
Normal numbers in generalized number systems in Euclidean spaces

Jean-Marie De Koninck and Imre Kátai
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Abstract

We introduce the notion of normal numbers for generalized number systems
in Euclidean spaces and then explore the relevance of certain conjectures to
normality.
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1 Generalized number systems in Euclidean spaces

Given a positive integer k, let Rk and Zk stand respectively for the k-dimensional
real Euclidean space and the ring of k-dimensional vectors with integer entries. Fix
k and let M be a k × k matrix with integer elements. Assume that M has k distinct
eigenvalues λ1, λ2, . . . , λk such that |λ1| > |λ2| > · · · > |λk| > 1. Let L := M Zk.
Then, L is a subgroup of Zk and let t stand for the order of Zk/L, so that t = |detM |.
Further let A0, A1, . . . , At−1 stand for the residue classes mod L and let A0 = L. For
each j ∈ {0, 1, . . . , t − 1}, choose an arbitrary element aj ∈ Aj such that the vector
a0 is the zero vector 0 = (0, 0, . . . , 0), and then write

A := {a0, a1, . . . , at−1}.

If the norm ‖n‖ of n = (n1, . . . , nk) is ‖n‖ = max1≤i≤k |ni| or ‖n‖ =
∑

1≤i≤k |ni|, then
the operator norm ‖ · ‖ of M−1 is 1/|λk| while that of M is |λ1|.

Let us now introduce the function J : Zk → Zk as follows. Since for each n ∈ Zk,
there exist a unique b0 ∈ A for which n − b0 ∈ L and a unique n1 ∈ Zk for which
n = b0 +M n1, that is, n1 = M−1(n− b0), we define J : Zk → Zk by J(n) = n1.

We further define the real numbers K, ξ and L by

K = max
b∈A
‖b‖, ξ =

1

min1≤j≤k |λj|
=
∣∣M−1

∣∣ , L =
Kξ

1− ξ
.

In [3], the following result was proved.

Lemma 1. (a) If ‖n‖ > L, then ‖J(n)‖ < ‖n‖.

(b) If ‖n‖ ≤ L, then ‖J(n)‖ ≤ L.
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Since the disks contain only a finite number of elements of Zk, it follows that the
path

n, J(n), J2(n), . . .

is ultimately periodic.
Now, let P stand for the set of periodic elements. Then, n ∈ P if there is an integer

j ≥ 1 such that J j(n) = n. The directed graph (over P) is defined by n → J(n)
(n ∈ P). It is clear that n ∈ P implies that J(n) ∈ P and that the directed graph
JP → P , which we denote by G(P), is the union of disjoint directed circles (allowing
for loops). Moreover, 0 (→ 0) ∈ P , and if π ∈ P , then ‖π‖ ≤ L.

Now, for each n ∈ Zk and integer h ≥ 1, we have

n = b0 +M b1 + · · ·+Mh−1bh−1 +Mhnh,

nh = Jh(n0), bν ∈ A.
Further define

`(n) :=

{
0 if n ∈ P ,
h if n 6∈ P ,

where h is the smallest integer for which nh ∈ P . For this reason, we will say and
write that the standard expansion of n is (b0, b1, . . . , bh−1|π), where π = nh. In the
special case where n = π ∈ P , the expansion is written as (∗|π).

We say that (A,M) is a number system (written for short as NS) in Zk if each
n ∈ Zk can be written as

n = b0 +M b1 + · · ·+Mh−1bh−1.

In other words, (A,M) is a number system in Zk if and only if P = {0}.
Let H be the set of those z ∈ Rk which can be expanded as

z =
∞∑
ν=1

M−νbν , bν ∈ A.

The set H is called the fundamental region with respect to (A,M).
For each integer h ≥ 0, let

Γh :=

{
n : n =

h∑
j=0

M jbj, bj ∈ A

}
,

so that in particular Γh ⊆ Γh+1. Letting Γ =
∞⋃
h=0

Γh, we have that Γ ⊆ Zk and one

can easily see that Γ = Zk if and only (A,M) is a number system.
Since we can write the fundamental region H as

H =
⋃
a∈A

(
M−1a+M−1H

)
,

it is easily seen that H is a compact set.
The following result was proved in [3].
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Theorem A. Let λ stand for the Lebesgue measure in Rk.

(a) We have
⋃
n∈Zk

(H + n) = Rk.

(b) If n1, n2 ∈ Γ, n1 6= n2, then

λ(H + n1 ∩H + n2) = 0.

(c) If Γ = Zk, that is if (A,M) is a number system, then

λ(H + n1 ∩H + n2) = 0

for every n1, n2 ∈ Zk with n1 6= n2.

2 Just touching covering system

We now introduce the concept of just touching covering system. We say that (A,M)
is a just touching covering system (for short JTCS) if λ(H + n1 ∩ H + n2) = 0 for
every n1, n2 ∈ Zk with n1 6= n2.

Interestingly, if (A,M) is a JTCS, then

λ(M−hn1 +M−hH ∩M−hn2 +M−hH) = 0

for every n1, n2 ∈ Zk with n1 6= n2.

The next two results reveal interesting properties regarding JTCS.

Theorem B. ([4]) The number system (A,M) is a JTCS if Γ − Γ = Zk, that is if
every n ∈ Zk can be written as n1 − n2, where n1, n2 ∈ Zk.

Theorem C. ([6]) Given D ∈ Z \ {0}, let A = {a0, a1, . . . , a|D|−1} (where a0 =
0) be a complete residue system mod D. Then, (A, D) is a JTCS if and only if
gcd(a1, . . . , a|D|−1) = 1.

Let (A,M) be a JTCS and let

ξ =
∞∑

`=−r

M−`c` (c` ∈ A).

We write the “integer part” and “fractional part” of ξ as follows:

bξc =
0∑

`=−r

M−`c` (∈ Zk),
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{ξ} =
∞∑
`=1

M−`c` (∈ H).

Observe that it is clear that

{Muξ} =
∞∑
`=1

M−`cu+` (∈ H).

Moreover, letting β = b1b2 . . . bk, let us define

Hβ :=

{
η : η =

∞∑
`=1

M−`c` : c` = b` for ` = 1, 2, . . . , k

}
.

It is clear that, for a fixed k, any two Hβ1 and Hβ2 will be isomorphic since

H =
k∑
`=1

M−`b` +M−kH

and

(i) H =
⋃
β∈Ak

Hβ,

(ii) λ(Hβ1 ∩Hβ2) = 0,

(iii) λ(Hβ1) = λ(Hβ2),

(iv) λ(Hβ)tk = λ(H).

3 Normal sequences and normal numbers in R
Let A = {a1, . . . , aN} be a finite set of letters. Let A∗ be the set of finite words over A.
Given a word α ∈ A∗, we write λ(α) to denote its length (that is, the number of letters
in the word α). We let Λ stand for the empty word and write λ(Λ) = 0. The operation
(α, β)→ αβ is called concatenation. The expression AN stands for the set of infinite
sequences over A, that is, β ∈ AN if it can be written as β = b1b2b3 . . ., where each
bi ∈ A. Moreover, given β ∈ AN and a positive integer T , we set βT := b1b2 . . . bT .
Given γ, δ ∈ A∗, we let S(δ|γ) stand for #{ε1, ε2 ∈ A∗ : γ = ε1δε2}, that is, the
number of occurrences of δ as a subword in γ.

Definition. Let β ∈ AN. We say that β is a normal sequence (over A) if

lim
T→∞

S(α|βT )

T
=

1

Nλ(α)

for every α ∈ A∗.
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4 Normal sequences and normal numbers in Rk

Definition. Let (A,M) be a number system and let η =
∑∞

`=1M
−`b`, with each

b` ∈ A. We say that η is a normal number in Rk with respect to (A,M) if, for every
β ∈ A∗,

lim
N→∞

1

N
#{n ≤ N : {Mnη} ∈ Hβ} =

1

tλ(β)
,

where t = |detM |.

The following two assertions are obvious.

• (I) η is a normal number in Rk with respect to (A,M) if and only if β = b1b2 . . .
is a normal sequence over A.

• (II) Let E = {e1, . . . , ek}, D = {d1, . . . , dk}, ϕ : E → D defined by ϕ(ej) = dj,
β = b1b2 . . . ∈ EN, ϕ(β) = ϕ(b1)ϕ(b2) . . . (∈ DN). Then, β is a normal sequence
in EN if and only if ϕ(β) is a normal sequence in DN.

In light of these assertions, one can easily prove the following theorem.

Theorem 1. Let (A,M) be a JTCS with A = {a0 = 0, a1, . . . , at−1}, where t =
|detM |. Moreover, let E = {0, 1, . . . , t − 1} and let η = 0.ε1ε2 . . . be an arbitrary

t-ary normal number. Then, ψ =
∞∑
`=1

M−`aε` is a normal number in Rk with respect

to (A,M).

5 Construction of base Q normal numbers

Fix an integer Q ≥ 2. Let AQ = {0, 1, . . . , Q − 1} and let A∗Q stand for the set of
words over AQ. For each integer N ≥ 1, let JN = [QN−1, QN − 1]. Given an integer

n ∈ JN , write it as n =
∑N−1

ν=0 εν(n)Qν and define n := ε1(n)ε1(n) . . . εN−1(n) ∈ A∗Q.
Finally, we let λ(n) = N stand for the length of n.

For each integer N ≥ 3, consider a subset SN of {1, 2, . . . , N − 1}, writing it as

SN = {`(N)
1 , . . . , `

(N)
rN }, where the `

(N)
i ’s are in increasing order. Assume that rN ≥ 1

and that (r1 + · · ·+ rN−1)/rN →∞ as N →∞.
To each prime p ∈ JN , let us associate the number

κ(p) = ε
`
(N)
1

(p) . . . ε
`
(N)
rN

(p).

Let p1 < · · · < pπ(JN ) be all the primes included in JN . Moreover, let σN be an
arbitrary permutation of {1, . . . , π(JN)}. Further define

ηN := κ(pσN (1)) . . . κ(pσN (π(JN ))).

Finally, consider the number
α = 0.η1η2 . . .
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Theorem 2. The number α is a normal number in base Q.

Proof. This is an easy consequence of an earlier result obtained by Harman and Kátai
[8] and according to which, given integer r integers (1 ≤) j1 < · · · < jr (≤ N − 1),
setting

Π

(
JN

∣∣∣∣ j1, . . . , jr
b1, . . . , br

)
:= #{p ∈ JN : aj`(p) = bj` for ` = 1, . . . , r},

we have

max
1≤j1<···<jr≤N−1

b1,...,br

∣∣∣∣∣∣∣∣
QrΠ

(
JN

∣∣∣∣ j1, . . . , jrb1, . . . , br

)
π(JN)

− 1

∣∣∣∣∣∣∣∣→ 0 (N →∞)

for every fixed integer r ≥ 1.

Theorem 3. If SN = {1, . . . , N − 1}, then Theorem 2 holds without the condition
(r1 + · · ·+ rN−1)/rN →∞ as N →∞.

Theorem 4. Let ℘N be the set of primes in JN . Given a prime p ∈ JN , write its
Q-ary expansion as

p = ε0(p)ε1(p) . . . εN−1(p).

Then, set
γN = Concat(p : p ∈ ℘N).

Fix an integer D ∈ N and consider the real number

α = 0.γDγ2D . . . = 0.a1a2 . . . ,

say. Further consider the number

α(`) = 0.Concat(am : m ≡ ` (mod D)) = 0.a`aD+`aD+2` . . . ,

say. Let `1, . . . , `h be a set of distinct residues mod D and consider the real number

δ = 0.Concat(am : m ≡ ` (mod D) for some ` ∈ {`1, . . . , `h}).

Then the numbers α, α(`) for each ` = 0, 1, . . . , D− 1, δ for each ` ∈ {`1, . . . , `h}, are
all Q-normal numbers.

Proof. The proof can be obtained along the same lines as that of Theorem 2.

6



6 The relevance of certain conjectures to normal-

ity

6.1 On the conjecture of Chowla and its generalisations

Let Ω(1) = 0 and, for each integer n ≥ 2, let Ω(n) :=
∑

pa‖n a. Then, the Liouville

function λ is defined on positive integers n by λ(n) = (−1)Ω(n). An old conjecture of
Chowla states that, for any given positive integers a1 < a2 < · · · < ak,

(6.1) lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0.

If the Chowla conjecture were true, then, given any predetermined vector (δ0, δ1, . . . , δk),
where each δj ∈ {−1, 1}, it would follow that

lim
x→∞

1

x
#{n ≤ x : λ(n+ j) = δj for j = 0, 1, . . . , k} =

1

2k+1
,

in which case, by setting εn = (λ(n) + 1)/2, it would also follow that the number

(6.2) α = 0.ε1ε2 . . .

is a binary normal number.
Recently, Terence Tao [9] obtained an important result in this direction, namely

by proving that, given any fixed positive integer a,

(6.3) lim
x→∞

1

log x

∑
n≤x

λ(n)λ(n+ a)

n
= 0.

From this, setting bn = (λ(n) + 1)/2 and

(6.4) γ = 0.b1b2 . . . ,

it follows that

lim
x→∞

1

log x

∑
n≤x

bn=ε1, bn+1=ε2

1

n
=

1

4

for every choice of (ε1, ε2) ∈ {0, 1}2.
If the Chowla conjecture is true (in the form given by (6.1)), one can prove that

(6.5) lim
x→∞

1

log x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak)

n
= 0.

Perhaps (6.5) is easier to prove that the original conjecture (6.1).
In any event, from conjecture (6.5), it would follow that the real number γ (in

(6.4)) is a binary normal number with “weight 1/n”, meaning that if for each positive
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integer n, we set γn := 0.bn+1bn+2 . . . and, for any given interval E = [a, b) ⊆ [0, 1),

we consider the characteristic function χE(x) =

{
1 if x ∈ E,
0 if x 6∈ E along with the

corresponding function SN(E) =
N∑
n=1

1

n
χE(γn), then

lim
N→∞

SN(E)

logN
= b− a,

namely the length of the interval E.

6.2 A conjecture of Elliott

The following conjecture was stated by Elliott [7] in 1994.

Conjecture 1. (Elliott) Let g1, . . . , gk be multiplicative functions such that |gj(n)| ≤
1 for all integers n ≥ 1, for each j ∈ {1, 2, . . . , k}. Moreover, for each j = 1, 2, . . . , k,
let aj ∈ N and bj ∈ Z be such that arbt − atbr 6= 0 when ever 1 ≤ r < t ≤ k.
Then, there exist constants A,α ∈ R and a slowly oscillating function L(u) such that
|L(u)| = 1 for all u ∈ R, such that, as x→∞,

s(x) :=
1

x

∑
n≤x

g1(a1n+ b1) · · · gk(akn+ bk) = AxiαL(log x) + o(1).

If lim supx→∞ |s(x)| = |A| > 0, then there are Dirichlet characters χj and real numbers
τj for which the series

<

(∑
p

1− gj(p)χj(p)p−iτj
p

)
converges.

It is clear that the Chowla conjecture would follow from the Elliott conjecture.
Another interesting consequence of Conjecture 1 is the following yet unproven result.

Conjecture 2. Let g be a multiplicative function such that |g(n)| = 1 for all n ∈ N
and assume that, for every τ ∈ R and Dirichlet character χ,∑

p

<(1− g(p)χ(p)piτ )

p
=∞.

Then, given arbitrary positive integers a1 < a2 < · · · < ak,

(6.6) lim
x→∞

1

x

∑
n≤x

g(n)g(n+ a1) · · · g(n+ ak) = 0.
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As a special case of Conjecture 2, one has the following. Fix an integer Q ≥ 2
and assume that g(n)Q = 1 for all integers n ≥ 1. Hence the range of g(N) is
{ξ` : ` = 0, 1, . . . , Q − 1} for some root of unity ξ, namely ξ = e2πi/Q. We can
therefore write g(n) as g(n) = ξεn , where each εn ∈ AQ. With this set up, let us
introduce the real number

(6.7) α = 0.ε1ε2 . . .

If (6.6) were true, then this would imply that α is a normal number in base Q.
Observe that the multiplicative function g could have been chosen differently.

Here are some appropriate choices for Q and g:

(I) Q = 2 and g(n) = (−1)Ω(n).

(II) Q = 2 and g(n) = (−1)ω(n).

(III) Q ≥ 2, ξ = e2πi`/Q with (`,Q) = 1 and then choose g(p) = ξ for each prime
p and, for each k ≥ 2, choose choose g(pk) in an arbitrary way as long as
|g(pk)| = 1.

(IV) Q ≥ 2, ξ = e2πi/Q and then, if p ≡ ` (mod K) for any given ` and K with
(`,K) = 1 and (e`, Q) = 1, choose g(p) = ξe` for each prime p, and g(p) = 1
if p | K, while choosing g(pk) in an arbitrary way for each k ≥ 2 as long as
|g(pk)| = 1.
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