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Abstract

The index of composition of an integer n ≥ 2 is defined as λ(n) = (log n)/(log γ(n)),
where γ(n) stands for the largest square-free divisor of n. Let ϕ stand for the
Euler totient function. We show that the index of composition of the k-fold
iterate of ϕ(n) is 1 on a set of density 1 and that an analogous result holds if
n runs over the set of shifted primes.
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1 Introduction and notation

The index of composition of an integer n ≥ 2 is defined as λ(n) = (log n)/(log γ(n)),
where γ(n) stands the largest square-free divisor of n. For convenience, we set λ(1) =
γ(1) = 1. The index of composition was introduced by Browkin in 2000. Later,
De Koninck and Doyon [3] obtained various results concerning its global and local
behaviour. In particular, they proved that the average value of λ(n) is 1. This
function was also the subject of various papers, namely De Koninck and Kátai [4],
De Koninck, Kátai and Subbarao [5], Zhai [8], Zhang, Lü and Zhai [9], Zhang and
W. Zhai [9] as well as Robert and Tenenbaum [7]. Recently, De Koninck and Luca
[6] proved that the average value of λ(ϕ(n)), where ϕ is the Euler totient function, is
also 1.

For each integer k ≥ 1, let ϕk = ϕ ◦ ϕk−1, with ϕ0(n) = n for all n ∈ N, stand for
the k-fold iterate of the Euler ϕ function. Here, we show that the index of composition
of the k-fold iterate of ϕ(n) is 1 on a set of density 1 and that an analogous result
holds if n runs over the set of shifted primes.

Let ω(n) stand for the number of distinct prime divisors of the integer n ≥ 2,
setting ω(1) = 0. Bassily, Kátai and Wijsmuller [1] obtained the distribution of the
function ω(ϕk(n)) which counts the number of distinct prime factors of the k-fold
iterate of the Euler function.
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We let π(x) stand for the number primes not exceeding x and Ω(n) stand for the
number of prime divisors of n counting their multiplicity, setting Ω(1) = 0. As usual,

we let li(x) :=

∫ x

2

dt

log t
and let π(x; k, `) be the number of primes p ≤ x such that p ≡

` (mod k). We let P (n) stand for the largest prime factor of n ≥ 2 and set P (1) = 1.
For convenience, we shall write log2 x for max(1, log log x), log3 x for max(1, log log2 x),
and so on. From here on, the letter c, with or without subscript, stands for an absolute
positive constant, but not necessarily the same at each occurrence, while the letters
p, q,Q, π, with or without subscript, will always denote primes.

2 Preliminary results

Writing Φ(z) =
1√
2π

∫ ∞
z

e−w
2/2 dw (z ∈ R) for the normal distribution function, and

setting

ak =
1

(k + 1)!
, bk =

1

k!
√

2k + 1
(k = 1, 2, . . .),

Bassily, Kátai and Wijsmuller [1] proved that

lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣ω(ϕk(n))− ak(log2 x)k+1

bk(log2 x)k+1/2

∣∣∣∣ < z

}
= Φ(z),(2.1)

lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣ω(ϕk(p− 1))− (log2 x)k+1

bk(log2 x)k+1/2

∣∣∣∣ < z

}
= Φ(z).(2.2)

Letting ∆(n) := Ω(n)−ω(n), Bassily, Kátai and Wijsmuller [2] proved that, given
any positive integer k, as x→∞,

(2.3) ∆(ϕk(n)) = (1 + o(1))ak−1(log2 x)k (log4 x) for almost all n ≤ x.

Lemma 1. Given a positive integer D and any fixed integer `, let s(x;D, `) :=
∑
p≤x

p≡` (mod D)

1

p
.

Then, uniformly for D ∈ [1, x], x ≥ 3, if ` = 1 or −1,

s(x;D, `) ≤ c log2 x

ϕ(D)
.

Proof. This is Lemma 2.5 in Bassily, Kátai and Wijsmuller [1].

Lemma 2. Given integers k ≥ 0 and D ≥ 1, let Uk(x,D) := #{n ≤ x : D | ϕk(n)}.
Then, for every integer k ≥ 0, there exist constants C(k, 0), C(k, 1), C(k, 2) . . . satis-
fying C(k, r) ≤ C(k, r + 1) for r = 0, 1, 2, . . ., such that

Uk(x,D) ≤ C(k,Ω(D))
x(log2 x)kΩ(D)

D
(1 ≤ D ≤ x, x > ee).

Proof. The proof of this result can be found in Bassily, Kátai and Wijsmuller [2].
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3 Main results

Theorem 1. Given any positive integer k,

λ(ϕk(n))→ 1 as n→∞ on a set of density 1.

Theorem 2. Let k be a positive integer. Given an arbitrarily small number ε > 0,

1

π(x)
#{p ≤ x : |λ(ϕk(p− 1))− 1| > ε} → 0 as x→∞.

4 Proof of Theorem 1

One can write any integer n ≥ 2 as n = A(n) · B(n), where A(n) is the square-full
part of n and B(n) its square-free part. In light of Lemma 2, we have

U∗k (x, p2) := #{x
2
< n ≤ x : p2 | ϕk(n)} ≤ C(k, 2)

x(log2 x)2k

p2
.

As a consequence of this inequality, we have that∑
p>(log2 x)k

U∗k (x, p2) ≤ 2C(k, 2)x(log2 x)2k

∫ ∞
(log2 x)k

du

u2 log u

≤ 4C(k, 2)x

k log3 x
= o(x) (x→∞).

It follows from this that

(4.1) P (A(ϕk(n))) ≤ (log2 x)k for almost all n ≤ x.

Hence, assuming (4.1), we have, in light of (2.3),

A(ϕk(n))

γ(A(ϕk(n)))
=

∏
pα‖ϕk(n)

pα−1 ≤ ((log2 x)k)∆(ϕk(n))

≤ exp{2kak−1(log2 x)k log3 x log4 x} ≤ exp{εx · log x},

say. It follows from this that, for almost all n ≤ x, we have

γ(ϕk(n)) = γ(A(ϕk(n))) · γ(B(ϕk(n)))

≥ γ(B(ϕk(n)))A(ϕk(n)) exp{−εx · log x}
= B(ϕk(n))A(ϕk(n)) exp{−εx · log x}
= ϕk(n) exp{−εx · log x}.

Hence, for all but o(x) of integers n ∈ [x/2, x], we have

λ(ϕk(n)) =
logϕk(n)

log γ(ϕk(n))
≤ logϕk(n)

logϕk(n)− εx · log x
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≤ 1 +
εx log x

logϕk(n)
.(4.2)

On the other hand,

ϕk(n)

n
=

k−1∏
j=0

ϕj+1(n)

ϕj(n)
≥

(∏
p≤x

(
1− 1

p

))k

≥ c(log x)−k,

thereby implying that

logϕk(n) ≥ c log n− ck log2 x ≥ c log(x/2)− ck log2 x (n ∈ [x/2, x]),

which substituted in (4.2) yields

λ(ϕk(n)) ≤ 1 +
εx log x

c(log(x/2)− k log2 x)
≤ 1 + o(1),

thus completing the proof of Theorem 1.

5 Proof of Theorem 2

As in the paper of Bassily, Kátai and Wijsmuller [1], we say that a k + 1-tuple of
primes (q0, q1, . . . , qk) is a k-chain if qi−1 | qi − 1 for i = 1, 2, . . . , k.

Before we start the proof of Theorem 2, we shall prove the following lemma.

Lemma 3. If p0 | ϕk(n), then there exists an `-chain (p0, p1, . . . , p`) with ` ≤ k and
p` | n.

Proof. We use an induction argument. First of all, in the case k = 1, if p0 | ϕ(n),
then either p0 | n, in which case we are done, or p0 | p1 − 1 with p1 | n, in which
case the result holds also. So let us assume that the result is true up to k − 1. If
p0 | ϕk(n), then either p0 | ϕk−1(n), in which case we are done, or p1 | ϕk−1(n) with
p1 ≡ 1 (mod p0). By applying the induction argument, the result is then also true
for k.

We are now ready to prove Theorem 2.
Let δ > 0 be small number and let x be a fixed large number.
We first drop those primes p ≤ x for which any of the following three condition

holds:

(i) |ω(ϕj(p− 1))− aj(log2 x)j+1| > δ(log2 x)j+1 for at least one j ∈ {1, . . . , k};

(ii)
∑
q|p−1

xδ<q<x1/3

1 ≤ 2;

(iii) P (p− 1) > x1−δ.
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Indeed, the number of primes p ≤ x thereby dropped is at most cδx/ log x. To
see this, observe that, in light of (2.2), the number of those primes p ≤ x dropped
by condition (i) does not exceed c1δπ(x), while the number of those primes p ≤ x
dropped through condition (iii) clearly does not exceed c2δx/ log x. Finally, to account
for the number of primes p ≤ x dropped through condition (ii), observe that, setting

ω1(p− 1) :=
∑
q|p−1

xδ<q<x1/3

1, we have

∑
p≤x

ω1(p− 1)−
∑

xδ<q<x1/3

1

q − 1

2

≤ c3li(x)
∑

xδ<q<x1/3

1

q

and therefore, since
∑

xδ<q<x1/3

1

q − 1
= log(1/3) + log(1/δ) + o(1) (as x becomes large),

we may conclude that the number of those primes p ≤ x dropped through condition
(ii) is at most c3δ li(x). It follows from these observations that, indeed, the number
of primes p ≤ x thereby dropped by conditions (i), (ii) and (iii) is at most cδx/ log x.

We shall now denote by ℘x the set of those primes p ≤ x not dropped by any of
the above three conditions and further introduce the quantities

(5.1) z = z(x) =
log x

2k+1 · (log2 x)5k+1
, T = T (x) = b(log2 x)5k+1c.

Given a prime Q ≤ z, let us count the number of those primes p ∈ ℘x for which
Q2kT | ϕk(p − 1) and write ϕk−1(p − 1) = πα1

1 · · · παmm . For each k ∈ N, two separate
cases can then occur:

• Case I(k): Q2k−1T | ϕk−1(p− 1);

• Case II(k): there exists a prime πj for which πj − 1 ≡ 0 (mod Qb2
k−1T/mc).

We start with Case II(k). Set q0 := πj. For any given such q0, there exists a
prime p and a `-chain (q0, q1, . . . , q`) with ` ≤ k for which q` | p − 1. We then have
two possibilities: either ` = k or ` < k. Assume first that ` = k. In this case, let S
denote the scenario

qj+1 − 1 ≡ 0 (mod qj) for j = 1, . . . , k − 1 and q0 − 1 ≡ 0 (mod Qb2
k−1T/mc).

Summing over all such possible scenarios S, we get

(5.2)
∑
S

π(x; qk−1, 1) ≤ C(δ)li(x)
∑
S

1

qk−1

.

Observe that ∑
S

1

qk−1

=
∑
q0

1

q0

. . .
∑
qk−1

1

qk−1
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≤ c log2 x
∑
q0

1

q0

. . .
∑
qk−2

1

qk−2

...

≤ c(log2 x)k−1
∑

q0−1≡0 (mod Qb2k−1T/mc)

1

q0

.

≤ c(log2 x)k

Qb2k−1T/mc ,(5.3)

where we used Lemma 1. It follows from the definition of T given in (5.1) that

b2k−1T/mc ≥ (1− 2δ)2k−1(log2 x)3k ≥ 2k−2(log2 x)4k,

say. Using this last estimate in (5.3), we obtain that

(5.4)
∑
S

1

qk−1

≤ c(log2 x)k

Q2k−2(log2 x)4k
.

In the case where ` < k, one can easily show that the same bound (as in (5.4)) still
holds. Hence, in both cases, by substituting (5.4) in (5.2), it follows that the number
of primes p ∈ ℘x satisfying Case II(k) is no more than

c(log2 x)k

Q2k−2(log2 x)4k
C(δ)li(x).

The Case I(k) can be reduced to the Case I(k − 1), for which the estimate is
similar. In Case I(0), we have QT | p − 1, which occurs less than cli(x)/QT times.
Hence, from the above reasoning, it follows that

#{p ∈ ℘x : Q2kT | ϕk(p− 1)} ≤ cC(δ)li(x)
(log2 x)k

Q2k−2(log2 x)4k
.

Thus, the number of primes p ∈ ℘x for which there is at least one prime Q ≤ z for
which Q2kT | ϕk(p− 1) is at most o(li(x)) as x→∞.

Let us now introduce the function

Ek(p; z) :=
∏

qαq ‖ϕk(p−1)
q≤z

qαq .

Observe that we have just established that for every q ≤ z with qαq‖ϕk(p − 1), we
can assume that αq ≤ 2kT and that this holds for all p ∈ ℘x with at most o(li(x))
exceptions.

Hence, using (5.1), it follows that

(5.5) Ek(p; z) ≤

(∏
q≤z

q

)2kT

≤ exp{2k+1Tz} ≤ exp

{
log x

log log x

}
.
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Let P2(n) := maxQ2|nQ
2 stand for the largest prime squared divisor of n, setting

P2(n) = 1 if n is square-free. We then have

#{p ≤ x : Q2 | ϕk(p− 1)} ≤ #{n ≤ x : Q2 | ϕk(n)}

≤ C(k, 2)x · (log2 x)2k

Q2
,

from which it follows that∑
Q>Y

#{p ≤ x : Q2 | ϕk(p− 1)} ≤ c
x · (log2 x)2k

Y log Y
,

which itself implies that

1

π(x)
#{p ≤ x : P2(ϕk(p− 1)) > (log x · (log2 x)2k)2} → 0 as x→∞.

It follows from this estimate that we only need to consider those primes p ≤ x such
that P2(ϕk(p− 1)) ≤ (log x · (log2 x)2k)2.

Recalling the definition of z = z(x) provided in (5.1), we now introduce the interval

L = L(x) = [z(x), (log x)(log2 x)2k].

For each Q ∈ L, we will now estimate

H(Q) := #{p ∈ ℘x : Q2 | ϕk(p− 1)}.

One can easily see that if Q2 | ϕk(p− 1), then one of the following situation occurs:

(a) Q3 | ϕk−1(p− 1);

(b) Q2‖ϕk−1(p− 1) and π | ϕk−1(p− 1) with π ≡ 1 (mod Q);

(c) there exist π1, K1 ∈ ℘ such that Q | π1 − 1, Q | K1 − 1, π1 6= K1, π1K1 |
ϕk−1(p− 1).

In the worst case scenario, that is in case (c), we have the following situation:

(R) :
Q → π1 → π2 → · · · → πk
Q → K1 → K2 → · · · → Kk

πkKk | p− 1.

(Here, πj → πj+1 means that πj+1 − 1 ≡ 0 (mod πj).)
Now, using Lemma 1, the number of such primes p ≤ x does not exceed∑

(R)

π(x; πkKk, 1) ≤ C(δ)li(x)
∑
(R)

1

πkKk

≤ C(δ)li(x)(log2 x)2
∑
(R)

1

πk−1Kk−1
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...

≤ C(δ)li(x)(log2 x)2(k−1)
∑

π1−1≡0 (mod Q)
K1−1≡0 (mod Q)

1

π1K1

� C(δ)li(x)
(log2 x)2k

Q2
.

Since it is clear that ∑
Q∈L

1

Q2
≤ c

z(x) log z(x)

and since the contribution of the other cases, namely cases (a) and (b), is no larger
than the worst case, we obtain that

P2(ϕk(p− 1)) ≤ z2(x) for all but o(π(x)) of the primes p ∈ ℘x.

Let us now set
Vk(p; z) :=

∏
qαq ‖ϕk(p−1)

q>z

qαq .

Since Vk(p; z) =
∏

q|ϕk(p−1)
q>z

q for all p ∈ ℘x, with the possible exception of o(π(x)) primes,

it follows, using (5.5), that

γ(ϕk(p− 1)) ≥ ϕk(p− 1)

Ek(p; z)
≥ ϕk(p− 1) · x−εx ,

where εx → 0 as x→∞, so that

λ(ϕk(p− 1)) =
logϕk(p− 1)

log γ(ϕk(p− 1))
≤ logϕk(p− 1)

logϕk(p− 1)− εx log x
= 1 +

εx log x

logϕk(p− 1)
,

thereby implying

#{p ≤ x : |λ(ϕk(p− 1))− 1| ≥ ε} ≤ C(δ)π(x) + o(π(x)),

thus completing the proof of Theorem 2.
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[3] J.-M. De Koninck et N. Doyon, À propos de l’indice de composition des nombres,
Monatshefte für Mathematik 139 (2003), 151–167.
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[9] D. Zhang, M. Lü and W. Zhai, On the mean value of the index of composition
of an integer II. Int. J. Number Theory 9 (2013), No. 2, 431-445.

[10] D. Zhang and W. Zhai, On the mean value of the index of composition of an
integral ideal (II). J. Number Theory 133 (2013), No. 4, 1086–1110.

Jean-Marie De Koninck Imre Kátai
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