
ON THE PROXIMITY OF MULTIPLICATIVE FUNCTIONS TO

THE NUMBER OF DISTINCT PRIME FACTORS FUNCTION

JEAN-MARIE DE KONINCK*, NICOLAS DOYON**, AND FRANÇOIS LANIEL***

Abstract. Given an additive function f and a multiplicative function g,

let E(f, g;x) = #{n ≤ x : f(n) = g(n)}. We study the size of E(ω, g;x)
and E(Ω, g;x), where ω(n) stands for the number of distinct prime fac-

tors of n and Ω(n) stands for the number of prime factors of n count-

ing multiplicity. In particular, we show that E(ω, g;x) and E(Ω, g;x) are

O
(

x√
log log x

)
for any integer valued multiplicative function g. This im-

proves an earlier result of De Koninck, Doyon and Letendre.

1. Introduction

Given an additive function f and a multiplicative function g, let E(f, g;x) =
#{n ≤ x : f(n) = g(n)}. De Koninck, Doyon and Letendre [3] proved that if f
is an integer valued additive function such that the corresponding sums

Af (x) :=
∑
pα≤x

f(pα)

pα

(
1− 1

p

)
and Bf (x)

2
:=

∑
pα≤x

|f(pα)|2

pα

satisfy the conditions

(i) ϕ(x) = ϕf (x) :=
Bf (x)

|Af (x)|
→ 0 as x→∞,

(ii) max
z∈C

#{n ≤ x : f(n) = z} = O

(
x

H(x)

)
,

where H(x) = Hf (x)→∞ as x→∞,

then, given any multiplicative function g, we have E(f, g;x) = o(x) as x → ∞.
They also observed that in the case f = ω, we have Aω(x) = (1 + o(1)) log log x
and Bω(x) = (1+o(1))

√
log log x as x→∞, so that ϕ(x) = (1+o(1))/

√
log log x

as x → ∞, while H(x) can be taken as
√

log log x by a result of Balazard [1].
Hence, they showed in particular that E(ω, g;x) = o(x) as x → ∞. Moreover,
observe that this result also applies to Ω(n).
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Here, we improve the result of De Koninck, Doyon and Letendre in the case
where g takes only integer values.

2. Main results

Theorem 1. Let g : N→ Z be an arbitrary multiplicative function. Then,

#{n ≤ x : ω(n) = g(n)} � x√
log log x

.

Theorem 2. Let g : N→ Z be an arbitrary multiplicative function. Then,

#{n ≤ x : Ω(n) = g(n)} � x√
log log x

.

Observe that according to Theorem 2 in [3], given any ε > 0, there exists a
multiplicative function g and an infinite sequence of integers xn such that

E(ω, g;xn)� xn
(log log xn)1/2+ε

as n → ∞. In their proof, the authors construct a function g which takes only
integers values. This means that in some sense, our Theorem 1 is very close to
being optimal.

3. Notation and the idea of the proof

We shall write P for the set of all prime numbers, while the letter p will
always stand for a prime number. Let also π(x) stand for the number of primes
not exceeding x. Also, by log2 x, we mean max(1, log log x).

Let
P1 := {p : p ≡ 1 mod 7 or p ≡ 2 mod 7} ∪ {7},

P2 := {p : p ≡ 3 mod 7 or p ≡ 4 mod 7},
P3 := {p : p ≡ 5 mod 7 or p ≡ 6 mod 7},

A := {n : p|n⇒ p ∈ P1 ∪ P2},
B := {n : p|n⇒ p ∈ P3}

and, for an integer valued multiplicative fonction g, let

gk(n) :=
∏
pr‖n
p∈Pk

g(pr) for k ∈ {1, 2, 3}.

Also, let A(x) := A ∩ [1, x], B(x) := B ∩ [1, x],

a(n) :=
∏
pr‖n

p∈P1∪P2

pr

and
b(n) :=

∏
pr‖n
p∈P3

pr.
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A key tool for our demonstration is the next two lemmas, which essentially
follow from the Turán-Kubilius inequality.

Lemma 1. Uniformly for 0 ≤ ξ(x) ≤
√

log2 x,

#
{
n ≤ x : |ω(n)− log2 x| > ξ(x)

√
log2 x

}
� xe−ξ(x)2/3.

Proof. This result follows immediately from Tenenbaum [7, Theorem 3.7] with
t = x. �

In particular, choosing ξ(x) = (log2 x)1/12, we have that for n ≤ x,

log2 x− (log2 x)7/12 ≤ ω(n) ≤ log2 x+ (log2 x)7/12 (3.1)

with at most O(xe−(log2 x)1/6/3) exceptions. Since xe−(log2 x)1/6/3 � x

log2 x
, we

can assume for the purpose of the demonstration that (3.1) holds for all n ≤ x.

Lemma 2. Let ξ(x)→∞. We have

#

{
n ≤ x :

∣∣∣∣ω(a(n))− 2

3
log2 x

∣∣∣∣ > 2ξ(x)

3

√
log2 x

}
� x

ξ(x)2
.

Proof. This result follows immediately from Tenenbaum [7, Theorem 3.4], with

A(x) = 2
3 log2 x+O(1), B(x)2 = 2

3 log2 x+O(1) and ε(x) = ξ(x)√
log2 x

. �

In particular, choosing ξ(x) = (log2 x)1/4, we have that for n ≤ x,

2

3
(log2 x− (log2 x)3/4) ≤ ω(a(n)) ≤ 2

3
(log2 x+ (log2 x)3/4) (3.2)

with at most O

(
x√

log2 x

)
exceptions. Therefore, we can also assume that

(3.2) holds for all n ≤ x.
Observe that the above two lemmas are also valid if we replace ω(n) by Ω(n).

In fact, the inequalities (3.1) and (3.2) with the ω(n) function replaced by the
Ω(n) function will allow us to use Lemma 6 in order to prove Theorem 2.

If g(n) = ω(n), we have by (3.1) that

|g1(n)g2(n)g3(n)| = ω(n) >
1

2
log2 x. (3.3)

It follows that at least one of the three inequalities

|g1(n)g2(n)| ≥
(

1

2
log2 x

)2/3

,



4 J.-M. DE KONINCK, N. DOYON, AND F. LANIEL

|g1(n)g3(n)| ≥
(

1

2
log2 x

)2/3

and

|g2(n)g3(n)| ≥
(

1

2
log2 x

)2/3

holds. Indeed, if it was not the case, then we would have g(n)2 < ( 1
2 log2 x)2,

thus contradicting (3.3).
In order to prove our results, without any loss in generality, we shall assume

that when g(n) = ω(n),

|g1(n)g2(n)| ≥
(

1

2
log2 x

)2/3

.

Since |g(a(n))| ≥
(

1
2 log2 x

)2/3
, there exists for x large enough at most one

multiple of |g(a(n))| in the interval [log2 x − (log2 x)7/12, log2 x + (log2 x)7/12].
Hence, given any x, if there exists a unique multiple of an integer m in this
interval, we write it as κ(m); else, we simply write κ(m) = 0.

Now, observe that

#{n ≤ x : ω(n) = g(n)} ≤ #{n ≤ x : ω(n) = κ(a(n))}
= #{n ≤ x : ω(b(n)) = κ(a(n))− ω(a(n))}

=
∑

a∈A(x)

#
{
b ∈ B

(x
a

)
: ω(b) = κ(a)− ω(a)

}
≤

∑
a∈A

(
x
1− 1√

log x

) #
{
b ∈ B

(x
a

)
: ω(b) = κ(a)− ω(a)

}

+ #
{
n ≤ x : a(n) > x

1− 1√
log x

}
= Σ1 + Σ2, (3.4)

say.
Furthermore, since Lemma 1 and Lemma 2 also hold for the Ω(n) function,

the above argument also applies if we replace ω(n) by Ω(n).

In the next sections, we evaluate both Σ1 and Σ2, the latter being a simple
consequence of a result of Spearman and Williams [6].

4. Key lemmas

For each m ≥ 1, let

(Z/mZ)∗ = {h ∈ N : 1 ≤ h ≤ m, (h,m) = 1}
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be the set of invertible classes modulo m. Given a subset J of (Z/mZ)∗, for
convenience, we write |J | for #J . Hence, we clearly have |J | ≤ φ(m), where φ
stands for the Euler totient function. For each j ∈ J , we set

Pj = Pj,m = {p : p ≡ j mod m}

and

PJ =
⋃
j∈J

Pj .

For each m ∈ N and j ∈ J , let

P (m, j) =
∏
p

(
1− 1

p

)θ(p)
,

where θ(p) = φ(m)− 1 if p ≡ j mod m and θ(p) = −1 otherwise. This product
is convergent by the prime number theorem for arithmetic progressions.

We shall be using the following result of Ben Säıd and Nicolas [2].

Lemma 3. Fix z ∈ C and let J ⊂ (Z/mZ)∗ and aJ(n, z) ∈ C, bJ(n, z) ∈
R+ ∪ {0} be two multiplicative functions in n such that, for all integers n ≥ 1,
|aJ(n, z)| ≤ bJ(n, z) and for which the corresponding Dirichlet series

FJ(s, z) =

∞∑
n=1

aJ(n, z)

ns

and

F+
J (s, z) =

∞∑
n=1

bJ(n, z)

ns

are holomorphic in the half-plane <s > 1. Moreover, assume that there exist real
numbers B > 0, 0 < c < 1/2 and 0 ≤ δ < 1 such that in the half-plane <s > 1,
the series FJ(s, z) has an Euler product representation of the form

FJ(s, z) = HJ(s, z)
∏
j∈J

∏
p≡j mod m

(
1− 1

ps

)−z
,

where HJ(s, z) is holomorphic in

Dc :=

{
s : <s ≥ 1− c

log(2 + |=s|)

}
and satisfies

|HJ(s, z)| ≤ B(3 + |=s|)δ (s ∈ Dc). (4.1)

Moreover, assume that in the half-plane <s > 1, the series F+
J (s, z) has a

representation of the form

F+
J (s, z) = H+

J (s, z)ζ(s)z,
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where H+
J (s, z) is holomorphic in Dc and satisfies (4.1).

Letting

AJ(x, z) =
∑
n≤x

aJ(n, z),

we then have

AJ(x, z) =
x

(log x)1−|J|z/φ(m)

(
HJ(1, z)CzJ,m
Γ(|J |z/φ(m))

+O

(
log2 x

log x

))
,

where the constant in the O term depends on m,B, c and δ, with the convention
that 1/Γ(0) = 0, and

CJ,m =
∏
j∈J

P (m, j)−1/φ(m).

Now, let J ⊂ (Z/mZ)∗ and consider the multiplicative function %J,m defined
on prime powers pα by

%J,m(pα) =

{
1 if there exists j ∈ J such that p ≡ j mod m,
0 otherwise.

The next two results are direct applications of Lemma 3 with aJ(n, z) =
%J,m(n)zω(n)(respectively aJ(n, z) = %J,m(n)zΩ(n)) and bJ(n, z) = %J,m(n)|z|ω(n)

(respectively bJ(n, z) = %J,m(n)|z|Ω(n)). We will now obtain asymptotic formu-
las for

U(x, z) :=
∑
n≤x

%J,m(n)zω(n) and V (x, z) :=
∑
n≤x

%J,m(n)zΩ(n). (4.2)

Lemma 4. For any real R > 0, there exists a real constant D1 > 0 such that

U(x, z) =
x

(log x)1−|J|z/φ(m)

(
Dz

1

∏
j∈J

p≡j (m)

(
1 +

z

(p− 1)

)(
1− 1

p

)z
Γ(|J |z/φ(m))

+ O

(
log2 x

log x

))
(4.3)

uniformly for |z| < R. Moreover, for any real δ > 0, there exists a real constant
D2 > 0 such that

V (x, z) =
x

(log x)1−|J|z/φ(m)

(
Dz

2

∏
j∈J

p≡j (m)

(
1− z

p

)−1(
1− 1

p

)z
Γ(|J |z/φ(m))

+ O

(
log2 x

log x

))
(4.4)
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uniformly for |z| < 2− δ.

Proof. The proof follows essentially along the same lines as the discussion in
Tenenbaum [7, pp. 204–205]. Here are the details.

For <s > 1,

F (s, z) =

∞∑
n=1

%J,m(n)zω(n)

ns
=

∏
j∈J

p≡j mod m

(
1 +

z

ps − 1

)

= H1(s, z)
∏
j∈J

p≡j mod m

(
1− 1

ps

)−z
(4.5)

with

H1(s, z) =
∏
j∈J

p≡j mod m

(
1 +

z

ps − 1

)(
1− 1

ps

)z
=
∞∑
n=1

c(n, z)

ns
,

say, where c(n, z) is clearly a multiplicative function of n. If p is a prime such
that p 6≡ j mod m for all j ∈ J , then we easily see that c(pν , z) = 0 for every
integer ν ≥ 1. Also, for a prime p such that p ≡ j mod m for some j ∈ J , the
identity

1 +

∞∑
ν=1

c(pν , z)ξν =

(
1 +

ξz

1− ξ

)
(1− ξ)z (|ξ| < 1) (4.6)

holds. Indeed, for such a prime p, observe that(
1 +

p−sz

1− p−s

)
(1− p−s)z =

∞∑
ν=0

c(pν , z)

pνs
= 1 +

∞∑
ν=1

c(pν , z)

pνs
,

so that (4.6) follows using the uniqueness of representation of Dirichlet series and
the substitution ξ = p−s for all primes p. It follows in particular that c(p, z) = 0.
The Cauchy formula now gives, for |z| < R,

|c(pν , z)| ≤M(R)2ν/2,

where

M(R) := sup
|z|≤R,|ξ|≤1/

√
2

∣∣∣∣(1 +
ξz

1− ξ

)
(1− ξ)z

∣∣∣∣ .
Hence, for any σ > 1

2 , we have∑
p

∞∑
ν=1

|c(pν , z)|p−νσ ≤ 2M(R)
∑
p

1

pσ(pσ −
√

2)
<∞.

We can thus conclude that for every ε > 0, the associated Dirichlet series H1(s, z)
is convergent and bounded for σ ≥ 1

2 + ε.
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Similarly, letting

H+
1 (s, z) =

∏
j∈J

p≡j mod m

(
1 +

|z|
ps − 1

)−1(
1− 1

ps

)|z|
,

we can also conclude that H+
1 (s, z) is bounded for σ ≥ 1

2 + ε. Hence, the

conditions of Lemma 3 are fulfilled with aJ(n, z) = %J,m(n)zω(n) and bJ(n, z) =

|z|ω(n), and the proof of (4.3) is complete.
Proceeding as above, for <s > 1,

G(s, z) =

∞∑
n=1

%J,m(n)zΩ(n)

ns
=

∏
j∈J

p≡j mod m

(
1− z

ps

)−1

= H2(s, z)
∏
j∈J

p≡j mod m

(
1− 1

ps

)−z
with

H2(s, z) =
∏
j∈J

p≡j mod m

(
1− z

ps

)−1(
1− 1

ps

)z
=

∞∑
n=1

d(n, z)

ns
,

say, where d(n, z) is also a multiplicative function of n. If p is a prime such that
p 6≡ j mod m for all j ∈ J , then again d(pν) = 0 for every integer ν ≥ 1. Also,
for a prime p such that p ≡ j mod m for some j ∈ J , we obtain an identity
similar to (4.6), namely

1 +

∞∑
ν=1

d(pν , z)ξν = (1− ξz)−1(1− ξ)z. (4.7)

It follows in particular that d(p, z) = 0 for all primes p. Since the right hand
side of (4.7) is a holomorphic function in the disk |ξ| < min(1, |z|−1), the Cauchy
formula gives, for all 0 < δ < 1 and |z| < 2− 2δ,

|d(pν , z)| ≤ N(δ)(2− δ)ν ,

where

N(δ) := sup
|ξ|≤1/(2−δ)
|z|≤2−2δ

|(1− ξz)−1(1− ξ)z|.

Hence, for any given σ > 1
2 , we have∑

p

∞∑
ν=1

|d(pν , z)|p−νσ ≤ N(δ)(2− δ)2
∑
p

1

pσ(pσ − (2− δ))
<∞.

As in the proof of (4.3), we obtain that for every ε > 0, the associated Dirichlet
series is convergent and bounded for σ ≥ 1

2 + ε.
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Then, setting

H+
2 (s, z) :=

∏
p

(
1− |z|

ps

)−1(
1− 1

ps

)−|z|
,

we conclude that H+
2 (s, z) is also bounded for σ > 1

2 + ε. Again, the conditions

of Lemma 3 are fulfilled with aJ(n, z) = %J,m(n)zΩ(n) and bJ(n, z) = |z|Ω(n),
which proves (4.4). �

With the help of Lemma 4, we are now able to obtain asymptotic formulas
for

πJ,m,k(x) := #{n ≤ x : p|n⇒ ∃j ∈ J such that p ≡ j mod m,ω(n) = k}

and

σJ,m,k(x) := #{n ≤ x : p|n⇒ ∃j ∈ J such that p ≡ j mod m,Ω(n) = k}.

With the same notation as in Lemma 4, we set g1(z) :=
Dz1H1(1,z)

Γ(1+|J|z/φ(m)) and

g2(z) :=
Dz2H2(1,z)

Γ(1+|J|z/φ(m)) .

Lemma 5. Let R > 0 and δ > 0 be real numbers. Under the assumptions
of Lemma 3, and setting %J,mz

ω(n) =
∑∞
k=0 ck(n)zk, we have uniformly for

1 ≤ k ≤ R|J | log2 x/φ(m),

πJ,m,k(x) =
x

log x

(
|J| log2 x
φ(m)

)k−1

(k − 1)!

(
g1

(
φ(m)(k − 1)

|J | log2 x

)

+ O

((
|J | log2 x

φ(m)

)−2

(k − 1) +
(log2 x)2

k log x

|J |
φ(m)

))
.

Also, setting %J,mz
Ω(n) =

∑∞
k=0 dk(n)zk, we have uniformly for k ≤ (2 −

δ)|J | log2 x/φ(m),

σJ,m,k(x) =
x

log x

(
|J| log2 x
φ(m)

)k−1

(k − 1)!

(
g2

(
φ(m)(k − 1)

|J | log2 x

)

+ O

((
|J | log2 x

φ(m)

)−2

(k − 1) +
(log2 x)2

k log x

|J |
φ(m)

))
.

Proof. We will only prove the first statement, the proof of the second statement
being similar. Since %J,mz

ω(n) =
∑∞
k=0 ck(n)zk, we clearly have

ck(n) =
1

2πi

∫
|z|=r

%J,mz
ω(n)

zk+1
dz,
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for any r ≤ R. Observing that πJ,m,k(x) =
∑
n≤x ck(n), and letting U(x, z) be

as in (4.2), we have that

πJ,m,k(x) =
∑
n≤x

ck(n) =
1

2πi

∑
n≤x

∫
|z|=r

%J,mz
ω(n)

zk+1
dz =

1

2πi

∫
|z|=r

U(x, z)

zk+1
dz.

Hence, writing f(z) for H1(1, z) and for any r, r1, r2 ≤ R, we have

πJ,m,k(x) =
1

2πi

∫
|z|=r

x

zk+1(log x)1−|J|z/φ(m)

(
Dz

1f(z)

Γ(|J |z/φ(m))

+O

(
log2 x

log x

))
dz

=
1

2πi

∫
|z|=r1

Dz1f(z)
Γ(|J|z/φ(m))x(log x)|J|z/φ(m)−1

zk+1
dz

+ O

(∫
|z|=r2

x log2 x(log x)|J|<z/φ(m)−2

|z|k+1
|dz|

)

=
1

2πi

∫
|z|=r1

Dz1f(z)
Γ(|J|z/φ(m))x(log x)|J|z/φ(m)−1

zk+1
dz

+O

(
x log2 x

r2
k(log x)2

∫ 2π

0

(log x)|J|r2 cos θ/φ(m)dθ

)
=

x

log x

1

2πi

∫
|z|=r1

Dz
1f(z)

zkΓ(|J |z/φ(m) + 1)
(log x)|J|z/φ(m) dz

+O

(
x

log2 x

(log x)2

(
|J | log2 x

kφ(m)

)k ∫ 2π

0

ek cos θ dθ

)
, (4.8)

where we chose r2 :=
kφ(m)

|J | log2 x
≤ R.

Also, we have that∫ 2π

0

ek cos θ dθ ≤ 2

∫ π/2

0

ek cos θ dθ + π = 2

∫ 1

0

ekt
dt√

1− t2
+ π

≤ 2

∫ 1

0

ekt√
1− t

dt+ π. (4.9)

Using the relation

Γ(s)n−s =

∫ ∞
0

us−1e−nu du (n ∈ N, <(s) > 0) (4.10)
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with n = k and s = 1/2, we have that∫ 1

0

ekt√
1− t

dt ≤
∫ 1

−∞

ekt√
1− t

dt =

∫ ∞
0

ek(1−u)

√
u

du

= ek
∫ ∞

0

e−ku√
u
du = ekΓ(1/2)k−1/2

≤ eΓ(1/2)
kk

k!
, (4.11)

where the last inequality follows from Stirling’s formula.
Using (4.11) in (4.9) yields∫ 2π

0

ek cos θ dθ ≤ 2eΓ(1/2)
kk

k!
+ π ≤ ck

k

k!
(4.12)

for some absolute constant c > 0. Hence, inserting (4.12) in (4.8), we get that

πJ,m,k(x) =
x

log x

(
1

2πi

∫
|z|=r1

Dz
1f(z)

zkΓ(|J |z/φ(m) + 1)
(log x)|J|z/φ(m) dz

+O

(
log2 x

k! log x

(
|J | log2 x

φ(m)

)k))
.

We will now evaluate the integral

Ik = IJ,m,k :=
1

2πi

∫
|z|=r1

Dz
1f(z)

zkΓ(|J |z/φ(m) + 1)
(log x)|J|z/φ(m) dz

=
1

2πi

∫
|z|=r1

g1(z)

zk
(log x)|J|z/φ(m) dz. (4.13)

Here, it is somewhat simpler to take r1 := (k−1)φ(m)
|J| log2 x

. This clearly yields the

same result since the only singularity of the integrand in Ik is at z = 0.
Observing that, with this new radius r1, we get

1

2πi

∫
|z|=r1

(z − r1)
(log x)|J|z/φ(m)

zk
dz = Resz=0(z − r1)

(log x)|J|z/φ(m)

zk

=
(|J | log2 x/φ(m))k−2

(k − 2)!

−r1
(|J | log2 x/φ(m))k−1

(k − 1)!

= 0,

it follows from (4.13), using the residue theorem, that

Ik =
g1(r1)

2πi

∫
|z|=r1

(log x)|J|z/φ(m)

zk
dz
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+
1

2πi

∫
|z|=r1

(g1(z)− g1(r1)− g′1(r1)(z − r1))
(log x)|J|z/φ(m)

zk
dz

=
g1(r1)

(k − 1)!

(
|J | log2 x

φ(m)

)k−1

+ O

(∫
|z|=r1

(g1(z)− g1(r1)− g′1(r1)(z − r1))
(log x)|J|z/φ(m)

zk
dz

)

=
g1(r1)

(k − 1)!

(
|J | log2 x

φ(m)

)k−1

+O (L(k)) , (4.14)

say. On the other hand, integration by part yields

g1(z)− g1(r1)− g′1(r1)(z− r1) = (z− r1)2

∫ 1

0

(1− t)g′′1 (r1 + t(z− r1)) dt. (4.15)

Moreover, observe that for each t ∈ [0, 1],

|r1 + t(z − r1)| = |r1(1− t) + tz| ≤ r1(1− t) + tr1 = r1. (4.16)

Since the closed disk centered at 0 of radius R is compact, the function g′′1 (z)
reaches its maximum on the boundary of the disk. Letting c0 be this maximum
value, it follows from (4.15) and (4.16) that, using the change of variable z =
r1e

iθ, we have

|L(k)| ≤
∫
C′

∣∣∣∣(z − r1)2

∫ 1

0

(1− t)g′′1 (r1 + t(z − r1)) dt

∣∣∣∣ ∣∣∣∣ (log x)|J|z/φ(m)

zk

∣∣∣∣ |dz|
≤ c0

∫
|z|=r1

|z − r1|2
∣∣∣∣ (log x)|J|z/φ(m)

zk

∣∣∣∣ |dz|
= c0r1

3−k
∫ 2π

0

|eiθ − 1|2er1 cos θ(|J| log2 x)/φ(m) dθ

= 2c0r1
3−k

∫ 2π

0

(1− cos θ)e(k−1) cos θ dθ. (4.17)

Now observe that∫ 2π

0

(1− cos θ)e(k−1) cos θ dθ = 2

∫ π/2

0

(1− cos θ)e(k−1) cos θ dθ

+

∫ 3π/2

π/2

(1− cos θ)e(k−1) cos θ dθ (4.18)

≤ 2

∫ π/2

0

(1− cos θ)e(k−1) cos θ dθ +

∫ 3π/2

π/2

2 dθ

= 2

∫ π/2

0

(1− cos θ)e(k−1) cos θ dθ + 2π
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= 2

∫ 1

0

(1− t)e(k−1)t

√
1− t2

dt+ 2π

≤ 2

∫ 1

0

e(k−1)t
√

1− t dt+ 2π

≤ 2

∫ 1

−∞
e(k−1)t

√
1− t dt+ 2π

= 2

∫ ∞
0

√
ue(k−1)(1−u) du+ 2π

= 2ek−1

∫ ∞
0

√
ue−(k−1)u du+ 2π. (4.19)

Using once more relation (4.10) but this time with n = k − 1 and s = 3/2, we
can replace (4.18) by∫ 2π

0

(1− cos θ)e(k−1) cos θ dθ ≤ 2ek−1Γ(3/2)(k − 1)−3/2 + 2π

≤ 2eΓ(3/2)
(k − 1)k−2

(k − 1)!
+ 2π, (4.20)

where, as in (4.11), we used Stirling’s formula.
Substituting (4.20) in (4.17), we obtain that, for some positive constantC,

|L(k)| ≤ Cr3−k
1

(k − 1)k−2

(k − 1)!
. (4.21)

Hence, combining (4.8), (4.13), (4.14) and (4.21), we obtain

πJ,m,k(x) =
x

log x

(
g1

(
(k − 1)φ(m)

|J | log2 x

) ( |J| log2 x
φ(m)

)k−1

(k − 1)!

+ O

(
(k − 1)

(k − 1)!

(
|J | log2 x

φ(m)

)k−3

+
log2 x

k! log x

(
|J | log2 x

φ(m)

)k))

=
x

log x

(
|J| log2 x
φ(m)

)k−1

(k − 1)!

(
g1

(
(k − 1)φ(m)

|J | log2 x

)

+ O

(
(k − 1)

(
|J | log2 x

φ(m)

)−2

+
(log2 x)2

k log x

|J |
φ(m)

))
uniformly for k ≤ R|J | log2 x/φ(m), thereby completing the proof of Lemma 5.

�
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Using Lemma 5 with J = {5, 6} and m = 7, we have in particular

πB,k(x) := πJ,7,k(x)�
x
(

log2 x
3

)k−1

(k − 1)! log x
(4.22)

uniformly for k ≤ (R/3) log2 x and

σB,k(x) := σJ,7,k(x)�
x
(

log2 x
3

)k−1

(k − 1)! log x
(4.23)

uniformly for k ≤ ((2− δ)/3) log2 x.

Lemma 6. The estimate

πB,k(y)� y

(log y)2/3
√

log2 y

holds uniformly for all integers 1 ≤ k ≤ R
3 log2 x, while

σB,k(y)� y

(log y)2/3
√

log2 y

holds uniformly for all integers 1 ≤ k ≤ 2−δ
3 log2 x.

Proof. We use (4.22) and Stirling’s formula to get

πB,k(y)� y

log y

(
log2 y

3

)k−1

(k − 1)!
� y√

k − 1 log y

( e
3 log2 y

k − 1

)k−1

(4.24)

uniformly for all integers 1 ≤ k ≤ A
3 log2 x. Note that the second bound in this

Lemma can be established in the same manner but this time by using (4.23)

instead of (4.22). Now, fix M > e2 and, for t ≥ 1, set ϕ(t) := (M/t)t√
t

and

ψ(t) := (M/t)t. Taking logarithms of ϕ(t) and then taking derivatives, we
obtain

d

dt

(
t log(M/t)− log t

2

)
= logM − log t− 1− 1

2t
.

Since this last expression is positive if t ≤ M/e2, it follows that supt≥1 ϕ(t) ≤
e√
M

supt≥M/e2 ψ(t). Similarly, we have that ψ(t) attains its maximum when t =

M/e in which case ψ(M/e) = eM/e. Thus, it follows that supt≥1 ϕ(t) ≤ eM/e+1
√
M

.

Choosing M = e
3 log2 y, we obtain

1√
k − 1

( e
3 log2 y

k − 1

)k−1

� e
log2 y

3√
log2 y

� (log y)1/3√
log2 y

. (4.25)

Inserting (4.25) in (4.24), the result follows. �
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Lemma 7. There exist constants C > 0 and D > 0 such that

A(y) = C(1 + o(1))
y

(log y)1/3

and

B(y) = D(1 + o(1))
y

(log y)2/3
.

Proof. This follows immediately from Theorem 1.1 in the paper of Spearman
and Williams [6]. �

5. Proof of Theorems 1 and 2

Since by (3.1) and (3.2), we have

κ(a(n))− ω(a(n)) ≤ log2 x+ (log2 x)7/12 − 2

3
(log2 x− (log2 x)3/4) ≤ 1

2
log2 x,

we can use Lemma 6 with y = x/a and Lemma 7 to obtain

Σ1 �
∑

a∈A
(
x
1− 1√

log x

)
x

a(log(x/a))2/3
√

log2 x/a

� 1√
log2 x

∑
a∈A

(
x
1− 1√

log x

)
x

a(log(x/a))2/3

� 1√
log2 x

∑
a∈A(x)

#B (x/a)

=
bxc√
log2 x

≤ x√
log2 x

. (5.1)

It remains to show that

Σ2 = #
{
n ≤ x : a(n) > x

1− 1√
log x

}
� x√

log2 x
. (5.2)

We can in fact obtain a much better upper bound. Indeed,

Σ2 =
∑

b∈B(exp(
√

log x))

A(x/b)

�
∑

b∈B(exp(
√

log x))

x

b(log(x/b))1/3

=
B(exp(

√
log x))x

1− 1√
log x(

log x−
√

log x
)1/3 +

∫ exp(
√

log x)

1

xB(t)(3 log(x/t)− 1)

3t2 log4/3(x/t)
dt
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� exp(
√

log x)x
1− 1√

log x

(log x)1/3
(
log x−

√
log x

)1/3 + x

∫ exp(
√

log x)

1

B(t)

t2(log(x/t))1/3
dt

� x

(log x)2/3
+ x

∫ exp(
√

log x)

e

dt

t(log t)2/3(log(x/t))1/3

=
x

(log x)2/3
+ x

∫ √log x

1

du

u2/3(log x− u)1/3
,

where we set u = log t in the last integral.
Hence,

Σ2 �
x

(log x)2/3
+

x

(log x−
√

log x)1/3

∫ √log x

1

du

u2/3

� x

(log x)2/3
+
x(log x)1/6

(log x)1/3
� x

(log x)1/6
,

which proves (5.2). Using (5.1) and (5.2) in (3.4), the proof of Theorem 1 is
complete.

Since Lemma 1 and Lemma 2 both apply to Ω(n), we also have

κ(a(n))− Ω(a(n))� 1

2
log2 x

and the proof of Theorem 2 follows along the same lines as that of the proof of
Theorem 1.
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