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Abstract

We examine the uniform distribution of certain sequences involving the
Euler totient function and the sum of divisors function.
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1 Introduction and notation

Let us denote by φ(n) the well known Euler totient function and by σ(n) the sum of
the positive divisors of n.

Let also M (resp. A) be the set of multiplicative (resp. additive) functions and
M1 the set of those f ∈M such that |f(n)| = 1 for all positive integers n. For each
y ∈ R, we set e(y) := e2πiy.

A famous result of H. Daboussi (see Daboussi and Delange [2], [3]) asserts that

(1.1) sup
f∈M1

1

x

∣∣∣∣∣∑
n≤x

f(n)e(nα)

∣∣∣∣∣→ 0 as x→∞

for every α ∈ R \Q.
The proof of (1.1) is based on the large sieve inequality. Another proof follows

from a general form of the Turán-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving the Euler
totient function and the sum of divisors function.

From here on, we let ℘ stand for the set of all primes and we let {y} be the
fractional part of y. We also let P (n) stand for the largest prime factor of n.

2 Background results

The following result was obtained by the second author [7].
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Theorem A. Let t : N→ R. Assume that for every real number K > 0, there exists
a finite set ℘K of primes p1 < p2 < · · · < pk such that

(2.1) AK :=
k∑
i=1

1

pi
> K

and that, given any pair i 6= j, i, j ∈ {1, 2, . . . , k}, the corresponding sequence

ηi,j(m) = t(pim)− t(pjm) (m ∈ N)

satisfies the relation

1

x

∑
m≤x

e(ηi,j(m))→ 0 as x→∞.

Then there exists a function ρx for which ρx → 0 as x→∞ and such that

sup
f∈M1

1

x

∣∣∣∣∣∑
n≤x

f(n)e(t(n))

∣∣∣∣∣ ≤ ρx.

Observe that Theorem A holds in particular if one chooses t(n) := αrn
r+· · ·+α1n,

a polynomial with real coefficients where at least one the αi’s is irrational.
Recall that the discrepancy of a set of N real numbers x1, . . . , xN is the quantity

D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣ 1

N

∑
{xν}∈[a,b)

1− (b− a)

∣∣∣∣∣∣ .
We now consider the set T of all those real valued arithmetic functions t for which
the sequence

ηn(F ) := F (n) + t(n) (n ∈ N)

satisfies
D((η1(F ), η2(F ), . . . , ηN(F ))→ 0 as N →∞

for every arithmetic function F .
The following result is then a consequence of Theorem A.

Corollary 1. Assume that for every real number K > 0, one can choose a set of
primes ℘K = {p1, p2, . . . , pk} for which (2.1) holds, and let t : N → R be a function
such that the sequence (t(pim) − t(pjm))m≥1 is uniformly distributed modulo 1 for
every pair of integers i 6= j, i, j ∈ {1, 2, . . . , k}. Then t ∈ T .

Remark 1. Observe that it is clear that if t ∈ T , then the sequence (t(n))n≥1 is
uniformly distributed modulo 1.
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Note also that, letting ‖x‖ stand for the distance between x and the nearest
integer, we proved in [4] the following.

Theorem B. If α is a positive irrational number such that for each real number
κ > 1 there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ > c

qκ
holds for every positive integer q,

and let Q(x) = arx
r + · · · + a0 ∈ R[x], where ar > 0. Assume that h is an integer

valued function belonging to M1 such that h(p) = Q(p) for every p ∈ ℘ and that
for some fixed d > 0 we have h(pa) = O(pda) for every prime power pa. Then the
function t(n) = αh(n) belongs to T .

It follows from Theorem B and Remark 1 that the sequence ({ασ(n)})n≥1 is
uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number α for which the
corresponding sequence ({ασ(n)})n≥1 is not uniformly distributed modulo 1. Indeed,

consider the sequence of integers (`k)k≥1 defined by `1 = 1 and `k+1 = 222
`k

for each
integer k ≥ 1. Then consider the number

α :=
∞∑
i=1

1

2`i
.

It is clear that, letting Ak :=
∑k

i=1 1/2`i for each integer k ≥ 1, we have∣∣∣∣α− Ak
2`k

∣∣∣∣ < 2

2`k+1
(k ≥ 1).

For each integer k ≥ 1, define Yk := 2
1
2
·`k+1. With a technique used by Wijsmuller

[11], one can prove that, for any fixed ε > 0, setting Tx := b(2− ε) log log xc, then

(2.2)
1

x
#{n ≤ x : σ(n) ≡ 0 (mod 2Tx)} → 1 as x→∞.

It follows from (2.2) that, for every fixed δ > 0,

1

Yk
#{n ≤ Yk : ‖ασ(n)‖ < δ} → 1 as k →∞.

Indeed, if for some integer n ≤ Yk, we have σ(n) ≡ 0 (mod 2Tx), then TYk > `k, in
which case we have

‖ασ(n)‖ < 2σ(n)

2`k+1
≤ 2Yk log Yk

2`k+1
,

which tends to 0 as k →∞. Hence, for every δ > 0, we have

1

x
#{n ≤ x : ‖ασ(n)‖ < δ} → 1 as x→∞,
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thus proving our claim.
Further such constructions are given in Kátai [8]. Finally, observe that the same

is also true for the sequence ({αφ(n)})n≥1.

Now, let φk(n) (resp. σk(n)) stand for the k-th iterate of the φ (resp. σ) function.
We first state two conjectures regarding these functions.

Conjecture 1. Let k ∈ N be fixed. Then, for almost all real numbers α ∈ [0, 1),

sup
f∈M1

1

x

∣∣∣∣∣∑
n≤x

f(n)e(αφk(n))

∣∣∣∣∣→ 0 as x→∞,(2.3)

sup
f∈M1

1

x

∣∣∣∣∣∑
n≤x

f(n)e(ασk(n))

∣∣∣∣∣→ 0 as x→∞,(2.4)

and in particular, for almost all α ∈ [0, 1), both sequences (αφk(n))n≥1 and (ασk(n))n≥1
are in T .

Unfortunately this conjecture is still out of reach when k ≥ 2. The main difficulty
is that we cannot obtain a good upper bound for the quantities

Ak(n) := #{m ∈ N : φk(m) = n},
Bk(n) := #{m ∈ N : σk(m) = n},

when k ≥ 2. Observe that, in the case k = 1, it is known (see Pomerance [10]) that

(2.5) A1(n) ≤ n exp{−(1 + o(1))L(n)} (n→∞),

where

L(n) =
(log n)(log log log n)

log log n
.

Conjecture 2. Let k ≥ 2 be a fixed integer. There exists a positive constant ck such
that, for all integers n ≥ 2,

Ak(n) ≤ ck
n

log9 n
,(2.6)

Bk(n) ≤ ck
n

log9 n
.(2.7)

Remark 3. Observe that (2.6) holds in the case k = 1, since it is a consequence of
(2.5). On the other hand, (2.7) is also true in the case k = 1, as it can be proved
using the same technique developed by Pomerance [10].

4



3 Main results

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Given a real number α and a prime p, let ξp := {αφ(p+ a)}. Then, for
almost all real numbers α, the corresponding sequence (ξp)p∈℘ is uniformly distributed
modulo 1.

Theorem 3. Let α be a positive irrational number such that for each real number
κ > 1 there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ > c

qκ
holds for every positive integer q.

Then, the sequence ({αφ(n)}, {ασ(n)})n≥1 is uniformly distributed modulo [0, 1)2.

4 Proof of Theorems 1 and 2

We begin with Theorem 1. We shall consider only the case of φk since the case of σk
can be handled in a similar way.

Let N ≥ 1 be a fixed integer. Set

uN = eN , yh,N = yh = eN +
heN

N
(h = 1, 2, . . . , beNc)

and, for α ∈ R,

KN,h(α) =
∑

uN≤n≤yh

e(αφk(n)).

Let S = S(N, h) = {φk(n) : n ∈ (uN , yh)}. Given s ∈ S, let

U(s) = #{n ∈ (uN , yh) : φk(n) = s}.

It is clear that U(s) ≤ Ak(s) for s ≤ yh. Hence, using (2.6), we have∫ 1

0

|KN,h(α)|2 dα =
∑
s∈S

U2(s) ≤ max
s∈S

Ak(s)
∑
s∈S

U(s) ≤ max
s∈S

Ak(s)
∑

n∈[uN ,yh]

1

≤ ck
eN

N9
(yh − uN) ≤ 3ck

e2N

N9
.(4.1)

Let

AN,h :=

{
α ∈ [0, 1) :

∣∣∣∣KN,h(α)

yh − uN

∣∣∣∣ > 1

N3

}
.

It follows from (4.1) that, letting λ(S) stand for the Lebesgue measure of a real set
S,

λ(AN,h) ≤
3ck
N3

,
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so that

(4.2) λ

beNc⋃
h=1

AN,h

 ≤ 5ck
N2

.

Therefore, since
∑
N≥1

5ck
N2

<∞, it follows from (4.2) that

∞∑
N=1

λ

beNc⋃
h=1

AN,h

 <∞.

Hence, using the well known Borel-Cantelli lemma, we have that if E is the set of all

those real α which belong to

beNc⋃
h=1

AN,h for infinitely many N , then λ(E) = 0.

Now, let α 6∈ E. Then, for every N > N0(α), we have

|KN,h(α)| ≤ 1

N3(yh − uN)
.

We shall use this to prove that

(4.3)
1

x

∑
n≤x

e(αφk(n))→ 0 as x→∞.

For x ∈ [yh,N , yh+1,N), letting TN be a function tending to infinity arbitrarily slowly
with N , we have∑

n≤x

e(αφk(n)) =
∑

n≤eN−TN

e(αφk(n)) +
∑

eN−TN<n≤eN
e(αφk(n))

+
∑

eN<n≤yh,N

e(αφk(n)) +
∑

yh,N<n≤x

e(αφk(n))

= S1 + S2 + S3 + S4,

say. Trivially we have

(4.4) |S1| ≤
x

eTN
.

From (4.2), we have

(4.5) |S2| ≤
∑

N−TN≤M≤N

5cke
M

M2
≤ dkx

N − TN
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for some constants dk. Finally,

(4.6) |S3| ≤
5ckx

N
,

and

(4.7) |S4| ≤ yh+1,N − yh,N ≤
eN

N
≤ x

N
.

Gathering (4.4), (4.5), (4.6) and (4.7), estimate (4.3) follows.
On the other hand, letting E` be the set of those α for which {α`} ∈ E, then

λ(E`) = 0, while if α 6∈ E`, then

1

x

∑
n≤x

e(α`φk(n))→ 0 as x→∞.

Let q(n) be the smallest prime Q such that Q - n. In order to complete the proof
of the Theorem 1, we need the following result.

Lemma 1. Let k ∈ N. There exists a function yx which tends to infinity with x such
that

(4.8)
1

x
#{n ≤ x : q(φk(n)) ≤ yx} → 0 as x→∞.

Proof. By choosing yx = (log log x)k(1−ε) for a fixed small ε > 0, and by using the
same techniques as in Erdős, Granville, Pomerance and Spiro [5] or as in Bassily and
Kátai [1], one can easily obtain (4.8).

We may now complete the proof of Theorem 1. Let ℘K = {p1, p2, . . . , pk} be a set
of primes satisfying (2.1) and let t(m) = αφk(m). Observe that in general we have
that if u | φ(v), then φ(uφ(v)) = uφ(φ(v)). Using this observation and Lemma 1, we
have that t(pjm) = αpjφk(m), so that

ηi,j(m) = t(pim)− t(pjm) = α(pi − pj)φk(m).

Hence, the sequence (ηi,j(m))m≥1 is uniformly distributed modulo 1 if α(pi−pj) 6∈ E.
We can drop those α which belong to the set

F =
∞⋃
K=1

⋃
i,j=1,...,RK

i 6=j

EK(pi−pj),

where RK = #℘k, since λ(F ) = 0. On the other hand, if α 6∈ F , then the statement
of Theorem 1 certainly holds. Thus, the proof of Theorem 1 is complete.

We will omit the proof of Theorem 2 since it can be obtained by repeating the
arguments used in the proof of Theorem 1 and the techniques used in the proof of
(2.5).
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5 Proof of Theorem 3

In order to prove that a given sequence ((un, vn))n≥1 is uniformly distributed mod
[0, 1)2, it is clear that we only need to prove that the sequence (kun + `vn)n≥1 is
uniformly distributed modulo 1 for all (k, `) ∈ Z× Z with (k, `) 6= (0, 0).

Given a fixed (k, `) ∈ Z× Z with (k, `) 6= (0, 0), consider the functions

A(n) = α(kσ(n) + `φ(n)), B(n) = α(kσ(n)− `φ(n)).

To prove the theorem, it is sufficient to establish that

(5.1)
1

x

∑
n≤x

e(A(n))→ 0 as x→∞.

One can easily establish that, for each ε > 0, there exists c = c(ε) such that
limε→0 c(ε) = 0 and such that

1

x
#{n ≤ x : P (n) ≤ xε}+

1

x
#{n ≤ x : P (n) ≥ x1−ε} ≤ c(ε).

Therefore, in order to prove (5.1), it is sufficient to prove that

(5.2)
1

x

∑
n≤x

xε<P (n)<x1−ε

e(A(n))→ 0 as x→∞.

Now, given an integer n ≤ x, we write n = mp, where p = P (n). Since

#{n ≤ x : P (n) > xε and p | m} ≤ x
∑
p>xε

1

p2
= o(x),

in order to prove (5.2), we only need to prove that

(5.3)
1

x

∑
n≤x

P (n)<x1−ε

e(A(n))→ 0 as x→∞.

Now, observe that if (p,m) = 1, then clearly,

A(pm) = pA(m) +B(m),

so that

∑
n≤x

P (n)<x1−ε

e(A(n)) =
∑

m≤x1−ε
e(B(m))

 ∑
p<x/m

e(pA(m))−
∑

p≤P (m)

e(pA(m))


= SA(m) + SB(m),(5.4)

say.
We consider the two cases:
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(a) A(m) = 0;

(b) A(m) 6= 0.

In case (a), we have that kσ(m) + `φ(m) = 0, so that
σ(m)

φ(m)
= − `

k
.

We will prove that

(5.5)
1

y
#

{
m ∈ [y, 2y],

σ(m)

φ(m)
= − `

k

}
→ 0 as y →∞.

Now, according to a result of Lévy [9], if g is an additive function for which the
three series ∑

|g(p)|<1

g(p)

p
,

∑
|g(p)|<1

g2(p)

p
,

∑
|g(p)|≥1

1

p

are convergent, then if (ξp)p∈℘ is a sequence of independent random variables such
that

(5.6) P (ξp = g(pa)) =

(
1− 1

p

)
1

pa
(a = 1, 2, . . .).

then, the distribution Fη of η =
∑
ξp is everywhere continuous if and only if

(5.7)
∑
p∈℘

P (ξp 6= 0) =∞

Choosing g(n) := log
σ(m)

φ(m)
, we then have

g(p) = log
p+ 1

p− 1
and g(pa) = log

1 + p+ · · ·+ pa

pa−1(p− 1)
.

For this function g and ξp as in (5.6), one can see that condition (5.7) is satisfied.
Hence, using Lévy’s result, we may conclude that (5.5) is satisfied.

Let D be the set of those positive integers m for which
σ(m)

φ(m)
= − `

k
and let us

estimate the right hand side of (5.4) as m running over D. We have that the right
hand side of (5.4) is

�
∑

m≤x1−ε
m∈D

π(x/m)

≤
∑

2ν≤x1−ε/ log x

∑
x1−ε
2ν+1 ≤m<

x1−ε
2ν

m∈D

π(x/m)
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≤ cεx

log x

∑
2ν≤x1−ε/ log x

∑
x1−ε
2ν+1 ≤m<

x1−ε
2ν

m∈D

1

m

≤ o(1)
cεx

log x
log x = o(1),

where we use (5.5) with y =
x1−ε

2ν+1
. Hence, the contribution of those n = pm ≤ x for

which m ∈ D to the sum in (5.3) is o(x) as x→∞.
It remains to consider case (b), that is when A(m) 6= 0. First, we set τ =

x/(log x)30. Then, there exists a sequence of rational numbers (am/qm)m≥1 such that

(5.8)

∣∣∣∣A(m)− am
qm

∣∣∣∣ ≤ 1

qmτ
(m = 1, 2, . . . .),

where 1 ≤ qm ≤ τ for each integer m ≥ 1.
If qm > log40 x, arguing as in [1], we obtain that

SA(m)� x/m

log2(x/m)
,

so that

(5.9)
∑

m≤x1−ε
m 6∈D

e(B(m))SA(m) = o(x).

On the other hand,

(5.10)
∑

m≤x1−ε
m 6∈D

e(B(m))SB(m)�
∑

mP (m)≤x
m≤x1−ε

P (m)

logP (m)
= o(x),

where the fact that this last sum is o(x) was proved in our 2005 paper [4]). Thus,
combining (5.9) and (5.10) shows that the contribution of those n = pm ≤ x for
which m 6∈ D to the sum in (5.3) is o(x) as x→∞.

On the other hand, if qm ≤ log40 x, then it follows from (5.8) that∣∣∣∣α− am
qm(kσ(n) + `φ(n))

∣∣∣∣ < 1

qm(kσ(n) + `φ(n))τ
.

Setting
am

qm(kσ(n) + `φ(n))
:=

A

Q
, (A,Q) = 1,

it is clear that
Q < (log x)40 (|k| log x+ |`|)x1−ε < x1−ε/2,

provided x is large enough. Using this and (5.8), we may conclude that, for some
function δx → 0 as x→∞, we have

‖Qα‖Q1+ε/4 ≤ δ(x),

thus contradicting our assumption (2.3). This fully establishes (5.3) and thereby
completes the proof of Theorem 2.
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