On the k-fold iterates of the Euler totient function at shifted primes

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai
Dedicated to the memory of Marejke Wisjmuller

Édition du 27 février 2016

Abstract

Let $\gamma(n)$ stand for the product of the prime factors of n. The index of composition $\lambda(n)$ of an integer $n \geq 2$ is defined as $\lambda(n)=\log n / \log \gamma(n)$ with $\lambda(1)=1$. Given an arbitrary integer $k \geq 0$ and letting $\phi_{k}(n)$ stand for the k fold iterate of the Euler totient function, we show that, given any real number $\varepsilon>0, \lambda\left(\phi_{k}(p-1)\right)<1+\varepsilon$ for almost all prime numbers p.

AMS Subject Classification numbers: 11N37
Key words: Euler totient function, index of composition, shifted primes

1 Introduction and notation

Let $\gamma(n)$ stand for the product of all the prime factors of the positive integer n. The index of composition of an integer, defined by $\lambda(1)=1$ and for $n \geq 2$ by $\lambda(n):=\log n / \log \gamma(n)$ was studied by De Koninck and Doyon [2] and thereafter by many more (see [3], [6], [9]). In 2007, De Koninck and Luca [7] showed that the normal order of $\lambda(\sigma(n))$, where $\sigma(n)$ stands for the sum of the divisors function, is equal to 1 . Let $\sigma_{k}(n)$ stand for the k-fold iterate of the $\sigma(n)$ function, that is, let $\sigma_{0}(n)=n, \sigma_{1}(n)=\sigma(n), \sigma_{2}(n)=\sigma(\sigma(n))$, and so on. Recently, the authors [4] proved that, for every $\varepsilon>0$,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: \lambda\left(\sigma_{k}(n)\right) \geq 1+\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

They also showed that (1.1) holds if $\sigma_{k}(n)$ is replaced by $\phi_{k}(n)$, the k-fold iterate of the Euler ϕ function.

Here, we prove an analogous result for the shifted primes, namely the following.
Theorem 1. Given any $\varepsilon>0$ and letting $\pi(x)$ stand for the number of primes not exceeding x, then

$$
\begin{equation*}
\frac{1}{\pi(x)} \#\left\{p \leq x: \lambda\left(\phi_{k}(p-1)\right) \geq 1+\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty) . \tag{1.2}
\end{equation*}
$$

[^0]In the following, we denote by $p(n)$ and $P(n)$ the smallest and largest prime factors of n, respectively. We let $\mu(n)$ stand for the Moebius function. For each integer $n \geq 2$, we let $\omega(n)$ stand for the number of distinct prime factors of n and $\Omega(n)$ for the total number of prime factors of n counting multiplicity and we set $\omega(1)=\Omega(1)=0$. The letters p, q, π, ρ and Q, with or without subscript, will stand exclusively for primes. On the other hand, the letters c and C, with or without subscript, will stand for absolute constants but not necessarily the same at each occurrence. Moreover, we shall use the abbreviations $x_{1}=\log x, x_{2}=\log \log x$, and so on. We denote the logarithmic integral $\int_{2}^{x} \frac{d t}{\log t}$ by $\operatorname{li}(x)$. Finally, we shall write $\pi(x ; k, \ell)$ for $\#\{p \leq x: p \equiv \ell$ $(\bmod k)\}$.

2 Preliminary results

Lemma 1. Given an arbitrary positive number $\delta<1 / 20$, then,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: P(p-1)>x^{1-\delta}\right\}<C_{1} \delta \tag{2.1}
\end{equation*}
$$

for some absolute constant $C_{1}>0$.
Proof. For a proof see Theorem 4.2 in the book of Halberstam and Richert [8].
Let us now set

$$
\mathcal{N}_{x}^{(1)}:=\left\{p \leq x \text { and } P(p-1) \leq x^{1-\delta}\right\} .
$$

Also, for each positive $\delta<1 / 20$, let us introduce the functions

$$
\omega_{\delta}(n):=\sum_{\substack{p \mid n \\ x^{\delta}<p<x^{1 / 5}}} 1 \quad \text { and } \quad A_{\delta}(x):=\sum_{x^{\delta}<p<x^{1 / 5}} \frac{1}{p} .
$$

It is easy to show that

$$
A_{\delta}(x)=\log \frac{1}{5 \delta}+o(1) \quad(x \rightarrow \infty)
$$

The following Turán-Kubilius type inequality can be deduced using the BombieriVinogradov inequality.

Lemma 2. Given $\delta \in(0,1 / 20)$, there exists an absolute constant $C_{2}>0$ such that

$$
\frac{1}{\pi(x)} \sum_{p \leq x}\left(\omega_{\delta}(p-1)-A_{\delta}(x)\right)^{2} \leq C_{2} A_{\delta}(x)
$$

Letting $\mathcal{A}_{x}^{(1)}:=\left\{p \leq x: \omega_{\delta}(p-1) \leq 4\right\}$, then the following result is easily established.

Lemma 3. Given $\delta \in(0,1 / 20)$, there exist real numbers C_{3} and $x_{0}=x_{0}(\delta)$ such that, for all $x \geq x_{0}$, we have

$$
\frac{1}{\pi(x)} \# \mathcal{A}_{x}^{(1)} \leq C_{3} \delta .
$$

Given positive integers k and D, set $U_{k}(x ; D):=\#\left\{n \leq x: D \mid \phi_{k}(n)\right\}$. The following result was established by Bassily, Kátai and Wijsmuller [1].

Lemma 4. Given positive integers k and D, there exists a constant $C_{4}=C_{4}(k, \Omega(D))$ such that

$$
U_{k}(x ; D) \leq C_{4} \frac{x x_{2}^{k \Omega(D)}}{D}
$$

Letting $\ell_{k}(x)=x_{5}$ if $k=0$ and $x_{1} x_{2}^{2 k}$ if $k \geq 1$. Then, for each integer $k \geq 0$, setting

$$
\mathcal{B}_{x}^{(k)}=\left\{p \leq x: \text { there exists } q>\ell_{k}(x) \text { such that } q^{2} \mid \phi_{k}(p-1)\right\}
$$

the following result follows from Lemma 4.
Lemma 5. There exists an absolute constant $C_{5}>0$ such that

$$
\frac{1}{\pi(x)} \# \mathcal{B}_{x}^{(k)} \leq \frac{C_{5}}{x_{2}} \quad(k=0,1, \ldots)
$$

For each integer $k \geq 0$, let $a_{k}=1 /(k+1)$! and, given a real number $\kappa>0$, set

$$
\mathcal{D}_{x}^{(k)}:=\left\{p \leq x: \omega\left(\phi_{k}(p-1)\right)>(1+\kappa) a_{k} x_{2}^{k+1}\right\} .
$$

In Bassily, Kátai and Wijsmuller [1], it was proved that, for each integer $k \geq 0$ and for every real number z,

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \frac{\omega\left(\phi_{k}(p-1)\right)-a_{k} x_{2}^{k+1}}{b_{k} x_{2}^{k+1 / 2}}<z\right\}=\Phi(z)
$$

where $b_{k}=1 /(k!\sqrt{2 k+1})$ and where

$$
\Phi(z):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u
$$

stands for the standard Gaussian law.
It then follows from this result that the following is true.
Lemma 6. For each integer $k \geq 0$,

$$
\frac{1}{\pi(x)} \# \mathcal{D}_{x}^{(k)} \rightarrow 0 \quad(x \rightarrow \infty)
$$

We will also need the following, which is a particular case of Lemma 2.5 in Bassily, Kátai and Wisjmuller [1].

Lemma 7. Letting $\delta(x, k):=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod k)}} \frac{1}{p}$, there exists an absolute constant $C_{6}>0$ such that

$$
\delta(x, k) \leq \frac{C_{6} x_{2}}{\phi(k)}
$$

provided $k \leq x$ and $x \geq 3$.
We say that a $k+1$-tuple of primes $\left(q_{0}, q_{1}, \ldots, q_{k}\right)$ is a k-chain if $q_{i-1} \mid q_{i}+1$ for $i=1,2, \ldots, k$, in which case we write $q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k}$. We then have the following result, whose proof can be deduced from Lemma 2 established in our earlier paper [5].

Lemma 8. For any fixed prime q_{0} and integer $k \geq 1$, there exist absolute constants $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
\sum_{\substack{q_{0} \rightarrow q_{1} \\ q_{1} \leq x}} \frac{1}{q_{1}} \leq \frac{c_{1} x_{2}}{q_{0}}, \quad \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow q_{2} \\ q_{2} \leq x}} \frac{1}{q_{2}} \leq \frac{c_{2} x_{2}^{2}}{q_{0}}, \quad \ldots \quad, \quad \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k} \\ q_{k} \leq x}} \frac{1}{q_{k}} \leq \frac{c_{k} x_{2}^{k}}{q_{0}} .
$$

Moreover, summing over those $k+1$ chains for which $q_{0} \equiv 1(\bmod D)$, then there exists a constant $C_{7}>0$ such that

$$
\sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{k} \\ q_{k} \leq x}} \frac{1}{q_{k}} \leq \frac{C_{7} x_{2}^{k+1}}{\phi(D)}
$$

Now, let

$$
\left.\left.\mathcal{N}_{x}^{(2)}=\mathcal{N}_{x}^{(1)} \backslash\left(\left(\bigcup_{j=0}^{k} \mathcal{D}_{x}^{(j)}\right)\right) \bigcup\left(\bigcup_{j=0}^{k} \mathcal{B}_{x}^{(j)}\right)\right)\right) .
$$

Defining $L_{k}(x)=x_{5}$ if $k=0$ and $x_{2}^{2 k}$ if $k \geq 1$, let us introduce the function

$$
\begin{equation*}
S_{k}(n)=\prod_{\substack{q^{\alpha} \| \phi_{k}(n) \\ q>L_{k}(x)}} q^{\alpha}, \tag{2.2}
\end{equation*}
$$

We then have the following result.
Lemma 9. For each integer $j=0,1, \ldots, k$,

$$
\frac{1}{\pi(x)} \#\left\{p \in \mathcal{N}_{x}^{(2)}: \mu\left(S_{j}(p-1)\right)=0\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

Proof. The result is almost obvious if $k=0$. Indeed, first observe that

$$
\begin{equation*}
\#\left\{p \leq x: q^{2} \mid p-1 \text { for some prime } q>L_{0}(x)\right\} \leq \sum_{q>L_{0}(x)} \pi\left(x ; q^{2}, 1\right) . \tag{2.3}
\end{equation*}
$$

Recall that according to the Brun-Titchmarsh theorem, given $\delta \in(0,1)$, there exists a constant $c_{1}=c_{1}(\delta)>0$ such that

$$
\begin{equation*}
\pi(x ; k, \ell)<c_{1} \frac{\operatorname{li}(x)}{\phi(k)} \quad \text { provided } k<x^{1-\delta} \tag{2.4}
\end{equation*}
$$

Thus, using (2.4), we may write that, for some absolute constant $C_{8}>0$,

$$
\begin{equation*}
\sum_{q>L_{0}(x)} \pi\left(x ; q^{2}, 1\right) \leq C_{8} \operatorname{li}(x) \sum_{L_{0}(x)<q<x^{1 / 5}} \frac{1}{\phi\left(q^{2}\right)}+\sum_{q \geq x^{1 / 5}} \frac{x}{q^{2}}=o(\operatorname{li}(x)), \tag{2.5}
\end{equation*}
$$

so that the result follows by combining (2.3) and (2.5).
So, let us assume that $k \geq 1$. Let us first count the number of primes $p \in \mathcal{N}_{x}^{(2)}$ such that $S_{j}(p-1)$ is square-free for $j=0,1, \ldots, k-1$ and for which there exists some prime $q>L_{k}(x)$ such that $q^{2} \mid \phi_{k}(p-1)$. Since $p \notin \mathcal{B}_{x}^{(k)}$, it follows that $q \leq \ell_{k}(x)$. On the other hand, since $q^{2} \mid \phi_{k}(p-1)$, then

- either there exist two primes $\pi_{1} \neq \rho_{1}$ such that $q \rightarrow \pi_{1}$ and $q \rightarrow \rho_{1}$ (meaning that $\pi_{1} \equiv 1(\bmod q)$ and $\left.\rho_{1} \equiv 1(\bmod q)\right)$, with $\pi_{1} \rho_{1} \mid \phi_{k-1}(p-1)$,
- or there exists a prime π such that $\pi \equiv 1\left(\bmod q^{2}\right)$ and $\pi \mid \phi_{k-1}(p-1)$.

In other words, one of the following two situations (1) and (2) will occur.
(1) There exist two $k+1$-chains

$$
\begin{array}{ll}
q \rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{k} & (\rightarrow p) \\
q \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{k} & (\rightarrow p)
\end{array}
$$

where $\pi_{\nu}, \rho_{\nu}(\nu=1, \ldots, k)$ are distinct primes and $\pi_{k} \rho_{k} \mid p-1$.
(2) There exists a positive integer h such that

$$
\begin{aligned}
& \pi_{\nu} \rho_{\nu} \mid \phi_{k-\nu}(p-1) \text { for } \nu=0, \ldots, h, \\
& Q_{h+1} \mid \phi_{k-h-1}(p-1), \quad Q_{h+1} \equiv 1 \quad\left(\bmod \pi_{h} \rho_{h}\right), \\
& Q_{h+1} \rightarrow Q_{h+2} \rightarrow \cdots \rightarrow Q_{k} \quad(\rightarrow p) .
\end{aligned}
$$

It follows from the above that if we set

$$
M_{q}:=\#\left\{p \in \mathcal{N}_{x}^{(2)}: q^{2} \mid \phi_{k}(p-1)\right\}
$$

then

$$
\begin{equation*}
M_{q} \leq \sum_{\substack{q \rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{k} \\ q \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{k}}} \pi\left(x ; \pi_{k} \rho_{k}, 1\right)+\sum_{h=0} \sum_{\substack{q \rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{h} \rightarrow Q_{h+1} \rightarrow \cdots \rightarrow Q_{k} \\ q \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{h} \rightarrow Q_{h+1} \rightarrow \cdots \rightarrow Q_{k}}} \pi\left(x ; Q_{k}, 1\right) \tag{2.6}
\end{equation*}
$$

But since $p \in \mathcal{N}_{x}^{(2)}$ implies that $\omega_{\delta}(p-1)>4$, we obtain that $\pi_{k} \rho_{k}<x^{1-\delta}$ and $Q_{k}<x^{1-\delta}$. Hence, in light of Lemmas 1, 2 and 3, we may use (2.4) in (2.6) and obtain that, for some constant $C_{9}>0$,

$$
\begin{equation*}
M_{q} \leq C_{9} \operatorname{li}(x) \sum_{\substack{q \rightarrow \pi_{1} \rightarrow \ldots \rightarrow \pi_{k} \\ q \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{k}}} \frac{1}{\pi_{k} \rho_{k}}+C_{9} \operatorname{li}(x) \sum_{\substack{q \rightarrow \pi_{1} \rightarrow \cdots \rightarrow \pi_{h} \rightarrow Q_{h+1} \rightarrow \cdots \rightarrow Q_{k} \\ q \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{h} \rightarrow Q_{h+1} \rightarrow \cdots \rightarrow Q_{k}}} \frac{1}{Q_{k}} \tag{2.7}
\end{equation*}
$$

using Lemma 8, inequality (2.7) yields

$$
\begin{equation*}
M_{q} \leq C_{10} \operatorname{li}(x) \frac{x_{2}^{2 k}}{q^{2}} \tag{2.8}
\end{equation*}
$$

for some positive constant C_{10}. Since, for some $C_{11}>0$,

$$
\sum_{q>L_{k}(x)} \frac{1}{q^{2}} \leq \frac{C_{11}}{L_{k}(x) \log L_{k}(x)}
$$

it follows from (2.8) that

$$
\sum_{q>L_{k}(x)} M_{q} \leq C_{10} \operatorname{li}(x) x_{2}^{2 k} \frac{C_{11}}{x_{2}^{2 k} 2 k x_{3}} \ll \frac{x}{x_{3}}
$$

thus completing the proof of Lemma 9.
Recalling the definition of $S_{k}(n)$ provided in (2.2), we now introduce the function

$$
\begin{equation*}
T_{k}(n)=\frac{\phi_{k}(n)}{S_{k}(n)} \quad(k=0,1, \ldots) \tag{2.9}
\end{equation*}
$$

and prove the following result.
Lemma 10. For each $j=0,1, \ldots, k$, we have

$$
\begin{equation*}
\frac{1}{\pi(x)} \#\left\{p \in \mathcal{N}_{x}^{(2)}: \frac{\log T_{j}(p-1)}{\log x} \geq \frac{1}{x_{2}}\right\} \rightarrow 0 \quad(x \rightarrow \infty) \tag{2.10}
\end{equation*}
$$

Proof. Consider the set

$$
\mathcal{N}_{x}^{(3)}:=\left\{p \in \mathcal{N}_{x}^{(2)}: \mu^{2}\left(S_{j}(p-1)\right)=1 \text { for } j=0,1, \ldots, k\right\}
$$

Since $\#\left(\mathcal{N}_{x}^{(2)} \backslash \mathcal{N}_{x}^{(3)}\right)=o(\pi(x))$ as $x \rightarrow \infty$, in order to prove Lemma 9 , we need to find an adequate upper bound for the number of primes $p \in \mathcal{N}_{x}^{(3)}$.

First of all, it is clear that (2.10) is true for $j=0$. Indeed, by definition (2.9) for $k=0$, we have

$$
p-1=T_{0}(p-1) S_{0}(p-1),
$$

where $S_{0}(p-1)$ is square-free, $p\left(S_{0}(p-1)\right)>x_{5}$ and $p\left(T_{0}(p-1)\right) \leq x_{5}$. Hence, $\left(T_{0}(p-1), S_{0}(p-1)\right)=1$, and therefore

$$
\phi(p-1)=\phi\left(T_{0}(p-1)\right) \cdot \phi\left(S_{0}(p-1)\right),
$$

with

$$
\phi\left(S_{0}(p-1)\right)=\prod_{\substack{\pi^{\alpha} \| \phi\left(S_{0}(p-1)\right) \\ \pi \leq L_{1}(x)}} \pi^{\alpha} \cdot \prod_{\substack{\pi \mid \phi\left(S_{0}(p-1)\right) \\ \pi>L_{1}(x)}} \pi,
$$

since in $\mathcal{N}_{x}^{(3)}, \pi^{2} \nmid \phi\left(S_{0}(p-1)\right)$ if $\pi>L_{1}(x)$.
It follows from this that

$$
T_{1}(p-1)=\phi\left(T_{0}(p-1)\right) \cdot \prod_{\substack{\pi^{\alpha} \| \phi\left(S_{0}(p-1)\right) \\ \pi \leq L_{1}(x)}} \pi^{\alpha}
$$

and

$$
\phi(p-1)=T_{1}(p-1) \cdot S_{1}(p-1),
$$

where $P\left(T_{1}(p-1)\right) \leq L_{1}(x)$ and $p\left(S_{1}(p-1)\right)>L_{1}(x)$, thus implying in particular that $\left(T_{1}(p-1), S_{1}(p-1)\right)=1$, so that

$$
\phi_{2}(p-1)=\phi\left(T_{1}(p-1)\right) \cdot \phi\left(S_{1}(p-1)\right) .
$$

More generally, if

$$
\phi_{j-1}(p-1)=T_{j-1}(p-1) S_{j-1}(p-1),
$$

then $P\left(T_{j-1}(p-1)\right) \leq L_{j-1}(x)$ and $p\left(S_{j-1}(p-1)\right)>L_{j-1}(x), S_{j-i}(p-1)$ is square-free and

$$
\phi_{j}(p-1)=T_{j}(p-1) S_{j}(p-1)
$$

and

$$
\begin{aligned}
& T_{j}(p-1)=\phi\left(T_{j-1}(p-1)\right) \prod_{\substack{\pi^{\alpha} \| \phi\left(S_{j-1}(p-1)\right) \\
\pi \leq L_{j}(x)}} \pi^{\alpha}, \\
& S_{j}(p-1)=\prod_{\substack{\pi \mid \phi\left(S_{j-1}(p-1)\right) \\
\pi>L_{j}(x)}} \pi \quad \text { (a square-free number). }
\end{aligned}
$$

Let us now estimate the expression

$$
K_{j}(p):=\prod_{\substack{\pi^{\alpha} \| \phi\left(S_{j}-1(p-1)\right) \\ \pi \leq L_{j}(x)}} \pi^{\alpha} .
$$

For this, let us assume that $\pi^{\ell \pi} \mid \phi\left(S_{j-1}(p-1)\right)$ with $\pi \leq L_{j}(x)$. Since $\phi\left(S_{j-1}(p-1)\right)$ is a divisor of $\phi_{j}(p-1)$ and since $\omega\left(\phi_{j}(p-1)\right)<a_{j}(1+\kappa) x_{2}^{j+1}$, it follows that there exists a prime q_{0} such that $q_{0} \mid \phi_{j-1}(p-1)$ and $\pi^{r_{\pi}} \mid q_{0}-1$ with

$$
r_{\pi} \geq \frac{\ell_{\pi}}{\omega\left(\phi_{j}(p-1)\right)} \geq \frac{\ell_{\pi}}{a_{j}(1+\kappa) x_{2}^{j+1}}
$$

Thus, for fixed $\pi^{r_{\pi}}$ and using Lemma 8 along with inequality (2.4), it follows that the number of possible primes $p \in \mathcal{N}_{x}^{(3)}$ for which $\pi^{\ell \pi} \mid \phi\left(S_{j-1}(p-1)\right)$ is less than

$$
\sum_{\left(\pi^{\left.r_{\pi} \rightarrow\right) q_{0} \rightarrow \cdots \rightarrow q_{j-1}}\right.} \pi\left(x ; q_{j-1}, 1\right) \leq \frac{C_{12} \operatorname{li}(x) \cdot x_{2}^{j}}{\pi^{r_{\pi}}}
$$

Letting ℓ_{π} be sufficiently large so that

$$
\begin{equation*}
\pi^{\frac{\ell_{\pi}}{a_{j}(1+\kappa) x_{2}^{j+1}}}>x_{2}^{j+1} \tag{2.11}
\end{equation*}
$$

it follows that

$$
\begin{gather*}
\frac{1}{\pi(x)} \#\left\{p \in \mathcal{N}_{x}^{(3)}: \text { there exists one } \pi \leq L_{j}(x) \text { and } \ell_{\pi}\right. \text { satisfying (2.11) } \\
\text { such that } \left.\pi^{\ell \pi} \mid \phi\left(S_{j-1}(p-1)\right)\right\}=o(1) \quad(x \rightarrow \infty) \tag{2.12}
\end{gather*}
$$

Hence, if $\pi^{m_{\pi}} \mid \phi\left(S_{j-1}(p-1)\right)$ and it is not counted in the set appearing in (2.12), then

$$
\pi^{m_{\pi}}<\left(x_{2}^{j+1}\right)^{a_{j}(1+\kappa) x_{2}^{j+1}}
$$

and so

$$
\begin{equation*}
K_{j}(p) \leq \prod_{\pi \leq L_{j}(x)} \pi^{m_{\pi}} \leq\left(x_{2}^{j+1}\right)^{a_{j}(1+\kappa) x_{2}^{j+1} x_{2}^{2 j}} \leq \exp \left\{x_{2}^{3 j+2}\right\} \tag{2.13}
\end{equation*}
$$

say, provided x is large enough.
Now, since

$$
\begin{equation*}
T_{j}(p-1)=\phi\left(T_{j-1}(p-1)\right) K_{j}(p), \tag{2.14}
\end{equation*}
$$

and since $\phi(n) \leq n$, it follows that, in light of (2.13) and (2.14)

$$
T_{j}(p-1)<\exp \left\{2 x_{2}^{3 j+2}\right\} \quad(j=0,1, \ldots, k)
$$

when $p \in \mathcal{N}_{x}^{(3)}$ with the possible exception of $o(\mathrm{li}(x))$ primes.
This completes the proof of Lemma 10.

3 Proof of Theorem 1

We are now in a position to prove our main theorem.
We first write

$$
\begin{aligned}
& \#\left\{p \leq x: \lambda\left(\phi_{k}(p-1)\right) \geq 1+\varepsilon\right\} \\
& \leq \#\left\{p \in \mathcal{N}_{x}^{(1)}: \lambda\left(\phi_{k}(p-1)\right) \geq 1+\varepsilon\right\}+\#\left\{p \in \mathcal{N}_{x}: P(p-1)>x^{1-\delta}\right\} \\
& \leq \#\left\{p \in \mathcal{N}_{x}^{(3)}: \lambda\left(\phi_{k}(p-1)\right) \geq 1+\varepsilon\right\}+\#\left\{p \in \mathcal{N}_{x}: P(p-1)>x^{1-\delta}\right\}+\#\left(\mathcal{N}_{x}^{(1)} \backslash \mathcal{N}_{x}^{(3)}\right) \\
& =S_{1}(x)+S_{2}(x)+S_{3}(x),
\end{aligned}
$$

say.
Using Lemma 10, we have that $S_{1}(x)=o(\operatorname{li}(x))$ as $x \rightarrow \infty$. On the other hand, using Lemma 1 , we get that $S_{2}(x) \leq C_{1} \delta \operatorname{li}(x)$, while it is clear that $S_{3}(x)=o(\operatorname{li}(x))$ as $x \rightarrow \infty$.

We have therefore established that, for some constant $c>0$,

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x: \lambda\left(\phi_{k}(p-1)\right) \geq 1+\varepsilon\right\} \leq c \delta \tag{3.1}
\end{equation*}
$$

But since δ can be chosen arbitrarily small, the right hand side of (3.1) is equal to 0 . The proof of our main theorem is therefore complete.

4 Final remarks

Let σ^{*} and ϕ^{*} be the unitary analogues of σ and ϕ. These are multiplicative functions defined on prime powers p^{α} by

$$
\sigma^{*}\left(p^{\alpha}\right)=p^{\alpha}+1 \quad \text { and } \quad \phi^{*}\left(p^{\alpha}\right)=-1 .
$$

Using the same methods as those above, we can prove the following.
Theorem 2. For every $\varepsilon>0$ and each $k=0,1, \ldots$, we have

$$
\frac{1}{\pi(x)} \#\left\{p \leq x: \lambda\left(\phi_{k}^{*}(p-1)\right) \geq 1+\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

and

$$
\frac{1}{\pi(x)} \#\left\{p \leq x: \lambda\left(\sigma_{k}^{*}(p-1)\right) \geq 1+\varepsilon\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

Perhaps, Theorem 2 is true also for $\lambda\left(\sigma_{k}(p-1)\right)$ for a general k, but we could only prove the case $k=1$.

References

[1] N.L. Bassily, I. Kátai and M. Wijsmuller, Number of prime divisors of $\phi_{k}(n)$, where ϕ_{k} is the k-fold iterate of ϕ, J. Number Theory 65 (1997), no. 2, 226-239.
[2] J.-M. De Koninck et N. Doyon, À propos de l'indice de composition des nombres, Monatshefte für Mathematik 139 (2003), no. 2, 151-167.
[3] J.-M. De Koninck and I. Kátai, On the mean value of the index of composition of an integer, Monatshefte für Mathematik 145 (2005), no. 2, 131-144.
[4] J.M. De Koninck and I. Kátai, The index of composition of the iterates of the Euler function, preprint.
[5] J.M. De Koninck and I. Kátai, On the distribution of the number of prime factors of the k-fold iterate of various arithmetic functions, preprint.
[6] J.-M. De Koninck, I. Kátai and M.V. Subbarao, On the index of composition of integers from various sets, Archiv der Mathematik 88 (2007), 524-536.
[7] J.-M. De Koninck and F. Luca, On the composition of the Euler function and the sum of the divisors function, Colloquium Mathematicum 108 (2007), 31-51.
[8] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
[9] D. Zhang and W. Zhai, On the mean value of the index of composition of an integral ideal, J. Number Theory 131 (2011), no. 4, 618-633.

JMDK, le 27 février 2016; fichier: iterates-phi-shifted-primes.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.

