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Abstract

We examine the uniform distribution of certain sequences involving the
Euler totient function and the sum of divisors function.
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1 Introduction and notation

Let us denote by ¢(n) the well known Euler totient function and by o(n) the sum of
the positive divisors of n.

Let also M (resp. A) be the set of multiplicative (resp. additive) functions and
M the set of those f € M such that |f(n)| = 1 for all positive integers n. For each
y € R, we set e(y) := €™,

A famous result of H. Daboussi (see Daboussi and Delange [2], [3]) asserts that

1
(1.1) sup — — 0 as T — 00

fem, T

S f(n)e(na)

n<x

for every a € R\ Q.
The proof of (1.1) is based on the large sieve inequality. Another proof follows
from a general form of the Turan-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving the Euler
totient function and the sum of divisors function.

From here on, we let p stand for the set of all primes and we let {y} be the
fractional part of y. We also let P(n) stand for the largest prime factor of n.

2 Background results

The following result was obtained by the second author [7].



Theorem A. Lett: N — R. Assume that for every real number K > 0, there exists
a finite set pg of primes p; < ps < --+ < p; such that

(2.1) Ag =) —>K

and that, given any pair i # j, i,j € {1,2,...,k}, the corresponding sequence
nij(m) = t(pim) —t(pym)  (m eN)

satisfies the relation

1
— Z e(n;j(m)) —0 as r — o0.
T

m<x
Then there exists a function p, for which p, — 0 as x — oo and such that

> fn)e(t(n))

n<x

1
sup —
femy T

<p

T -

Observe that Theorem A holds in particular if one chooses t(n) := a,n"+- - - +an,
a polynomial with real coefficients where at least one the «;’s is irrational.
Recall that the discrepancy of a set of N real numbers z1,...,xy is the quantity

1
D(zy,...,zn):= sup |— g 1—(b—a)l.
[ DEO | (2, Yelab)

We now consider the set 7 of all those real valued arithmetic functions ¢ for which
the sequence

Na(F) := F(n) + t(n) (n € N)

satisfies
D((m(F),n2(F),...,nn(F)) — 0 as N — 0o

for every arithmetic function F'.
The following result is then a consequence of Theorem A.

Corollary 1. Assume that for every real number K > 0, one can choose a set of
primes px = {p1,pa,-..,px} for which (2.1) holds, and let t : N — R be a function
such that the sequence (t(p;m) — t(pjm))m>1 is uniformly distributed modulo 1 for
every pair of integers i # j, 1,5 € {1,2,...,k}. Thent e T.

Remark 1. Observe that it is clear that if t € T, then the sequence (t(n))n>1 is
uniformly distributed modulo 1.



Note also that, letting ||z| stand for the distance between x and the nearest
integer, we proved in [4] the following.

Theorem B. If « is a positive irrational number such that for each real number
Kk > 1 there exists a positive constant ¢ = c¢(k, «) for which the inequality

|lovgl| > q_cﬁ holds for every positive integer q,

and let Q(x) = a,a" + -+ + ag € R[z|, where a, > 0. Assume that h is an integer
valued function belonging to M such that h(p) = Q(p) for every p € p and that
for some fixed d > 0 we have h(p®) = O(p?®) for every prime power p®. Then the
function t(n) = ah(n) belongs to T .

It follows from Theorem B and Remark 1 that the sequence ({ao(n)}),>1 is
uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number o for which the
corresponding sequence ({ao(n)})n>1 is not uniformly distributed modulo 1. Indeed,

L.
consider the sequence of integers ()r>1 defined by ¢, = 1 and ly1q = 92* " for each
integer k > 1. Then consider the number

=1
oz::ZIQ&_.

It is clear that, letting Ay, := Zle 1/2% for each integer k > 1, we have

Ag
2k

2

Wiy

(k> 1).

o —

For each integer k > 1, define Yy, := 23 le+1 With a technique used by Wijsmuller
[11], one can prove that, for any fived € > 0, setting T, := | (2 — ¢) loglog x|, then

1
(2.2) ~#{n<z:0(n)=0 (mod2™)} =1 as x — oo.
x
It follows from (2.2) that, for every fixed § > 0,
1
?#{n <Yi:|lao(n)|| <6} — 1 as k — oo.
k

Indeed, if for some integer n <Y, we have o(n) = 0 (mod 27), then Ty, > {4, in

which case we have
20(n) < 2Y) log Yy

W1 — W1
which tends to 0 as k — oco. Hence, for every d > 0, we have

laa(n)] <

1
—#{n<z:|acn)]| <o} —1 as x — 00,
T
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thus proving our claim.
Further such constructions are given in Kdtai [8]. Finally, observe that the same
is also true for the sequence ({ap(n)})n>1-

Now, let ¢r(n) (resp. ox(n)) stand for the k-th iterate of the ¢ (resp. o) function.
We first state two conjectures regarding these functions.

Conjecture 1. Let k € N be fized. Then, for almost all real numbers o € [0, 1),

1
(2.3) sup — Zf e(agr(n))| — 0 as x — 00,
feM X n<x
1
(2.4) sup — Zf e(aog(n))| =0 as T — 00,
femy X nlx

and in particular, for almost all o € [0,1), both sequences (apr(n))n>1 and (aok(n))n>1
are in T .

Unfortunately this conjecture is still out of reach when k£ > 2. The main difficulty
is that we cannot obtain a good upper bound for the quantities

A(n) = #{meN: ym) = n},
Bi(n) = #{m e N:og,(m)=n},

when k > 2. Observe that, in the case k = 1, it is known (see Pomerance [10]) that
(2.5) Ai(n) <nexp{—(1+4o0(1))L(n)} (n — 00),

where

Lin) = (logn)(logloglogn) .
loglogn

Conjecture 2. Let k > 2 be a fixed integer. There exists a positive constant c; such
that, for all integers n > 2,

n
(26) Ak(n) S Ck 9
log” n

n
log”n

Remark 3. Observe that (2.6) holds in the case k = 1, since it is a consequence of
(2.5). On the other hand, (2.7) is also true in the case k = 1, as it can be proved
using the same technique developed by Pomerance [10].



3 Main results

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Given a real number o and a prime p, let &, = {ap(p+a)}. Then, for
almost all real numbers «, the corresponding sequence (&p)pe, is uniformly distributed
modulo 1.

Theorem 3. Let a be a positive irrational number such that for each real number
Kk > 1 there ezists a positive constant ¢ = ¢(k, «) for which the inequality

||l > q% holds for every positive integer q.

Then, the sequence ({ag(n)}, {ao(n)})us1 is uniformly distributed modulo [0,1)?.

4 Proof of Theorems 1 and 2

We begin with Theorem 1. We shall consider only the case of ¢ since the case of oy
can be handled in a similar way.
Let N > 1 be a fixed integer. Set

heN
uNzeNa yh,N:yh_e +T (h:1a277L6NJ)

and, for a € R,

Kyp(a) = Z e(agr(n)).

uy <n<yp

Let S = S(N,h) ={¢r(n) :n € (un,yn)}. Given s € S, let
U(s) = #{n € (un,yn) : ¢r(n) = s}.

It is clear that U(s) < Ag(s) for s < y,. Hence, using (2.6), we have

1
2(s) < ) <
/0 Knal)f da = 370%(s) < max Ay(s) Y U(s) S max Au(s) 3 1

seS seS nefun,ynl
eV e2N
Let Ko@) )
Anyp = €10,1): SN > — .
N,h {04 0,1) Un — Uy N3

It follows from (4.1) that, letting A\(S) stand for the Lebesgue measure of a real set
S,



so that

(4.2) MU Ava <

)
Therefore, since Z % < 00, it follows from (4.2) that
N>1

leN]

i A U AN,h < Q.
h=1

N=1

Hence, using the well known Borel-Cantelli lemma, we have that if E is the set of all
leN]
those real a which belong to U Ap, for infinitely many N, then A(E) = 0.
h=1
Now, let ¢ E. Then, for every N > Ny(«), we have

1
K < —.
()] < N3(yp — un)
We shall use this to prove that
1
(4.3) - E e(agr(n)) =0 as T — o0.

For x € [ynn,Ynt1,n), letting Ty be a function tending to infinity arbitrarily slowly
with N, we have

Y oeladw(n)) = Y elad(n)+ Y elagi(n)

n<z n<eN-TN eN=TN <pn<eN
+ Y elage(n)+ > elagy(n)
eN<n<yn N Yr,N<n<z

= S14+ S+ 55+ 85,

say. Trivially we have

x
(4.4) 151 < e
From (4.2), we have

5ceM dpx
4. < <
(45 Sl 3 e <

N-Tny<M<N



for some constants dj. Finally,

DCLT
(4.6) |53|<]$
and
eN T
4.7 Syl < — —<—
( ) |4| Yh+1,N — Yn,N SN N

Gathering (4.4), (4.5), (4.6) and (4.7), estimate (4.3) follows.
On the other hand, letting F; be the set of those o for which {af} € E, then
A(Ey) = 0, while if o ¢ Ey, then

iz e(alpy(n)) — 0 as x — 00.

n<x

Let g(n) be the smallest prime @) such that @ t n. In order to complete the proof
of the Theorem 1, we need the following result.

Lemma 1. Let k € N. There exists a function y, which tends to infinity with x such
that

(4.8) é#{n <z:q(pp(n)) <y} —0 as r — 00.

Proof. By choosing v, = (loglogz)*(1~%) for a fixed small ¢ > 0, and by using the
same techniques as in Erdés, Granville, Pomerance and Spiro [5] or as in Bassily and
Katai [1], one can easily obtain (4.8). O

We may now complete the proof of Theorem 1. Let px = {p1,p2,...,pr} be a set
of primes satisfying (2.1) and let ¢(m) = agg(m). Observe that in general we have
that if u | ¢(v), then ¢(up(v)) = up(¢p(v)). Using this observation and Lemma 1, we
have that t(p;m) = ap;¢r(m), so that

ni,j(m) = t(pim) — t(pym) = a(p; — p;)dx(m).

Hence, the sequence (1; j(m)),>1 is uniformly distributed modulo 1 if a(p; —p;) & E.
We can drop those a which belong to the set

= U U EK(pL —pj)>

K=1 i,j=1,.
173]

where Ry = #gy, since \(F') = 0. On the other hand, if « ¢ F', then the statement
of Theorem 1 certainly holds. Thus, the proof of Theorem 1 is complete.

We will omit the proof of Theorem 2 since it can be obtained by repeating the
arguments used in the proof of Theorem 1 and the techniques used in the proof of

(2.5).



5 Proof of Theorem 3

In order to prove that a given sequence ((uy,vy))n>1 is uniformly distributed mod
[0,1)2, it is clear that we only need to prove that the sequence (ku, + fv,),>1 is
uniformly distributed modulo 1 for all (k,¢) € Z x Z with (k,¢) # (0,0).

Given a fixed (k,l) € Z x Z with (k, ) # (0,0), consider the functions

A(n) = alko(n) +€p(n)),  B(n) = alko(n) — p(n)).

To prove the theorem, it is sufficient to establish that

1
1 — A .

(5.1) xnixe( (n)) =0 asz — o0
One can easily establish that, for each ¢ > 0, there exists ¢ = ¢(e) such that
lim,. .o ¢(e) = 0 and such that

1 1

—#{n<z:Pn) <z} +—-#{n<z:Pn) >z <cle).

x x

Therefore, in order to prove (5.1), it is sufficient to prove that

(5.2) % S eAm) =0 as oo

z€<P(n)<zl—¢

Now, given an integer n < x, we write n = mp, where p = P(n). Since

#{ngx:P(n)>a:5andp\m}§xzi2:0(:v),

p>x€
in order to prove (5.2), we only need to prove that
1
5.3 — A — 0 — 00.
(5.3) - Z e(A(n)) as & — 0o
P(n)<_a:1_E

Now, observe that if (p, m) = 1, then clearly,
A(pm) = pA(m) + B(m),

(5.4) = Sa(m)+ Sp(m),

say.
We consider the two cases:



(a) A(m)=0;

(b) A(m) # 0.

o(m) 14
In case (a), we have that ko(m) + ¢p(m) = 0, so that = ——.
(a) (m) + (6(m) o =

We will prove that

om) ¢
S(m) ——E}—>0 as Yy — 00.

Now, according to a result of Lévy [9], if ¢g is an additive function for which the

three series ) 2( ) .
g\p g-\p
> | PO D Dl
g(p)I<1

o<t P p 9(p) 21

(5.5) i# {m & [y, 24,

are convergent, then if (§,)ye, is a sequence of independent random variables such
that

1\ 1
5.6 P&, =g(p* :(1——>— a=1,2,...).
(5.6) (& = 9(p")) o) ( )
then, the distribution F,, of n = > &, is everywhere continuous if and only if
(5.7) ST P, £0) = o
PEP
, o(m)
Choosing g(n) := log , we then have
¢(m)
p+1 . l+p+---+p°
g(p) =log—— and g(p*) =log
(®) p—1 (") p*tp—1)

For this function g and &, as in (5.6), one can see that condition (5.7) is satisfied.
Hence, using Lévy’s result, we may conclude that (5.5) is satisfied.

a(m)

l
Let D be the set of those positive integers m for which W =7 and let us
m
estimate the right hand side of (5.4) as m running over D. We have that the right
hand side of (5.4) is

< Z m(x/m)

mgxl_s
meD

< > > wla/m)

2v<gl—c/logx zl—¢ zl—c
= / g W§m< P14
meD




CeT 1
= log x Z Z m

QVSII—E/Ing gl—¢ Sm’<:@1—5

ov+1 2V
meD
CeT

<o(l logx = o(1),

< o) oo o8 (1)
l1—e

where we use (5.5) with y = . Hence, the contribution of those n = pm < z for

Yy v+l

which m € D to the sum in (5.3) is o(x) as * — 0.
It remains to consider case (b), that is when A(m) # 0. First, we set 7 =
z/(log z)*°. Then, there exists a sequence of rational numbers (a,, /¢y, )m>1 such that

Ao, 1

Am) — —| < — (m=1,2,....),
qm qmT
where 1 < ¢, < 7 for each integer m > 1.

If ¢, > log" x, arguing as in [1], we obtain that

(5.8)

x/m
S € fog2(afm)
so that
(5.9) > e(B(m))Sa(m) = o(x).

On the other hand,
(5.10) > eBm)Ssim) < Y s = ofa),

0g
m<zl—e mP(m)<z
m¢gD m<zl—¢

where the fact that this last sum is o(z) was proved in our 2005 paper [4]). Thus,
combining (5.9) and (5.10) shows that the contribution of those n = pm < x for
which m & D to the sum in (5.3) is o(x) as © — 0.

On the other hand, if g,, < log® z, then it follows from (5.8) that

1
= (ko (n) + (o(n))7

Am

(ko (n) + (g(n))

o

Setting )
U A )
gm(ko(n) + (6(n)) ~ Q' (A,Q) =1,

it is clear that
Q < (log )™ (|k|logz + |]) x5 < z'7/2,

provided z is large enough. Using this and (5.8), we may conclude that, for some
function §, — 0 as z — oo, we have

1Qal|Q™+/* < 4(w),
thus contradicting our assumption (2.3). This fully establishes (5.3) and thereby
completes the proof of Theorem 2.
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