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Abstract

Let q ≥ 3 be a prime number. We create an infinite sequence α1, α2, . . . of
normal numbers in base q− 1 such that, for any fixed positive integer r, the r-
dimensional sequence ({α1(q − 1)n}, . . . , {αr(q − 1)n}) is uniformly distributed
on [0, 1)r.
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1 Introduction

In previous papers, we used the factorization of integers to generate large families of
normal numbers; see for instance [1] and [2]. Here, we go a step further. But first let
us mention that it is well known that if α is an irrational number, then the sequence
(αn)n≥1 is uniformly distributed modulo 1 (see for instance Example 2.1 in the book
of Kuipers and Neiderreiter [3]). Here, given a prime number q ≥ 3, we construct an
infinite sequence of normal numbers in base q−1 which, for any fixed positive integer
r, yields an r-dimensional sequence which is uniformly distributed on [0, 1)r.

2 Main result

Let q ≥ 3 be a prime number. Our main result will consist in creating an infinite
sequence α1, α2, . . . of normal numbers in base q − 1 such that, for any fixed positive
integer r, the r-dimensional sequence ({α1(q − 1)n}, . . . , {αr(q − 1)n}) is uniformly
distributed on [0, 1)r, where {y} stands for the fractional part of y.

Let Aq := {0, 1, . . . , q − 1}. Given an integer t ≥ 1, an expression of the form
i1i2 . . . it, where each ij ∈ Aq, is called a finite word of length t. The symbol Λ will
denote the empty word, so that if we concatenate the words α,Λ, β, then, instead of
writing αΛβ, we may simply write αβ.

Fix a positive integer r. For each integer j ∈ {1, . . . , r}, write the (q − 1)-ary
expansion of αj as

αj = 0.aj,1aj,2aj,3 . . .
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To prove our claim we only need to prove that for every positive integer k and arbitrary
integers bj,` ∈ Aq (for 1 ≤ j ≤ r, 1 ≤ ` ≤ k), the proportion of those positive integers
n ≤ x for which aj,n+` = bj,` simultaneously for j = 1, . . . , r and ` = 1, . . . , k is
asymptotically equal to 1/(q − 1)kr.

To do so, we first construct the proper set up. For each positive integer N , consider
the semi-open interval JN := [xN , xN+1), where xN = eN . For each integer N ≥ 3,
we introduce the expression λN = log logN and define the corresponding interval
KN := [N,NλN ]. Given an integer n ∈ JN , we define the function qN(n) as the
smallest prime factor of n which belongs to KN , while we let qN(n) = 1 if (n, p) = 1
for all primes p ∈ KN .

Further let π1 ≤ π2 ≤ · · · ≤ πh(n) be the prime factors of n which belong to KN

(written with multiplicity). With this definition, we clearly have (n/π1 · · · πh(n), p) = 1
for each prime p ∈ KN .

For each positive integer ` and each n ∈ KN , we let

q
(`)
N (n) =

{
π` if 1 ≤ ` ≤ h,
1 if ` > h,

where h = h(n), so that in particular qN(n) = q
(1)
N (n).

We further set

fq(m) =

{
`− 1 if m ≡ ` (mod q) and ` 6= 0,
Λ if q | m.

Let r and k be fixed positive integers. Let Qi,`, for i = 1, . . . , r and ` = 1, . . . , k
be distinct primes belonging to KN such that Q1,` < Q2,` < · · · < Qr,`. For a given
interval J = [x, x+ y] ⊆ JN , we let SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k) be the number

of those integers n ∈ J for which q
(i)
N (n+ `) = Qi,`.

For each integer r ≥ 1, let σ(1), . . . , σ(k) be the permutation of the set {1, . . . , k}
which allows us to write

Qr,σ(1) < Qr,σ(2) < · · · < Qr,σ(k).

Using the Eratosthenian sieve, we obtain that, as N →∞,

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k)

= (1 + o(1))
y∏

1≤i≤r
1≤`≤k

Qi,`

·
∏

N≤π<Qr,σ(k)

(
1− ρ(π)

π

)
+ o(xN),(2.1)

where

ρ(π) =



k if N ≤ π < Qr,σ(1),
k − 1 if Qr,σ(1) < π < Qr,σ(2),
...

...
1 if Qr,σ(k−1) < π < Qr,σ(k),
0 if π ∈ {Qi,` : i = 1, . . . , r, ` = 1, . . . , k}.
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Let ti,` (i = 1, . . . , r, ` = 1, . . . , k) be any collection of the (non zero) reduced
residues modulo q and set
(2.2)

BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) :=
∑

Qi,`≡ti,` (mod q)

N<Qi,`<N
λN

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k).

Now, letting π(x; `, k) stand for the number of primes p ≤ x such that p ≡ `
(mod k), it follows from the Prime Number Theorem in arithmetical progressions
that, with 2 ≤ v ≤ u, as u→∞,

π(u+ v; `, q)− π(u; `, q) = (1 + o(1))
1

q − 1
(π(u+ v)− π(u)) +O

(
u

log10 u

)
,

from which we obtain that

(2.3)
∑

u≤p≤u+v
p≡` (mod q)

1

p log p
= (1 + o(1))

1

q − 1

1

log u
log

log(u+ v)

log u
+O

(
1

log11 u

)

and

(2.4)
∑

u≤p≤u+v
p≡` (mod q)

1

p
= (1 + o(1))

1

q − 1
log

log(u+ v)

log u
+O

(
1

log10 u

)

Substituting (2.3) and (2.4) in (2.1), we obtain

SJ(Qi,` | i = 1, . . . , r, ` = 1, . . . , k)

= (1 + o(1))
y∏

1≤i≤r,1≤`≤kQi,`

exp{k log logN − k log logQr,σ(1)

−(k − 1) log logQr,σ(2) + (k − 1) log logQr,σ(1) − . . .− log logQr,σ(k)}

= (1 + o(1))
y∏

1≤i≤r,1≤`≤kQi,`

k∏
`=1

logN

logQr,`

+ o(xN).(2.5)

Using (2.5) and definition (2.2), we obtain that, as y →∞,

(2.6) BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) = (1 + o(1))
y

(q − 1)kr

∑
πi,`

1∏
πi,`

k∏
`=1

logN

log πr,`
,

where the summation runs over those subsets of primes πi,` for which

N < π1,` < π2,` < · · · < πr,` < NλN (` = 1, . . . , k).

Now, observe that, as N →∞,∑
N<π1,`<···<πr−1,`<πr,`<N

λN

1

π1,` · · · πr−1,`
· 1

πr,` log πr,`
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= (1 + o(1))
∑
πr,`

1

(r − 1)!

 ∑
N<π<πr,`

1

π

r−1

· 1

πr,` log πr,`

= (1 + o(1))
∑
πr,`

1

(r − 1)!

(
log

(
log πr,`
logN

))r−1
· 1

πr,` log πr,`

= (1 + o(1))

∫ NλN

N

1

(r − 1)!

(
log

(
log u

logN

))r−1
du

u log2 u

= (1 + o(1))

∫ λN logN

logN

1

(r − 1)!

(
log

(
v

logN

))r−1
dv

v2
.(2.7)

Setting v = y logN in this last integral, we obtain that the above expression can be
replaced by

(1 + o(1))

logN

∫ λN

1

1

(r − 1)!

(log y)r−1

y2
dy =

(1 + o(1))

logN

1

(r − 1)!

∫ ∞
1

(log y)r−1

y2
dy,

which in turn, after setting z = log y, becomes

(1 + o(1))

logN

∫ ∞
0

e−zzr−1

(r − 1)!
dz =

(1 + o(1))

logN
,

which substituted in (2.7) yields

(2.8)
∑

N<π1,`<···<πr−1,`<πr,`<N
λN

1

π1,` · · · πr−1,`
· 1

πr,` log πr,`
=

(1 + o(1))

logN
(N →∞).

Using (2.8) in (2.6), we obtain that

(2.9) BJ(ti,` | i = 1, . . . , r, ` = 1, . . . , k) = (1 + o(1))
y

(q − 1)kr
(y →∞).

We now define, for each integer N ∈ N,

θ
(i)
N = Concat{fq(q(i)N (n)) : n ∈ JN} (i = 1, 2, . . .).

Then consider the number
θ(i) = θ

(i)
1 θ

(i)
2 . . .

and from these numbers, introduce the number

αi := 0.θ(i),

that is the number whose q-ary expansion is 0.θ(i).
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Recall that, for n ∈ JN , we defined h(n) as the number of prime divisors of n
located in the interval [N,NλN ]. Thus, setting

UN :=
∑

N<p<NλN

1

p
= log λN + o(1) (N →∞),

we obtain, using the Turán-Kubilius inequality, that for some absolute constant c > 0,

(2.10)
∑
n∈JN

(h(n)− UN)2 ≤ cxN log λN .

On the one hand, it follows from (2.10) that for each integer r ≥ 1, there exists a
constant cr > 0 such that

(2.11) #{n ∈ JN : h(n) ≤ r} ≤ crxN
log λN

.

On the other hand, it is easy to see that, as y →∞,

(2.12) #{n ∈ JN : p2|n for some prime p > N} ≤ cxN
∑
p>N

1

p2
= O

(xN
N

)
.

We therefore have, in light of (2.9), keeping in mind (2.11) and (2.12), that, as
y →∞ (and thus N →∞),
(2.13)

#{n ∈ JN : fq(q
(i)
N (n+`)) = ti,`−1 : i = 1, . . . , r, ` = 1, . . . , k} = (1+o(1))

y

(q − 1)kr
+o(xN).

Now, to prove the normality of αi in base q− 1, we need to estimate the quantity

H(x) := #{n ≤ x : fq(q
(i)
N (n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}.

For this, let us set

KN := #{n ∈ JN : fq(q
(i)
N (n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}.

Let x be a large number. Then, x ∈ JN0 for some N0. Hence, applying (2.13), we get

H(x) = O(1) +K3 +K4 + · · ·+KN0−1

+#{JN0−1 ≤ x : fq(q
(i)
N0−1(n+ `)) = ti,` − 1 : i = 1, . . . , r, ` = 1, . . . , k}

=
(1 + o(1))

(q − 1)kr
((x2 − x1) + (x3 − x2) + · · ·+ (xN0 − xN0−1) + (x− xN0)) +O(1)

= (1 + o(1))
x− x1

(q − 1)kr
= (1 + o(1))

x

(q − 1)kr
,

thus completing the proof of our main result.
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3 Final remarks

The method we used will also lead to the construction of normal numbers if, for each
N ∈ N, instead of choosing the smallest prime factor of n ∈ JN which belongs to KN ,

we choose the largest prime factor of n which is smaller than yN := x
1/
√
N

N , where
xN = eN . Even more generally, instead of choosing the largest prime factor, we may
pick the second largest prime factor, or the third, and so on.

Similarly, instead of working with yN := x
1/
√
N

N , where xN = eN , we could also
choose any two sequences (wN)N≥1 and (zN)N≥1 which satisfy the conditions

wN →∞,
log zN
log xN

→∞, log zN
logwN

→∞ (N →∞).

Finally, one can easily see that, letting φ stand for the Euler totient function, our
main result will still hold for any base b > 2 of the form b = φ(q) for some integer
q > 4.
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