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Abstract
Let ¢ > 3 be a prime number. We create an infinite sequence ag, oo, ... of
normal numbers in base ¢ — 1 such that, for any fixed positive integer r, the r-
dimensional sequence ({a1(q¢ — 1)"},...,{a,y(¢ — 1)™}) is uniformly distributed
on [0,1)".
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1 Introduction

In previous papers, we used the factorization of integers to generate large families of
normal numbers; see for instance [1] and [2]. Here, we go a step further. But first let
us mention that it is well known that if « is an irrational number, then the sequence
(an)p>1 is uniformly distributed modulo 1 (see for instance Example 2.1 in the book
of Kuipers and Neiderreiter [3]). Here, given a prime number ¢ > 3, we construct an
infinite sequence of normal numbers in base ¢ — 1 which, for any fixed positive integer
r, yields an r-dimensional sequence which is uniformly distributed on [0, 1)".

2 Main result

Let ¢ > 3 be a prime number. Our main result will consist in creating an infinite
sequence aq, (s, . .. of normal numbers in base ¢ — 1 such that, for any fixed positive
integer r, the r-dimensional sequence ({a1(q —1)"},...,{a-(¢ —1)"}) is uniformly
distributed on [0,1)", where {y} stands for the fractional part of y.

Let A, :={0,1,...,¢ — 1}. Given an integer ¢ > 1, an expression of the form
i1ls . . .1, where each i; € Ay, is called a finite word of length t. The symbol A will
denote the empty word, so that if we concatenate the words «, A, 5, then, instead of
writing aAS, we may simply write af.

Fix a positive integer r. For each integer j € {1,...,r}, write the (¢ — 1)-ary
expansion of o; as

Q; = 0.aj,1aj72aj’3 e
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To prove our claim we only need to prove that for every positive integer k and arbitrary
integers b;, € A, (for 1 < j <r, 1 </{¢ < k), the proportion of those positive integers
n < x for which a;,1, = bj, simultaneously for j = 1,...,r and £ = 1,...,k is
asymptotically equal to 1/(q — 1)*".

To do so, we first construct the proper set up. For each positive integer N, consider
the semi-open interval Jy := [xy,ZyNy1), Where zy = eN. For each integer N > 3,
we introduce the expression \y = loglog N and define the corresponding interval
Ky := [N,N*]. Given an integer n € Jy, we define the function gy(n) as the
smallest prime factor of n which belongs to K, while we let gy(n) =1 if (n,p) =1
for all primes p € Ky.

Further let m < mp < -+ < 7y, be the prime factors of n which belong to Ky
(written with multiplicity). With this definition, we clearly have (n/my - - - Ty, p) = 1
for each prime p € Ky.

For each positive integer ¢ and each n € Ky, we let

Opy=1 ™ if 1<0<h,
N 1 if ¢>h,

where h = h(n), so that in particular gy(n) = qj(vl)(n).
We further set
-1 if m={¢ (modgq)and(#0,
fq(m)—{/\ it ¢|m.

Let r and k be fixed positive integers. Let Q;p, for¢ =1,...,rand £ =1,...k
be distinct primes belonging to Ky such that Q1 < Q20 < -+ < Qrp. For a given
interval J = [z,z+y| C Jy, welet S;(Qie|i=1,...,7, £=1,...,k) be the number
of those integers n € J for which q](f,) (n+£) = Qi

For each integer r > 1, let o(1),...,0(k) be the permutation of the set {1,...,k}
which allows us to write

Qro) < Qro@ <+ < Qrow)-
Using the Eratosthenian sieve, we obtain that, as N — oo,

SJ(Q@4|Z':1,...,T‘, gzl,,k})

(2.1) = (1+ 0(1))ﬁ : l‘Q[ (1 - @) +o(zy),
W N<r<Qy o (k)

1<i<r
1<t<k

where
k if N <7< Qr,a(1)7

k—1 if QT’yU(l) <7< Qr,o‘(Z)a

1 if Qr,a(kfl) <7m < Qr,a(k);
Ty

0 if me{Qie:i=1,....,r, {=1,... k}.
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Let t;p (i = 1,...,7, £ = 1,...,k) be any collection of the (non zero) reduced
residues modulo ¢ and set
(2.2)
By(tig|li=1,...,r, 0=1,... k) := > SiQieli=1,....r, (=1,... k).
Qj,¢=tj,¢ (mod q)
N<Q; <N N
Now, letting m(x; ¢, k) stand for the number of primes p < z such that p = /¢

(mod k), it follows from the Prime Number Theorem in arithmetical progressions
that, with 2 < v < wu, as u — oo,

m(u+vil,q) —m(u; b, q) = (1 +o(1))

(7r(u—|—v)—7r(u))+0< U )

qg—1 log"u

from which we obtain that
1 1 1 1 1
(2.3) 3 = (14 0(1)) G (—)

w<p<utv plng B q— 1 logu lOgU logll U

p={ (mod q)

1 1 log(u + v) 1
2.4 - = (1+o0o(1 1 +O0 | ——
ey L=y o ()
p={ (mod q)

Substituting (2.3) and (2.4) in (2.1), we obtain
Sy Qi li=1,....r, =1,....k)

= (1+o0(1)) Y exp{kloglog N — kloglog Qo)
ngigr 1<0<k Qil
—(k —1)loglog Q,.»(2) + (k — 1)loglog Q1) — - .. — loglog Qro(k) }
k
Yy log N

(25) = (1+o0(1))

+o(zn).
[Li<icri<e<i @i 11 108 Qg

Using (2.5) and definition (2.2), we obtain that, as y — oo,

k

(2.6) Bj(tiyg |i= 1,...,r, £ = 1,...,]{:) = (1+0<1))(q_y1)erH;MH

(=1

log N
log 7,0’

where the summation runs over those subsets of primes 7; , for which
N<my<my<-<my<NW ({=1,...k).

Now, observe that, as N — oo,

> : 1
T Tr_1e Trelogm,

N<7T1,[<"'<7TT_1’2<7I'T,4<N)‘N



=(1+ 0(1)

=(1+o0(1))

~1
1
7“—1 < WrglOgﬂ'rg

g Tre 1
(r—1)! log N ﬂr,g log 7,4

= (1+o() /NW = (l (15)
(2.7) _ (1+o(1)>/h:vlog]V (r—ll)! (log (bg”N))T_lg.

Setting v = ylog N in this last integral, we obtain that the above expression can be
replaced by

(T4o0(1) (™ 1 (logy)' ~ (1+0(1) 1 [~ (logy) "
log N /1 (r=1t w2 W= log N (r—l)!/ Tdy’

which in turn, after setting z = logy, becomes

(1+0(1)) [®e =zt (14 0(1))
log N /0 (r—l)!dz: logN ~’

which substituted in (2.7) yields

(2.8) 3 L1 (4o ()

Mg Tp_1e Tpelogmy log N

N<7r1,g<~~~<7rT,172<7rr7g<NAN

Using (2.8) in (2.6), we obtain that

(2.9) By(tigli=1,...;r, £=1,...,k)=(1+0(1))——— (y — 00).

We now define, for each integer N € N,
) = Concat{fq(q](f,)(n)) :n € Jy} (i=1,2,...).

Then consider the number

00 =gl

and from these numbers, introduce the number

that is the number whose g-ary expansion is 0.0,



Recall that, for n € Jy, we defined h(n) as the number of prime divisors of n
located in the interval [N, N*¥]. Thus, setting

1
Uy = Z — =log Ay + 0(1) (N — 0),

N<p<N*N
we obtain, using the Turan-Kubilius inequality, that for some absolute constant ¢ > 0,

(2.10) Z (h(n) — Un)? < caylog Ay,

neJy

On the one hand, it follows from (2.10) that for each integer r > 1, there exists a
constant ¢, > 0 such that

CrTN

(2.11) #{n € Jy:h(n) <r} <

log Ay~

On the other hand, it is easy to see that, as y — oo,

1
(2.12) #{n € Jy : p*|n for some prime p > N} < cay Z 2= @, (%) .

p>N

We therefore have, in light of (2.9), keeping in mind (2.11) and (2.12), that, as
y — oo (and thus N — 00),
(2.13)

#ine dy: f(@Vnr0) =tig—1:i=1,....r, (=1,... k} = (1+0(1))ﬁ+0(:€]\;).

Now, to prove the normality of «; in base ¢ — 1, we need to estimate the quantity
H@) =#{n<z: f(qVm+0)=tiy—1:i=1,....r, £=1,... k}.
For this, let us set
Ky=#{nedy: f@dPmn+0)=tiy—1:i=1,....r, £=1,...k}.
Let = be a large number. Then, x € Jy, for some Ny. Hence, applying (2.13), we get

H(z) = O)+ K3+ Ky+-+ Ky
+#{ N1 < T fq(q%g_l(n—kﬁ)) =tiy—1:i=1,...,r, (=1,...k}
(1+0(1))
(¢ — 1)
T T

= (o) e = (1 + o) =y

(r2 —21) + (23 —22) + -+ - + (TN, — Tap-1) + (¥ — 7)) + O(1)

thus completing the proof of our main result.

b}



3 Final remarks

The method we used will also lead to the construction of normal numbers if, for each
N € N, instead of choosing the smallest prime factor of n € Jy which belongs to Ky,
we choose the largest prime factor of n which is smaller than yy = m%\/ﬁ, where
rn = eV. Even more generally, instead of choosing the largest prime factor, we may
pick the second largest prime factor, or the third, and so on.

e s

Similarly, instead of working with yy := , where xny = e, we could also
choose any two sequences (wy)n>1 and (zy)n>1 which satisfy the conditions

log zn log zn
— 00,
log x log wy

wy — 00, (N — 00).

Finally, one can easily see that, letting ¢ stand for the Euler totient function, our
main result will still hold for any base b > 2 of the form b = ¢(q) for some integer
q > 4.
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