# On the $n$-th element of a set of positive integers 

Jean-Marie De Koninck ${ }^{1}$ and Vincent Ouellet


#### Abstract

Given a set $A$ of positive integers and its counting function $A(x):=\#\{n \leq$ $x: n \in A\}$, we examine the size of the $n$-th element of $A$ using the size of $A(x)$.


AMS Subject Classification numbers: 11N37, 11N64, 11K65, 11N36
Key words: prime numbers, powerful numbers, slowly oscillating functions

## 1 Introduction and notation

Determining the size of the $n$-th element of a set of positive integers using the known size of the counting function of that set is a classical problem in analytic number theory. For example, letting $\pi(x)$ stand for the number of prime numbers $p \leq x$, by using the Prime Number Theorem in the form $\pi(x) \sim x / \log x$ as $x \rightarrow \infty$, one can easily show that the $n$-th prime number $p_{n}$ satisfies

$$
p_{n}=(1+o(1)) n \log n \quad(n \rightarrow \infty) .
$$

In fact, in 1902, by using the logarithmic integral function, Cipolla [3] improved this estimate by showing that there exists a unique sequence of polynomials $\left(Q_{j}\right)_{j \geq 1}$ with rational coefficients such that, for any given positive integer $m$,

$$
\begin{equation*}
p_{n}=n\left(\log n+\log _{2} n-1+\sum_{j=1}^{m} \frac{(-1)^{j-1} Q_{j}\left(\log _{2} n\right)}{\log ^{j} n}+o\left(\frac{1}{\log ^{m} n}\right)\right) \quad(n \rightarrow \infty) . \tag{1.1}
\end{equation*}
$$

Here and in what follows, we write $\log _{2} x$ for $\max (1, \log \log x)$.
Another example is given by the search of an estimate for $a_{n}$, the $n$-th composite number. Bojarincev [2] and Shiu [12] showed that, for any given positive integer $m$,

$$
\begin{equation*}
a_{n}=n\left(1+\frac{\beta_{1}}{\log n}+\frac{\beta_{2}}{\log ^{2} n}+\cdots+\frac{\beta_{m}}{\log ^{m} n}+o\left(\frac{1}{\log ^{m} n}\right)\right) \quad(n \rightarrow \infty), \tag{1.2}
\end{equation*}
$$

where the $\beta_{i}$ are computable constants.
Finally, recall that we say that a number is a powerful number (or a square-full number) if $p \mid n$ implies that $p^{2} \mid n$. Let $\wp_{n}$ denote the $n$-th powerful number. In 1982, Ivić and Shiu [7] showed that

$$
\begin{equation*}
\wp_{n}=\left(\frac{\zeta(3)}{\zeta(3 / 2)}\right)^{2} n^{2}+O\left(n^{5 / 3}\right) \quad(n \rightarrow \infty) \tag{1.3}
\end{equation*}
$$

[^0]Here, we examine the problem of estimating the size of the $n$-th element of a given set $A$ of positive integers using the size of $A(x):=\#\{n \leq x: n \in A\}$, often called the counting function of $A$. We will do so in two particular cases. The first one is when $A(x)=b_{1} x^{\lambda_{1}}+b_{2} x^{\lambda_{2}}+R(x)$, where $R(x)=o\left(x^{\lambda_{3}}\right)$, for some real constants $b_{1}>0$ and $b_{2}$, with $1>\lambda_{1}>\lambda_{2}>\lambda_{3}>0$, from which we will then deduce an improvement of the estimate (1.3).

The second case is when $A(x)=\frac{x}{L(x)}\left(1+O\left(\frac{1}{\varphi(x)}\right)\right)$ where $\varphi$ is an increasing function which tends to $+\infty$ as $x \rightarrow \infty$ and $L$ is a differentiable increasing slowly oscillating function. Recall that a function $L:[M,+\infty) \rightarrow \mathbb{R}$ continuous on $[M,+\infty)$, where $M$ is a positive real number, is said to be a slowly oscillating function if for each positive real number $c>0$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{L(c x)}{L(x)}=1 \tag{1.4}
\end{equation*}
$$

This class of functions was introduced by Karamata [8] in 1930. His paper, along with [9] as well as the book of Seneta [11], provide some interesting properties of slowly oscillating functions. In particular, it is possible to show that a differentiable function $L$ is slowly oscillating if and only if

$$
\begin{equation*}
\frac{x L^{\prime}(x)}{L(x)}=o(1) \quad(x \rightarrow \infty) \tag{1.5}
\end{equation*}
$$

and, in fact, that $L$ is slowly oscillating if and only if there exists $x_{0}>0$ such that

$$
\begin{equation*}
L(x)=C(x) \exp \left\{\int_{x_{0}}^{x} \frac{\eta(t)}{t} d t\right\} \tag{1.6}
\end{equation*}
$$

where $\lim _{x \rightarrow \infty} C(x)=C$, for a certain constant $C \neq 0$, and $\eta(t) \rightarrow 0$ as $t \rightarrow \infty$.
We shall denote by $\mathcal{L}$ the set of increasing and differentiable slowly oscillating functions.

From here on, the letter $c$, with or without subscript, stands for an absolute positive constant, but not necessarily the same at each occurrence, while the letter $p$, with or without subscript, will always denote a prime number.

## 2 Main results

Theorem 1. Given a sequence of positive integers $a_{1}<a_{2}<\cdots$, let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ with counting function $A(x)$ satisfying

$$
\begin{equation*}
A(x)=b_{1} x^{\lambda_{1}}+b_{2} x^{\lambda_{2}}+R(x), \tag{2.1}
\end{equation*}
$$

where

$$
R(x)=o\left(x^{\lambda_{3}}\right) \quad(x \rightarrow \infty)
$$

and where $b_{1}>0$ and $b_{2}$ are real constants, with $1>\lambda_{1}>\lambda_{2}>\lambda_{3}>0$ which satisfy

$$
\frac{3 \lambda_{2}}{\lambda_{1}}-3<\frac{\lambda_{3}}{\lambda_{1}}-1 \leq \frac{2 \lambda_{2}}{\lambda_{1}}-2 .
$$

Then

$$
\begin{equation*}
a_{n}=\frac{n^{\frac{1}{\lambda_{1}}}}{b_{1}^{\frac{1}{\lambda_{1}}}}-\frac{1}{\lambda_{1}} \frac{b_{2}}{b_{1}^{\frac{\lambda_{2}+1}{\lambda_{1}}} n^{\frac{\lambda_{2}+1}{\lambda_{1}}-1}+\frac{1}{2}\left(\frac{2 \lambda_{2}+1}{\lambda_{1}^{2}}-\frac{1}{\lambda_{1}}\right) \frac{b_{2}^{2}}{b_{1}^{\frac{2 \lambda_{2}+1}{\lambda_{1}}}} n^{\frac{2 \lambda_{2}+1}{\lambda_{1}}-2}+o\left(n^{\frac{\lambda_{3}+1}{\lambda_{1}}-1}\right) . . \text {. } . \text {. }{ }^{2}} \tag{2.2}
\end{equation*}
$$

Theorem 2. Given a sequence of positive integers $a_{1}<a_{2}<\cdots$, let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ with counting function $A(x)$ satisfying

$$
\begin{equation*}
A(x)=\frac{x}{L(x)}\left(1+O\left(\frac{1}{\varphi(x)}\right)\right) \quad(x \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

where $\varphi$ is an increasing function which tends to $+\infty$ as $x \rightarrow \infty$ and where $L \in \mathcal{L}$ with corresponding function $\eta(t)$ defined implicitly by (1.6). Moreover, assume that $\eta(t)$ is a decreasing function and that

$$
\begin{equation*}
C(x)=C+O\left(\frac{1}{\psi(x)}\right) \quad(x \rightarrow \infty) \tag{2.4}
\end{equation*}
$$

where $\psi(x)$ is an increasing function which tends to $+\infty$ as $x \rightarrow \infty$. Then,

$$
\begin{equation*}
a_{n}=n \frac{C\left(a_{n}\right)}{C(n)} L(n) \exp \left\{\int_{n}^{a_{n}} \frac{\eta(t)}{t} d t\right\}\left(1+O\left(\frac{1}{\varphi(n)}\right)\right) \quad(n \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=n L(n)^{1 /(1-\delta(n))}\left(1+O\left(\frac{1}{\varphi(n)}+\frac{1}{\psi(n)}\right)\right) \quad(n \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

where $\delta$ is some function satisfying $\eta\left(a_{n}\right)<\delta(n)<\eta(n)$ for all integers $n \geq x_{0}$.
Moreover, if there exists a positive constant $c$ such that

$$
\begin{equation*}
\eta(n) \int_{x_{0}}^{n} \frac{\eta(t)}{t} d t \rightarrow c \quad(n \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{n}=\left(e^{c}+o(1)\right) n L(n) \quad(n \rightarrow \infty) . \tag{2.8}
\end{equation*}
$$

## 3 Proof of Theorem 1

To prove Theorem 1, we use an approach already used by Copil and Panaitopol [4] to estimate the size of the $n$-th non powerful number.

First, observe that it follows from (2.1) that

$$
n=A\left(a_{n}\right)=b_{1} a_{n}^{\lambda_{1}}+b_{2} a_{n}^{\lambda_{2}}+R\left(a_{n}\right),
$$

so that

$$
a_{n}^{\lambda_{1}}=\frac{n}{b_{1}}\left(1-b_{2} \frac{a_{n}^{\lambda_{2}}}{n}-\frac{R\left(a_{n}\right)}{n}\right)
$$

thereby implying that

$$
\begin{equation*}
a_{n}=\frac{n^{1 / \lambda_{1}}}{b_{1}^{1 / \lambda_{1}}}\left(1-b_{2} \frac{a_{n}^{\lambda_{2}}}{n}-\frac{R\left(a_{n}\right)}{n}\right)^{1 / \lambda_{1}} . \tag{3.1}
\end{equation*}
$$

In particular, since both expressions $b_{2} \frac{a_{n}^{\lambda_{2}}}{n}$ and $\frac{R\left(a_{n}\right)}{n}$ goes to 0 as $n \rightarrow \infty$, we have $a_{n}=\frac{n^{1 / \lambda_{1}}}{b_{1}^{1 / \lambda_{1}}}(1+o(1))$ and

$$
\begin{equation*}
a_{n}=\frac{n^{1 / \lambda_{1}}}{b_{1}^{1 / \lambda_{1}}}+O\left(n^{\frac{\lambda_{2}+1}{\lambda_{1}}-1}\right) . \tag{3.2}
\end{equation*}
$$

Moreover, for any $\alpha>0$,

$$
(1-y)^{\alpha}=1-\alpha y+\frac{1}{2}\left(\alpha^{2}-\alpha\right) y^{2}+O\left(y^{3}\right) \quad \text { as } y \rightarrow 0 .
$$

Thus

$$
\begin{equation*}
\left(1-b_{2} \frac{a_{n}^{\lambda_{2}}}{n}-\frac{R\left(a_{n}\right)}{n}\right)^{1 / \lambda_{1}}=1-\frac{b_{2}}{\lambda_{1}} \frac{a_{n}^{\lambda_{2}}}{n}+\frac{1}{2}\left(\frac{1}{\lambda_{1}^{2}}-\frac{1}{\lambda_{1}}\right) b_{2}^{2} \frac{a_{n}^{2 \lambda_{2}}}{n^{2}}+O\left(\frac{R\left(a_{n}\right)}{n}\right) \tag{3.3}
\end{equation*}
$$

Substituting this estimate in (3.1) yields

$$
\begin{equation*}
a_{n}=\frac{n^{1 / \lambda_{1}}}{b_{1}^{1 / \lambda_{1}}}-\frac{1}{\lambda_{1}} \frac{b_{2}}{b_{1}^{\frac{\lambda_{2}+1}{\lambda_{1}}}} n^{\frac{\lambda_{2}+1}{\lambda_{1}}-1}+O\left(n^{\frac{2 \lambda_{2}+1}{\lambda_{1}}-2}\right) . \tag{3.4}
\end{equation*}
$$

Using this estimate and the fact that $R\left(a_{n}\right)=o\left(a_{n}^{\lambda_{3}}\right)=o\left(n^{\lambda_{3} / \lambda_{1}}\right)$, we can replace the RHS of (3.3) by

$$
\begin{equation*}
1-\frac{1}{\lambda_{1}} \frac{b_{2}}{b_{1}^{\lambda_{2} / \lambda_{1}}} n^{\frac{\lambda_{2}}{\lambda_{1}}-1}+\frac{1}{2}\left(\frac{2 \lambda_{2}+1}{\lambda_{1}^{2}}-\frac{1}{\lambda_{1}}\right) \frac{b_{2}^{2}}{b_{1}^{2 \lambda_{2} / \lambda_{1}}} n^{\frac{2 \lambda_{2}}{\lambda_{1}}-2}+o\left(n^{\frac{\lambda_{3}}{\lambda_{1}}-1}\right) \tag{3.5}
\end{equation*}
$$

which substituted back in (3.4) yields (2.2).

## 4 Proof of Theorem 2

It follows from estimate (2.3) that

$$
\begin{equation*}
n=A\left(a_{n}\right)=\frac{a_{n}}{L\left(a_{n}\right)}\left(1+O\left(\frac{1}{\varphi\left(a_{n}\right)}\right)\right) \quad(n \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

and therefore that

$$
\begin{equation*}
a_{n}=n L\left(a_{n}\right)\left(1+O\left(\frac{1}{\varphi(n)}\right)\right) \quad(n \rightarrow \infty) \tag{4.2}
\end{equation*}
$$

Since $L$ is a slowly oscillating function, we have

$$
\begin{equation*}
L\left(a_{n}\right)=C\left(a_{n}\right) \exp \left(\int_{x_{0}}^{a_{n}} \frac{\eta(t)}{t} \mathrm{~d} t\right)=\frac{C\left(a_{n}\right)}{C(n)} L(n) \exp \left(\int_{n}^{a_{n}} \frac{\eta(t)}{t} \mathrm{~d} t\right) . \tag{4.3}
\end{equation*}
$$

Combining (4.2) and (4.3) proves (2.5).
Now, let $\alpha=\alpha(n)$ be the unique positive integer satisfying $2^{\alpha-1} n<n L\left(a_{n}\right) \leq 2^{\alpha} n$, so that $\alpha=\left\lceil\frac{\log L\left(a_{n}\right)}{\log 2}\right\rceil=\frac{\log L\left(a_{n}\right)}{\log 2}+\epsilon(n)$, where $0 \leq \epsilon(n)<1$. On the one hand, since $\eta(t)$ is decreasing and positive, we have

$$
\begin{align*}
\int_{n}^{a_{n}} \frac{\eta(t)}{t} d t & \leq \int_{n}^{2 n} \frac{\eta(t)}{t} d t+\int_{2 n}^{2^{2} n} \frac{\eta(t)}{t} d t+\cdots+\int_{2^{\alpha-1} n}^{2^{\alpha} n} \frac{\eta(t)}{t} d t \\
& <\eta(n) \log 2+\eta(2 n) \log 2+\cdots+\eta\left(2^{\alpha-1} n\right) \log 2 \\
& \leq \eta(n) \alpha \log 2=\eta(n) \log 2\left(\frac{\log L\left(a_{n}\right)}{\log 2}+\epsilon(n)\right) \tag{4.4}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\int_{n}^{a_{n}} \frac{\eta(t)}{t} d t & \geq \int_{n}^{2 n} \frac{\eta(t)}{t} d t+\int_{2 n}^{2^{2} n} \frac{\eta(t)}{t} d t+\cdots+\int_{2^{\alpha-2}}^{2^{\alpha-1} n} \frac{\eta(t)}{t} d t \\
& >\eta(2 n) \log 2+\eta(4 n) \log 2+\cdots+\eta\left(2^{\alpha-1} n\right) \log 2 \\
& >\eta\left(2^{\alpha-1} n\right)(\alpha-1) \log 2 \geq \eta\left(a_{n}\right) \log 2\left(\frac{\log L\left(a_{n}\right)}{\log 2}+\epsilon(n)\right) . \tag{4.5}
\end{align*}
$$

It follows from (4.3), (4.4) and (4.5) that there exists a function $\delta$ satisfying $\eta\left(a_{n}\right)<$ $\delta(n)<\eta(n)$ for all integers $n \geq x_{0}$ such that

$$
\int_{n}^{a_{n}} \frac{\eta(t)}{t} \mathrm{~d} t=\delta(n) \log L\left(a_{n}\right)
$$

Combining this result with (2.4), we get

$$
\begin{equation*}
L\left(a_{n}\right)=L(n)^{1 /(1-\delta(n))}\left(1+O\left(\frac{1}{\psi(n)}\right)\right) \tag{4.6}
\end{equation*}
$$

Substituting (4.6) in (4.2) proves (2.6). Finally, (2.8) follows easily from (2.7). Indeed, by (4.6), we have

$$
\begin{equation*}
L\left(a_{n}\right)=L(n)^{1+\delta(n)+O\left(\delta^{2}(n)\right)} \tag{4.7}
\end{equation*}
$$

We have

$$
L(n)^{\delta(n)} \leq L(n)^{\eta(n)}=C(n)^{\eta(n)} \exp \left(\eta(n) \int_{x_{0}}^{n} \frac{\eta(t)}{t} \mathrm{~d} t\right)=e^{c}+o(1)
$$

and

$$
L(n)^{\delta(n)} \geq L(n)^{\eta\left(a_{n}\right)}=L\left(a_{n}\right)^{\eta\left(a_{n}\right)}\left(\frac{L(n)}{L\left(a_{n}\right)}\right)^{\eta\left(a_{n}\right)}=\left(\frac{L(n)}{L\left(a_{n}\right)}\right)^{\eta\left(a_{n}\right)}\left(e^{c}+o(1)\right) .
$$

Since

$$
\log L\left(a_{n}\right)-\log L(n)=\int_{n}^{a_{n}} \frac{\eta(t)}{t} \mathrm{~d} t(1+o(1))=\delta(n) \log L\left(a_{n}\right)(1+o(1))
$$

it follows that

$$
\left(\frac{L(n)}{L\left(a_{n}\right)}\right)^{\eta\left(a_{n}\right)}=1+o(1)
$$

and thus

$$
\begin{equation*}
L(n)^{\delta(n)}=e^{c}+o(1) . \tag{4.8}
\end{equation*}
$$

Moreover, using (4.8),

$$
L(n)^{\delta(n)^{2}} \leq\left(L(n)^{\eta(n)}\right)^{\delta(n)}=\left(e^{c}+o(1)\right)^{\delta(n)}=1+o(1) .
$$

Combining this last result with (4.8) and (4.7) gives

$$
L\left(a_{n}\right)=L(n)\left(e^{c}+o(1)\right) \quad(n \rightarrow \infty)
$$

Substituting this estimate in (4.2) yields

$$
a_{n}=\left(e^{c}+o(1)\right) n L(n) .
$$

## 5 Applications of Theorem 1

We provide two applications.
First, we shall prove that there exists a positive constant $C$ such that, as $n \rightarrow \infty$,
$\wp_{n}=\left(\frac{\zeta(3)}{\zeta(3 / 2)}\right)^{2} n^{2}-2 \frac{\zeta(2 / 3)}{\zeta(2)}\left(\frac{\zeta(3)}{\zeta(3 / 2)}\right)^{\frac{8}{3}} n^{\frac{5}{3}}+\frac{7}{3}\left(\frac{\zeta(2 / 3)}{\zeta(2)}\right)^{2}\left(\frac{\zeta(3)}{\zeta(3 / 2)}\right)^{\frac{10}{3}} n^{\frac{4}{3}}+R_{0}(n)$,
where

$$
\begin{equation*}
R_{0}(n) \ll n^{4 / 3} \exp \left(-C(\log n)^{3 / 5}\left(\log _{2} n\right)^{-1 / 5}\right) \tag{5.2}
\end{equation*}
$$

In order to prove (5.1), we first recall the 1958 result of Bateman and Grosswald [1]

$$
\begin{equation*}
P_{2}(x):=\#\{n \leq x: n \text { powerful }\}=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+R(x) \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x) \ll x^{1 / 6} \exp \left(-C(\log x)^{3 / 5}\left(\log _{2} x\right)^{-1 / 5}\right), \tag{5.4}
\end{equation*}
$$

which is the best known error term and is due to Suryanarayana and Sitaramachandra Rao [14].

Then setting $\lambda_{1}=1 / 2, \lambda_{2}=1 / 3, \lambda_{3}=1 / 6, b_{1}=\frac{\zeta(3 / 2)}{\zeta(3)}$ and $b_{2}=\frac{\zeta(2 / 3)}{\zeta(2)}$ in Theorem 1 , keeping track of the explicit error term given by (5.2), estimate (5.1) follows.

As a second application, we consider the general case of $k$-full numbers.
Recall that, given an integer $k \geq 2$, we say that a positive integer $n$ is said to be $k$-full if $p \mid n$ implies that $p^{k} \mid n$. We denote by $P_{k}(x)$ the number of $k$-full integers $\leq x$ and by $\wp_{n, k}$ the $n$-th $k$-full number.

Ivić and Shiu [7] obtained that

$$
\begin{equation*}
P_{k}(x)=\gamma_{0, k} x^{1 / k}+\gamma_{1, k} x^{1 /(k+1)}+\cdots+\gamma_{k-1, k} x^{1 /(2 k-1)}+\Delta_{k}(x), \tag{5.5}
\end{equation*}
$$

where the constants $\gamma_{i, k}$ are given explicitly and $\Delta_{k}(x)$ is a suitable error term.
Using (5.5) in the particular case $k=3$ and Theorem 1, we can prove that there exists a positive constant $C$ and constants $A_{3}, A_{4}$ and $A_{5}$ such that, as $n \rightarrow \infty$,

$$
\wp_{n, 3}=\left(A_{3}\right)^{-3} n^{3}-3\left(A_{3}\right)^{\frac{-15}{4}} A_{4} n^{\frac{11}{4}}-3\left(A_{3}\right)^{\frac{-18}{5}} A_{5} n^{\frac{13}{5}}+\frac{21}{4}\left(A_{3}\right)^{\frac{-9}{2}}\left(A_{4}\right)^{2} n^{\frac{5}{2}}+R(n),
$$

where

$$
R(n) \ll n^{\frac{19}{8}} \exp \left(-C(\log n)^{3 / 5}\left(\log _{2} n\right)^{-1 / 5}\right) .
$$

Remark 1. Observe that explicit values for the constants $A_{i}$ were obtained by Shiu [12]. Moreover, for $k \geq 4$, as $n \rightarrow \infty$, one can prove that

$$
\begin{equation*}
\wp_{n, k}=\left(\frac{n}{\gamma_{0, k}}\right)^{k}-k \frac{\gamma_{1, k}}{\left(\gamma_{0, k}\right)^{\frac{k(k+2)}{k+1}}} n^{\frac{k^{2}+k-1}{k+1}}-k \frac{\gamma_{2, k}}{\left(\gamma_{0, k}\right)^{\frac{k(k+3)}{k+2}}} n^{\frac{k^{2}+2 k-2}{k+2}}+R_{k}(n), \tag{5.6}
\end{equation*}
$$

where $R_{k}(n) \ll n^{\frac{k^{2}+k-2}{k+1}}$.
Remark 2. Observe that explicit values for the constants $\gamma_{i, k}$ are given in Bateman and Grosswald [1] and Erdös and Szekeres [6]. Moreover, for $k>4$, additional terms on the right hand side of (5.6) can be provided.

## 6 Applications of Theorem 2

We provide three applications.

1. Fix a positive integer $k$ and let

$$
A=A_{k}=\{n \in \mathbb{N}: \omega(n)=k\}=\left\{a_{n}: n \in \mathbb{N}\right\}
$$

where $\omega(n)$ stands for the number of distinct prime factors of $n$. It is well known that, as $x \rightarrow \infty$,

$$
A(x)=\frac{x}{L(x)}\left(1+O\left(\frac{1}{\log \log x}\right)\right),
$$

where $L(x)=\frac{(k-1)!\log x}{\left(\log _{2} x\right)^{k-1}}$ (see for instance Theorem 10.4 in the book of De Koninck and Luca [5]). It follows from Theorem 2 that

$$
a_{n}=n \frac{(k-1)!\log n}{\left(\log _{2} n\right)^{k-1}}\left(1+O\left(\frac{1}{\log \log n}\right)\right) \quad(n \rightarrow \infty) .
$$

2. Consider the set $A$ of those integers $n \geq 2$ such that $\lfloor z(n)\rfloor-\lfloor z(n-1)\rfloor=1$, where $z(n)=n / e^{\sqrt{\log n}}$. Using a computer, we easily obtain the first elements of $A$, so that we may write

$$
A=\{3,9,16,24,33,42,51,61,71,82,93, \ldots\}=\left\{a_{n}: n \in \mathbb{N}\right\}
$$

Clearly $|A(x)-z(x)| \leq 1$ for all $x \geq 2$. Then, since condition (2.7) of Theorem 2 is satisfied with $c=1 / 2$, we get from (2.8) that

$$
a_{n}=(\sqrt{e}+o(1)) n e^{\sqrt{\log n}} \quad(n \rightarrow \infty)
$$

3. Let $W=\left\{a_{1}, a_{2}, \ldots\right\}$ be the set of those positive integers which can be written as the sum of two squares. It has been known since Euler that a positive integer can be represented as a sum of two squares if and only if each of its prime factors of the form $4 k+3$ occurs with an even power, so that

$$
W=\{2,5,8,10,13,17,18,20,25,26,29,32,34,37,40,41,45,50, \ldots\} .
$$

In 1908, Landau [10] showed that

$$
W(x)=(B+o(1)) \frac{x}{\sqrt{\log x}} \quad(x \rightarrow \infty)
$$

where $B=\frac{1}{\sqrt{2}} \prod_{p \equiv 3}\left(\sqrt{\bmod 4)} 1-\frac{1}{p^{2}}\right)^{-1}=0.7642236 \ldots . \quad$ In 1986, Shiu [13] showed that

$$
\begin{equation*}
W(x)=\frac{B x}{\sqrt{\log x}}\left(1+O\left(\frac{1}{\log x}\right)\right) . \tag{6.1}
\end{equation*}
$$

Since one can show that

$$
\begin{equation*}
L(x):=\frac{1}{B} \sqrt{\log x}=\frac{1}{B} \exp \left\{\int_{e}^{x} \frac{1}{2 \log t} \frac{d t}{t}\right\}, \tag{6.2}
\end{equation*}
$$

it follows from (6.1) and (6.2) that the corresponding functions $\varphi(x), \eta(x), C(x)$ and $\psi(x)$ from the statement of Theorem 2 are given by

$$
\varphi(x)=\log x, \quad \eta(x)=\frac{1}{2 \log x}, \quad C(x)=1 / B, \quad \psi(x)=\infty .
$$

Hence, it follows from (2.5) that

$$
a_{n}=\frac{1}{B} n \sqrt{\log a_{n}}\left(1+O\left(\frac{1}{\log n}\right)\right) .
$$

Thus, using the logarithm on this formula, one can improve it to

$$
a_{n}=\frac{1}{B} n \sqrt{\log n}\left(1+\frac{1}{4} \frac{\log \log n}{\log n}+O\left(\frac{1}{\log n}\right)\right) \quad(n \rightarrow \infty) .
$$

## References

[1] P. Bateman and E. Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math. 2 (1958), 88-98.
[2] A.E. Bojarincev, Asymptotic expressions for the $n$th composite number, Ural. Gos. Univ. Mat. Zap., 6 (1987), 21-43.
[3] M. Cipolla, La determinazione dell' $n^{\text {imo }}$ numero primo, Rend. Acad. Sci. Fis. Mat. Napoli 8 (1902), 132-166.
[4] V. Copil and L. Panaitopol, Properties of non powerful numbers, J. Inequal. Pure Appl. Math. 9 (2008), no. 1, Article 29, 8.
[5] J.M. De Koninck and Florian Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[6] P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem (in German), Acta Litt. Sci. Szeged, (1934), 95-102.
[7] A. Ivić and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26 (1982), no. 4, 576-590.
[8] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53.
[9] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55-62.
[10] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys., (3) 13 (1908), 305-312; Collected works, Vol. 4, Thales Verlag, Essen, 1986, 59-66.
[11] E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, 1976.
[12] P. Shiu, The distribution of cube-full numbers, Glasgow Math. J. 33 (1991), no. 3, 287-295.
[13] P. Shiu, Counting sums of two squares: the Meissel-Lehmer method, Math. Comp. 47 (1986), no. 175, 351-360.
[14] D. Suryanarayana and R.R. Sitaramachandra, The distribution of square-full integers, Arkiv für Matematik 11 (1973), 195-201.

Jean-Marie De Koninck<br>Dép. de mathématiques et de statistique<br>Université Laval<br>Québec<br>Québec G1V 0A6<br>Canada<br>jmdk@mat.ulaval.ca

Vincent Ouellet
Dép. de mathématiques et de statistique Université Laval Québec
Québec G1V 0A6
Canada
vincent.ouellet.7@ulaval.ca


[^0]:    ${ }^{1}$ Research supported in part by a grant from NSERC.

