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Abstract

Let q ≥ 2 be a fixed integer. Given an integer n ≥ 2 and writing its
prime factorization as n = p1p2 · · · pr, where p1 ≤ p2 ≤ · · · ≤ pr stand for all
the prime factors of n, we let `(n) = p1 p2 . . . pr, that is the concatenation
of the respective base q digits of each prime factor pi, and set `(1) = 1. We
prove that the real number 0.`(1)`(2)`(3)`(4) . . . is a normal number in base
q. In fact, we show more, namely that the same conclusion holds if we replace
each pi by S(pi), where S(x) ∈ Z[x] is an arbitrary polynomial of positive
degree such that S(n) > 0 for all integers n ≥ 1. We prove analogous results
and in particular that, given any fixed positive integer a, the real number
0.`(2 + a)`(3 + a)`(5 + a) . . . `(p + a) . . ., where p runs through all primes, is a
normal number in base q.
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1 Introduction

Given an integer q ≥ 2, a q-normal number (or a normal number) is a real number
whose q-ary expansion is such that any preassigned sequence of length k ≥ 1, of base
q digits from this expansion, occurs at the expected frequency, namely 1/qk.

The problem of determining if a given number is normal is unresolved. For in-
stance, fundamental constants such as π, e,

√
2, log 2 as well as the famous Apéry

constant ζ(3), have not yet been proven to be normal numbers, although numerical
evidence tends to indicate that they are. Interestingly, Borel [2] has shown that al-
most all real numbers are normal, that is that the set of those real numbers which
are not normal has Lebesgue measure 0.

One of the first to come up with a normal number was Champernowne [3] who, in
1933, was able to prove that the number made up of the concatenation of the natural
numbers, namely the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [4] showed that the same is true if
one replaces the sequence of natural numbers by the sequence of primes, namely for
the number

0.23571113171923293137 . . .
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In the same paper, they conjectured that if f(x) is any nonconstant polynomial whose
values at x = 1, 2, 3, . . . are positive integers, then the decimal 0.f(1)f(2)f(3) . . .,
where f(n) is written in base 10, is a normal number. In 1952, Davenport and Erdős
[5] proved this conjecture.

In 1997, Nakai and Shiokawa [15] showed that if f(x) is any nonconstant poly-
nomial taking only positive integral values for positive integral arguments, then the
number 0.f(2)f(3)f(5)f(7) . . . f(p) . . ., where p runs through the prime numbers, is
normal.

In a series of papers [8], [9], [11], [12], we created various families of normal
numbers. In particular, we showed that the numbers

0.p(2)p(3)p(4)p(5) . . . and 0.P (2)P (3)P (4)P (5) . . . ,

where p(n) and P (n) stand respectively for the smallest and largest prime factors of
n, are normal numbers.

Also, in two papers [7], [10], we used the fact that the prime factorization of
integers is locally chaotic but at the same time globally very regular in order to
create very different families of normal numbers.

Here, we create a new family of normal numbers again using the factorization of
integers but with a different approach. Write each integer n ≥ 2 as n = p1p2 · · · pr,
where p1 ≤ p2 ≤ · · · ≤ pr represent all the prime factors of n. Then, setting `(1) = 1
and, for each integer n ≥ 2, letting `(n) represent the concatenation of the primes
p1, p2, . . . , pr, we show that by concatenating `(1), `(2), `(3), . . ., we can create a nor-
mal number, that is that the real number 0.`(1)`(2)`(3) . . . is a normal number.
Actually, we prove more general results.

2 Notation

The letters p and π with or without subscript will always denote prime numbers. We
let ℘ stand for the set of all prime numbers, π(x) for the number of prime numbers
not exceeding x and π(x; k, `) for the number of primes p ≤ x such that p ≡ `

(mod k). Moreover, we set li(x) :=

∫ x

2

dt

log t
. Also, we denote by φ the Euler totient

function and by Ω(n) the number of prime factors of n counting their multiplicity.
The letters c and C, with or without subscript, always denote a positive constant,
but not necessarily the same at each occurrence. At times, we write x1 for log x, x2
for log log x, and so on.

Let q ≥ 2 be a fixed integer and let Aq = {0, 1, 2, . . . , q − 1}. Given an integer
t ≥ 1, an expression of the form i1i2 . . . it, where each ij ∈ Aq, is called a word of
length t. Given a word α, we shall write λ(α) = t to indicate that α is a word of
length t. We shall also use the symbol Λ to denote the empty word. For each t ∈ N,
we let Atq stand for the set of words of length t over Aq, while A∗q will stand for
the set of all words over Aq regardless of their length, including the empty word Λ.
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Observe that the concatenation of two words α, β ∈ A∗q, written αβ, also belongs
to A∗q. Finally, given a word α and a subword β of α, we will denote by νβ(α) the
number of occurrences of β in α, that is, the number of pairs of words µ1, µ2 such
that µ1βµ2 = α.

Given a positive integer n, we write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate
the word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1
q

For convenience, if n ≤ 0, we let n = Λ. Observe that the number of digits of such a

word n will thus be λ(n) =

⌊
log n

log q

⌋
+ 1.

Finally, given a sequence of integers a(1), a(2), a(3), . . ., we will say that the con-
catenation of their q-ary digit expansions a(1) a(2) a(3) . . ., denoted by Concat(a(n) :
n ∈ N), is a q-normal sequence if the real number 0.Concat(a(n) : n ∈ N) =
0.a(1) a(2) a(3) . . . is a q-normal number.

3 Main results

Let q ≥ 2 be a fixed integer. From here on, we let S(x) ∈ Z[x] be an arbitrary
polynomial (of positive degree r0) such that S(n) > 0 for all integers n ≥ 1. Moreover,
for each integer n ≥ 2, we write its prime factorization as n = p1p2 · · · pr, where
p1 ≤ p2 ≤ · · · ≤ pr are all the prime factors of n and set

`(n) := S(p1)S(p2) . . . S(pr),

where each S(pi) is expressed in base q. For convenience, we set `(1) = 1.

Theorem 1. The real number

ξ := 0.`(1)`(2)`(3)`(4) . . .

is a q-normal number.

Theorem 2. Given an arbitrary positive integer a, the real number

η := 0.`(2 + a)`(3 + a)`(5 + a) . . . `(p+ a) . . . ,

where p runs through all primes, is a q-normal number.

Let 1 = d1 < d2 < · · · < dτ(n) = n be the sequence of divisors of n and let

t(n) = S(d1)S(d2) . . . S(dτ(n)). Then, let

θ := 0.Concat(t(n) : n ∈ N),

κ := 0.Concat(t(p+ a) : p ∈ ℘),

where a is a fixed positive integer.
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Theorem 3. The above real numbers θ and κ are q-normal numbers.

Let S(x) be as above and let Q(x) ∈ Z[x] be a polynomial of positive degree such
that Q(n) > 0 for each integer n ≥ 1. Then, consider the expression

Q(n) =
∏

pa‖Q(n)

pa = p1p2 · · · pr,

where p1 ≤ p2 ≤ · · · ≤ pr are all the prime factors of Q(n), so that

`(Q(n)) = S(p1)S(p2) . . . S(pr).

Then, let

α := 0.Concat(`(Q(n)) : n ∈ N),

β := 0.Concat(`(Q(p)) : p ∈ ℘).

Theorem 4. The above real numbers α and β are both q-normal numbers.

Let Q(x) be as above. Then, let 1 = e1 < e2 < · · · < eδ(n) be the sequence of all
the divisors of Q(n) which do not exceed n, consider the expression

h(Q(n)) := S(e1)S(e2) . . . S(eδ(n))

and set
ψ := 0.Concat(h(Q(n)) : n ∈ N)

Theorem 5. The above real number ψ is a q-normal number.

4 Preliminary lemmas

Lemma 1. Let S ∈ Z[x] be as above. Given a positive integer k, let β1 and β2 be any
two distinct words belonging to Akq . Let c0 > 0 be an arbitrary number and consider
the intervals

Jw :=

[
w,w +

w

logc0 w

]
(w > 1).

Further let π(Jw) stand for the number of prime numbers belonging to the interval
Jw. Then,

1

π(Jw) · logw

∑
p∈Jw

∣∣∣νβ1(S(p)− νβ2(S(p))
∣∣∣→ 0 as w →∞.

Proof. This result is a consequence of Theorem 1 in the paper of Bassily and Kátai [1].
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Given an infinite sequence γ = a1a2 . . . ∈ AN
q and a positive integer T , we write

γT for the word a1a2 . . . aT .

Lemma 2. The infinite sequence γ is a q-normal sequence if for every positive integer
k and arbitrary words β1, β2 ∈ Akq , there exists an infinite sequence of positive integers
T1 < T2 < · · · such that

(i) lim
n→∞

Tn+1

Tn
= 1,

(ii) lim
n→∞

1

Tn

∣∣νβ1(γTn)− νβ2(γTn)
∣∣ = 0.

Proof. It is easily seen that conditions (i) and (ii) imply that

1

T

∣∣νβ1(γT )− νβ2(γT )
∣∣→ 0 as T →∞.

and consequently that

(4.1)
1

T

∣∣∣∣∣∣qkνβ1(γT )−
∑
β2∈Akq

νβ2(γ
T )

∣∣∣∣∣∣→ 0 as T →∞.

But since ∑
β2∈Akq

νβ2(γ
T ) = T +O(1),

it follows from (4.1) that

νβ1(γ
T )

T
= (1 + o(1))

1

qk
as T →∞,

thereby establishing that γ is a q-normal number and thus completing the proof of
the lemma.

Lemma 3. If 1 ≤ k ≤ x and (k, `) = 1,

π(x; k, `) <
3x

φ(k) log(x/k)
.

Proof. This is Theorem 3.8 in the book of Halberstam and Richert [14].

Lemma 4. (Bombieri-Vinogradov Theorem) For every constant A > 0, there
exists a constant B = B(A) depending on A, such that for large values of x, the
following estimate holds:∑

b<
√
x/(log x)B

max1≤a<b
(a,b)=1
y≤x

∣∣∣π(y; b, a)− π(y)

φ(b)

∣∣∣ < x

logA x
.

Proof. A proof of this result can be found in the book of Iwaniec and Kowalski [6].
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5 Proof of Theorem 1

Let x be a large number and set

ξ(x) := `(1)`(2)`(3) . . . `(bxc).

Since logS(p) = (1 + o(1))r0 log p as p→∞, we find that

λ(ξ(x)) =
∑
n≤x

(⌊
log `(n)

log q

⌋
+ 1

)
=

1

log q

∑
n≤x

∑
pa‖n

a logS(p) +O(x)

=
1

log q

∑
pa≤x
a≥1

a logS(p)

(
x

pa
+O(1)

)
+O(x)

=
x

log q

∑
p≤x

logS(p)

p
+O(x)

= (1 + o(1))r0
x log x

log q
+O(x),

where we used the prime number theorem in the form
∑
p≤x

log p

p
= log x+O(1), thereby

establishing that the number of digits of ξ(x) is of order x log x, that is that

(5.1) λ(ξ(x)) ≈ x log x.

Now, we easily obtain that

νβ(ξ(x)) =
∑
pa≤x

νβ(S(p))

⌊
x

pa

⌋
+O(x) = x

∑
p≤x

νβ(S(p))

p
+O(x).

and therefore that, given any two distinct words β1, β2 ∈ Akq and using (5.1), there
exists a positive constant C such that, as x→∞,

(5.2)
1

λ(ξ(x))

∣∣νβ1(ξ(x))− νβ2(ξ(x))∣∣ ≤ C

log x

∑
p≤x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

p
+ o(1).

On the other hand, it is clear from Lemma 1 that

(5.3)
1

π([x, 2x]) log x

∑
x≤p<2x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣→ 0 (x→∞).
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Observe that, in light of (5.3), as x→∞,

∑
p≤x

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

p
≤

∑
2`≤x
`≥1

1

2`

∑
2`≤p<2`+1

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣

=
∑
2`≤x
`≥1

1

2`
o

(
2` log 2`

`

)
= o(log x),

which used in (5.2) along with (5.1) yields

1

λ(ξ(x))

∣∣νβ1(ξ(x))− νβ2(ξ(x))∣∣ = o

(
1

log x
log x

)
+ o(1) = o(1),

which in light of Lemma 2 completes the proof of Theorem 1.

6 Proof of Theorem 2

Let x be a large number and set

η(x) := Concat(`(p+ a) : p ≤ x).

First observe that the number of digits in the word η(x) is of order x, since

(6.1) λ(η(x)) ≈ π(x) log x ≈ x.

On the other hand, letting δ > 0 be an arbitrary small number, it is known that there
exists a positive constant c > 0 such that

(6.2) #{π ≤ x : P (π + a) > x1−δ} ≤ cδπ(x)

(see for instance the proof of Theorem 12.9 in the book of De Koninck and Luca [13]).
Arguing as in the proof of Theorem 1, we have that, given any two distinct words

β1, β2 ∈ Akq , for some positive constant C1,∣∣νβ1(η(x))− νβ2(η(x))∣∣ ≤ ∑
p≤x1−δ

∣∣∣νβ1(S(p))− νβ2(S(p))
∣∣∣ · π(x; p,−a)

+C1

∑
x1−δ<p≤x

(log p)π(x; p,−a) +O(π(x) log log x).(6.3)

It follows from Lemma 3 that

(6.4) π(x; p,−a)� x

p log(x/p)
,
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which implies, in light of (6.2), that

(6.5)
∑

x1−δ<p≤x

(log p)π(x; p,−a)� log x · δπ(x)� δx.

Using Lemma 1, it follows from (6.3), 6.4) and (6.5) that, for some positive constant
C2,

(6.6) lim
x→∞

∣∣νβ1(η(x))− νβ2(η(x))∣∣
λ(η(x))

≤ C2δ.

Since δ > 0 was chosen to be arbitrarily small, it follows that the left hand side of
(6.6) must be 0. Combining this with observation (6.1) and Lemma 2, the result
follows.

7 Proof of Theorem 3

The proof that θ is a normal number is somewhat similar to the proof that η is normal
as shown in Theorem 2. Hence, we will focus our attention on the proof that κ is
normal.

Let x be a large number and set κ(x) := Concat(t(p+a) : p ≤ x). First we observe
that

λ(κ(x)) =
∑
d≤x

λ(S(d))π(x; d,−a) +O(li(x))

=
∑
d≤x

(⌊
logS(d)

log q

⌋
+ 1

)
π(x; d,−a) +O(li(x))

= r0
∑
d≤x

log d

log q
π(x; d,−a) +O

(∑
p≤x

τ(p+ a)

)
+O(li(x))

=
r0

log q

∑
d≤x

(log d)π(x; d,−a) +O(x),(7.1)

where we used the fact that
∑

p≤x τ(p+ a) = O(x).
Let δ > 0 be an arbitrarily small number. On the one hand, for some positive

constant C1,∑
x1−δ<d≤x

(log d)π(x; d,−a) ≤ (log x)
∑

x1−δ<d≤x
dv=p+a, p≤x

1

≤ (log x)
∑
v≤xδ

π(x; v,−a)

≤ C1(log x)
∑
v≤xδ

x

φ(v) log(x/v)
≤ δC1x log x.(7.2)
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and, for some positive constant C2,

(7.3)
∑

d≤x1−δ
(log d)π(x; d,−a) ≤ (log x)

∑
d≤x1−δ

C2x

φ(d) log(x/d)
≤ C2x.

On the other hand, using Lemmas 3 and 4, for some positive constant C3,∑
d≤x

(log d)π(x; d,−a) ≥
∑
d≤x1/3

(log d)
li(x)

φ(d)
−
∑
d≤x1/3

(log d)

∣∣∣∣π(x; d,−a)− li(x)

φ(d)

∣∣∣∣
= C3(1 + o(1))x log x+O

(
x

logA x

)
� x log x.(7.4)

Hence combining relations (7.1), (7.2), (7.3) and (7.4), we find that

(7.5) λ(θ(x)) ≈ x log x.

Now, we easily obtain that, for any given distinct words β1, β2 ∈ Akq ,∣∣νβ1(θ(x))− νβ2(θ(x))∣∣ ≤ ∑
d≤x1−δ

∣∣∣νβ1(S(d))− νβ2(S(d))
∣∣∣ π(x; d,−a) + cδx log x

≤ C4

∑
d≤x1−δ

∣∣∣νβ1(S(d))− νβ2(S(d))
∣∣∣

φ(d) log(x/d)
+ cδx log x,(7.6)

where we used Lemma 3. Combining (7.6) with Lemma 1, we obtain that

lim sup
x→∞

∣∣∣∣νβ1(θ(x))− νβ2(θ(x))λ(θ(x))

∣∣∣∣ ≤ δ,

thereby implying, arguing as in the previous proofs and in light of (7.5), that

lim sup
x→∞

∣∣∣∣νβ1(θ(x))− νβ2(θ(x))λ(θ(x))

∣∣∣∣ = 0,

which in light of Lemma 2 completes the proof of Theorem 3.

8 Proof of Theorem 4

We will only consider the number β.
First, for each prime number π, we let ρ(π) stand for the number of those residue

classes n (with (n, π) = 1) for which Q(n) ≡ 0 (mod π), and we let

`
(π)
1 , `

(π)
2 , . . . , `

(π)
ρ(π)
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be the list of these residue classes.
As before, setting β(x) := Concat(`(Q(p)) : p ≤ x), we first observe that

λ(β(x)) =
∑
π≤x

λ(S(π))
∑
p≤x

Q(p)≡0 (mod π)

1 +O

(∑
p≤x

Ω(Q(p))

)

=
∑
π≤x

λ(S(π))

ρ(π)∑
ν=1

π(x; π, `(π)ν ) +O

(
x
x2
x1

)
.(8.1)

Since ρ(π) is bounded, we obtain that

(8.2) λ(S(π)) =

⌊
logS(π)

log q

⌋
+O(1) =

r0 log π

log q
+O(1).

Hence, in light of (8.2), we have, given an arbitrarily small number δ > 0,

(8.3)
∑

x1−δ<π≤x

λ(S(π))

ρ(π)∑
ν=1

π(x; π, `(π)ν )� δxx2

and
(8.4)∑
π≤x1−δ

λ(S(π))

ρ(π)∑
ν=1

π(x; π, `(π)ν ) ≈ r0
∑

π≤x1−δ

log π

log q

ρ(π)∑
ν=1

π(x; π, `(π)ν ) ≈ r0
∑

π≤x1−δ

ρ(π)

π
≈ xx2.

Hence, combining (8.3) and (8.4) in (8.1), we get that

(8.5) λ(β(x)) ≈ xx2.

Then, using the same approach as in the proofs of the previous theorems, we find
that ∣∣∣∣νβ1(β(x))− νβ2(β(x))

xx2

∣∣∣∣ ≤ δ + o(1) (x→∞)

and therefore that

lim sup
x→∞

∣∣∣∣νβ1(β(x))− νβ2(β(x))

xx2

∣∣∣∣ = 0,

thus proving that β is a q-normal number.

9 Proof of Theorem 5

The proof is similar to that of Theorem 3 and we will therefore skip it.
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10 Final remarks

Let S,Q ∈ Z[x] be as above and, given a prime number p, let ρ(p) be the number of
solutions n of Q(n) ≡ 0 (mod p). Assume that ρ(p) < p for all primes p.

Then, using the above techniques as well as those developed in our previous work
[11], we can show that the real numbers

θ1 := 0.Concat(S(p(Q(n))) : n ∈ N),

θ2 := 0.Concat(S(p(Q(π))) : π ∈ ℘)

are q-normal numbers.
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Université Laval Eötvös Loránd University
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