beta) \rightarrow \alpha \beta$ is called concatenation. The expression $A^{\mathbb{N}}$ stands for the set of infinite sequences over $A$, that is, $\beta \in A^{\mathbb{N}}$ if it can be written as $\beta=b_{1} b_{2} b_{3} \ldots$, where each $b_{i} \in A$. Moreover, given $\beta \in A^{\mathbb{N}}$ and a positive integer $T$, we set $\beta^{T}:=b_{1} b_{2} \ldots b_{T}$. Given $\gamma, \delta \in A^{*}$, we let $S(\delta \mid \gamma)$ stand for $\#\left\{\epsilon_{1}, \epsilon_{2} \in A^{*}: \gamma=\epsilon_{1} \delta \epsilon_{2}\right\}$, that is, the number of occurrences of $\delta$ as a subword in $\gamma$.

Definition. Let $\beta \in A^{\mathbb{N}}$. We say that $\beta$ is a normal sequence (over $A$ ) if

$$
\lim _{T \rightarrow \infty} \frac{S\left(\alpha \mid \beta^{T}\right)}{T}=\frac{1}{N^{\lambda(\alpha)}}
$$

for every $\alpha \in A^{*}$.

## 4 Normal sequences and normal numbers in $\mathbb{R}_{k}$

Definition. Let $(\mathcal{A}, M)$ be a number system and let $\eta=\sum_{\ell=1}^{\infty} M^{-\ell} \underline{b}_{\ell}$, with each $\underline{b}_{\ell} \in \mathcal{A}$. We say that $\eta$ is a normal number in $\mathbb{R}_{k}$ with respect to $(\mathcal{A}, M)$ if, for every $\beta \in A^{*}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N:\left\{M^{n} \eta\right\} \in H_{\beta}\right\}=\frac{1}{t^{\lambda(\beta)}}
$$

where $t=|\operatorname{det} M|$.
The following two assertions are obvious.

- (I) $\eta$ is a normal number in $\mathbb{R}_{k}$ with respect to $(\mathcal{A}, M)$ if and only if $\beta=\underline{b}_{1} \underline{b}_{2} \ldots$ is a normal sequence over $A$.
- (II) Let $E=\left\{e_{1}, \ldots, e_{k}\right\}, D=\left\{d_{1}, \ldots, d_{k}\right\}, \varphi: E \rightarrow D$ defined by $\varphi\left(e_{j}\right)=d_{j}$, $\beta=b_{1} b_{2} \ldots \in E^{\mathbb{N}}, \varphi(\beta)=\varphi\left(b_{1}\right) \varphi\left(b_{2}\right) \ldots\left(\in D^{\mathbb{N}}\right)$. Then, $\beta$ is a normal sequence in $E^{\mathbb{N}}$ if and only if $\varphi(\beta)$ is a normal sequence in $D^{\mathbb{N}}$.
In light of these assertions, one can easily prove the following theorem.
Theorem 1. Let $(\mathcal{A}, M)$ be a JTCS with $\mathcal{A}=\left\{\underline{a}_{0}=\underline{0}, \underline{a}_{1}, \ldots, \underline{a}_{t-1}\right\}$, where $t=$ $|\operatorname{det} M|$. Moreover, let $E=\{0,1, \ldots, t-1\}$ and let $\eta=0 . \epsilon_{1} \epsilon_{2} \ldots$ be an arbitrary $t$-ary normal number. Then, $\psi=\sum_{\ell=1}^{\infty} M^{-\ell} \underline{a}_{\epsilon_{\ell}}$ is a normal number in $\mathbb{R}_{k}$ with respect to $(\mathcal{A}, M)$.


## 5 Construction of base $Q$ normal numbers

Fix an integer $Q \geq 2$. Let $\mathcal{A}_{Q}=\{0,1, \ldots, Q-1\}$ and let $\mathcal{A}_{Q}^{*}$ stand for the set of words over $\mathcal{A}_{Q}$. For each integer $N \geq 1$, let $J_{N}=\left[Q^{N-1}, Q^{N}-1\right]$. Given an integer $n \in J_{N}$, write it as $n=\sum_{\nu=0}^{N-1} \epsilon_{\nu}(n) Q^{\nu}$ and define $\bar{n}:=\epsilon_{1}(n) \epsilon_{1}(n) \ldots \epsilon_{N-1}(n) \in \mathcal{A}_{Q}^{*}$. Finally, we let $\lambda(\bar{n})=N$ stand for the length of $\bar{n}$.

For each integer $N \geq 3$, consider a subset $S_{N}$ of $\{1,2, \ldots, N-1\}$, writing it as $S_{N}=\left\{\ell_{1}^{(N)}, \ldots, \ell_{r_{N}}^{(N)}\right\}$, where the $\ell_{i}^{(N)}$,s are in increasing order. Assume that $r_{N} \geq 1$ and that $\left(r_{1}+\cdots+r_{N-1}\right) / r_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

To each prime $p \in J_{N}$, let us associate the number

$$
\kappa(p)=\epsilon_{\ell_{1}^{(N)}}(p) \ldots \epsilon_{\ell_{r_{N}}^{(N)}}(p)
$$

Let $p_{1}<\cdots<p_{\pi\left(J_{N}\right)}$ be all the primes included in $J_{N}$. Moreover, let $\sigma_{N}$ be an arbitrary permutation of $\left\{1, \ldots, \pi\left(J_{N}\right)\right\}$. Further define

$$
\eta_{N}:=\kappa\left(p_{\sigma_{N}(1)}\right) \ldots \kappa\left(p_{\sigma_{N}\left(\pi\left(J_{N}\right)\right)}\right)
$$

Finally, consider the number

$$
\alpha=0 . \eta_{1} \eta_{2} \ldots
$$

Theorem 2. The number $\alpha$ is a normal number in base $Q$.
Proof. This is an easy consequence of an earlier result obtained by Harman and Kátai [8] and according to which, given integer $r$ integers $(1 \leq) j_{1}<\cdots<j_{r}(\leq N-1)$, setting

$$
\Pi\left(\begin{array}{l|l}
J_{N} & \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}
\end{array}\right):=\#\left\{p \in J_{N}: a_{j_{\ell}}(p)=b_{j_{\ell}} \text { for } \ell=1, \ldots, r\right\}
$$

we have

$$
\max _{\substack{1 \leq j_{1}<\cdots \lll \leq \leq N-1 \\
b_{1}, \ldots, b_{r}}}\left|\frac{Q^{r} \Pi\left(J_{N} \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)}{\pi\left(J_{N}\right)}-1\right| \rightarrow 0 \quad(N \rightarrow \infty)
$$

for every fixed integer $r \geq 1$.
Theorem 3. If $S_{N}=\{1, \ldots, N-1\}$, then Theorem 2 holds without the condition $\left(r_{1}+\cdots+r_{N-1}\right) / r_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

Theorem 4. Let $\wp_{N}$ be the set of primes in $J_{N}$. Given a prime $p \in J_{N}$, write its $Q$-ary expansion as

$$
\bar{p}=\varepsilon_{0}(p) \epsilon_{1}(p) \ldots \epsilon_{N-1}(p)
$$

Then, set

$$
\gamma_{N}=\operatorname{Concat}\left(\bar{p}: p \in \wp_{N}\right) .
$$

Fix an integer $D \in \mathbb{N}$ and consider the real number

$$
\alpha=0 . \gamma_{D} \gamma_{2 D} \ldots=0 . a_{1} a_{2} \ldots,
$$

say. Further consider the number

$$
\alpha^{(\ell)}=0 . \operatorname{Concat}\left(a_{m}: m \equiv \ell \quad(\bmod D)\right)=0 . a_{\ell} a_{D+\ell} a_{D+2 \ell} \ldots,
$$

say. Let $\ell_{1}, \ldots, \ell_{h}$ be a set of distinct residues mod $D$ and consider the real number

$$
\delta=0 . \operatorname{Concat}\left(a_{m}: m \equiv \ell \quad(\bmod D) \text { for some } \ell \in\left\{\ell_{1}, \ldots, \ell_{h}\right\}\right)
$$

Then the numbers $\alpha, \alpha^{(\ell)}$ for each $\ell=0,1, \ldots, D-1, \delta$ for each $\ell \in\left\{\ell_{1}, \ldots, \ell_{h}\right\}$, are all $Q$-normal numbers.

Proof. The proof can be obtained along the same lines as that of Theorem 2.

## 6 The relevance of certain conjectures to normality

### 6.1 On the conjecture of Chowla and its generalisations

Let $\Omega(1)=0$ and, for each integer $n \geq 2$, let $\Omega(n):=\sum_{p^{a} \| n} a$. Then, the Liouville function $\lambda$ is defined on positive integers $n$ by $\lambda(n)=(-1)^{\Omega(n)}$. An old conjecture of Chowla states that, for any given positive integers $a_{1}<a_{2}<\cdots<a_{k}$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \lambda(n) \lambda\left(n+a_{1}\right) \cdots \lambda\left(n+a_{k}\right)=0 . \tag{6.1}
\end{equation*}
$$

If the Chowla conjecture were true, then, given any predetermined vector $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{k}\right)$, where each $\delta_{j} \in\{-1,1\}$, it would follow that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \lambda(n+j)=\delta_{j} \text { for } j=0,1, \ldots, k\right\}=\frac{1}{2^{k+1}}
$$

in which case, by setting $\epsilon_{n}=(\lambda(n)+1) / 2$, it would also follow that the number

$$
\begin{equation*}
\alpha=0 . \epsilon_{1} \epsilon_{2} \ldots \tag{6.2}
\end{equation*}
$$

is a binary normal number.
Recently, Terence Tao [9] obtained an important result in this direction, namely by proving that, given any fixed positive integer $a$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{\lambda(n) \lambda(n+a)}{n}=0 \tag{6.3}
\end{equation*}
$$

From this, setting $b_{n}=(\lambda(n)+1) / 2$ and

$$
\begin{equation*}
\gamma=0 . b_{1} b_{2} \ldots, \tag{6.4}
\end{equation*}
$$

it follows that

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{\substack{n \leq x \\ b_{n}=\epsilon_{1}, b_{n+1}=\epsilon_{2}}} \frac{1}{n}=\frac{1}{4}
$$

for every choice of $\left(\epsilon_{1}, \epsilon_{2}\right) \in\{0,1\}^{2}$.
If the Chowla conjecture is true (in the form given by (6.1)), one can prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{\lambda(n) \lambda\left(n+a_{1}\right) \cdots \lambda\left(n+a_{k}\right)}{n}=0 \tag{6.5}
\end{equation*}
$$

Perhaps (6.5) is easier to prove that the original conjecture (6.1).
In any event, from conjecture (6.5), it would follow that the real number $\gamma$ (in (6.4)) is a binary normal number with "weight $1 / n$ ", meaning that if for each positive
integer $n$, we set $\gamma_{n}:=0 . b_{n+1} b_{n+2} \ldots$ and, for any given interval $E=[a, b) \subseteq[0,1)$, we consider the characteristic function $\chi_{E}(x)=\left\{\begin{array}{lll}1 & \text { if } & x \in E, \\ 0 & \text { if } & x \notin E\end{array}\right.$ along with the corresponding function $S_{N}(E)=\sum_{n=1}^{N} \frac{1}{n} \chi_{E}\left(\gamma_{n}\right)$, then

$$
\lim _{N \rightarrow \infty} \frac{S_{N}(E)}{\log N}=b-a
$$

namely the length of the interval $E$.

### 6.2 A conjecture of Elliott

The following conjecture was stated by Elliott [7] in 1994.
Conjecture 1. (Elliott) Let $g_{1}, \ldots, g_{k}$ be multiplicative functions such that $\left|g_{j}(n)\right| \leq$ 1 for all integers $n \geq 1$, for each $j \in\{1,2, \ldots, k\}$. Moreover, for each $j=1,2, \ldots, k$, let $a_{j} \in \mathbb{N}$ and $b_{j} \in \mathbb{Z}$ be such that $a_{r} b_{t}-a_{t} b_{r} \neq 0$ when ever $1 \leq r<t \leq k$. Then, there exist constants $A, \alpha \in \mathbb{R}$ and a slowly oscillating function $L(u)$ such that $|L(u)|=1$ for all $u \in \mathbb{R}$, such that, as $x \rightarrow \infty$,

$$
s(x):=\frac{1}{x} \sum_{n \leq x} g_{1}\left(a_{1} n+b_{1}\right) \cdots g_{k}\left(a_{k} n+b_{k}\right)=A x^{i \alpha} L(\log x)+o(1)
$$

If $\lim \sup _{x \rightarrow \infty}|s(x)|=|A|>0$, then there are Dirichlet characters $\chi_{j}$ and real numbers $\tau_{j}$ for which the series

$$
\Re\left(\sum_{p} \frac{1-g_{j}(p) \chi_{j}(p) p^{-i \tau_{j}}}{p}\right)
$$

converges.
It is clear that the Chowla conjecture would follow from the Elliott conjecture. Another interesting consequence of Conjecture 1 is the following yet unproven result.

Conjecture 2. Let $g$ be a multiplicative function such that $|g(n)|=1$ for all $n \in \mathbb{N}$ and assume that, for every $\tau \in \mathbb{R}$ and Dirichlet character $\chi$,

$$
\sum_{p} \frac{\Re\left(1-g(p) \chi(p) p^{i \tau}\right)}{p}=\infty
$$

Then, given arbitrary positive integers $a_{1}<a_{2}<\cdots<a_{k}$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n) g\left(n+a_{1}\right) \cdots g\left(n+a_{k}\right)=0 \tag{6.6}
\end{equation*}
$$

As a special case of Conjecture 2, one has the following. Fix an integer $Q \geq 2$ and assume that $g(n)^{Q}=1$ for all integers $n \geq 1$. Hence the range of $g(\mathbb{N})$ is $\left\{\xi^{\ell}: \ell=0,1, \ldots, Q-1\right\}$ for some root of unity $\xi$, namely $\xi=e^{2 \pi i / Q}$. We can therefore write $g(n)$ as $g(n)=\xi^{\epsilon_{n}}$, where each $\epsilon_{n} \in \mathcal{A}_{Q}$. With this set up, let us introduce the real number

$$
\begin{equation*}
\alpha=0 . \epsilon_{1} \epsilon_{2} \ldots \tag{6.7}
\end{equation*}
$$

If (6.6) were true, then this would imply that $\alpha$ is a normal number in base $Q$.
Observe that the multiplicative function $g$ could have been chosen differently. Here are some appropriate choices for $Q$ and $g$ :
(I) $Q=2$ and $g(n)=(-1)^{\Omega(n)}$.
(II) $Q=2$ and $g(n)=(-1)^{\omega(n)}$.
(III) $Q \geq 2, \xi=e^{2 \pi i \ell / Q}$ with $(\ell, Q)=1$ and then choose $g(p)=\xi$ for each prime $p$ and, for each $k \geq 2$, choose choose $g\left(p^{k}\right)$ in an arbitrary way as long as $\left|g\left(p^{k}\right)\right|=1$.
(IV) $Q \geq 2, \xi=e^{2 \pi i / Q}$ and then, if $p \equiv \ell(\bmod K)$ for any given $\ell$ and $K$ with $(\ell, K)=1$ and $\left(e_{\ell}, Q\right)=1$, choose $g(p)=\xi^{e_{\ell}}$ for each prime $p$, and $g(p)=1$ if $p \mid K$, while choosing $g\left(p^{k}\right)$ in an arbitrary way for each $k \geq 2$ as long as $\left|g\left(p^{k}\right)\right|=1$.

Acknowledgement. Research of the first author was supported in part by a grant from NSERC.

## References

[1] I. Kátai, Generalized number systems and fractal geometry, Lecture Notes Janus Pannonius Universitas, Pécs, 1985, 1-40.
[2] I. Kátai, Generalized number systems in Euclidean spaces, Mathematical and Computer Modelling 98 (2003), 883-892.
[3] K.-H. Indlekofer, I. Kátai and P. Racskó, Some remarks on generalized number systems, Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 543-553.
[4] K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, Probability Theory and its Applications (Editors J. Galambos and I. Kátai). Kluwer Ac. Publ. Dordrecht, 1992, 319-334.
[5] G.E. Michalek, Base three just touching covering systems, Publ. Math. Debrecen 51 (1997), no. 3-4, 241-263.
[6] G.E. Michalek, Base $N$ just touching covering systems, Publ. Math. Debrecen 58 (2001), 2003-2016.
[7] P.D.T.A. Elliott, On the correlations of multiplicative and the sum of additive arithmetic functions, Mem. Amer. Math. Soc. 112 (1994), no. 538, viii+88 pp.
[8] G. Harman and I. Kátai, Primes with preassigned digits II, Acta Arith. 133 (2008), no. 2, 171-184.
[9] T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, https://arxiv.org/pdf/1509.05422v4.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

JMDK, le 26 mai 2017; fichier: normal-generalized-number-systems.tex

