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Abstract

Given a complex valued multiplicative function f such that |f(n)| = 1 for
each n € N, let hy(n) := Sl (W) f(n — v). We investigate under which

v=1
conditions we have h¢(n) = o(n) for almost all positive integers n as n — oo.
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1 Introduction and notation

Let M, stand for the set of those multiplicative functions f which are such that
|f(n)| =1 for each n € N. Then, given f € M;, consider the corresponding convo-
luted sum

This function was studied by Corradi and Katai [2] in 1969 in the case where the
function f takes the values +1 only, and more recently by De Koninck, German and
Kétai [4] in the case where |f(n)| < 1 for each n € N. Here, we are interested in
establishing under which conditions we have that

h
M —0 asn— o for almost all n.
n

Letting f be as above and o € R, consider the exponential sum

Sp(N,0) = 3 Fne(na),

where we used the classical notation e(y) = e*™. Then it is clear that

2N -2

SHN,a) = Y hyn(n)e(na),
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where
h¢(n) if n<N,

hyn(n) = > f)fn—v) if n>N

max(v,n—v)<N—1

From this, it follows that

N 1/2
Sl < 3 P = [ 1SVl da
n=1 n<2N —1/2
1/2
< max [S;(No)f - [ [S;(N.a)da
a€l0,1) ~1/2

from which it follows, in light of the fact that this very last integral is equal to N,
that

2

Sf(N, Oé)

(1.1) Z M < max i

n? T aclo,l)
N/2<n<N

Hence, using (1.1), it follows that if

N
(A) max 5N, a) —0 (N — o0),
a€l0,1)
then
h
(B) r() — 0 (n — o0) for almost all n.

n

This raises the following question: “Under which condition does (A) hold ?”
Now, an obvious necessary condition for (A) to hold is that for every integers
g > 1 and ¢ > 0, we have that

1

(©) ¥ 2 fm) =0 (N—oo)

n=¢ (mod q)

Indeed, this follows from the fact that

S fm =3 fn)- 32 (=) - Ly, (-%) siv.a/a

n<N n<N a=0 q q a=0 q
n={¢ (mod q)

Here, we investigate the particular cases when f is a completely multiplicative
function and when f is g-multiplicative.



2 Main results

Let M7 stand for those functions f € M; which are completely multiplicative.
Theorem 1. Let f € M;. Statement (A) holds if and only if for every ¢ € N and

every corresponding Dirichlet character x, and every 7 € R we have

éRl— " T
T (1= xq(P)p' f(p))

p

=
p

and
3 R(1—p7"f(p))

p

= 00.
p
Let Mél) stand for the set of all g-multiplicative functions f : Ny — C satisfying

f(0) =1 and |f(n)=1 for each positive integer n. To each f € MY we associate
the sum

(2.1) Sa(2) =Y f(n)2".

n<x

Theorem 2. Let f € /\/l((ll) with corresponding sum S, (z) defined in (2.1). Further
set

Gm(z) = flag™)z" (m=1,2,...)
a=0
and assume that

00 Gm(Z) 2
2.2 1 — max | ———= =00
22 > ()
Then,
(2.3) lim max 122 _ g

T—00 |z]=1 x

and
2.4 M -0 asn— o0 for almost all n.
( n

3 Preliminary results

Q

1
o — - 5
q| — ¢
where a and ¢ are positive integers satisfying (a,q) = 1 and 3 < ¢ < y/N/log N,
there exists an absolute constant ¢; > 0 such that

C1N
Sn(f,0)] € ———.
}rel%/txl| wifa)l log log ¢

In 1974, Daboussi [3] proved that given « € [0,1) and assuming that <




In 1977, Montgomery and Vaughan [7] proved that letting a and ¢ be two positive
integers such that (a,q) = 1 and ¢ < N, there exists an absolute constant ¢, > 0 such
that 3o

ca N Co qg\1/2 ( 2N
max |Sy(f,a < + +c <—> log — ,
feM;| ~(f,a/q)| TP A S
where ¢ stands for the Euler totient function.

As an immediate consequence of Montgomery and Vaughan’s inequality, we have

the following result.

a 1
Let a € [0, 1) and assume that ’a — —| < —, wherea, q and R are positive

ql — ¢
integers satisfying (a,q) = 1 and 2 < R < q¢ < N/R. Then, there exists
an absolute constant cs3 > 0 such that

3 (log R)*

3.1 max +c
(3.) eN VR

JEM;

Sw(f,00] <

The following is a variant of a theorem of Katai (see Kétai [6]).

Lemma 1. Let px be an arbitrary subset of the primes, each element of which does
not exceed N. Further set Ay := Zpe on 1 /p and, given any arbitrary real number
a€l0,1), let

1
(3.2) hy(a) == Z oG =T

where |ly|| stands for the distance from y to the nearest integer. Then there exist
absolute constants Cy > 0 and C5 > 0 such that

|Sn(f, @) Cy Cs [hn(a)
. m < — .
(3 3> fE/a\J/lXEk N o \/AN + AN N

Proof. Let wg,, (n) := Z 1. Then, by using the Turan-Kubilius inequality, it is clear

pln
PEPN

that there exists an absolute constant C; > 0 such that

Z wey (n) — An|* < C1N Ay

n<N

and therefore that, for some absolute constant Cy > 0, we have

(3.4) S () = Al £ CNV/Ay.

n<N



Let

Zf na wKJN( )

n<N
Since
Z f(p)f(m)e(pma),
it follows from (3.4) that
(3.5) 1Sn(f, @)[An < 2N/ Ay + [Un(f, )]

Now, observe that

2

Un(fia)* < {Z 1} d 1D fp)e(pma)

m<N m<N | p<N/m
PEPN
< NJD 1+ D > el —pama)
pm<N P1,P2EON mSmin(N/pl,N/pQ)
\ PEPN P1#P2
.
1 N N
< N{eaaNAy + Z min<— > ’
P1.P2EPN ||Oz(p1 pQ)H pl D2
\ P17#P2
thereby implying that
U f ) 2 < CuA N hN(Oé)
NN > U3AN N
that is,
C
’NUNf’ §C4VAN+\/_5NVhN(@)>
which, with (3.5), proves (3.3), thereby completing the proof of Lemma 1. O

As an immediate consequence of Lemma 1, we have the following.

Lemma 2. Let f € M. Let € > 0 be an arbitrarily small number. Let p; < --- < pi
be a sequence of prime numbers satisfying Z?Zl 1/p; > 1/e. Then, provided N > py,
we have

[Sn(f; o)

hN(O./)
N .

< Cy/e + Cse N

The following is a consequence of a theorem of G. Haldsz [5].



Lemma 3. If statement (A) holds for some f € M5, then for every positive integer
q and every corresponding Dirichlet character x,, we have for each T € R,

(3.6) EZ%G—M@WV@D_

p

p

and

p

p

Lemma 4. Let f € M}. If estimate (3.6) holds for every q and x, and if relation
(3.7) holds as well, then

S
(3.8) J%#@%o (N — 00)
for every congruence class a (mod q), a =0,1,...,q¢— 1.

Proof. Assume first that (a,q) = 1 and let

/1 ifn=a (modyg),
l(n) := { 0 otherwise.

It is known that

n) = de'X(")

where x runs over the characters mod ¢ and d, are suitable constants. Hence, it
follows that

Y fn) =) dy-Sn(fixg) =o(N) (N = o0),

n<N
n=a (mod q)

so that

—SNfa/q Zf (—)%o (N = o),

n<N

thus completing the proof of Lemma 4 in the case where (a, q) = 1.
In the more general case, that is when (a,q) = A > 1, let a; = a/A and ¢; = q/A.
We then have that

SN(.fa G/Q) = SN(.fa al/Ql)a
allowing one to easily establish that (3.8) holds in the general case as well. [

Let f € /\/lt(;,l) with corresponding sum S, (z) defined in (2.1). We then have

(3.9) Syn h%wa }

7=0 a=0

The following result will be used in the proof of Theorem 2.
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Lemma 5. Let f € /\/l((ll) with corresponding function S,.(z) defined in (2.1). If

Syn (2
mlax‘ qN]\E ) —0 (N — 0),
z|=1 q
then g
max‘ +(2)] —0 (x — 00).
|z|=1 X
Proof. Let
S, N(Z)|
Ay = sup ‘ 1
|z|=1 qV
and write successively
r = bog" + 1,
where 1 = bigV ! + o,
where 5 = byg™ 2 + x5,

We then have
Su(z) = (Z f(an)Z‘“’N> Sux(2) + F(boa™)2" S, (2),
where -
Surl2) = (Z f<an1>zaq“> Syv1(2) + Fbig" )8, (2),

and so on, at each step introducing successively the definitions of S;,(z), Su4(2), - ..
It follows from this representation of S,(z) that

Sy NA by +1)gVtAn_
|52(2)| §(b0+1)q N+(1+>q No1
x x x
An_1  An_
< q(AN+ it ;VQQ+-~),
which clearly implies (3.9), thus completing the proof of Lemma 5. ]

4 The proof of Theorem 1

It is sufficient to prove that if (3.6) and (3.7) hold, then (A) holds. To do so, we first
observe that Lemmas 3 and 4 imply that

1
NSN(f’ a/q) =0 as N — oo for every ¢ and every a (mod q).



Consequently, there exists a suitable sequence (Ky)n>1 which tends to infinity with
N such that

1
(4.1) rr<12x N |Sn(f,a/q)| =0 (N — 0).

Now, let 6 > 0 be an arbitrarily small number. Then, for every pair of positive
integers N; < Ny such that Ny(1 —§) > Ny, we have

(4.2) qrgn}gau]:j:1 Z f(n (—) —0 (Ny — o00).
a=0,1,..., q—1 N1<TL<N2

Assume that |a| <e/N. We then have

(43) |SN(f’a)_SN(f7O)| S&N,
so that
1
(4.4) |Iﬁa§<NN|SN(f> a)| <e+ NlSN(fa 0)].

If, on the other hand, we have

€ K
< —=—<a< —
- N N’
we then create the sequence
so that
Nj+1—Nj
(4.6) SN () = Sn, (f,a) = e(Nja) > f(N; + Oe(la).
=0

Using the fact that |e(fa) — 1| < ¢K/N, it follows from relations (4.3) to (4.6) that
|SNJ+1(f7a)_SNJ(f7a)|§{SN]+1(f70)_SNJ(f70>‘+ ZE_ 5N+K52

Summing the above inequality for all j < 1/, we obtain that

Sy (f,a)] < 0(1)§N LKON (N = o0)

and therefore that

(4.7) ’%SN(f, a)l <o(l)+ K¢ (N — o0).




Let us now assume that we have chosen § = ¢. It then follows from (4.7) that

1
(4.8) max —

nax N|SN(f, a)| < Ke+o(1) (N — ).

Assume that p; < -+ < py, are fixed primes and further assume that Z§=1 1/p; >1/e
and that N > pp. Moreover, let T' be a large number and let By be the set of those
a € [0, 1) for which the inequality

(4.9) I(pi = pj)ell > T/N
holds for every prime pair p;,p; with 1 < j < ¢ < k. In this case, we obtain that
R T
a— > (ReZ).
pi—pjl Npi—pj)
Using this and the representation of hy(a) provided by (3.2), it follows that
Npik?
h(a) < Z’j .

Choosing T = pik?, it follows, using Lemma 2, that

1 C
sup - ISn (£, )] < —-= < Cov/z,

VAN
On the other hand, if (4.9) does not hold, then
T
a— i < (ReZ),
Pi — Dy N(pi — pj)
we may first write that
R T
o= + 3, where |f| < ——.
pi —pj g N(pi — pj)

Repeating the argument used above, namely by first defining the sequence (V) ;>0 as
in (4.5), we obtain that

Nj+1—N;

Sn,1(foa) — S (fua) = e(Nja) 3 f(NjM)e( d
=0

(N =0) - el5)
R

R
pi —Dj Pi — Dy
Observing that

SN (f, B ) — Sy, <f> d ) = o(Nj41 — Nj)

= O(B&*N) + e(N;p) <SN].+1 (fl

bi — Dy bi —DPj
for every j uniformly as j < 1/9, it follows that
1
sup —[Sn(f,a)l =0 (N = o0),

aEBN

thus completing the proof of Theorem 1.



5 The proof of Theorem 2

Let us separate the real and imaginary parts of G,,(z) — 1 by writing

q—1
Gm(z) — 1= Zg(aqm)z“ =U+:1V, UV eR,

a=1

where U and V' depend on z. Since U? + V? < (¢ — 1)?, it follows that, for each
m > 1, there exists some p,, > 0 such that

max R(G,,(2) — q) = —pm.-

|z|=1
Now, 1 + U — q¢ < —p,,, implies that U < (¢ — 1) — py,, from which it follows that
|G (2)]? = A+U)*+V2 = U+ V242U +1 < (¢—1)*+14+2(¢—1) = 2pm = ¢* —2pm.

From this, we obtain that

q q?
and therefore that )
P g ‘Gm<z>
q q
Using this, we get that
g 2 N-1 - 2  N-1 2
qN]\EZ) = Gm(2) < H 1l—max|1-— ‘Gm(Z) .
q ek B e j21=1 q

—0 (N — ),

thus, in light of Lemma 5, establishing (2.3). Finally, since (2.4) is an immediate
consequence of (2.3), the proof of Theorem 2 is complete.

6 Final remarks

For the general case, that is when we do not assume that the arithmetic function f
belongs to M7 or to ./\/lq , we are unable to prove results similar to those stated in
Theorems 1 or 2. However, it is interesting to observe that if the arithmetic function
f is such that |f(n)| < 1, one can prove that, given any ¢ > 0,

(6.1)  S{(N Z f(n O(VN - (log N)%J“g) for almost all a € R.

n<N
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This can be deduced from the famous result of Carleson [1] which states that if
> reolek]? < oo, then the corresponding Fourier series Y - cre(kf) converges for
almost all € R. A deduction of (6.1) from the Carleson result can be found in the
paper of Murty and Sankaranarayanan [8].
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