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Abstract

Given a set A of positive integers and its counting function A(x) := #{n ≤
x : n ∈ A}, we examine the size of the n-th element of A using the size of A(x).
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1 Introduction and notation

Determining the size of the n-th element of a set of positive integers using the known
size of the counting function of that set is a classical problem in analytic number
theory. For example, letting π(x) stand for the number of prime numbers p ≤ x, by
using the Prime Number Theorem in the form π(x) ∼ x/ log x as x → ∞, one can
easily show that the n-th prime number pn satisfies

pn = (1 + o(1))n log n (n→∞) .

In fact, in 1902, by using the logarithmic integral function, Cipolla [3] improved this
estimate by showing that there exists a unique sequence of polynomials (Qj)j≥1 with
rational coefficients such that, for any given positive integer m,
(1.1)

pn = n

(
log n+ log2 n− 1 +

m∑
j=1

(−1)j−1Qj (log2 n)

logj n
+ o

(
1

logm n

))
(n→∞) .

Here and in what follows, we write log2 x for max (1, log log x).
Another example is given by the search of an estimate for an, the n-th composite

number. Bojarincev [2] and Shiu [12] showed that, for any given positive integer m,

(1.2) an = n

(
1 +

β1
log n

+
β2

log2 n
+ · · ·+ βm

logm n
+ o

(
1

logm n

))
(n→∞) ,

where the βi are computable constants.
Finally, recall that we say that a number is a powerful number (or a square-full

number) if p | n implies that p2 | n. Let ℘n denote the n-th powerful number. In
1982, Ivić and Shiu [7] showed that

(1.3) ℘n =

(
ζ(3)

ζ(3/2)

)2

n2 +O
(
n5/3

)
(n→∞) .
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Here, we examine the problem of estimating the size of the n-th element of a given
set A of positive integers using the size of A(x) := #{n ≤ x : n ∈ A}, often called the
counting function of A. We will do so in two particular cases. The first one is when
A(x) = b1x

λ1 + b2x
λ2 + R(x), where R(x) = o(xλ3), for some real constants b1 > 0

and b2, with 1 > λ1 > λ2 > λ3 > 0, from which we will then deduce an improvement
of the estimate (1.3).

The second case is when A(x) =
x

L(x)

(
1 +O

(
1

ϕ(x)

))
where ϕ is an increasing

function which tends to +∞ as x → ∞ and L is a differentiable increasing slowly
oscillating function. Recall that a function L : [M,+∞)→ R continuous on [M,+∞),
where M is a positive real number, is said to be a slowly oscillating function if for
each positive real number c > 0,

(1.4) lim
x→∞

L(cx)

L(x)
= 1.

This class of functions was introduced by Karamata [8] in 1930. His paper, along
with [9] as well as the book of Seneta [11], provide some interesting properties of
slowly oscillating functions. In particular, it is possible to show that a differentiable
function L is slowly oscillating if and only if

(1.5)
xL′(x)

L(x)
= o(1) (x→∞)

and, in fact, that L is slowly oscillating if and only if there exists x0 > 0 such that

(1.6) L(x) = C(x) exp

{∫ x

x0

η(t)

t
dt

}
,

where limx→∞C(x) = C, for a certain constant C 6= 0, and η(t)→ 0 as t→∞.
We shall denote by L the set of increasing and differentiable slowly oscillating

functions.
From here on, the letter c, with or without subscript, stands for an absolute

positive constant, but not necessarily the same at each occurrence, while the letter p,
with or without subscript, will always denote a prime number.

2 Main results

Theorem 1. Given a sequence of positive integers a1 < a2 < · · · , let A = {a1, a2, . . .}
with counting function A(x) satisfying

(2.1) A(x) = b1x
λ1 + b2x

λ2 +R(x),

where
R(x) = o(xλ3) (x→∞)
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and where b1 > 0 and b2 are real constants, with 1 > λ1 > λ2 > λ3 > 0 which satisfy

3λ2
λ1
− 3 <

λ3
λ1
− 1 ≤ 2λ2

λ1
− 2.

Then

(2.2) an =
n

1
λ1

b
1
λ1
1

− 1

λ1

b2

b
λ2+1
λ1

1

n
λ2+1
λ1
−1

+
1

2

(
2λ2 + 1

λ21
− 1

λ1

)
b22

b
2λ2+1
λ1

1

n
2λ2+1
λ1
−2

+o
(
n
λ3+1
λ1
−1
)
.

Theorem 2. Given a sequence of positive integers a1 < a2 < · · · , let A = {a1, a2, . . .}
with counting function A(x) satisfying

(2.3) A(x) =
x

L(x)

(
1 +O

(
1

ϕ(x)

))
(x→∞),

where ϕ is an increasing function which tends to +∞ as x → ∞ and where L ∈ L
with corresponding function η(t) defined implicitly by (1.6). Moreover, assume that
η(t) is a decreasing function and that

(2.4) C(x) = C +O

(
1

ψ(x)

)
(x→∞) ,

where ψ(x) is an increasing function which tends to +∞ as x→∞. Then,

(2.5) an = n
C (an)

C(n)
L(n) exp

{∫ an

n

η(t)

t
dt

}(
1 +O

(
1

ϕ(n)

))
(n→∞)

and

(2.6) an = nL(n)1/(1−δ(n))
(

1 +O

(
1

ϕ(n)
+

1

ψ(n)

))
(n→∞),

where δ is some function satisfying η(an) < δ(n) < η(n) for all integers n ≥ x0.
Moreover, if there exists a positive constant c such that

(2.7) η(n)

∫ n

x0

η(t)

t
dt→ c (n→∞),

then

(2.8) an = (ec + o(1))nL(n) (n→∞).
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3 Proof of Theorem 1

To prove Theorem 1, we use an approach already used by Copil and Panaitopol [4]
to estimate the size of the n-th non powerful number.

First, observe that it follows from (2.1) that

n = A (an) = b1a
λ1
n + b2a

λ2
n +R (an) ,

so that

aλ1n =
n

b1

(
1− b2

aλ2n
n
− R (an)

n

)
thereby implying that

(3.1) an =
n1/λ1

b
1/λ1
1

(
1− b2

aλ2n
n
− R (an)

n

)1/λ1

.

In particular, since both expressions b2
a
λ2
n

n
and R(an)

n
goes to 0 as n → ∞, we have

an = n1/λ1

b
1/λ1
1

(1 + o(1)) and

(3.2) an =
n1/λ1

b
1/λ1
1

+O
(
n
λ2+1
λ1
−1
)
.

Moreover, for any α > 0,

(1− y)α = 1− αy +
1

2

(
α2 − α

)
y2 +O

(
y3
)

as y → 0.

Thus

(3.3)

(
1− b2

aλ2n
n
− R (an)

n

)1/λ1

= 1− b2
λ1

aλ2n
n

+
1

2

(
1

λ21
− 1

λ1

)
b22
a2λ2n

n2
+O

(
R (an)

n

)
.

Substituting this estimate in (3.1) yields

(3.4) an =
n1/λ1

b
1/λ1
1

− 1

λ1

b2

b
λ2+1
λ1

1

n
λ2+1
λ1
−1

+O
(
n

2λ2+1
λ1
−2
)
.

Using this estimate and the fact that R (an) = o
(
aλ3n
)

= o
(
nλ3/λ1

)
, we can replace

the RHS of (3.3) by

(3.5) 1− 1

λ1

b2

b
λ2/λ1
1

n
λ2
λ1
−1

+
1

2

(
2λ2 + 1

λ21
− 1

λ1

)
b22

b
2λ2/λ1
1

n
2λ2
λ1
−2

+ o
(
n
λ3
λ1
−1
)
,

which substituted back in (3.4) yields (2.2).
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4 Proof of Theorem 2

It follows from estimate (2.3) that

(4.1) n = A(an) =
an

L(an)

(
1 +O

(
1

ϕ(an)

))
(n→∞)

and therefore that

(4.2) an = nL(an)

(
1 +O

(
1

ϕ(n)

))
(n→∞).

Since L is a slowly oscillating function, we have

(4.3) L (an) = C (an) exp

(∫ an

x0

η(t)

t
dt

)
=
C (an)

C(n)
L(n) exp

(∫ an

n

η(t)

t
dt

)
.

Combining (4.2) and (4.3) proves (2.5).
Now, let α = α(n) be the unique positive integer satisfying 2α−1n < nL(an) ≤ 2αn,

so that α =

⌈
logL(an)

log 2

⌉
=

logL (an)

log 2
+ ε(n), where 0 ≤ ε(n) < 1. On the one hand,

since η(t) is decreasing and positive, we have∫ an

n

η(t)

t
dt ≤

∫ 2n

n

η(t)

t
dt+

∫ 22n

2n

η(t)

t
dt+ · · ·+

∫ 2αn

2α−1n

η(t)

t
dt

< η(n) log 2 + η(2n) log 2 + · · ·+ η(2α−1n) log 2

≤ η(n)α log 2 = η(n) log 2

(
logL (an)

log 2
+ ε(n)

)
.(4.4)

On the other hand,∫ an

n

η(t)

t
dt ≥

∫ 2n

n

η(t)

t
dt+

∫ 22n

2n

η(t)

t
dt+ · · ·+

∫ 2α−1n

2α−2n

η(t)

t
dt

> η(2n) log 2 + η(4n) log 2 + · · ·+ η(2α−1n) log 2

> η(2α−1n)(α− 1) log 2 ≥ η (an) log 2

(
logL (an)

log 2
+ ε(n)

)
.(4.5)

It follows from (4.3), (4.4) and (4.5) that there exists a function δ satisfying η(an) <
δ(n) < η(n) for all integers n ≥ x0 such that∫ an

n

η(t)

t
dt = δ(n) logL (an) .

Combining this result with (2.4), we get

(4.6) L (an) = L(n)1/(1−δ(n))
(

1 +O

(
1

ψ(n)

))
.
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Substituting (4.6) in (4.2) proves (2.6). Finally, (2.8) follows easily from (2.7). Indeed,
by (4.6), we have

(4.7) L (an) = L(n)1+δ(n)+O(δ2(n)).

We have

L(n)δ(n) ≤ L(n)η(n) = C(n)η(n) exp

(
η(n)

∫ n

x0

η(t)

t
dt

)
= ec + o(1)

and

L(n)δ(n) ≥ L(n)η(an) = L (an)η(an)
(
L(n)

L (an)

)η(an)
=

(
L(n)

L (an)

)η(an)
(ec + o(1)) .

Since

logL (an)− logL(n) =

∫ an

n

η(t)

t
dt (1 + o(1)) = δ(n) logL (an) (1 + o(1)) ,

it follows that (
L(n)

L (an)

)η(an)
= 1 + o(1)

and thus

(4.8) L(n)δ(n) = ec + o(1).

Moreover, using (4.8),

L(n)δ(n)
2 ≤

(
L(n)η(n)

)δ(n)
= (ec + o(1))δ(n) = 1 + o(1).

Combining this last result with (4.8) and (4.7) gives

L (an) = L(n) (ec + o(1)) (n→∞) .

Substituting this estimate in (4.2) yields

an = (ec + o(1))nL(n).

5 Applications of Theorem 1

We provide two applications.
First, we shall prove that there exists a positive constant C such that, as n→∞,

(5.1)

℘n =

(
ζ(3)

ζ(3/2)

)2

n2−2
ζ(2/3)

ζ(2)

(
ζ(3)

ζ(3/2)

) 8
3

n
5
3 +

7

3

(
ζ(2/3)

ζ(2)

)2(
ζ(3)

ζ(3/2)

) 10
3

n
4
3 +R0(n),
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where

(5.2) R0(n)� n4/3 exp
(
−C (log n)3/5 (log2 n)−1/5

)
.

In order to prove (5.1), we first recall the 1958 result of Bateman and Grosswald
[1]

(5.3) P2(x) := #{n ≤ x : n powerful} =
ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3 +R(x),

where

(5.4) R(x)� x1/6 exp
(
−C (log x)3/5 (log2 x)−1/5

)
,

which is the best known error term and is due to Suryanarayana and Sitaramachandra
Rao [14].

Then setting λ1 = 1/2, λ2 = 1/3, λ3 = 1/6, b1 = ζ(3/2)
ζ(3)

and b2 = ζ(2/3)
ζ(2)

in Theorem

1, keeping track of the explicit error term given by (5.2), estimate (5.1) follows.

As a second application, we consider the general case of k-full numbers.
Recall that, given an integer k ≥ 2, we say that a positive integer n is said to be

k-full if p | n implies that pk | n. We denote by Pk(x) the number of k-full integers
≤ x and by ℘n,k the n-th k-full number.

Ivić and Shiu [7] obtained that

(5.5) Pk(x) = γ0,kx
1/k + γ1,kx

1/(k+1) + · · ·+ γk−1,kx
1/(2k−1) + ∆k(x),

where the constants γi,k are given explicitly and ∆k(x) is a suitable error term.
Using (5.5) in the particular case k = 3 and Theorem 1, we can prove that there

exists a positive constant C and constants A3, A4 and A5 such that, as n→∞,

℘n,3 = (A3)
−3 n3 − 3 (A3)

−15
4 A4n

11
4 − 3 (A3)

−18
5 A5n

13
5 +

21

4
(A3)

−9
2 (A4)

2 n
5
2 +R(n),

where
R(n)� n

19
8 exp

(
−C (log n)3/5 (log2 n)−1/5

)
.

Remark 1. Observe that explicit values for the constants Ai were obtained by Shiu [12].
Moreover, for k ≥ 4, as n→∞, one can prove that

(5.6) ℘n,k =

(
n

γ0,k

)k
− k γ1,k

(γ0,k)
k(k+2)
k+1

n
k2+k−1
k+1 − k γ2,k

(γ0,k)
k(k+3)
k+2

n
k2+2k−2
k+2 +Rk(n),

where Rk(n)� n
k2+k−2
k+1 .

Remark 2. Observe that explicit values for the constants γi,k are given in Bateman
and Grosswald [1] and Erdős and Szekeres [6]. Moreover, for k > 4, additional terms
on the right hand side of (5.6) can be provided.
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6 Applications of Theorem 2

We provide three applications.

1. Fix a positive integer k and let

A = Ak = {n ∈ N : ω(n) = k} = {an : n ∈ N} ,

where ω(n) stands for the number of distinct prime factors of n. It is well known
that, as x→∞,

A(x) =
x

L(x)

(
1 +O

(
1

log log x

))
,

where L(x) = (k−1)! log x
(log2 x)

k−1 (see for instance Theorem 10.4 in the book of De Ko-

ninck and Luca [5]). It follows from Theorem 2 that

an = n
(k − 1)! log n

(log2 n)k−1

(
1 +O

(
1

log log n

))
(n→∞) .

2. Consider the set A of those integers n ≥ 2 such that bz(n)c − bz(n− 1)c = 1,
where z(n) = n/e

√
logn. Using a computer, we easily obtain the first elements

of A, so that we may write

A = {3, 9, 16, 24, 33, 42, 51, 61, 71, 82, 93, . . .} = {an : n ∈ N} .

Clearly |A(x)−z(x)| ≤ 1 for all x ≥ 2. Then, since condition (2.7) of Theorem 2
is satisfied with c = 1/2, we get from (2.8) that

an =
(√

e+ o(1)
)
ne
√
logn (n→∞) .

3. Let W = {a1, a2, . . .} be the set of those positive integers which can be written
as the sum of two squares. It has been known since Euler that a positive integer
can be represented as a sum of two squares if and only if each of its prime factors
of the form 4k + 3 occurs with an even power, so that

W = {2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, . . .}.

In 1908, Landau [10] showed that

W (x) = (B + o(1))
x√

log x
(x→∞),

where B =
1√
2

∏
p≡3 (mod 4)

(√
1− 1

p2

)−1
= 0.7642236 . . .. In 1986, Shiu [13]

showed that

(6.1) W (x) =
Bx√
log x

(
1 +O

(
1

log x

))
.
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Since one can show that

(6.2) L(x) :=
1

B

√
log x =

1

B
exp

{∫ x

e

1

2 log t

dt

t

}
,

it follows from (6.1) and (6.2) that the corresponding functions ϕ(x), η(x), C(x)
and ψ(x) from the statement of Theorem 2 are given by

ϕ(x) = log x, η(x) =
1

2 log x
, C(x) = 1/B, ψ(x) =∞.

Hence, it follows from (2.5) that

an =
1

B
n
√

log an

(
1 +O

(
1

log n

))
.

Thus, using the logarithm on this formula, one can improve it to

an =
1

B
n
√

log n

(
1 +

1

4

log log n

log n
+O

(
1

log n

))
(n→∞).
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[6] P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener
Ordnung und über ein verwandtes zahlentheoretisches Problem (in German),
Acta Litt. Sci. Szeged, (1934), 95–102.
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