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Abstract

Let o be a non Liouville number and let f(z) = az” + ap_12" ' + --- +
a1z + a9 € R[z] be a polynomial of positive degree r. We consider the se-
quence (Y )n>1 defined by y,, = f(h(n)), where h belongs to a certain family of
arithmetic functions and show that (yy)n>1 is uniformly distributed modulo 1.
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1 Introduction and notation

Let ¢(n) be an arithmetic function and let f € R[z] be a polynomial. Under what con-
ditions is the sequence (f(t(n))),>1 uniformly distributed modulo 1?7 In the particular
case where f is of degree one, the problem is partly solved. For instance, it is known
that, if « is an irrational number and if ¢t(n) = w(n) or Q(n), where w(n) stands for
the number of distinct prime factors of n and Q(n) for the number of prime factors of
n counting their multiplicity, with w(1) = Q(1) = 0, then the sequence ({at(n)}),>1
is uniformly distributed modulo 1 (here {y} stands for the fractional part of y). In
2005, we [1] proved that if « is a positive irrational number such that for each real
number £ > 1 there exists a positive constant ¢ = ¢(k, «) for which the inequality
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lag|l > ¢/q¢" holds for every positive integer ¢, then the sequence ({ao(n)}),>1 is
uniformly distributed modulo 1. (Here ||z|| stands for the distance between = and the
nearest integer and o(n) stands for the sum of the positive divisors of n.) Observe
that one can construct an irrational number « for which the corresponding sequence
({ao(n)})n>1 is not uniformly distributed modulo 1. On the other hand, given an
integer ¢ > 2 and letting s,(n) stand for the sum of the digits of n expressed in base ¢,
it is not hard to prove that, if « is an irrational number, the sequence ({as,(n)})n>1
is uniformly distributed modulo 1. In fact, in the past 15 years, important results
have been obtained concerning the topic of the so-called g-ary arithmetic functions.
For instance, it was proved that the sequence ({asy(p)})pe, (here p is the set of all
primes) is uniformly distributed modulo 1 if and only if &« € R\ Q. In 2010, answering
a problem raised by Gelfond [10] in 1968, Mauduit and Rivat [13] proved that the
sequence ({as,(n*)})n>1 is uniformly distributed modulo 1 if and only if @ € R\ Q.

Recall that an irrational number £ is said to be a Liouville number if for all integers
m > 1, there exist two integers t and s > 1 such that

t 1
0<‘6——‘<—.
S

Sm

Hence, Liouville numbers are those real numbers which can be approximated “quite
closely” by rational numbers.
Here, if o is a non Liouville number and

(1.1) f(z)=az" +a, 12" '+ + a1z +ap € R[z] is of degree r > 1,

we prove that (f(t(n))),>1 is uniformly distributed modulo 1, for those arithmetic
1
functions ¢(n) for which the corresponding function ayy := N#{n < N :t(n) =k}

is “close” to the normal distribution as N becomes large.
Given P C g, let Qp(n) = > pryn 7. From here on, we let ¢ > 2 stand for a fixed
pEP

integer. Now, consider the sequence (y,),>1 defined by v, = f(h(n)), where h(n) is
either one of the five functions

(1'2) w(”)? Q(n>> Qp(n), 8£I(”)? SQ(n2)'

Here, we show that the sequence (y,),>1 is uniformly distributed modulo 1.

For the particular case h(n) = s,(n), we also examine an analogous problem, as
n runs only through the primes. Finally, we consider a problem involving strongly
normal numbers.

Recall that the discrepancy of a set of N real numbers x4, ..., xy is the quantity
1
D(xq,...,xx) = sup |— Z 1—(b—a)l.
[a,b)C[0,1) {z, }€[a,b)



For each positive integer N, let
(1.3) M = My = |65V N], where oy — 0 and dylog N — oo as N — oc.

We shall say that an infinite sequence of real numbers (x,,),>1 is strongly uniformly
distributed mod 1 if

D<$N+1,...,LL’N+M)—>O as N —

for every choice of M (and corresponding dy) satisfying (1.3). Then, given a fixed
integer ¢ > 2, we say that an irrational number « is a strongly normal number in base
q (or a strongly g-normal number) if the sequence (z,,),>1, defined by z, = {aq"},
is strongly uniformly distributed modulo 1. The concept of strong normality was
recently introduced by De Koninck, Kétai and Phong [2].

We will at times be using the standard notation e(z) := exp{2miz}. Finally, we
let ¢ stand for the Euler totient function.

2 Background results

The sum of digits function s,(n) in a given base ¢ > 2 has been extensively studied
over the past decades. Delange [4] was one of the first to study this function. Dr-
mota and Rivat [7], [14] studied the function s,(n?) and then, very recently, Drmota,
Mauduit and Rivat [9] analyzed the distribution of the function s,(P(n)), where
P € Zx] is a polynomial of a certain type.

Here, we state as propositions some other results and recall two relevant results
of Haldsz and Katai.

First, given an integer q > 2, we set

Proposition 1. Let § > 0 be an arbitrary small number and let € > 0. Then,

1
uniformly for |k: — pqlog, N| < 5 log, N,

N (k — pqlog N)Q} 1
<N: =kl=— — 4 +0|—F—1).
#in < 54(n) } V/2mo2log, N (exp { 202log, N logz ¢ N

Proof. This result is in fact a particular case of Proposition 3 below. n

Proposition 2. Let € > 0. Uniformly for all integers k > 0 such that (k,q—1) =1,

q—1 m(N) { (k—uqlogqN>2} 1
#ip < 5(P) } olg—1) /2mo; log, N (exp 202log, N * log%*E N




Proof. This is Theorem 1.1 in the paper of Drmota, Mauduit and Rivat [8]. O

Let G = (G;);j>0 be a strictly increasing sequence of integers, with Gy = 1. Then,
each non negative integer n has a unique representation as n = >0 €;(n)G; with
integers €;(n) > 0 provided that 263 )G; < Gy, for all integers k > 1. Then, the

i<k
sum of digits function sg(n) is given by

(2.1) sa(n) =Y _€(n).
j=0
Setting any = #{n < N : sg(n) = k}, consider the related sequence (Xy)y>1 of

random variables defined by

P(Xy =k) = %

so that the expected value of Xy and its variance are given by
(2.2) Xn| = Z sa(n and Xn| = Z sa(n Xn])?.
n<N n<N

Let us choose the sequence (G;);>o as the particular sequence

J
(2.3) Go=1, Gj=> aGi+1 (j>0),

where the a;’s are simply the positive integers appearing in the Parry a-expansion
(here @ > 1 is a real number) of 1, that is

It can be shown (see Theorem 2.1 of Drmota and Gajdosik [5]) that, for such a
sequence (G;);>o, setting

0o a;j—1
G(z,u) := Z (Z ZZ> ZOrtr a1

j=1 =0

and letting 1/a(z) denote the analytic solution u = 1/«(2) of the equation G(z,u) =1
for z in a sufficiently small (complex) neighbourhood of zg = 1 such that a(1) = a,
then,

log N
ElXy| = 1
Xx] = e+ O(1)
and log N
VIXn] = 0?22 1 0(1),
og «
where ” -
M:a() and UQZa()+M—M2
«a «Q



Proposition 3. Let G = (G;);>0 be as in (2.3). If o> # 0, then, given an arbitrary
small € > 0, uniformly for all integers k > 0,

. e N (o L= BIXN]? b
#ins Nisaln) =k} = 27V [ X N] ( p{ 2V[Xn] } o <log$_5N>) .

Proof. This is Theorem 2.2 in the paper of Drmota and Gajdosik [5]. O

Let a be a positive integer. Let ¢ = —a+1 (or ¢ = —a —1i) and set Q = a®*+ 1 and
N ={0,1,...,Q —1}. It is well known that every Gaussian integer z can be written
uniquely as

z= Z e0(2)q" with each ¢, € N.

>0
Then, define the sum of digits function s,(z) of z € Z[i] in base ¢ as

sq(z) =) eel2).

>0

Proposition 4. Let A be the set of those positive integers a for which if p | ¢ = —a=i
and |p| # 1, then |p|* > 689. Let Dy = {2 € C: |2| < VN}NZ[i] or Dy = {2z € C:
IR(2)] < VN, |S(2)| < VN}NZ[i]. Then, uniformly for all integers k > 0, we have

1 . o o4 Qkg—1) A7 (loglog N)!*

where " log (N?) ,
— g log Q—1 Q" -1
Ay = 2Q 9 N HQ = Tv Ué - 12
o5 logg(N?)
Proof. This result is a simplified version of Theorem 4 in Morgenbesser [15]. O]

Let a € Nand ¢ = —a+1i € Z[i]. Set N = {0,1,...,a®}. Then, every z € Z]i]
can be written uniquely as

z=Y ¢(2)¢ with each ¢j(z) € NV,
Jj=0

Let L be a non negative integer and consider a function F : Nt*1 — 7Z satisfying
F(0,0,...,0) =0 and set
sp(2) = Y Flej(2), 41(2), - - 611(2)).
The following is due to Drmota, Grabner and Liardet [6].
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Proposition 5. Under certain conditions on F stated in Corollary 3 in Drmota,
Grabner and Liardet [6],

#{z € 7] : ’z‘2 <N, sp(z) =k} = TN exp{_(k—#logQIz N)2} (1 +0

\/2mo?log, 2 N 20%logg2 N

uniformly for |k — plogy,p2 N| < e, /10842 N, where ¢ can be taken arbitrarily large.

For any particular set of primes P, let E(x) Z -

p<x
pEP

The following two results, which we state as propositions, are due respectively to
Halédsz [11] and Katai [12].

Proposition 6. (HALASZ) Let 0 < 6 < 1 and let P be a set of primes with corre-
sponding functions Qp(n) and E(x) = Ep(x). Then, assuming that E(x) — oo as
xr — 00, the estimate

_ 9B s It — ()] 1
; 1=— {1+O( =) )+O< E@))}

Qp(n)=k

holds uniformly for all positive integers k and real numbers x > 3 satisfying

8 k
> — <
E(z) > 5 and d < E@)

Proposition 7. (KATAI) For 1 < h <z, let

Ap(z,h) == > 1, Bylx):= > 1,

z<n<z+h n<x
w(n)=k w(n)=k

S(, h) == A’“(z’ h _ B’“f), E(z,h) = 63(z,h).

<2-0.

Letting € > 0 be an arbitrarily small number and x™/1%t¢ < h < x, then
1
log?z - /Ioglogz '

E(z,h) <

3 Main results

Theorem 1. Let f(x) be as in (1.1), h(n) be one of the five functions listed in (1.2)
and Yy, := f(h(n)). Then, the sequence (yy)n>1 is uniformly distributed modulo 1.
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Theorem 2. Let f(x) be as in (1.1). Then, the sequence (zp)pco, where z, =
f(s4(p)), is uniformly distributed modulo 1.

Theorem 3. Let Q > 2 and q > 2 be fized integers. Let a be a strongly Q-
normal number. Let g be a real valued continuous function defined on [0,1] such
that fol g(z)dx = 0. Then,

N
(3.1) lim ~ 3 g(aQ"™) =0,
=1

N—ooo [V
n

where h(n) = s,(n) or s,(n*). Moreover, letting m(N) stand for the number of prime
numbers not exceeding N, we have

(3.2) lim > g(aQ ) = 0.

N—oo 7T<N) N

The following corollary follows from estimate (3.1) of Theorem 3.

Corollary 1. With a and h(n) as in Theorem 3, the sequence (aQ"P)),,, is uniformly
distributed modulo 1.

In light of Proposition 3, we have the following two corollaries.

Corollary 2. Let G be as in (2.1). Then, letting f be as in (1.1), the sequence
({f(sa(n))})n>o0 is uniformly distributed modulo 1.

Corollary 3. Let G be as in (2.1). Then, if v is a strongly normal number in base
Q, the sequence ({a - Q*¢™Y), 5o is uniformly distributed modulo 1.

As a direct consequence of the Main Lemma and of Proposition 4, we have the
following result.

Theorem 4. Let Dy be as in Proposition 4. Let f be as in (1.1). For each z € Dy,
set y, := f(s4(2%)). Then, the discrepancy of the sequence y. tends to 0 as N — oo,
that is

D(y,:z€Dy)—0 as N — o0.

Theorem 5. Let Dy be as in Proposition 4. Let o be a strongly normal number in
base QQ and consider the sequence (y,).epy- Then

D(y,:z€Dy) —0 as N — oo.

In line with Proposition 7, we have the following.



Theorem 6. Let ¢ > 0 be a fived number. Let H = |27/**¢| and set
mi([z,x + H]) == #{n € [,z + H| : w(n) = k}.

Let f be as in (1.1) and set

Then
— =0 as r — 00.

4 Preliminary lemmas

Lemma 1. Let « be a non Liouville number and let f(x) be as in (1.1). Then,

1 U+N
sup — e(f(n))| =0 as N — oo.
U>Ii N nZXU;rl (f( ))|

Proof. Since « is a non Liouville number, there exists a positive integer ¢ such that
if 7 is a fixed positive number and
t

o — —
S

1
<—, (t,s)=1, s<m,
ST

then 7/¢ < s.

Vaughan ([16], Lemma 2.4) proved that if |0 — £| < & and K = 2!, then, given
any small number € > 0,

U+N L1 s \VE
4.1 e N+ =+ — :
(@) > ) < 8 (54 5+ )
n=U+1

Now, choose 7 = N*/2 so that N*/2* < s < 7. It then follows from (4.1) that

U+N

> e(f(n) < N7,

n=U+1

for some 0 > 0 which depends only on € and ¢, thus completing the proof of Lemma
1. O

Using this result, we can establish our Main Lemma.

Lemma 2. (Main Lemma) For each positive integer N, let (Ex(k))i>1 be a se-
quence of non negative integers called weights which, given any 6 > 0, satisfies the
following three conditions:



(a) ZEN(k) =1
k=1
(b) there exists a sequence (Ly)n>1 which tends to infinity as N — oo such that

lim sup Z En(k) — 0 as 6 — 0;
-

N—o0 —1
k—Lnl 1
Vin P
En(k+¢
(¢) lim max max M—l =0.
N—oo [k-Lyl o1 1<(<6%/2 En(k)

LN

Moreover, let o and f be as in (1.1) and let

Then,
(4.2) Tn(f) —0 as N — oo.
Proof. Let 6 > 0 be fixed and set

S :=6%2\/Ly|, tm=|Ln]+mS (m=1,2,..)), Un=[tm tm1—1] (m=1,2,...).

Let us now write
(4.3) Tn(f) = Si(N) + S2(N),
where
S(N) = > Ed(N)e(f(k)),
lk—Ln|>5vVIN

SIN) = >0 Y EBEMWe(fh) = Y. SN,

Im|<1/6%/2 k€U Iml<1/6%/

say.
First observe that, by condition (b) above,

(4.4) S[< S Exlk)=o(l)  as N — oo,
k=L ]|
Vin

1
>%

On the other hand, it follows from condition (c) above and Lemma 1 that, as N — oo,

+o(1) Y Ex(N)

k€Um

> elf(k)

keUnm

SN < B ()
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= o(1)SE,, (N)+o(1) > Ex(N

k€Um

while

SE;, (N)= > Ex(N)| =o(1) > Ex(N

k€Um k€Um

Gathering these two estimates, we obtain that
(4.5) Si(N) -0 as N — oc.

Using (4.4) and (4.5) in (4.3), conclusion (4.2) follows. O

Lemma 3. For each integer k > 1, let

Then, the relations

r (loglogz)*!

' )
k—1

m(r) = (1+o(l) =

mi(@) = (1+o(1))

1)!
x (loglog )
)l

logz (k-
hold uniformly for

4.6 k—1lo lox§i log log x,
(4.6) | glogz| < =/loglog

T

where §, is some function of x chosen appropriately and which tends to 0 as x — oc.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca
3]. O

5 Proof of Theorem 1

We first consider the case when h(n) is one of the three functions w(n), 2(n) and
m(N) = #{n < N:w(n)=k},
(V) = #{n<N:0(n) =k},
TN) = #{n<N:Qu(0) = k)

In light of Lemma 3 and Proposition 6, the corresponding weights of the sequences

(ﬂk(N));le, (75 (N))k>1 and (Ti(N))g>1 are mg(N)/N, m(N)/N and T(N)/N, re-
spectively.

10



Now, in order to obtain the conclusion of the Theorem, we only need to prove
that, for each non zero integer m,

% Z e(mf(h(n))) —0 as N — o0.

But this is guaranteed by Lemma 1 if we take into account the fact that since « is
a non Liouville number, the number ma is also non Liouville for each m € Z \ {0}.
Hence, the theorem is proved.

6 Proof of Theorem 2

We cannot make a direct use of Lemma 2 because the estimate in that lemma only
holds for those positive integers k such that (k,q—1) = 1. To avoid this obstacle, we
shall subdivide the positive integers k according to their residue class modulo g — 1.
Observe that there are p(q — 1) such classes. Hence, we write each k as

k=tlqg—1)+¢, (l,g—1)=1.
Hence, for each positive integer ¢ such that (¢,q — 1) = 1, we set
(6.1) pr={p€p:sp)=C (modqg—1)}  IL(N):=4{p<N:p€ i}
It is easy to verify that

IT,(N)
m(N)

(6.2) = (1+0(1)) (N — o0).

olg—1)

Thus, in order to prove Theorem 2, we need to show that the sum

Ue(N) := > e(mf(s4(p))),

p<N
sq(p)=¢ (mod g—1)

where m is any fixed non zero integer, satisfies

(6.3) U(N)=0(1) as N — oc.
Setting
on(k) = #{p < N : 5,(p) = k},
we have
UlN) = . elmf(k)on(k)
k=¢ (mod g—1)
(6.4) = Y e(mf(tlq—1)+0)on(tlg—1) +0).

t>0
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Observe that the leading coefficient of the above polynomial f(t(q—1)+/¢) is a(qg—1)*,
which is a non Liouville number as well (as we mentioned in the proof of Theorem
1), and also that the functions

1
IT,(N)

wy(t) == on(t(g—1)+17)

may be considered as weights (since Y ;- wn(t) = 1). Thus, applying Lemma 2, we
obtain (6.3), thereby completing the proof of Theorem 2.

7 Proof of Theorem 3

We shall skip the proof of estimate (3.1), since it can be obtained along the same
lines as that of the main theorem in De Koninck, Kétai and Phong [2].

In order to obtain (3.2), we separate the set p into ¢(g — 1) distinct sets g, with
corresponding counting function Iy (¢) defined in (6.1).

Observe that

9(aQ" TV oy (t(q — 1) + ) = g((aQ") - Q" V)on(t(g — 1) + 1)

Now, since « is a strongly Q-normal number, then so is @@, a number which is
strongly Q7 '-normal.
We then have

Z g(aQSq(P)) — Z an

p<N N

- i 3 g(aQ D oy (t(g — 1) + 0)

p<N
(£,q— 1) 1 pEgpy

q—1

= D D g((eQ") - QM on(tg—1) +0).

= p<N
(£,g—1)=1 pegpy

Since we then have

1
]\}gréo V) ; g(a@®®)) =0 for each ¢ with (¢,q — 1) =1,
PEPY

summing up over all £’s such that (¢,q — 1) = 1, estimate (3.2) follows immediately.
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