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Québec G1V 0A6
Canada

jmdk@mat.ulaval.ca

Imre Kátai
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Abstract

Let α be a non Liouville number and let f(x) = αxr + ar−1x
r−1 + · · · +

a1x + a0 ∈ R[x] be a polynomial of positive degree r. We consider the se-
quence (yn)n≥1 defined by yn = f(h(n)), where h belongs to a certain family of
arithmetic functions and show that (yn)n≥1 is uniformly distributed modulo 1.
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1 Introduction and notation

Let t(n) be an arithmetic function and let f ∈ R[x] be a polynomial. Under what con-
ditions is the sequence (f(t(n)))n≥1 uniformly distributed modulo 1 ? In the particular
case where f is of degree one, the problem is partly solved. For instance, it is known
that, if α is an irrational number and if t(n) = ω(n) or Ω(n), where ω(n) stands for
the number of distinct prime factors of n and Ω(n) for the number of prime factors of
n counting their multiplicity, with ω(1) = Ω(1) = 0, then the sequence ({αt(n)})n≥1
is uniformly distributed modulo 1 (here {y} stands for the fractional part of y). In
2005, we [1] proved that if α is a positive irrational number such that for each real
number κ > 1 there exists a positive constant c = c(κ, α) for which the inequality
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‖αq‖ > c/qκ holds for every positive integer q, then the sequence ({ασ(n)})n≥1 is
uniformly distributed modulo 1. (Here ‖x‖ stands for the distance between x and the
nearest integer and σ(n) stands for the sum of the positive divisors of n.) Observe
that one can construct an irrational number α for which the corresponding sequence
({ασ(n)})n≥1 is not uniformly distributed modulo 1. On the other hand, given an
integer q ≥ 2 and letting sq(n) stand for the sum of the digits of n expressed in base q,
it is not hard to prove that, if α is an irrational number, the sequence ({αsq(n)})n≥1
is uniformly distributed modulo 1. In fact, in the past 15 years, important results
have been obtained concerning the topic of the so-called q-ary arithmetic functions.
For instance, it was proved that the sequence ({αsq(p)})p∈℘ (here ℘ is the set of all
primes) is uniformly distributed modulo 1 if and only if α ∈ R\Q. In 2010, answering
a problem raised by Gelfond [10] in 1968, Mauduit and Rivat [13] proved that the
sequence ({αsq(n2)})n≥1 is uniformly distributed modulo 1 if and only if α ∈ R \Q.

Recall that an irrational number β is said to be a Liouville number if for all integers
m ≥ 1, there exist two integers t and s > 1 such that

0 <

∣∣∣∣β − t

s

∣∣∣∣ < 1

sm
.

Hence, Liouville numbers are those real numbers which can be approximated “quite
closely” by rational numbers.

Here, if α is a non Liouville number and

(1.1) f(x) = αxr + ar−1x
r−1 + · · ·+ a1x+ a0 ∈ R[x] is of degree r ≥ 1,

we prove that (f(t(n)))n≥1 is uniformly distributed modulo 1, for those arithmetic

functions t(n) for which the corresponding function aN,k :=
1

N
#{n ≤ N : t(n) = k}

is “close” to the normal distribution as N becomes large.
Given P ⊆ ℘, let ΩP(n) =

∑
pr‖n
p∈P

r. From here on, we let q ≥ 2 stand for a fixed

integer. Now, consider the sequence (yn)n≥1 defined by yn = f(h(n)), where h(n) is
either one of the five functions

(1.2) ω(n), Ω(n), ΩP(n), sq(n), sq(n
2).

Here, we show that the sequence (yn)n≥1 is uniformly distributed modulo 1.
For the particular case h(n) = sq(n), we also examine an analogous problem, as

n runs only through the primes. Finally, we consider a problem involving strongly
normal numbers.

Recall that the discrepancy of a set of N real numbers x1, . . . , xN is the quantity

D(x1, . . . , xN) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣ 1

N

∑
{xν}∈[a,b)

1− (b− a)

∣∣∣∣∣∣ .
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For each positive integer N , let

(1.3) M = MN = bδN
√
Nc, where δN → 0 and δN logN →∞ as N →∞.

We shall say that an infinite sequence of real numbers (xn)n≥1 is strongly uniformly
distributed mod 1 if

D(xN+1, . . . , xN+M)→ 0 as N →∞

for every choice of M (and corresponding δN) satisfying (1.3). Then, given a fixed
integer q ≥ 2, we say that an irrational number α is a strongly normal number in base
q (or a strongly q-normal number) if the sequence (xn)n≥1, defined by xn = {αqn},
is strongly uniformly distributed modulo 1. The concept of strong normality was
recently introduced by De Koninck, Kátai and Phong [2].

We will at times be using the standard notation e(x) := exp{2πix}. Finally, we
let ϕ stand for the Euler totient function.

2 Background results

The sum of digits function sq(n) in a given base q ≥ 2 has been extensively studied
over the past decades. Delange [4] was one of the first to study this function. Dr-
mota and Rivat [7], [14] studied the function sq(n

2) and then, very recently, Drmota,
Mauduit and Rivat [9] analyzed the distribution of the function sq(P (n)), where
P ∈ Z[x] is a polynomial of a certain type.

Here, we state as propositions some other results and recall two relevant results
of Halász and Kátai.

First, given an integer q ≥ 2, we set

µq =
q − 1

2
, σ2

q =
q2 − 1

12
.

Proposition 1. Let δ > 0 be an arbitrary small number and let ε > 0. Then,

uniformly for
∣∣k − µq logqN

∣∣ < 1

δ

√
logqN ,

#{n ≤ N : sq(n) = k} =
N√

2πσ2
q logqN

(
exp

{
−

(k − µq logqN)2

2σ2
q logqN

}
+O

(
1

log
1
2
−εN

))
.

Proof. This result is in fact a particular case of Proposition 3 below.

Proposition 2. Let ε > 0. Uniformly for all integers k ≥ 0 such that (k, q− 1) = 1,

#{p ≤ N : sq(p) = k} =
q − 1

ϕ(q − 1)

π(N)√
2πσ2

q logqN

(
exp

{
−

(k − µq logqN)2

2σ2
q logqN

}
+O

(
1

log
1
2
−εN

))
.
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Proof. This is Theorem 1.1 in the paper of Drmota, Mauduit and Rivat [8].

Let G = (Gj)j≥0 be a strictly increasing sequence of integers, with G0 = 1. Then,
each non negative integer n has a unique representation as n =

∑
j≥0 εj(n)Gj with

integers εj(n) ≥ 0 provided that
∑
j<k

εj(n)Gj < Gk for all integers k ≥ 1. Then, the

sum of digits function sG(n) is given by

(2.1) sG(n) =
∑
j≥0

εj(n).

Setting aN,k := #{n ≤ N : sG(n) = k}, consider the related sequence (XN)N≥1 of
random variables defined by

P (XN = k) =
aN,k
N

,

so that the expected value of XN and its variance are given by

(2.2) E[XN ] =
1

N

∑
n≤N

sG(n) and V [XN ] =
1

N

∑
n≤N

(sG(n)− E[XN ])2.

Let us choose the sequence (Gj)j≥0 as the particular sequence

(2.3) G0 = 1, Gj =

j∑
i=1

aiGj−1 + 1 (j > 0),

where the ai’s are simply the positive integers appearing in the Parry α-expansion
(here α > 1 is a real number) of 1, that is

1 =
a1
α

+
a2
α2

+
a3
α3

+ · · ·

It can be shown (see Theorem 2.1 of Drmota and Gajdosik [5]) that, for such a
sequence (Gj)j≥0, setting

G(z, u) :=
∞∑
j=1

(
aj−1∑
`=0

z`

)
za1+···+aj−1uj

and letting 1/α(z) denote the analytic solution u = 1/α(z) of the equation G(z, u) = 1
for z in a sufficiently small (complex) neighbourhood of z0 = 1 such that α(1) = α,
then,

E[XN ] = µ
logN

logα
+O(1)

and

V [XN ] = σ2 logN

logα
+O(1),

where

µ =
α′(1)

α
and σ2 =

α′′(1)

α
+ µ− µ2.
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Proposition 3. Let G = (Gj)j≥0 be as in (2.3). If σ2 6= 0, then, given an arbitrary
small ε > 0, uniformly for all integers k ≥ 0,

#{n ≤ N : sG(n) = k} =
N√

2πV [XN ]

(
exp

{
−(k − E[XN ])2

2V [XN ]

}
+O

(
1

log
1
2
−εN

))
.

Proof. This is Theorem 2.2 in the paper of Drmota and Gajdosik [5].

Let a be a positive integer. Let q = −a+ i (or q = −a− i) and set Q = a2 + 1 and
N = {0, 1, . . . , Q− 1}. It is well known that every Gaussian integer z can be written
uniquely as

z =
∑
`≥0

ε`(z)q` with each ε` ∈ N .

Then, define the sum of digits function sq(z) of z ∈ Z[i] in base q as

sq(z) =
∑
`≥0

ε`(z).

Proposition 4. Let A be the set of those positive integers a for which if p | q = −a±i
and |p| 6= 1, then |p|2 ≥ 689. Let DN = {z ∈ C : |z| ≤

√
N} ∩ Z[i] or DN = {z ∈ C :

|<(z)| ≤
√
N, |=(z)| ≤

√
N} ∩ Z[i]. Then, uniformly for all integers k ≥ 0, we have

1

#DN
#{z ∈ DN : sq(z

2) = k} =
Q(k, q − 1)√

2πσ2
Q logQ(N2)

(
exp{−∆2

k

2
}+O

(
(log logN)11√

logN

))
,

where

∆k =
k − µQ logQ(N2)√

σ2
Q logQ(N2)

, µQ =
Q− 1

2
, σ2

Q =
Q2 − 1

12
.

Proof. This result is a simplified version of Theorem 4 in Morgenbesser [15].

Let a ∈ N and q = −a + i ∈ Z[i]. Set N = {0, 1, . . . , a2}. Then, every z ∈ Z[i]
can be written uniquely as

z =
∑
j≥0

εj(z)qj with each εj(z) ∈ N .

Let L be a non negative integer and consider a function F : N L+1 → Z satisfying
F (0, 0, . . . , 0) = 0 and set

sF (z) =
∞∑

j=−L

F (εj(z), εj+1(z), . . . , εj+L(z)).

The following is due to Drmota, Grabner and Liardet [6].
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Proposition 5. Under certain conditions on F stated in Corollary 3 in Drmota,
Grabner and Liardet [6],

#{z ∈ Z[i] : |z|2 < N, sF (z) = k} =
πN√

2πσ2 log|q|2N
exp

{
−

(k − µ log|q|2 N)2

2σ2 log|q|2 N

}(
1 +O

(
1√

logN

))

uniformly for |k − µ log|q|2 N | ≤ c
√

log|q|2 N , where c can be taken arbitrarily large.

For any particular set of primes P , let E(x) = EP(x) :=
∑
p≤x
p∈P

1

p
.

The following two results, which we state as propositions, are due respectively to
Halász [11] and Kátai [12].

Proposition 6. (Halász) Let 0 < δ ≤ 1 and let P be a set of primes with corre-
sponding functions ΩP(n) and E(x) = EP(x). Then, assuming that E(x) → ∞ as
x→∞, the estimate∑

n≤x
ΩP (n)=k

1 =
xE(x)k

k!
e−E(x)

{
1 +O

(
|k − E(x)|
E(x)

)
+O

(
1√
E(x)

)}

holds uniformly for all positive integers k and real numbers x ≥ 3 satisfying

E(x) ≥ 8

δ3
and δ ≤ k

E(x)
≤ 2− δ.

Proposition 7. (Kátai) For 1 ≤ h ≤ x, let

Ak(x, h) :=
∑

x≤n≤x+h
ω(n)=k

1, Bk(x) :=
∑
n≤x

ω(n)=k

1,

δk(x, h) :=
Ak(x, h)

h
− Bk(x)

x
, E(x, h) :=

∞∑
k=1

δ2k(x, h).

Letting ε > 0 be an arbitrarily small number and x7/12+ε ≤ h ≤ x, then

E(x, h)� 1

log2 x ·
√

log log x
.

3 Main results

Theorem 1. Let f(x) be as in (1.1), h(n) be one of the five functions listed in (1.2)
and yn := f(h(n)). Then, the sequence (yn)n≥1 is uniformly distributed modulo 1.
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Theorem 2. Let f(x) be as in (1.1). Then, the sequence (zp)p∈℘, where zp :=
f(sq(p)), is uniformly distributed modulo 1.

Theorem 3. Let Q ≥ 2 and q ≥ 2 be fixed integers. Let α be a strongly Q-
normal number. Let g be a real valued continuous function defined on [0, 1] such

that
∫ 1

0
g(x) dx = 0. Then,

(3.1) lim
N→∞

1

N

N∑
n=1

g(αQh(n)) = 0,

where h(n) = sq(n) or sq(n
2). Moreover, letting π(N) stand for the number of prime

numbers not exceeding N , we have

(3.2) lim
N→∞

1

π(N)

∑
p≤N

g(αQsq(p)) = 0.

The following corollary follows from estimate (3.1) of Theorem 3.

Corollary 1. With α and h(n) as in Theorem 3, the sequence (αQh(p))p∈℘ is uniformly
distributed modulo 1.

In light of Proposition 3, we have the following two corollaries.

Corollary 2. Let G be as in (2.1). Then, letting f be as in (1.1), the sequence
({f(sG(n))})n≥0 is uniformly distributed modulo 1.

Corollary 3. Let G be as in (2.1). Then, if α is a strongly normal number in base
Q, the sequence ({α ·QsG(n)})n≥0 is uniformly distributed modulo 1.

As a direct consequence of the Main Lemma and of Proposition 4, we have the
following result.

Theorem 4. Let DN be as in Proposition 4. Let f be as in (1.1). For each z ∈ DN ,
set yz := f(sq(z

2)). Then, the discrepancy of the sequence yz tends to 0 as N →∞,
that is

D(yz : z ∈ DN)→ 0 as N →∞.

Theorem 5. Let DN be as in Proposition 4. Let α be a strongly normal number in
base Q and consider the sequence (yz)z∈DN . Then

D(yz : z ∈ DN)→ 0 as N →∞.

In line with Proposition 7, we have the following.
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Theorem 6. Let ε > 0 be a fixed number. Let H = bx7/12+εc and set

πk([x, x+H]) := #{n ∈ [x, x+H] : ω(n) = k}.

Let f be as in (1.1) and set

S(x) =
∑

x≤n≤x+H

e(f(ω(n))).

Then
S(x)

H
→ 0 as x→∞.

4 Preliminary lemmas

Lemma 1. Let α be a non Liouville number and let f(x) be as in (1.1). Then,

sup
U≥1

1

N

∣∣∣∣∣
U+N∑
n=U+1

e(f(n))

∣∣∣∣∣→ 0 as N →∞.

Proof. Since α is a non Liouville number, there exists a positive integer ` such that
if τ is a fixed positive number and∣∣∣∣α− t

s

∣∣∣∣ ≤ 1

sτ
, (t, s) = 1, s ≤ τ,

then τ 1/` < s.
Vaughan ([16], Lemma 2.4) proved that if

∣∣α− t
s

∣∣ < 1
s2

and K = 2t−1, then, given
any small number ε > 0,

(4.1)
U+N∑
n=U+1

e(f(n))�ε N
1+ε

(
1

s
+

1

N
+

s

N t

)1/K

.

Now, choose τ = N t/2 so that N t/2` < s < τ . It then follows from (4.1) that

U+N∑
n=U+1

e(f(n))� N1−δ,

for some δ > 0 which depends only on ε and `, thus completing the proof of Lemma
1.

Using this result, we can establish our Main Lemma.

Lemma 2. (Main Lemma) For each positive integer N , let (EN(k))k≥1 be a se-
quence of non negative integers called weights which, given any δ > 0, satisfies the
following three conditions:
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(a)
∞∑
k=1

EN(k) = 1;

(b) there exists a sequence (LN)N≥1 which tends to infinity as N →∞ such that

lim sup
N→∞

∞∑
k=1

|k−LN |√
LN

> 1
δ

EN(k)→ 0 as δ → 0;

(c) lim
N→∞

max
|k−LN |√

LN
≤ 1
δ

max
1≤`≤δ3/2

∣∣∣∣EN(k + `)

EN(k)
− 1

∣∣∣∣ = 0.

Moreover, let α and f be as in (1.1) and let

TN(f) :=
∞∑
k=1

e(f(k))EN(k).

Then,

(4.2) TN(f)→ 0 as N →∞.

Proof. Let δ > 0 be fixed and set

S := bδ3/2
√
LNc, tm = bLNc+mS (m = 1, 2, . . .), Um = [tm, tm+1−1] (m = 1, 2, . . .).

Let us now write

(4.3) TN(f) = S1(N) + S2(N),

where

S2(N) =
∑

|k−LN |> 1
δ

√
LN

Ek(N)e(f(k)),

S1(N) =
∑

|m|≤1/δ5/2

∑
k∈Um

Ek(N)e(f(k)) =
∑

|m|≤1/δ5/2

S
(m)
1 (N),

say.
First observe that, by condition (b) above,

(4.4) |S2(N)| ≤
∑

|k−LN |√
LN

> 1
δ

EN(k) = o(1) as N →∞.

On the other hand, it follows from condition (c) above and Lemma 1 that, as N →∞,∣∣∣S(m)
1 (N)

∣∣∣ ≤ Etm(N)

∣∣∣∣∣∑
k∈Um

e(f(k))

∣∣∣∣∣+ o(1)
∑
k∈Um

Ek(N)
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= o(1)SEtm(N) + o(1)
∑
k∈Um

Ek(N),

while ∣∣∣∣∣SEtm(N)−
∑
k∈Um

Ek(N)

∣∣∣∣∣ = o(1)
∑
k∈Um

Ek(N).

Gathering these two estimates, we obtain that

(4.5) S1(N)→ 0 as N →∞.

Using (4.4) and (4.5) in (4.3), conclusion (4.2) follows.

Lemma 3. For each integer k ≥ 1, let

πk(x) := #{n ≤ x : ω(n) = k},
π∗k(x) := #{n ≤ x : Ω(n) = k}

Then, the relations

πk(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!
,

π∗k(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!

hold uniformly for

(4.6) |k − log log x| ≤ 1

δx

√
log log x,

where δx is some function of x chosen appropriately and which tends to 0 as x→∞.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca
[3].

5 Proof of Theorem 1

We first consider the case when h(n) is one of the three functions ω(n), Ω(n) and
ΩE(n). Set

πk(N) = #{n ≤ N : ω(n) = k},
π∗k(N) = #{n ≤ N : Ω(n) = k},
Tk(N) = #{n ≤ N : ΩE(n) = k}.

In light of Lemma 3 and Proposition 6, the corresponding weights of the sequences
(πk(N))k≥1, (π∗k(N))k≥1 and (Tk(N))k≥1 are πk(N)/N , π∗k(N)/N and Tk(N)/N , re-
spectively.
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Now, in order to obtain the conclusion of the Theorem, we only need to prove
that, for each non zero integer m,

1

N

∑
n≤N

e(mf(h(n)))→ 0 as N →∞.

But this is guaranteed by Lemma 1 if we take into account the fact that since α is
a non Liouville number, the number mα is also non Liouville for each m ∈ Z \ {0}.
Hence, the theorem is proved.

6 Proof of Theorem 2

We cannot make a direct use of Lemma 2 because the estimate in that lemma only
holds for those positive integers k such that (k, q− 1) = 1. To avoid this obstacle, we
shall subdivide the positive integers k according to their residue class modulo q − 1.
Observe that there are ϕ(q − 1) such classes. Hence, we write each k as

k = t(q − 1) + `, (`, q − 1) = 1.

Hence, for each positive integer ` such that (`, q − 1) = 1, we set

(6.1) ℘` := {p ∈ ℘ : sq(p) ≡ ` (mod q − 1)}, Π`(N) := #{p ≤ N : p ∈ ℘`}.

It is easy to verify that

(6.2)
Π`(N)

π(N)
= (1 + o(1))

1

ϕ(q − 1)
(N →∞).

Thus, in order to prove Theorem 2, we need to show that the sum

U`(N) :=
∑
p≤N

sq(p)≡` (mod q−1)

e(mf(sq(p))),

where m is any fixed non zero integer, satisfies

(6.3) U`(N) = o(1) as N →∞.

Setting
σN(k) := #{p ≤ N : sq(p) = k},

we have

U`(N) =
∑

k≡` (mod q−1)

e(mf(k))σN(k)

=
∑
t≥0

e(mf(t(q − 1) + `))σN(t(q − 1) + `).(6.4)
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Observe that the leading coefficient of the above polynomial f(t(q−1)+`) is α(q−1)k,
which is a non Liouville number as well (as we mentioned in the proof of Theorem
1), and also that the functions

wN(t) :=
1

Π`(N)
σN(t(q − 1) + `)

may be considered as weights (since
∑∞

k=1wN(t) = 1). Thus, applying Lemma 2, we
obtain (6.3), thereby completing the proof of Theorem 2.

7 Proof of Theorem 3

We shall skip the proof of estimate (3.1), since it can be obtained along the same
lines as that of the main theorem in De Koninck, Kátai and Phong [2].

In order to obtain (3.2), we separate the set ℘ into ϕ(q− 1) distinct sets ℘`, with
corresponding counting function ΠN(`) defined in (6.1).

Observe that

g(αQt(q−1)+`)σN(t(q − 1) + `) = g((αQ`) ·Qt(q−1))σN(t(q − 1) + `)

Now, since α is a strongly Q-normal number, then so is αQ`, a number which is
strongly Qq−1-normal.

We then have∑
p≤N

g(αQsq(p)) =
∑
k≥1

∑
p≤N

sq(p)=k

g(αQk)

=

q−1∑
`=1

(`,q−1)=1

∑
p≤N
p∈℘`

g(αQt(q−1)+`)σN(t(q − 1) + `)

=

q−1∑
`=1

(`,q−1)=1

∑
p≤N
p∈℘`

g((αQ`) ·Qt(q−1))σN(t(q − 1) + `).

Since we then have

lim
N→∞

1

Π`(N)

∑
p≤N
p∈℘`

g(αQsq(p)) = 0 for each ` with (`, q − 1) = 1,

summing up over all `’s such that (`, q − 1) = 1, estimate (3.2) follows immediately.
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grant from NSERC.

12



References
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