Multidimensional sequences uniformly distributed modulo 1 created from normal numbers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Édition du 8 mai 2015

Abstract

Let $q \geq 3$ be a prime number. We create an infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$ of normal numbers in base $q-1$ such that, for any fixed positive integer r, the r dimensional sequence $\left(\left\{\alpha_{1}(q-1)^{n}\right\}, \ldots,\left\{\alpha_{r}(q-1)^{n}\right\}\right)$ is uniformly distributed on $[0,1)^{r}$.

AMS Subject Classification numbers: 11K16, 11J71
Key words: normal numbers, uniform distribution modulo one

1 Introduction

In previous papers, we used the factorization of integers to generate large families of normal numbers; see for instance [1] and [2]. Here, we go a step further. But first let us mention that it is well known that if α is an irrational number, then the sequence $(\alpha n)_{n \geq 1}$ is uniformly distributed modulo 1 (see for instance Example 2.1 in the book of Kuipers and Neiderreiter [3]). Here, given a prime number $q \geq 3$, we construct an infinite sequence of normal numbers in base $q-1$ which, for any fixed positive integer r, yields an r-dimensional sequence which is uniformly distributed on $[0,1)^{r}$.

2 Main result

Let $q \geq 3$ be a prime number. Our main result will consist in creating an infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$ of normal numbers in base $q-1$ such that, for any fixed positive integer r, the r-dimensional sequence $\left(\left\{\alpha_{1}(q-1)^{n}\right\}, \ldots,\left\{\alpha_{r}(q-1)^{n}\right\}\right)$ is uniformly distributed on $[0,1)^{r}$, where $\{y\}$ stands for the fractional part of y.

Let $A_{q}:=\{0,1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{q}$, is called a finite word of length t. The symbol Λ will denote the empty word, so that if we concatenate the words α, Λ, β, then, instead of writing $\alpha \Lambda \beta$, we may simply write $\alpha \beta$.

Fix a positive integer r. For each integer $j \in\{1, \ldots, r\}$, write the $(q-1)$-ary expansion of α_{j} as

$$
\alpha_{j}=0 . a_{j, 1} a_{j, 2} a_{j, 3} \ldots
$$

[^0]To prove our claim we only need to prove that for every positive integer k and arbitrary integers $b_{j, \ell} \in A_{q}($ for $1 \leq j \leq r, 1 \leq \ell \leq k)$, the proportion of those positive integers $n \leq x$ for which $a_{j, n+\ell}=b_{j, \ell}$ simultaneously for $j=1, \ldots, r$ and $\ell=1, \ldots, k$ is asymptotically equal to $1 /(q-1)^{k r}$.

To do so, we first construct the proper set up. For each positive integer N, consider the semi-open interval $J_{N}:=\left[x_{N}, x_{N+1}\right)$, where $x_{N}=e^{N}$. For each integer $N \geq 3$, we introduce the expression $\lambda_{N}=\log \log N$ and define the corresponding interval $K_{N}:=\left[N, N^{\lambda_{N}}\right]$. Given an integer $n \in J_{N}$, we define the function $q_{N}(n)$ as the smallest prime factor of n which belongs to K_{N}, while we let $q_{N}(n)=1$ if $(n, p)=1$ for all primes $p \in K_{N}$.

Further let $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{h(n)}$ be the prime factors of n which belong to K_{N} (written with multiplicity). With this definition, we clearly have $\left(n / \pi_{1} \cdots \pi_{h(n)}, p\right)=1$ for each prime $p \in K_{N}$.

For each positive integer ℓ and each $n \in K_{N}$, we let

$$
q_{N}^{(\ell)}(n)= \begin{cases}\pi_{\ell} & \text { if } \quad 1 \leq \ell \leq h \\ 1 & \text { if } \quad \ell>h,\end{cases}
$$

where $h=h(n)$, so that in particular $q_{N}(n)=q_{N}^{(1)}(n)$.
We further set

$$
f_{q}(m)=\left\{\begin{array}{lll}
\ell-1 & \text { if } & m \equiv \ell \quad(\bmod q) \text { and } \ell \neq 0 \\
\Lambda & \text { if } & q \mid m
\end{array}\right.
$$

Let r and k be fixed positive integers. Let $Q_{i, \ell}$, for $i=1, \ldots, r$ and $\ell=1, \ldots, k$ be distinct primes belonging to K_{N} such that $Q_{1, \ell}<Q_{2, \ell}<\cdots<Q_{r, \ell}$. For a given interval $J=[x, x+y] \subseteq J_{N}$, we let $S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right)$ be the number of those integers $n \in J$ for which $q_{N}^{(i)}(n+\ell)=Q_{i, \ell}$.

For each integer $r \geq 1$, let $\sigma(1), \ldots, \sigma(k)$ be the permutation of the set $\{1, \ldots, k\}$ which allows us to write

$$
Q_{r, \sigma(1)}<Q_{r, \sigma(2)}<\cdots<Q_{r, \sigma(k)}
$$

Using the Eratosthenian sieve, we obtain that, as $N \rightarrow \infty$,

$$
\begin{align*}
& S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right) \\
& \quad=(1+o(1)) \frac{y}{\prod_{\substack{1 \leq \leq \leq r \\
1 \leq \ell \leq k}} Q_{i, \ell}} \cdot \prod_{N \leq \pi<Q_{r, \sigma(k)}}\left(1-\frac{\rho(\pi)}{\pi}\right)+o\left(x_{N}\right), \tag{2.1}
\end{align*}
$$

where

$$
\rho(\pi)= \begin{cases}k & \text { if } \quad N \leq \pi<Q_{r, \sigma(1)}, \\ k-1 & \text { if } \\ Q_{r, \sigma(1)}<\pi<Q_{r, \sigma(2)}, \\ \vdots & \\ \vdots \\ 1 & \text { if } \\ Q_{r, \sigma(k-1)}<\pi<Q_{r, \sigma(k)}, \\ 0 & \text { if } \\ \pi \in\left\{Q_{i, \ell}: i=1, \ldots, r, \ell=1, \ldots, k\right\}\end{cases}
$$

Let $t_{i, \ell}(i=1, \ldots, r, \ell=1, \ldots, k)$ be any collection of the (non zero) reduced residues modulo q and set

$$
\begin{equation*}
B_{J}\left(t_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right):=\sum_{\substack{Q_{i, \ell}=t_{i, \ell}(\bmod q) \\ N<Q_{i, \ell}<N^{\lambda_{N}}}} S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right) . \tag{2.2}
\end{equation*}
$$

Now, letting $\pi(x ; \ell, k)$ stand for the number of primes $p \leq x$ such that $p \equiv \ell$ $(\bmod k)$, it follows from the Prime Number Theorem in arithmetical progressions that, with $2 \leq v \leq u$, as $u \rightarrow \infty$,

$$
\pi(u+v ; \ell, q)-\pi(u ; \ell, q)=(1+o(1)) \frac{1}{q-1}(\pi(u+v)-\pi(u))+O\left(\frac{u}{\log ^{10} u}\right)
$$

from which we obtain that

$$
\begin{equation*}
\sum_{\substack{u \leq p \leq u+v \\ p \equiv \ell(\bmod q)}} \frac{1}{p \log p}=(1+o(1)) \frac{1}{q-1} \frac{1}{\log u} \log \frac{\log (u+v)}{\log u}+O\left(\frac{1}{\log ^{11} u}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{u \leq p \leq u+v \\ p \equiv \ell(\bmod q)}} \frac{1}{p}=(1+o(1)) \frac{1}{q-1} \log \frac{\log (u+v)}{\log u}+O\left(\frac{1}{\log ^{10} u}\right) \tag{2.4}
\end{equation*}
$$

Substituting (2.3) and (2.4) in (2.1), we obtain

$$
\begin{aligned}
& S_{J}\left(Q_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right) \\
& =(1+o(1)) \frac{y}{\prod_{1 \leq i \leq r, 1 \leq \ell \leq k} Q_{i, \ell}} \exp \left\{k \log \log N-k \log \log Q_{r, \sigma(1)}\right. \\
& \left.\quad-(k-1) \log \log Q_{r, \sigma(2)}+(k-1) \log \log Q_{r, \sigma(1)}-\ldots-\log \log Q_{r, \sigma(k)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=(1+o(1)) \frac{y}{\prod_{1 \leq i \leq r, 1 \leq \ell \leq k} Q_{i, \ell}} \prod_{\ell=1}^{k} \frac{\log N}{\log Q_{r, \ell}}+o\left(x_{N}\right) \tag{2.5}
\end{equation*}
$$

Using (2.5) and definition (2.2), we obtain that, as $y \rightarrow \infty$,

$$
\begin{equation*}
B_{J}\left(t_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right)=(1+o(1)) \frac{y}{(q-1)^{k r}} \sum_{\pi_{i, \ell}} \frac{1}{\prod \pi_{i, \ell}} \prod_{\ell=1}^{k} \frac{\log N}{\log \pi_{r, \ell}} \tag{2.6}
\end{equation*}
$$

where the summation runs over those subsets of primes $\pi_{i, \ell}$ for which

$$
N<\pi_{1, \ell}<\pi_{2, \ell}<\cdots<\pi_{r, \ell}<N^{\lambda_{N}} \quad(\ell=1, \ldots, k) .
$$

Now, observe that, as $N \rightarrow \infty$,

$$
\sum_{N<\pi_{1, \ell}<\cdots<\pi_{r-1, \ell}<\pi_{r, \ell}<N^{\lambda_{N}}} \frac{1}{\pi_{1, \ell} \cdots \pi_{r-1, \ell}} \cdot \frac{1}{\pi_{r, \ell} \log \pi_{r, \ell}}
$$

$$
\begin{aligned}
& =(1+o(1)) \sum_{\pi_{r, \ell}} \frac{1}{(r-1)!}\left(\sum_{N<\pi<\pi_{r, \ell}} \frac{1}{\pi}\right)^{r-1} \cdot \frac{1}{\pi_{r, \ell} \log \pi_{r, \ell}} \\
& =(1+o(1)) \sum_{\pi_{r, \ell}} \frac{1}{(r-1)!}\left(\log \left(\frac{\log \pi_{r, \ell}}{\log N}\right)\right)^{r-1} \cdot \frac{1}{\pi_{r, \ell} \log \pi_{r, \ell}} \\
& =(1+o(1)) \int_{N}^{N_{N}} \frac{1}{(r-1)!}\left(\log \left(\frac{\log u}{\log N}\right)\right)^{r-1} \frac{d u}{u \log ^{2} u} \\
& =(1+o(1)) \int_{\log N}^{\lambda_{N} \log N} \frac{1}{(r-1)!}\left(\log \left(\frac{v}{\log N}\right)\right)^{r-1} \frac{d v}{v^{2}} .
\end{aligned}
$$

Setting $v=y \log N$ in this last integral, we obtain that the above expression can be replaced by

$$
\frac{(1+o(1))}{\log N} \int_{1}^{\lambda_{N}} \frac{1}{(r-1)!} \frac{(\log y)^{r-1}}{y^{2}} d y=\frac{(1+o(1))}{\log N} \frac{1}{(r-1)!} \int_{1}^{\infty} \frac{(\log y)^{r-1}}{y^{2}} d y
$$

which in turn, after setting $z=\log y$, becomes

$$
\frac{(1+o(1))}{\log N} \int_{0}^{\infty} \frac{e^{-z} z^{r-1}}{(r-1)!} d z=\frac{(1+o(1))}{\log N}
$$

which substituted in (2.7) yields

$$
\begin{equation*}
\sum_{N<\pi_{1, \ell}<\cdots<\pi_{r-1, \ell}<\pi_{r, \ell}<N^{\lambda_{N}}} \frac{1}{\pi_{1, \ell} \cdots \pi_{r-1, \ell}} \cdot \frac{1}{\pi_{r, \ell} \log \pi_{r, \ell}}=\frac{(1+o(1))}{\log N} \quad(N \rightarrow \infty) . \tag{2.8}
\end{equation*}
$$

Using (2.8) in (2.6), we obtain that

$$
\begin{equation*}
B_{J}\left(t_{i, \ell} \mid i=1, \ldots, r, \ell=1, \ldots, k\right)=(1+o(1)) \frac{y}{(q-1)^{k r}} \quad(y \rightarrow \infty) . \tag{2.9}
\end{equation*}
$$

We now define, for each integer $N \in \mathbb{N}$,

$$
\theta_{N}^{(i)}=\operatorname{Concat}\left\{f_{q}\left(q_{N}^{(i)}(n)\right): n \in J_{N}\right\} \quad(i=1,2, \ldots)
$$

Then consider the number

$$
\theta^{(i)}=\theta_{1}^{(i)} \theta_{2}^{(i)} \ldots
$$

and from these numbers, introduce the number

$$
\alpha_{i}:=0 . \theta^{(i)},
$$

that is the number whose q-ary expansion is $0 . \theta^{(i)}$.

Recall that, for $n \in J_{N}$, we defined $h(n)$ as the number of prime divisors of n located in the interval [$N, N^{\lambda_{N}}$]. Thus, setting

$$
U_{N}:=\sum_{N<p<N^{\lambda_{N}}} \frac{1}{p}=\log \lambda_{N}+o(1) \quad(N \rightarrow \infty)
$$

we obtain, using the Turán-Kubilius inequality, that for some absolute constant $c>0$,

$$
\begin{equation*}
\sum_{n \in J_{N}}\left(h(n)-U_{N}\right)^{2} \leq c x_{N} \log \lambda_{N} . \tag{2.10}
\end{equation*}
$$

On the one hand, it follows from (2.10) that for each integer $r \geq 1$, there exists a constant $c_{r}>0$ such that

$$
\begin{equation*}
\#\left\{n \in J_{N}: h(n) \leq r\right\} \leq \frac{c_{r} x_{N}}{\log \lambda_{N}} \tag{2.11}
\end{equation*}
$$

On the other hand, it is easy to see that, as $y \rightarrow \infty$,

$$
\begin{equation*}
\#\left\{n \in J_{N}: p^{2} \mid n \text { for some prime } p>N\right\} \leq c x_{N} \sum_{p>N} \frac{1}{p^{2}}=O\left(\frac{x_{N}}{N}\right) \tag{2.12}
\end{equation*}
$$

We therefore have, in light of (2.9), keeping in mind (2.11) and (2.12), that, as $y \rightarrow \infty$ (and thus $N \rightarrow \infty$),
$\#\left\{n \in J_{N}: f_{q}\left(q_{N}^{(i)}(n+\ell)\right)=t_{i, \ell}-1: i=1, \ldots, r, \ell=1, \ldots, k\right\}=(1+o(1)) \frac{y}{(q-1)^{k r}}+o\left(x_{N}\right)$.
Now, to prove the normality of α_{i} in base $q-1$, we need to estimate the quantity

$$
H(x):=\#\left\{n \leq x: f_{q}\left(q_{N}^{(i)}(n+\ell)\right)=t_{i, \ell}-1: i=1, \ldots, r, \ell=1, \ldots, k\right\}
$$

For this, let us set

$$
K_{N}:=\#\left\{n \in J_{N}: f_{q}\left(q_{N}^{(i)}(n+\ell)\right)=t_{i, \ell}-1: i=1, \ldots, r, \ell=1, \ldots, k\right\}
$$

Let x be a large number. Then, $x \in J_{N_{0}}$ for some N_{0}. Hence, applying (2.13), we get

$$
\begin{aligned}
H(x)= & O(1)+K_{3}+K_{4}+\cdots+K_{N_{0}-1} \\
& \quad+\#\left\{J_{N_{0}-1} \leq x: f_{q}\left(q_{N_{0}-1}^{(i)}(n+\ell)\right)=t_{i, \ell}-1: i=1, \ldots, r, \ell=1, \ldots, k\right\} \\
= & \frac{(1+o(1))}{(q-1)^{k r}}\left(\left(x_{2}-x_{1}\right)+\left(x_{3}-x_{2}\right)+\cdots+\left(x_{N_{0}}-x_{N_{0}-1}\right)+\left(x-x_{N_{0}}\right)\right)+O(1) \\
= & (1+o(1)) \frac{x-x_{1}}{(q-1)^{k r}}=(1+o(1)) \frac{x}{(q-1)^{k r}},
\end{aligned}
$$

thus completing the proof of our main result.

3 Final remarks

The method we used will also lead to the construction of normal numbers if, for each $N \in \mathbb{N}$, instead of choosing the smallest prime factor of $n \in J_{N}$ which belongs to K_{N}, we choose the largest prime factor of n which is smaller than $y_{N}:=x_{N}^{1 / \sqrt{N}}$, where $x_{N}=e^{N}$. Even more generally, instead of choosing the largest prime factor, we may pick the second largest prime factor, or the third, and so on.

Similarly, instead of working with $y_{N}:=x_{N}^{1 / \sqrt{N}}$, where $x_{N}=e^{N}$, we could also choose any two sequences $\left(w_{N}\right)_{N \geq 1}$ and $\left(z_{N}\right)_{N \geq 1}$ which satisfy the conditions

$$
w_{N} \rightarrow \infty, \quad \frac{\log z_{N}}{\log x_{N}} \rightarrow \infty, \quad \frac{\log z_{N}}{\log w_{N}} \rightarrow \infty \quad(N \rightarrow \infty)
$$

Finally, one can easily see that, letting ϕ stand for the Euler totient function, our main result will still hold for any base $b>2$ of the form $b=\phi(q)$ for some integer $q>4$.

Acknowledgement. The authors would like to thank the referee for some valuable remarks which improved the quality of this paper.

References

[1] J.M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, Annales mathématiques du Québec 38 (2014), No.2, 133-144.
[2] J.M. De Koninck and I. Kátai, Prime-like sequences leading to the construction of normal numbers, Funct. Approx. Comment. Math. 49 (2013), No.2, 291-302.
[3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

JMDK, le 8 mai 2015; fichier: normal-UD-mod-8-mai-2015.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

