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Abstract

The index of composition of an integer n > 2 is defined as A(n) = (logn)/(logv(n)),
where y(n) stands for the largest square-free divisor of n. Let ¢ stand for the
Euler totient function. We show that the index of composition of the k-fold
iterate of ¢(n) is 1 on a set of density 1 and that an analogous result holds if
n runs over the set of shifted primes.
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1 Introduction and notation

The index of composition of an integer n > 2 is defined as A(n) = (logn)/(logy(n)),
where v(n) stands the largest square-free divisor of n. For convenience, we set A(1) =
v(1) = 1. The index of composition was introduced by Browkin in 2000. Later,
De Koninck and Doyon [3] obtained various results concerning its global and local
behaviour. In particular, they proved that the average value of A(n) is 1. This
function was also the subject of various papers, namely De Koninck and Katai [4],
De Koninck, Kétai and Subbarao [5], Zhai [8], Zhang, Lii and Zhai [9], Zhang and
W. Zhai [9] as well as Robert and Tenenbaum [7]. Recently, De Koninck and Luca
[6] proved that the average value of A\(p(n)), where ¢ is the Euler totient function, is
also 1.

For each integer k > 1, let ¢, = @ o pr_1, with ¢g(n) = n for all n € N, stand for
the k-fold iterate of the Euler ¢ function. Here, we show that the index of composition
of the k-fold iterate of ¢(n) is 1 on a set of density 1 and that an analogous result
holds if n runs over the set of shifted primes.

Let w(n) stand for the number of distinct prime divisors of the integer n > 2,
setting w(1) = 0. Bassily, Kdtai and Wijsmuller [1] obtained the distribution of the
function w(yk(n)) which counts the number of distinct prime factors of the k-fold
iterate of the Euler function.
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We let m(x) stand for the number primes not exceeding x and €(n) stand for the
number of prime divisors of n counting their multiplicity, setting (1) = 0. As usual,

Todt
we let li(z) := / Toat and let 7(z; k, £) be the number of primes p < x such that p =
2 108

¢ (mod k). We let P(n) stand for the largest prime factor of n > 2 and set P(1) = 1.
For convenience, we shall write log, = for max(1, loglog ), logs = for max(1, loglog, ),
and so on. From here on, the letter ¢, with or without subscript, stands for an absolute
positive constant, but not necessarily the same at each occurrence, while the letters
P, q, Q, m, with or without subscript, will always denote primes.

2 Preliminary results

1 oo
Writing ®(z) = Nir / ¢=**/? dw (z € R) for the normal distribution function, and
T Jz

setting
1 1
= by = —F—— k=1,2,...

Qg (k+1)" k kN2 + 1 ( y 4 )7
Bassily, Kdatai and Wijsmuller [1] proved that

1 |w(er(n)) — ax(log, z)** _
(2.1) zlggo ;# {n <uz: ‘ b (log, 1)+1/2 <zp = D(2),

1 w(pr(p — 1)) — (logy )™

2.2 lim —— <uz: = O(z).
(22)  lim ks {p =7 ‘ br.(log, 7 )F+1/2 < (2)

Letting A(n) := Q(n) —w(n), Bassily, Katai and Wijsmuller [2] proved that, given
any positive integer k, as r — 00,

(2.3) A(pr(n)) = (14 o(1))ay_1(log, )" (log, z) for almost all n < z.

1
Lemma 1. Given a positive integer D and any fized integer {, let s(x; D, 0) = Z -.
p

p<z
p={ (mod D)

Then, uniformly for D € [1,z], x >3, if { =1 or —1,

clogy
s(z; D, 0) < :
(D)
Proof. This is Lemma 2.5 in Bassily, Katai and Wijsmuller [1]. ]

Lemma 2. Given integers k > 0 and D > 1, let Ug(z, D) := #{n <z : D | pr(n)}.
Then, for every integer k > 0, there exist constants C(k,0),C(k,1),C(k,2) ... satis-
fying C(k,r) < C(k,r+1) forr =0,1,2,..., such that

z(logy )"
D

Proof. The proof of this result can be found in Bassily, Kétai and Wijsmuller [2]. [

Uk(z, D) < C(k,Q(D)) (1<D<uz x>e.



3 Main results

Theorem 1. Given any positive integer k,
Mer(n)) =1 asn— o0 on a set of density 1.

Theorem 2. Let k be a positive integer. Given an arbitrarily small number € > 0,

%#{pﬁﬁip\(gpk(p—l))—ﬂ>6}—>0 as T — 00.

()
4 Proof of Theorem 1

One can write any integer n > 2 as n = A(n) - B(n), where A(n) is the square-full
part of n and B(n) its square-free part. In light of Lemma 2, we have

x z(log, x)%
Uiles?) = #(5 <n a8 |} < Cl ) T
As a consequence of this inequality, we have that
x 2 T du
> Vi) £ 200 2elogap [
p>(log, )k (logg x)* urlogu
4C(k,2)z
It follows from this that
(4.1) P(A(pr(n))) < (logy )k for almost all n < z.

Hence, assuming (4.1), we have, in light of (2.3),

A(pr(n))

Y(A(pr(n))) [T " < ((og,z)F)2textm)

p*||pr(n)

< exp{2kay_(log, x)*log; vlog, x} < exp{e, - logz},
say. It follows from this that, for almost all n < z, we have
Wonm) = HA(g(n)) - 1(Blgw(n))
V(B(gk(n)))Alpr(n)) exp{—e, - log '}

= B(px(n))A(pr(n)) exp{—e, - logz}
= pr(n)exp{—e, -logz}.

Y

Hence, for all but o(z) of integers n € [z/2, x], we have

_ logi(n) log ¢x(n)
Aler(n)) = log v(¢r(n)) = log pr(n) — e, - logx
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e;logx

(4.2) < 1+ Tog e ()"

On the other hand,

kN A j+1(T 1 ’ K
= () e

Jj=0 p<x

thereby implying that
log pr(n) > clogn — cklog, x > clog(x/2) — cklogy x (n € [z/2,z]),
which substituted in (4.2) yields

e.logx
c(log(x/2) — klog, x)

thus completing the proof of Theorem 1.

Alpr(n)) < 1+ <1+o0(1),

5 Proof of Theorem 2

As in the paper of Bassily, Kéatai and Wijsmuller [1], we say that a k& + 1-tuple of
primes (qo, q1,---,qx) is a k-chain if ¢;_1 | ¢ — 1 fori =1,2,... k.
Before we start the proof of Theorem 2, we shall prove the following lemma.

Lemma 3. If py | ¢x(n), then there exists an (-chain (po, p1,--.,pe) with £ < k and
pe | .

Proof. We use an induction argument. First of all, in the case k = 1, if py | ¢(n),
then either py | n, in which case we are done, or pg | py — 1 with p; | n, in which
case the result holds also. So let us assume that the result is true up to k& — 1. If
Po | pr(n), then either py | pr_1(n), in which case we are done, or p; | pr_1(n) with
p1 = 1 (mod pg). By applying the induction argument, the result is then also true
for k. O

We are now ready to prove Theorem 2.

Let 6 > 0 be small number and let = be a fixed large number.

We first drop those primes p < x for which any of the following three condition
holds:

(1) Jw(pj(p—1)) — a;(logy x)? | > §(log, x)?* for at least one j € {1,...,k};

qlp—1
z‘s<q<zl/3

(iii) P(p—1) > z'7°.



Indeed, the number of primes p < x thereby dropped is at most c¢dz/logz. To
see this, observe that, in light of (2.2), the number of those primes p < x dropped
by condition (i) does not exceed ci;07(x), while the number of those primes p < z
dropped through condition (iii) clearly does not exceed c20x/ log z. Finally, to account
for the number of primes p < x dropped through condition (ii), observe that, setting

wi(p—1):= Z 1, we have

qlp—1
16<q<zl/3
2
wi(p—1)— L < ¢sli(x) 1
= -1
psT 29 <g<z?/3 2d<q<zl/3

and therefore, since Z Ll =log(1/3) +1log(1/d) 4+ o(1) (as x becomes large),
xd<q<al/3
we may conclude that the number of those primes p < x dropped through condition
(ii) is at most c3dli(z). It follows from these observations that, indeed, the number
of primes p < x thereby dropped by conditions (i), (ii) and (iii) is at most céz/ log z.
We shall now denote by p, the set of those primes p < x not dropped by any of
the above three conditions and further introduce the quantities

B log =
T 9k+1 . (10g2 $>5k+1’

(5.1) z = z(x) T =T(x) = | (log, z)%*].

Given a prime @ < z, let us count the number of those primes p € p, for which
Q%7 | p(p — 1) and write pp_1(p — 1) = 72 - .. 7% For each k € N, two separate
cases can then occur:

e Case I(k): Q¥ 'T | pp_1(p—1);
e Case [1(k): there exists a prime m; for which m; =1 =0 (mod QLQk?lT/mU-

We start with Case [1(k). Set gy := m;. For any given such go, there exists a
prime p and a ¢-chain (qo, q1, - - ., q¢) with £ < k for which ¢, | p — 1. We then have
two possibilities: either £ = k or ¢ < k. Assume first that ¢ = k. In this case, let S
denote the scenario

gi+1—1=0 (modg;) forj=1,...,k—1 and g —1=0 (mod QLQ’“’IT/mJ)‘

Summing over all such possible scenarios S, we get

(5:2) S (g 1) < CO)i) S ——

g S k-1

Observe that

k-1 qo o k-1

90 dk—1



‘ 1
< cflogyx)™! Z —

do
qo—1=0 (mod QL2*~1T/m])

c(log, z)*

(5.3) S Q- Tym]

where we used Lemma 1. It follows from the definition of T" given in (5.1) that
128717 /m | > (1 — 20)2"  (log, 2)** > 2¥72(log, x)**,

say. Using this last estimate in (5.3), we obtain that

(5.4) Z 1 < c(log, z)*

= ()2+—2(log, )%k *
5 k-1 Q

In the case where ¢ < k, one can easily show that the same bound (as in (5.4)) still
holds. Hence, in both cases, by substituting (5.4) in (5.2), it follows that the number
of primes p € p, satisfying Case II(k) is no more than

c(log, z)*

Q2k72 (10g2 w)4k

C(8)li(x).

The Case I(k) can be reduced to the Case I(k — 1), for which the estimate is
similar. In Case I(0), we have Q7 | p — 1, which occurs less than cli(z)/Q7 times.
Hence, from the above reasoning, it follows that

#Hpep, Q" [elp— 1)} < 00(5)11(33)%-

Thus, the number of primes p € p, for which there is at least one prime @ < z for
which Q%' | ¢r(p — 1) is at most o(li(z)) as 2 — oo.
Let us now introduce the function

Evpiz)= [] o
a* e (p—1)
q<z
Observe that we have just established that for every ¢ < z with ¢®||pr(p — 1), we
can assume that o, < 2¥T" and that this holds for all p € p, with at most o(li(x))
exceptions.
Hence, using (5.1), it follows that

log log x

(5.5) Ex(p; z) < (H q) < exp{2"M1Tz} < exp{ log @ } :

q<z
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Let Py(n) := maxge, Q)? stand for the largest prime squared divisor of n, setting
Py(n) =1 if n is square-free. We then have

#p<z:Q*|@lp—1)} < #{n<z:Q*|pr(n)}
C(k,2)z - (logy )%

<

Q? ’
from which it follows that
x - (logy z)%*
< : 2 J— 1 < _—
Y #{p<a:Qalp-1}<c YiogY

Q>Y

which itself implies that
1

m(z)

It follows from this estimate that we only need to consider those primes p < x such
that Py(or(p — 1)) < (logz - (log, 2)2%)2.
Recalling the definition of z = z(x) provided in (5.1), we now introduce the interval

#{p <z : Pypor(p—1)) > (logz - (log, x)**)?} — 0 as 2 — oo.

L = L(x) = [2(z), (log z)(log, z)**].
For each @ € L, we will now estimate
HQ)=#{pep,: Q" | velp — 1}
One can easily see that if Q2 | px(p — 1), then one of the following situation occurs:
(a) @ | gr—1(p —1);
(b) @*llpx—1(p—1) and 7 | pp_1(p — 1) with 7 =1 (mod Q);

(c) there exist m, K; € p such that Q | m — 1, Q | K3 — 1, m # Ky, mK; |
Pr-1(p — 1),

In the worst case scenario, that is in case (c¢), we have the following situation:

Q — m — M = - = T

(F): Q - KB —- Ky —» -+ —= K

Ky | p— 1.

(Here, m; — mj11 means that 7,41 —1 =0 (mod 7;).)
Now, using Lemma 1, the number of such primes p < x does not exceed

1
Y oo mKe, 1) < COi(x) )
WkKk
o (R
1
< C(H)li(x)(logy x) ZW K
() TR



' 1

< N og 0D S
71 —1=0 (mod Q) 1 1
K{—1=0 (mod Q)

(log, »T)Qk

< CONilr) = E—

Since it is clear that

1 c
2 7S T log @)

QeL

and since the contribution of the other cases, namely cases (a) and (b), is no larger
than the worst case, we obtain that

Py(or(p — 1)) < 2*(z) for all but o(w(z)) of the primes p € §,.

Let us now set
Vilpiz) = ] o™
7“9 ¢ (p—1)
q>z
Since Vi (p; 2) = H q for all p € p,., with the possible exception of o(7(x)) primes,

qlep (p—1)
q>z

it follows, using (5.5), that

wr(p — 1) .
)y >Re s —1)a
Y(pr(p—1)) > F(pz) = or(p—1) a7,
where £, — 0 as * — 00, so that
lo -1 lo -1 ez logx
Ar(p— 1)) = gorp —1) gee(p—1) _ 8T
logv(¢r(p — 1)) = logpr(p — 1) — e, logz log r(p — 1)

thereby implying

Hp <z Mew(p—1)) —1| Z e} < C(O)n(x) + o(x(x)),

thus completing the proof of Theorem 2.
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