ON THE PROXIMITY OF MULTIPLICATIVE FUNCTIONS TO THE NUMBER OF DISTINCT PRIME FACTORS FUNCTION

JEAN-MARIE DE KONINCK*, NICOLAS DOYON**, AND FRANÇOIS LANIEL***

Abstract

Given an additive function f and a multiplicative function g, let $E(f, g ; x)=\#\{n \leq x: f(n)=g(n)\}$. We study the size of $E(\omega, g ; x)$ and $E(\Omega, g ; x)$, where $\omega(n)$ stands for the number of distinct prime factors of n and $\Omega(n)$ stands for the number of prime factors of n counting multiplicity. In particular, we show that $E(\omega, g ; x)$ and $E(\Omega, g ; x)$ are $O\left(\frac{x}{\sqrt{\log \log x}}\right)$ for any integer valued multiplicative function g. This improves an earlier result of De Koninck, Doyon and Letendre.

1. Introduction

Given an additive function f and a multiplicative function g, let $E(f, g ; x)=$ $\#\{n \leq x: f(n)=g(n)\}$. De Koninck, Doyon and Letendre [3] proved that if f is an integer valued additive function such that the corresponding sums

$$
A_{f}(x):=\sum_{p^{\alpha} \leq x} \frac{f\left(p^{\alpha}\right)}{p^{\alpha}}\left(1-\frac{1}{p}\right) \quad \text { and } \quad B_{f}(x)^{2}:=\sum_{p^{\alpha} \leq x} \frac{\left|f\left(p^{\alpha}\right)\right|^{2}}{p^{\alpha}}
$$

satisfy the conditions
(i) $\varphi(x)=\varphi_{f}(x):=\frac{B_{f}(x)}{\left|A_{f}(x)\right|} \rightarrow 0 \quad$ as $x \rightarrow \infty$,
(ii) $\max _{z \in \mathbb{C}} \#\{n \leq x: f(n)=z\}=O\left(\frac{x}{H(x)}\right)$,
where $H(x)=H_{f}(x) \rightarrow \infty$ as $x \rightarrow \infty$,
then, given any multiplicative function g, we have $E(f, g ; x)=o(x)$ as $x \rightarrow \infty$. They also observed that in the case $f=\omega$, we have $A_{\omega}(x)=(1+o(1)) \log \log x$ and $B_{\omega}(x)=(1+o(1)) \sqrt{\log \log x}$ as $x \rightarrow \infty$, so that $\varphi(x)=(1+o(1)) / \sqrt{\log \log x}$ as $x \rightarrow \infty$, while $H(x)$ can be taken as $\sqrt{\log \log x}$ by a result of Balazard [1]. Hence, they showed in particular that $E(\omega, g ; x)=o(x)$ as $x \rightarrow \infty$. Moreover, observe that this result also applies to $\Omega(n)$.

[^0]Here, we improve the result of De Koninck, Doyon and Letendre in the case where g takes only integer values.

2. Main Results

Theorem 1. Let $g: \mathbb{N} \rightarrow \mathbb{Z}$ be an arbitrary multiplicative function. Then,

$$
\#\{n \leq x: \omega(n)=g(n)\} \ll \frac{x}{\sqrt{\log \log x}}
$$

Theorem 2. Let $g: \mathbb{N} \rightarrow \mathbb{Z}$ be an arbitrary multiplicative function. Then,

$$
\#\{n \leq x: \Omega(n)=g(n)\} \ll \frac{x}{\sqrt{\log \log x}}
$$

Observe that according to Theorem 2 in [3], given any $\epsilon>0$, there exists a multiplicative function g and an infinite sequence of integers x_{n} such that

$$
E\left(\omega, g ; x_{n}\right) \gg \frac{x_{n}}{\left(\log \log x_{n}\right)^{1 / 2+\epsilon}}
$$

as $n \rightarrow \infty$. In their proof, the authors construct a function g which takes only integers values. This means that in some sense, our Theorem 1 is very close to being optimal.

3. Notation and the idea of the proof

We shall write \mathcal{P} for the set of all prime numbers, while the letter p will always stand for a prime number. Let also $\pi(x)$ stand for the number of primes not exceeding x. Also, by $\log _{2} x$, we mean $\max (1, \log \log x)$.

Let

$$
\begin{gathered}
P_{1}:=\{p: p \equiv 1 \quad \bmod 7 \operatorname{or} p \equiv 2 \bmod 7\} \cup\{7\} \\
P_{2}:=\{p: p \equiv 3 \bmod 7 \text { or } p \equiv 4 \bmod 7\} \\
P_{3}:=\{p: p \equiv 5 \bmod 7 \text { or } p \equiv 6 \bmod 7\} \\
A:=\left\{n: p \mid n \Rightarrow p \in P_{1} \cup P_{2}\right\} \\
B:=\left\{n: p \mid n \Rightarrow p \in P_{3}\right\}
\end{gathered}
$$

and, for an integer valued multiplicative fonction g, let

$$
g_{k}(n):=\prod_{\substack{p^{r} \| n \\ p \in P_{k}}} g\left(p^{r}\right) \text { for } k \in\{1,2,3\}
$$

Also, let $A(x):=A \cap[1, x], B(x):=B \cap[1, x]$,

$$
a(n):=\prod_{\substack{p^{r} \| n \\ p \in P_{1} \cup P_{2}}} p^{r}
$$

and

$$
b(n):=\prod_{\substack{p^{r} \| n \\ p \in P_{3}}} p^{r}
$$

A key tool for our demonstration is the next two lemmas, which essentially follow from the Turán-Kubilius inequality.
Lemma 1. Uniformly for $0 \leq \xi(x) \leq \sqrt{\log _{2} x}$,

$$
\#\left\{n \leq x:\left|\omega(n)-\log _{2} x\right|>\xi(x) \sqrt{\log _{2} x}\right\} \ll x e^{-\xi(x)^{2} / 3}
$$

Proof. This result follows immediately from Tenenbaum [7, Theorem 3.7] with $t=x$.

In particular, choosing $\xi(x)=\left(\log _{2} x\right)^{1 / 12}$, we have that for $n \leq x$,

$$
\begin{equation*}
\log _{2} x-\left(\log _{2} x\right)^{7 / 12} \leq \omega(n) \leq \log _{2} x+\left(\log _{2} x\right)^{7 / 12} \tag{3.1}
\end{equation*}
$$

with at most $O\left(x e^{-\left(\log _{2} x\right)^{1 / 6} / 3}\right)$ exceptions. Since $x e^{-\left(\log _{2} x\right)^{1 / 6} / 3} \ll \frac{x}{\log _{2} x}$, we can assume for the purpose of the demonstration that (3.1) holds for all $n \leq x$.

Lemma 2. Let $\xi(x) \rightarrow \infty$. We have

$$
\#\left\{n \leq x:\left|\omega(a(n))-\frac{2}{3} \log _{2} x\right|>\frac{2 \xi(x)}{3} \sqrt{\log _{2} x}\right\} \ll \frac{x}{\xi(x)^{2}}
$$

Proof. This result follows immediately from Tenenbaum [7, Theorem 3.4], with $A(x)=\frac{2}{3} \log _{2} x+O(1), B(x)^{2}=\frac{2}{3} \log _{2} x+O(1)$ and $\epsilon(x)=\frac{\xi(x)}{\sqrt{\log _{2} x}}$.

In particular, choosing $\xi(x)=\left(\log _{2} x\right)^{1 / 4}$, we have that for $n \leq x$,

$$
\begin{equation*}
\frac{2}{3}\left(\log _{2} x-\left(\log _{2} x\right)^{3 / 4}\right) \leq \omega(a(n)) \leq \frac{2}{3}\left(\log _{2} x+\left(\log _{2} x\right)^{3 / 4}\right) \tag{3.2}
\end{equation*}
$$

with at most $O\left(\frac{x}{\sqrt{\log _{2} x}}\right)$ exceptions. Therefore, we can also assume that (3.2) holds for all $n \leq x$.

Observe that the above two lemmas are also valid if we replace $\omega(n)$ by $\Omega(n)$. In fact, the inequalities (3.1) and (3.2) with the $\omega(n)$ function replaced by the $\Omega(n)$ function will allow us to use Lemma 6 in order to prove Theorem 2.

If $g(n)=\omega(n)$, we have by (3.1) that

$$
\begin{equation*}
\left|g_{1}(n) g_{2}(n) g_{3}(n)\right|=\omega(n)>\frac{1}{2} \log _{2} x \tag{3.3}
\end{equation*}
$$

It follows that at least one of the three inequalities

$$
\left|g_{1}(n) g_{2}(n)\right| \geq\left(\frac{1}{2} \log _{2} x\right)^{2 / 3}
$$

$$
\left|g_{1}(n) g_{3}(n)\right| \geq\left(\frac{1}{2} \log _{2} x\right)^{2 / 3}
$$

and

$$
\left|g_{2}(n) g_{3}(n)\right| \geq\left(\frac{1}{2} \log _{2} x\right)^{2 / 3}
$$

holds. Indeed, if it was not the case, then we would have $g(n)^{2}<\left(\frac{1}{2} \log _{2} x\right)^{2}$, thus contradicting (3.3).

In order to prove our results, without any loss in generality, we shall assume that when $g(n)=\omega(n)$,

$$
\left|g_{1}(n) g_{2}(n)\right| \geq\left(\frac{1}{2} \log _{2} x\right)^{2 / 3}
$$

Since $|g(a(n))| \geq\left(\frac{1}{2} \log _{2} x\right)^{2 / 3}$, there exists for x large enough at most one multiple of $|g(a(n))|$ in the interval $\left[\log _{2} x-\left(\log _{2} x\right)^{7 / 12}, \log _{2} x+\left(\log _{2} x\right)^{7 / 12}\right]$. Hence, given any x, if there exists a unique multiple of an integer m in this interval, we write it as $\kappa(m)$; else, we simply write $\kappa(m)=0$.

Now, observe that

$$
\begin{align*}
\#\{n \leq x: \omega(n)=g(n)\} & \leq \#\{n \leq x: \omega(n)=\kappa(a(n))\} \\
& =\#\{n \leq x: \omega(b(n))=\kappa(a(n))-\omega(a(n))\} \\
& =\sum_{a \in A(x)} \#\left\{b \in B\left(\frac{x}{a}\right): \omega(b)=\kappa(a)-\omega(a)\right\} \\
& \leq \sum_{a \in A\left(x^{\left.1-\frac{1}{\sqrt{\log x}}\right)}\right.} \#\left\{b \in B\left(\frac{x}{a}\right): \omega(b)=\kappa(a)-\omega(a)\right\} \\
& \quad+\#\left\{n \leq x: a(n)>x^{1-\frac{1}{\sqrt{\log x}}}\right\} \\
& =\Sigma_{1}+\Sigma_{2} \tag{3.4}
\end{align*}
$$

say.
Furthermore, since Lemma 1 and Lemma 2 also hold for the $\Omega(n)$ function, the above argument also applies if we replace $\omega(n)$ by $\Omega(n)$.

In the next sections, we evaluate both Σ_{1} and Σ_{2}, the latter being a simple consequence of a result of Spearman and Williams [6].

4. Key lemmas

For each $m \geq 1$, let

$$
(\mathbb{Z} / m \mathbb{Z})^{*}=\{h \in \mathbb{N}: 1 \leq h \leq m,(h, m)=1\}
$$

be the set of invertible classes modulo m. Given a subset J of $(\mathbb{Z} / m \mathbb{Z})^{*}$, for convenience, we write $|J|$ for $\# J$. Hence, we clearly have $|J| \leq \phi(m)$, where ϕ stands for the Euler totient function. For each $j \in J$, we set

$$
P_{j}=P_{j, m}=\{p: p \equiv j \quad \bmod m\}
$$

and

$$
P_{J}=\bigcup_{j \in J} P_{j}
$$

For each $m \in \mathbb{N}$ and $j \in J$, let

$$
P(m, j)=\prod_{p}\left(1-\frac{1}{p}\right)^{\theta(p)}
$$

where $\theta(p)=\phi(m)-1$ if $p \equiv j \bmod m$ and $\theta(p)=-1$ otherwise. This product is convergent by the prime number theorem for arithmetic progressions.

We shall be using the following result of Ben Saïd and Nicolas [2].
Lemma 3. Fix $z \in \mathbb{C}$ and let $J \subset(\mathbb{Z} / m \mathbb{Z})^{*}$ and $a_{J}(n, z) \in \mathbb{C}, b_{J}(n, z) \in$ $\mathbb{R}^{+} \cup\{0\}$ be two multiplicative functions in n such that, for all integers $n \geq 1$, $\left|a_{J}(n, z)\right| \leq b_{J}(n, z)$ and for which the corresponding Dirichlet series

$$
F_{J}(s, z)=\sum_{n=1}^{\infty} \frac{a_{J}(n, z)}{n^{s}}
$$

and

$$
F_{J}^{+}(s, z)=\sum_{n=1}^{\infty} \frac{b_{J}(n, z)}{n^{s}}
$$

are holomorphic in the half-plane $\Re s>1$. Moreover, assume that there exist real numbers $B>0,0<c<1 / 2$ and $0 \leq \delta<1$ such that in the half-plane $\Re s>1$, the series $F_{J}(s, z)$ has an Euler product representation of the form

$$
F_{J}(s, z)=H_{J}(s, z) \prod_{j \in J} \prod_{p \equiv j}\left(1-\frac{1}{p^{s}}\right)^{-z}
$$

where $H_{J}(s, z)$ is holomorphic in

$$
D_{c}:=\left\{s: \Re s \geq 1-\frac{c}{\log (2+|\Im s|)}\right\}
$$

and satisfies

$$
\begin{equation*}
\left|H_{J}(s, z)\right| \leq B(3+|\Im s|)^{\delta} \quad\left(s \in D_{c}\right) \tag{4.1}
\end{equation*}
$$

Moreover, assume that in the half-plane $\Re s>1$, the series $F_{J}^{+}(s, z)$ has a representation of the form

$$
F_{J}^{+}(s, z)=H_{J}^{+}(s, z) \zeta(s)^{z},
$$

where $H_{J}^{+}(s, z)$ is holomorphic in D_{c} and satisfies (4.1).
Letting

$$
A_{J}(x, z)=\sum_{n \leq x} a_{J}(n, z)
$$

we then have

$$
A_{J}(x, z)=\frac{x}{(\log x)^{1-|J| z / \phi(m)}}\left(\frac{H_{J}(1, z) C_{J, m}^{z}}{\Gamma(|J| z / \phi(m))}+O\left(\frac{\log _{2} x}{\log x}\right)\right)
$$

where the constant in the O term depends on m, B, c and δ, with the convention that $1 / \Gamma(0)=0$, and

$$
C_{J, m}=\prod_{j \in J} P(m, j)^{-1 / \phi(m)}
$$

Now, let $J \subset(\mathbb{Z} / m \mathbb{Z})^{*}$ and consider the multiplicative function $\varrho_{J, m}$ defined on prime powers p^{α} by

$$
\varrho_{J, m}\left(p^{\alpha}\right)= \begin{cases}1 & \text { if there exists } j \in J \text { such that } p \equiv j \bmod m \\ 0 & \text { otherwise }\end{cases}
$$

The next two results are direct applications of Lemma 3 with $a_{J}(n, z)=$ $\varrho_{J, m}(n) z^{\omega(n)}$ (respectively $\left.a_{J}(n, z)=\varrho_{J, m}(n) z^{\Omega(n)}\right)$ and $b_{J}(n, z)=\varrho_{J, m}(n)|z|^{\omega(n)}$ (respectively $b_{J}(n, z)=\varrho_{J, m}(n)|z|^{\Omega(n)}$). We will now obtain asymptotic formulas for

$$
\begin{equation*}
U(x, z):=\sum_{n \leq x} \varrho_{J, m}(n) z^{\omega(n)} \quad \text { and } \quad V(x, z):=\sum_{n \leq x} \varrho_{J, m}(n) z^{\Omega(n)} \tag{4.2}
\end{equation*}
$$

Lemma 4. For any real $R>0$, there exists a real constant $D_{1}>0$ such that

$$
\begin{align*}
U(x, z)=\frac{x}{(\log x)^{1-|J| z / \phi(m)}}\left(D_{1}^{z} \frac{\prod_{\substack{j \in j \\
p=j \\
(m)}}\left(1+\frac{z}{(p-1)}\right)\left(1-\frac{1}{p}\right)^{z}}{} \begin{array}{r}
\Gamma(|J| z / \phi(m)) \\
\\
\left.+O\left(\frac{\log _{2} x}{\log x}\right)\right)
\end{array}\right.
\end{align*}
$$

uniformly for $|z|<R$. Moreover, for any real $\delta>0$, there exists a real constant $D_{2}>0$ such that

$$
V(x, z)=\frac{x}{(\log x)^{1-|J| z / \phi(m)}}\left(D_{2}^{z} \frac{\prod_{\substack{j \in J \\ p \equiv j_{(m)}}}\left(1-\frac{z}{p}\right)^{-1}\left(1-\frac{1}{p}\right)^{z}}{\Gamma(|J| z / \phi(m))} .\right.
$$

uniformly for $|z|<2-\delta$.
Proof. The proof follows essentially along the same lines as the discussion in Tenenbaum [7, pp. 204-205]. Here are the details.

For $\Re s>1$,

$$
\begin{align*}
F(s, z)=\sum_{n=1}^{\infty} \frac{\varrho_{J, m}(n) z^{\omega(n)}}{n^{s}} & =\prod_{\substack{p \equiv j \\
j \in J \\
\bmod m}}\left(1+\frac{z}{p^{s}-1}\right) \\
& =H_{1}(s, z) \prod_{\substack{j \in J \\
p \equiv j \bmod m}}\left(1-\frac{1}{p^{s}}\right)^{-z} \tag{4.5}
\end{align*}
$$

with

$$
H_{1}(s, z)=\prod_{\substack{p \equiv j \in J \\ p \in \bmod m}}\left(1+\frac{z}{p^{s}-1}\right)\left(1-\frac{1}{p^{s}}\right)^{z}=\sum_{n=1}^{\infty} \frac{c(n, z)}{n^{s}}
$$

say, where $c(n, z)$ is clearly a multiplicative function of n. If p is a prime such that $p \not \equiv j \bmod m$ for all $j \in J$, then we easily see that $c\left(p^{\nu}, z\right)=0$ for every integer $\nu \geq 1$. Also, for a prime p such that $p \equiv j \bmod m$ for some $j \in J$, the identity

$$
\begin{equation*}
1+\sum_{\nu=1}^{\infty} c\left(p^{\nu}, z\right) \xi^{\nu}=\left(1+\frac{\xi z}{1-\xi}\right)(1-\xi)^{z} \quad(|\xi|<1) \tag{4.6}
\end{equation*}
$$

holds. Indeed, for such a prime p, observe that

$$
\left(1+\frac{p^{-s} z}{1-p^{-s}}\right)\left(1-p^{-s}\right)^{z}=\sum_{\nu=0}^{\infty} \frac{c\left(p^{\nu}, z\right)}{p^{\nu s}}=1+\sum_{\nu=1}^{\infty} \frac{c\left(p^{\nu}, z\right)}{p^{\nu s}}
$$

so that (4.6) follows using the uniqueness of representation of Dirichlet series and the substitution $\xi=p^{-s}$ for all primes p. It follows in particular that $c(p, z)=0$. The Cauchy formula now gives, for $|z|<R$,

$$
\left|c\left(p^{\nu}, z\right)\right| \leq M(R) 2^{\nu / 2}
$$

where

$$
M(R):=\sup _{|z| \leq R,|\xi| \leq 1 / \sqrt{2}}\left|\left(1+\frac{\xi z}{1-\xi}\right)(1-\xi)^{z}\right| .
$$

Hence, for any $\sigma>\frac{1}{2}$, we have

$$
\sum_{p} \sum_{\nu=1}^{\infty}\left|c\left(p^{\nu}, z\right)\right| p^{-\nu \sigma} \leq 2 M(R) \sum_{p} \frac{1}{p^{\sigma}\left(p^{\sigma}-\sqrt{2}\right)}<\infty .
$$

We can thus conclude that for every $\epsilon>0$, the associated Dirichlet series $H_{1}(s, z)$ is convergent and bounded for $\sigma \geq \frac{1}{2}+\epsilon$.

Similarly, letting

$$
H_{1}^{+}(s, z)=\prod_{\substack{j \equiv j \\ p \equiv j \bmod m}}\left(1+\frac{|z|}{p^{s}-1}\right)^{-1}\left(1-\frac{1}{p^{s}}\right)^{|z|}
$$

we can also conclude that $H_{1}^{+}(s, z)$ is bounded for $\sigma \geq \frac{1}{2}+\epsilon$. Hence, the conditions of Lemma 3 are fulfilled with $a_{J}(n, z)=\varrho_{J, m}(n) z^{\omega(n)}$ and $b_{J}(n, z)=$ $|z|^{\omega(n)}$, and the proof of (4.3) is complete.

Proceeding as above, for $\Re s>1$,

$$
\begin{aligned}
G(s, z)=\sum_{n=1}^{\infty} \frac{\varrho_{J, m}(n) z^{\Omega(n)}}{n^{s}} & =\prod_{\substack{j \in J \\
p \equiv j \\
\bmod m}}\left(1-\frac{z}{p^{s}}\right)^{-1} \\
& =H_{2}(s, z) \prod_{\substack{j \in J \\
p \equiv j \bmod m}}\left(1-\frac{1}{p^{s}}\right)^{-z}
\end{aligned}
$$

with

$$
H_{2}(s, z)=\prod_{\substack{j \equiv j \\ p \equiv j}}\left(1-\frac{z}{p^{s}}\right)^{-1}\left(1-\frac{1}{p^{s}}\right)^{z}=\sum_{n=1}^{\infty} \frac{d(n, z)}{n^{s}}
$$

say, where $d(n, z)$ is also a multiplicative function of n. If p is a prime such that $p \not \equiv j \bmod m$ for all $j \in J$, then again $d\left(p^{\nu}\right)=0$ for every integer $\nu \geq 1$. Also, for a prime p such that $p \equiv j \bmod m$ for some $j \in J$, we obtain an identity similar to (4.6), namely

$$
\begin{equation*}
1+\sum_{\nu=1}^{\infty} d\left(p^{\nu}, z\right) \xi^{\nu}=(1-\xi z)^{-1}(1-\xi)^{z} \tag{4.7}
\end{equation*}
$$

It follows in particular that $d(p, z)=0$ for all primes p. Since the right hand side of (4.7) is a holomorphic function in the disk $|\xi|<\min \left(1,|z|^{-1}\right)$, the Cauchy formula gives, for all $0<\delta<1$ and $|z|<2-2 \delta$,

$$
\left|d\left(p^{\nu}, z\right)\right| \leq N(\delta)(2-\delta)^{\nu}
$$

where

$$
N(\delta):=\sup _{\substack{|\xi| \leq 1 /(2-\delta) \\|z| \leq 2-2 \delta}}\left|(1-\xi z)^{-1}(1-\xi)^{z}\right| .
$$

Hence, for any given $\sigma>\frac{1}{2}$, we have

$$
\sum_{p} \sum_{\nu=1}^{\infty}\left|d\left(p^{\nu}, z\right)\right| p^{-\nu \sigma} \leq N(\delta)(2-\delta)^{2} \sum_{p} \frac{1}{p^{\sigma}\left(p^{\sigma}-(2-\delta)\right)}<\infty
$$

As in the proof of (4.3), we obtain that for every $\epsilon>0$, the associated Dirichlet series is convergent and bounded for $\sigma \geq \frac{1}{2}+\epsilon$.

Then, setting

$$
H_{2}^{+}(s, z):=\prod_{p}\left(1-\frac{|z|}{p^{s}}\right)^{-1}\left(1-\frac{1}{p^{s}}\right)^{-|z|}
$$

we conclude that $H_{2}^{+}(s, z)$ is also bounded for $\sigma>\frac{1}{2}+\epsilon$. Again, the conditions of Lemma 3 are fulfilled with $a_{J}(n, z)=\varrho_{J, m}(n) z^{\Omega(n)}$ and $b_{J}(n, z)=|z|^{\Omega(n)}$, which proves (4.4).

With the help of Lemma 4, we are now able to obtain asymptotic formulas for

$$
\pi_{J, m, k}(x):=\#\{n \leq x: p \mid n \Rightarrow \exists j \in J \text { such that } p \equiv j \bmod m, \omega(n)=k\}
$$

and

$$
\sigma_{J, m, k}(x):=\#\{n \leq x: p \mid n \Rightarrow \exists j \in J \text { such that } p \equiv j \bmod m, \Omega(n)=k\}
$$

With the same notation as in Lemma 4, we set $g_{1}(z):=\frac{D_{1}^{z} H_{1}(1, z)}{\Gamma(1+|J| z / \phi(m))}$ and $g_{2}(z):=\frac{D_{2}^{z} H_{2}(1, z)}{\Gamma(1+|J| z / \phi(m))}$.
Lemma 5. Let $R>0$ and $\delta>0$ be real numbers. Under the assumptions of Lemma 3, and setting $\varrho_{J, m} z^{\omega(n)}=\sum_{k=0}^{\infty} c_{k}(n) z^{k}$, we have uniformly for $1 \leq k \leq R|J| \log _{2} x / \phi(m)$,

$$
\begin{aligned}
\pi_{J, m, k}(x)=\frac{x}{\log x} & \frac{\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1}}{(k-1)!}\left(g_{1}\left(\frac{\phi(m)(k-1)}{|J| \log _{2} x}\right)\right. \\
& \left.+O\left(\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{-2}(k-1)+\frac{\left(\log _{2} x\right)^{2}}{k \log x} \frac{|J|}{\phi(m)}\right)\right)
\end{aligned}
$$

Also, setting $\varrho_{J, m} z^{\Omega(n)}=\sum_{k=0}^{\infty} d_{k}(n) z^{k}$, we have uniformly for $k \leq(2-$ $\delta)|J| \log _{2} x / \phi(m)$,

$$
\begin{aligned}
\sigma_{J, m, k}(x)=\frac{x}{\log x} & \frac{\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1}}{(k-1)!}\left(g_{2}\left(\frac{\phi(m)(k-1)}{|J| \log _{2} x}\right)\right. \\
& \left.+O\left(\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{-2}(k-1)+\frac{\left(\log _{2} x\right)^{2}}{k \log x} \frac{|J|}{\phi(m)}\right)\right)
\end{aligned}
$$

Proof. We will only prove the first statement, the proof of the second statement being similar. Since $\varrho_{J, m} z^{\omega(n)}=\sum_{k=0}^{\infty} c_{k}(n) z^{k}$, we clearly have

$$
c_{k}(n)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{\varrho_{J, m} z^{\omega(n)}}{z^{k+1}} d z
$$

for any $r \leq R$. Observing that $\pi_{J, m, k}(x)=\sum_{n \leq x} c_{k}(n)$, and letting $U(x, z)$ be as in (4.2), we have that

$$
\pi_{J, m, k}(x)=\sum_{n \leq x} c_{k}(n)=\frac{1}{2 \pi i} \sum_{n \leq x} \int_{|z|=r} \frac{\varrho_{J, m} z^{\omega(n)}}{z^{k+1}} d z=\frac{1}{2 \pi i} \int_{|z|=r} \frac{U(x, z)}{z^{k+1}} d z
$$

Hence, writing $f(z)$ for $H_{1}(1, z)$ and for any $r, r_{1}, r_{2} \leq R$, we have

$$
\begin{align*}
& \pi_{J, m, k}(x)= \frac{1}{2 \pi i} \int_{|z|=r} \frac{x}{z^{k+1}(\log x)^{1-|J| z / \phi(m)}}\left(\frac{D_{1}^{z} f(z)}{\Gamma(|J| z / \phi(m))}\right. \\
&\left.+O\left(\frac{\log _{2} x}{\log x}\right)\right) d z \\
&= \frac{1}{2 \pi i} \int_{|z|=r_{1}} \frac{\frac{D_{1}^{z} f(z)}{\Gamma(|J| z / \phi(m))} x(\log x)^{|J| z / \phi(m)-1}}{z^{k+1}} d z \\
&+O\left(\int_{|z|=r_{2}} \frac{x \log _{2} x(\log x)^{|J| \Re z / \phi(m)-2}}{|z|^{k+1}}|d z|\right) \\
&= \frac{1}{2 \pi i} \int_{|z|=r_{1}}^{\frac{D_{1}^{z} f(z)}{\Gamma(|J| z / \phi(m))} x(\log x)^{|J| z / \phi(m)-1}} z^{k+1} d z \\
&+O\left(\frac{x \log _{2} x}{r_{2}^{k}\left(\log ^{k} x\right)^{2}} \int_{0}^{2 \pi}(\log x)^{|J| r_{2} \cos \theta / \phi(m)} d \theta\right) \\
&= \frac{x}{\log x} \frac{1}{2 \pi i} \int_{|z|=r_{1}}^{z^{k} \Gamma(|J| z / \phi(m)+1)}(\log x)^{|J| z / \phi(m)} d z \\
&+O\left(x \frac{D_{1}^{z} f(z)}{\left(\log _{2} x\right.}\left(\frac{|J| \log _{2} x}{k \phi(m)}\right)^{k} \int_{0}^{2 \pi} e^{k \cos \theta} d \theta\right) \tag{4.8}
\end{align*}
$$

where we chose $r_{2}:=\frac{k \phi(m)}{|J| \log _{2} x} \leq R$.
Also, we have that

$$
\begin{align*}
\int_{0}^{2 \pi} e^{k \cos \theta} d \theta & \leq 2 \int_{0}^{\pi / 2} e^{k \cos \theta} d \theta+\pi=2 \int_{0}^{1} e^{k t} \frac{d t}{\sqrt{1-t^{2}}}+\pi \\
& \leq 2 \int_{0}^{1} \frac{e^{k t}}{\sqrt{1-t}} d t+\pi \tag{4.9}
\end{align*}
$$

Using the relation

$$
\begin{equation*}
\Gamma(s) n^{-s}=\int_{0}^{\infty} u^{s-1} e^{-n u} d u \quad(n \in \mathbb{N}, \Re(s)>0) \tag{4.10}
\end{equation*}
$$

with $n=k$ and $s=1 / 2$, we have that

$$
\begin{align*}
\int_{0}^{1} \frac{e^{k t}}{\sqrt{1-t}} d t & \leq \int_{-\infty}^{1} \frac{e^{k t}}{\sqrt{1-t}} d t=\int_{0}^{\infty} \frac{e^{k(1-u)}}{\sqrt{u}} d u \\
& =e^{k} \int_{0}^{\infty} \frac{e^{-k u}}{\sqrt{u}} d u=e^{k} \Gamma(1 / 2) k^{-1 / 2} \\
& \leq e \Gamma(1 / 2) \frac{k^{k}}{k!} \tag{4.11}
\end{align*}
$$

where the last inequality follows from Stirling's formula.
Using (4.11) in (4.9) yields

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{k \cos \theta} d \theta \leq 2 e \Gamma(1 / 2) \frac{k^{k}}{k!}+\pi \leq c \frac{k^{k}}{k!} \tag{4.12}
\end{equation*}
$$

for some absolute constant $c>0$. Hence, inserting (4.12) in (4.8), we get that

$$
\begin{aligned}
& \pi_{J, m, k}(x)=\frac{x}{\log x}\left(\frac{1}{2 \pi i} \int_{|z|=r_{1}} \frac{D_{1}^{z} f(z)}{z^{k} \Gamma(|J| z / \phi(m)+1)}(\log x)^{|J| z / \phi(m)} d z\right. \\
&\left.+O\left(\frac{\log _{2} x}{k!\log x}\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k}\right)\right)
\end{aligned}
$$

We will now evaluate the integral

$$
\begin{align*}
I_{k} & =I_{J, m, k}:=\frac{1}{2 \pi i} \int_{|z|=r_{1}} \frac{D_{1}^{z} f(z)}{z^{k} \Gamma(|J| z / \phi(m)+1)}(\log x)^{|J| z / \phi(m)} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=r_{1}} \frac{g_{1}(z)}{z^{k}}(\log x)^{|J| z / \phi(m)} d z \tag{4.13}
\end{align*}
$$

Here, it is somewhat simpler to take $r_{1}:=\frac{(k-1) \phi(m)}{|J| \log _{2} x}$. This clearly yields the same result since the only singularity of the integrand in I_{k} is at $z=0$.

Observing that, with this new radius r_{1}, we get

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{|z|=r_{1}}\left(z-r_{1}\right) \frac{(\log x)^{|J| z / \phi(m)}}{z^{k}} d z & =\operatorname{Res}_{z=0}\left(z-r_{1}\right) \frac{(\log x)^{|J| z / \phi(m)}}{z^{k}} \\
& =\frac{\left(|J| \log _{2} x / \phi(m)\right)^{k-2}}{(k-2)!} \\
& =0,
\end{aligned}
$$

it follows from (4.13), using the residue theorem, that

$$
I_{k}=\frac{g_{1}\left(r_{1}\right)}{2 \pi i} \int_{|z|=r_{1}} \frac{(\log x)^{|J| z / \phi(m)}}{z^{k}} d z
$$

$$
\begin{align*}
& \quad+\frac{1}{2 \pi i} \int_{|z|=r_{1}}\left(g_{1}(z)-g_{1}\left(r_{1}\right)-g_{1}^{\prime}\left(r_{1}\right)\left(z-r_{1}\right)\right) \frac{(\log x)^{|J| z / \phi(m)}}{z^{k}} d z \\
& = \\
& \quad \frac{g_{1}\left(r_{1}\right)}{(k-1)!}\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1} \\
& \quad+O\left(\int_{|z|=r_{1}}\left(g_{1}(z)-g_{1}\left(r_{1}\right)-g_{1}^{\prime}\left(r_{1}\right)\left(z-r_{1}\right)\right) \frac{(\log x)^{|J| z / \phi(m)}}{z^{k}} d z\right) \tag{4.14}\\
& = \\
& \frac{g_{1}\left(r_{1}\right)}{(k-1)!}\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1}+O(L(k))
\end{align*}
$$

say. On the other hand, integration by part yields

$$
\begin{equation*}
g_{1}(z)-g_{1}\left(r_{1}\right)-g_{1}^{\prime}\left(r_{1}\right)\left(z-r_{1}\right)=\left(z-r_{1}\right)^{2} \int_{0}^{1}(1-t) g_{1}^{\prime \prime}\left(r_{1}+t\left(z-r_{1}\right)\right) d t \tag{4.15}
\end{equation*}
$$

Moreover, observe that for each $t \in[0,1]$,

$$
\begin{equation*}
\left|r_{1}+t\left(z-r_{1}\right)\right|=\left|r_{1}(1-t)+t z\right| \leq r_{1}(1-t)+t r_{1}=r_{1} \tag{4.16}
\end{equation*}
$$

Since the closed disk centered at 0 of radius R is compact, the function $g_{1}^{\prime \prime}(z)$ reaches its maximum on the boundary of the disk. Letting c_{0} be this maximum value, it follows from (4.15) and (4.16) that, using the change of variable $z=$ $r_{1} e^{i \theta}$, we have

$$
\begin{align*}
|L(k)| & \leq \int_{C^{\prime}}\left|\left(z-r_{1}\right)^{2} \int_{0}^{1}(1-t) g_{1}^{\prime \prime}\left(r_{1}+t\left(z-r_{1}\right)\right) d t\right|\left|\frac{(\log x)^{|J| z / \phi(m)}}{z^{k}}\right||d z| \\
& \leq c_{0} \int_{|z|=r_{1}}\left|z-r_{1}\right|^{2}\left|\frac{(\log x)^{|J| z / \phi(m)}}{z^{k}}\right||d z| \\
& =c_{0} r_{1}{ }^{3-k} \int_{0}^{2 \pi}\left|e^{i \theta}-1\right|^{2} e^{r_{1} \cos \theta\left(|J| \log _{2} x\right) / \phi(m)} d \theta \\
& =2 c_{0} r_{1}{ }^{3-k} \int_{0}^{2 \pi}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta \tag{4.17}
\end{align*}
$$

Now observe that

$$
\begin{align*}
\int_{0}^{2 \pi}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta= & 2 \int_{0}^{\pi / 2}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta \\
& \quad+\int_{\pi / 2}^{3 \pi / 2}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta \tag{4.18}\\
\leq & 2 \int_{0}^{\pi / 2}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta+\int_{\pi / 2}^{3 \pi / 2} 2 d \theta \\
= & 2 \int_{0}^{\pi / 2}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta+2 \pi
\end{align*}
$$

$$
\begin{align*}
& =2 \int_{0}^{1} \frac{(1-t) e^{(k-1) t}}{\sqrt{1-t^{2}}} d t+2 \pi \\
& \leq 2 \int_{0}^{1} e^{(k-1) t} \sqrt{1-t} d t+2 \pi \\
& \leq 2 \int_{-\infty}^{1} e^{(k-1) t} \sqrt{1-t} d t+2 \pi \\
& =2 \int_{0}^{\infty} \sqrt{u} e^{(k-1)(1-u)} d u+2 \pi \\
& =2 e^{k-1} \int_{0}^{\infty} \sqrt{u} e^{-(k-1) u} d u+2 \pi \tag{4.19}
\end{align*}
$$

Using once more relation (4.10) but this time with $n=k-1$ and $s=3 / 2$, we can replace (4.18) by

$$
\begin{align*}
\int_{0}^{2 \pi}(1-\cos \theta) e^{(k-1) \cos \theta} d \theta & \leq 2 e^{k-1} \Gamma(3 / 2)(k-1)^{-3 / 2}+2 \pi \\
& \leq 2 e \Gamma(3 / 2) \frac{(k-1)^{k-2}}{(k-1)!}+2 \pi \tag{4.20}
\end{align*}
$$

where, as in (4.11), we used Stirling's formula.
Substituting (4.20) in (4.17), we obtain that, for some positive constant C,

$$
\begin{equation*}
|L(k)| \leq C r_{1}^{3-k} \frac{(k-1)^{k-2}}{(k-1)!} \tag{4.21}
\end{equation*}
$$

Hence, combining (4.8), (4.13), (4.14) and (4.21), we obtain

$$
\begin{aligned}
\pi_{J, m, k}(x)= & \frac{x}{\log x}\left(g_{1}\left(\frac{(k-1) \phi(m)}{|J| \log _{2} x}\right) \frac{\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1}}{(k-1)!}\right. \\
& \left.+O\left(\frac{(k-1)}{(k-1)!}\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-3}+\frac{\log _{2} x}{k!\log x}\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k}\right)\right) \\
= & \frac{x}{\log x} \frac{\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{k-1}}{(k-1)!}\left(g_{1}\left(\frac{(k-1) \phi(m)}{|J| \log _{2} x}\right)\right. \\
& \left.+O\left((k-1)\left(\frac{|J| \log _{2} x}{\phi(m)}\right)^{-2}+\frac{\left(\log _{2} x\right)^{2}}{k \log x} \frac{|J|}{\phi(m)}\right)\right)
\end{aligned}
$$

uniformly for $k \leq R|J| \log _{2} x / \phi(m)$, thereby completing the proof of Lemma 5 .

Using Lemma 5 with $J=\{5,6\}$ and $m=7$, we have in particular

$$
\begin{equation*}
\pi_{B, k}(x):=\pi_{J, 7, k}(x) \ll \frac{x\left(\frac{\log _{2} x}{3}\right)^{k-1}}{(k-1)!\log x} \tag{4.22}
\end{equation*}
$$

uniformly for $k \leq(R / 3) \log _{2} x$ and

$$
\begin{equation*}
\sigma_{B, k}(x):=\sigma_{J, 7, k}(x) \ll \frac{x\left(\frac{\log _{2} x}{3}\right)^{k-1}}{(k-1)!\log x} \tag{4.23}
\end{equation*}
$$

uniformly for $k \leq((2-\delta) / 3) \log _{2} x$.
Lemma 6. The estimate

$$
\pi_{B, k}(y) \ll \frac{y}{(\log y)^{2 / 3} \sqrt{\log _{2} y}}
$$

holds uniformly for all integers $1 \leq k \leq \frac{R}{3} \log _{2} x$, while

$$
\sigma_{B, k}(y) \ll \frac{y}{(\log y)^{2 / 3} \sqrt{\log _{2} y}}
$$

holds uniformly for all integers $1 \leq k \leq \frac{2-\delta}{3} \log _{2} x$.
Proof. We use (4.22) and Stirling's formula to get

$$
\begin{equation*}
\pi_{B, k}(y) \ll \frac{y}{\log y} \frac{\left(\frac{\log _{2} y}{3}\right)^{k-1}}{(k-1)!} \ll \frac{y}{\sqrt{k-1} \log y}\left(\frac{\frac{e}{3} \log _{2} y}{k-1}\right)^{k-1} \tag{4.24}
\end{equation*}
$$

uniformly for all integers $1 \leq k \leq \frac{A}{3} \log _{2} x$. Note that the second bound in this Lemma can be established in the same manner but this time by using (4.23) instead of (4.22). Now, fix $M>e^{2}$ and, for $t \geq 1$, set $\varphi(t):=\frac{(M / t)^{t}}{\sqrt{t}}$ and $\psi(t):=(M / t)^{t}$. Taking logarithms of $\varphi(t)$ and then taking derivatives, we obtain

$$
\frac{d}{d t}\left(t \log (M / t)-\frac{\log t}{2}\right)=\log M-\log t-1-\frac{1}{2 t}
$$

Since this last expression is positive if $t \leq M / e^{2}$, it follows that $\sup _{t \geq 1} \varphi(t) \leq$ $\frac{e}{\sqrt{M}} \sup _{t \geq M / e^{2}} \psi(t)$. Similarly, we have that $\psi(t)$ attains its maximum when $t=$ M / e in which case $\psi(M / e)=e^{M / e}$. Thus, it follows that $\sup _{t \geq 1} \varphi(t) \leq \frac{e^{M / e+1}}{\sqrt{M}}$. Choosing $M=\frac{e}{3} \log _{2} y$, we obtain

$$
\begin{equation*}
\frac{1}{\sqrt{k-1}}\left(\frac{\frac{e}{3} \log _{2} y}{k-1}\right)^{k-1} \ll \frac{e^{\frac{\log _{2} y}{3}}}{\sqrt{\log _{2} y}} \ll \frac{(\log y)^{1 / 3}}{\sqrt{\log _{2} y}} \tag{4.25}
\end{equation*}
$$

Inserting (4.25) in (4.24), the result follows.

Lemma 7. There exist constants $C>0$ and $D>0$ such that

$$
A(y)=C(1+o(1)) \frac{y}{(\log y)^{1 / 3}}
$$

and

$$
B(y)=D(1+o(1)) \frac{y}{(\log y)^{2 / 3}}
$$

Proof. This follows immediately from Theorem 1.1 in the paper of Spearman and Williams [6].

5. Proof of Theorems 1 and 2

Since by (3.1) and (3.2), we have

$$
\kappa(a(n))-\omega(a(n)) \leq \log _{2} x+\left(\log _{2} x\right)^{7 / 12}-\frac{2}{3}\left(\log _{2} x-\left(\log _{2} x\right)^{3 / 4}\right) \leq \frac{1}{2} \log _{2} x
$$

we can use Lemma 6 with $y=x / a$ and Lemma 7 to obtain

$$
\begin{align*}
\Sigma_{1} & \ll \sum_{a \in A\left(x^{\left.1-\frac{1}{\sqrt{\log x}}\right)}\right.} \frac{x}{a(\log (x / a))^{2 / 3} \sqrt{\log _{2} x / a}} \\
& \ll \frac{1}{\sqrt{\log _{2} x}} \sum_{a \in A\left(x^{\left.1-\frac{1}{\sqrt{\log x}}\right)}\right.} \frac{x}{a(\log (x / a))^{2 / 3}} \\
& \ll \frac{1}{\sqrt{\log _{2} x}} \sum_{a \in A(x)} \# B(x / a) \\
& =\frac{\lfloor x\rfloor}{\sqrt{\log _{2} x}} \leq \frac{x}{\sqrt{\log _{2} x}} . \tag{5.1}
\end{align*}
$$

It remains to show that

$$
\begin{equation*}
\Sigma_{2}=\#\left\{n \leq x: a(n)>x^{1-\frac{1}{\sqrt{\log x}}}\right\} \ll \frac{x}{\sqrt{\log _{2} x}} \tag{5.2}
\end{equation*}
$$

We can in fact obtain a much better upper bound. Indeed,

$$
\begin{aligned}
\Sigma_{2} & =\sum_{b \in B(\exp (\sqrt{\log x}))} A(x / b) \\
& \asymp \sum_{b \in B(\exp (\sqrt{\log x}))} \frac{x}{b(\log (x / b))^{1 / 3}} \\
& =\frac{B(\exp (\sqrt{\log x})) x^{1-\frac{1}{\sqrt{\log x}}}}{(\log x-\sqrt{\log x})^{1 / 3}}+\int_{1}^{\exp (\sqrt{\log x}} \frac{x B(t)(3 \log (x / t)-1)}{3 t^{2} \log ^{4 / 3}(x / t)} d t
\end{aligned}
$$

$$
\begin{aligned}
& \asymp \frac{\exp (\sqrt{\log x}) x^{1-\frac{1}{\sqrt{\log x}}}}{(\log x)^{1 / 3}(\log x-\sqrt{\log x})^{1 / 3}}+x \int_{1}^{\exp (\sqrt{\log x})} \frac{B(t)}{t^{2}(\log (x / t))^{1 / 3}} d t \\
& \asymp \frac{x}{(\log x)^{2 / 3}}+x \int_{e}^{\exp (\sqrt{\log x})} \frac{d t}{t(\log t)^{2 / 3}(\log (x / t))^{1 / 3}} \\
& =\frac{x}{(\log x)^{2 / 3}}+x \int_{1}^{\sqrt{\log x}} \frac{d u}{u^{2 / 3}(\log x-u)^{1 / 3}},
\end{aligned}
$$

where we set $u=\log t$ in the last integral.
Hence,

$$
\begin{aligned}
\Sigma_{2} & \ll \frac{x}{(\log x)^{2 / 3}}+\frac{x}{(\log x-\sqrt{\log x})^{1 / 3}} \int_{1}^{\sqrt{\log x}} \frac{d u}{u^{2 / 3}} \\
& \ll \frac{x}{(\log x)^{2 / 3}}+\frac{x(\log x)^{1 / 6}}{(\log x)^{1 / 3}} \ll \frac{x}{(\log x)^{1 / 6}},
\end{aligned}
$$

which proves (5.2). Using (5.1) and (5.2) in (3.4), the proof of Theorem 1 is complete.

Since Lemma 1 and Lemma 2 both apply to $\Omega(n)$, we also have

$$
\kappa(a(n))-\Omega(a(n)) \ll \frac{1}{2} \log _{2} x
$$

and the proof of Theorem 2 follows along the same lines as that of the proof of Theorem 1.

References

[1] BALAZARD, M.: Unimodalité de la distribution du nombre de diviseurs premiers d'un entier, Ann. Inst. Fourier 40, 2 (1990), 255-270.
[2] BEN SAÏD, F. - NICOLAS, J. L.: Sur une application de la formule de Selberg-Delange, Colloquium Mathematicum 98, 2 (2003), 223-247.
[3] DE KONINCK, J.M. - DOYON, N. - Letendre, P.: On the proximity of additive and multiplicative functions, Functiones et Approximatio 201, (2015), 1-18.
[4] DE KONINCK, J.M. - LUCA, F.: Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[5] HARDY, G.H. - RAMANUJAN, S.: The normal number of prime factors of a number n, Quarterly Journal of Mathematics 48, (1917), 76-92.
[6] SPEARMAN, B.K. - WILLIAMS, K.S.: On integers with prime factors restricted to certain congruence classes, Far East J. Math. 24, (2007), 153-161.
[7] TENENBAUM, G.: Introduction à la théorie analytique des nombres, Collection SMF, Société Mathématique de France, 1995.

* Département de mathématiques, Université Laval, Québec G1V 0A6, Canada

E-mail address: jmdk@mat.ulaval.ca
** Département de mathématiques, Université Laval, Québec G1V 0A6, Canada
E-mail address: nicolas.doyon@mat.ulaval.ca
*** Département de mathématiques, Université Laval, Québec G1V 0A6, Canada
E-mail address: francois.laniel.1@mat.ulaval.ca

[^0]: 1991 Mathematics Subject Classification. Primary 11N25; Secondary 11A25.
 Key words and phrases. Additive functions, Multiplicative functions, Number of distinct prime factors of an integer.

 The work of the first author was supported by a grant from NSERC..

