About an unsolved problem involving normal numbers

Jean-Marie De Koninck¹ and Imre Kátai

Édition du 5 décembre 2015

Abstract

We examine the discrepancy of various sequences created from the values of additive functions and exhibit connections with q-normal numbers.

AMS Subject Classification numbers: 11K16 Key words: discrepancy, normal numbers

1 Introduction

Let \mathcal{A} be the set of all additive functions and let \mathcal{M}_1 stand for the set of all multiplicative functions f such that $|f(n)| \leq 1$ for all integers $n \geq 1$. Let \wp be the set of all prime numbers. As usual, given a real number y, we set $e(y) := \exp\{2\pi i y\}$ and write $\{y\}$ for the fractional part of y.

Given a fixed integer $q \ge 2$, we say that a real number α is a *q*-normal number if the sequence $(\{q^n\alpha\})_{n\ge 1}$ is uniformly distributed modulo 1. Moreover, given N real numbers y_1, \ldots, y_N , we define the discrepancy of these numbers as

$$D(y_1,\ldots,y_N) := \sum_{[\alpha,\beta)\subseteq[0,1]} \left| \frac{1}{N} \sum_{\{y_j\}\in[\alpha,\beta)} 1 - (\beta - \alpha) \right|.$$

In 1948, Erdős and Turán [3], [4] proved that, given any positive integer M,

(1.1)
$$D(y_1, \dots, y_N) \le \frac{c}{N} \left| \sum_{k=1}^M \frac{1}{k} \left| \sum_{j=1}^N e(ky_j) \right| + \frac{1}{M} \right|.$$

Later, Daboussi and Delange [1], [2] proved that, if $h \in \mathcal{M}_1$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, then

(1.2)
$$\sum_{n \le x} h(n)e(n\alpha) = o(x) \qquad (x \to \infty).$$

By using a simple method, the second author [5] gave a generalization of Daboussi's result, namely the following.

Lemma 1. Given a sequence of complex numbers $(a_n)_{n\geq 1}$ such that $|a_n| \leq 1$ for each integer $n \geq 1$ and letting $f \in \mathcal{M}_1$, set

$$S(x) := \sum_{n \le x} f(n) a_n.$$

Let \wp_x be a subset of primes all of whose elements do not exceed x and let $A_x := \sum_{p \in \wp_x} \frac{1}{p}$. Then,

(1.3)
$$|S(x)|^{2} \leq \frac{Cx^{2}}{A_{x}} + \frac{x}{A_{x}^{2}} \sum_{p_{1}, p_{2} \in \wp \atop p_{1} \neq p_{2}} \left| \sum_{m \leq \min(x/p_{1}, x/p_{2})} a_{p_{1}m} \overline{a_{p_{2}m}} \right|,$$

where C is an absolute constant (so that the right hand side of (1.3) does not depend on f).

It follows from this that if $\alpha \in \mathbb{R} \setminus Q$, $h \in \mathcal{A}$ and $y_n(h, \alpha) = h(n) + n\alpha$ for $n = 1, 2, 3, \ldots$, then

(1.4)
$$\lim_{N \to \infty} \sup_{h \in \mathcal{A}} D(y_1(h, \alpha), \dots, y_N(h, \alpha)) = 0.$$

2 Main results

Given $\alpha \in \mathbb{R} \setminus Q$ and $h \in \mathcal{A}$, let $z_n(h, \alpha) = h(n) + q^n \alpha$ for $n = 1, 2, 3, \dots$

Theorem 1. For almost all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$,

(2.1)
$$\lim_{N \to \infty} \sup_{h \in \mathcal{A}} D(z_1(h, \alpha), \dots, z_N(h, \alpha)) = 0$$

Remark 1. Considering the additive function h defined by h(n) = 0 for all $n \in \mathbb{N}$, one can easily see that (2.1) can only hold if α is a q-normal number.

An interesting conjecture and an unsolved problem related to Theorem 1 are the following.

Conjecture. If α is a q-normal number, then (2.1) holds.

Open problem. Construct a real number α for which (2.1) holds.

Theorem 2. Let $r_1 < r_2 < \cdots$ be an infinite sequence of positive integers satisfying the gap condition $\frac{r_{k+1}}{r_k} > \theta$ for all $k \ge k_0$, for some fixed real number $\theta > 1$, and let $w_n(h, \alpha) := h(n) + r_n \alpha$ for $n = 1, 2, 3 \dots$ Then,

(2.2)
$$\lim_{N \to \infty} \sup_{h \in \mathcal{A}} D(w_1(h, \alpha), \dots, w_N(h, \alpha)) = 0.$$

3 Proof of the theorems

Since Theorem 1 is clearly a consequence of Theorem 2, we shall only prove Theorem 2.

Let $P, Q \in \wp$ with P > Q and, for each $M \in \mathbb{N}$, set $L_M := [M^2, M^2 + 2M]$ and

$$T_M(\alpha) = \sum_{k \in L_M} e\left((r_{Pk} - r_{Qk})\alpha \right)$$

First observe that, for some positive constants C_1 and C_2 , we have

(3.1)
$$\int_0^1 |T_M(\alpha)|^4 \, d\alpha \le C_1 M^2 + C_2.$$

Now, since the left hand side of (3.1) represents the number of solutions (k_1, k_2, k_3, k_4) of the equation

$$(3.2) r_{Pk_1} - r_{Qk_1} + r_{Pk_2} - r_{Qk_2} = r_{Pk_3} - r_{Qk_3} + r_{Pk_4} - r_{Qk_4}$$

and since

$$PM^2 - Q(M^2 + 2M) = (P - Q)M^2 - Q \cdot 2M,$$

it follows that

$$\frac{\max_{\nu \in L_M} r_{Q\nu}}{\max_{\mu \in L_M} r_{P\mu}} \le \left(\frac{1}{\theta}\right)^{(P-Q)M^2 - Q \cdot 2M}$$

First assuming that $k_1 > k_2$, $k_3 > k_4$ and $k_1 \ge k_3$, and dividing (3.2) by r_{Pk_1} , we obtain that

$$1 - \frac{r_{Qk_1}}{r_{Pk_1}} + \frac{r_{Pk_2}}{r_{Pk_1}} - \frac{r_{Qk_2}}{r_{Pk_1}} = \frac{r_{Pk_3}}{r_{Pk_1}} - \frac{r_{Qk_3}}{r_{Pk_1}} + \frac{r_{Pk_4}}{r_{Pk_1}} - \frac{r_{Qk_4}}{r_{Pk_1}}$$

If $k_1 = k_3$, then $|k_2 - k_4| \leq c$, where c is a constant that may depend on θ if $QM^2 > k_0$. On the other hand, if $k_1 > k_3$, then $k_1 - k_3 \leq c$. We therefore have that if k_1 , k_3 and k_2 are fixed, the number of different choices for k_4 cannot exceed c. It follows from this observation that equation (3.2) has no more than C_1M^2 solutions.

For each $M \in \mathbb{N}$, consider the set

$$J_M := \left\{ \alpha \in [0, 1) : |T_M(\alpha)| \ge M^{3/4 + \delta} \right\}$$

From (3.1), it follows that $\lambda(J_M) \leq 1/M^{1+4\delta}$ (here λ stands for the Lebesgue measure) and therefore that $\sum_{M\geq 1} \lambda(J_M) < +\infty$. We may therefore apply the Borel-Cantelli Lemma and conclude that for almost $\alpha \in [0, 1)$ there exists a positive integer M_0 such that

$$\alpha \not\in \bigcup_{M \ge M_0} J_M.$$

Consequently, letting $M_1 := \lfloor x^{1/3} \rfloor \ge M_0$, we obtain that

$$\frac{1}{x} \left| \sum_{k \le x} e(r_{Pk} - r_{Qk}) \alpha \right| \le \frac{1}{x} \left| \sum_{k \le M_1^2} e(r_{Pk} - r_{Qk}) \alpha \right| + \frac{1}{x} \sum_{M_1^2 < M \le \sqrt{x}} |T_M(\alpha)| + O\left(\frac{1}{\sqrt{x}}\right)$$

(3.3)
$$\leq \frac{M_1^2}{x} + O\left(\frac{1}{\sqrt{x}}\right) + \frac{1}{x} \sum_{M \leq \sqrt{x}} M^{3/4+\delta}.$$

Observe that this last quantity tends to 0 as $x \to \infty$ and that the convergence is uniform with respect to h.

Now, let W_1 be the set of those α for which the last quantity in (3.3) does not tend to 0 for at least one prime pair $\{P, Q\}$, in which case we have that $\lambda(W_1) = 0$. From Lemma 1, we obtain that

$$\Delta(x,\alpha) := \sup_{h \in \mathcal{A}} \frac{1}{x} \left| \sum_{n \le x} e(w_n(h,\alpha)) \right|$$

tends to zero as $x \to \infty$ whenever $\alpha \notin W_1$. Let us now replace α by $\ell \alpha$ (where $\ell \in \mathbb{N}$), and define W_ℓ to be the set of those α for which the last quantity in (3.3) does not tend to zero if α is replaced by $\ell \alpha$. We then have $\lambda(W_\ell) = 0$, so that $\lambda\left(\bigcup_{\ell \ge 1} W_\ell\right) = 0$.

Setting
$$S := \mathbb{R} \setminus \left(\bigcup_{\ell \ge 1} W_{\ell} \right)$$
, then for $\alpha \in S$, we have
$$\Delta(x, \ell \alpha) \to 0 \qquad (x \to \infty).$$

Then, using the Erdős-Turán inequality (1.1), we obtain that, given any positive integer K,

$$D_N(w_1(h,\alpha),\ldots,w_N(h,\alpha)) \leq \frac{C}{K} + \sum_{\ell=1}^K \frac{1}{\ell} \frac{1}{N} \left| \sum_{n \leq N} e(w_n(\ell h, \ell \alpha)) \right|$$
$$\leq \frac{C}{K} \sum_{\ell=1}^K \frac{1}{\ell} \Delta(N, \ell \alpha).$$

Hence,

(3.4)
$$\limsup_{N \to \infty} D_N(w_1(h, \alpha), \dots, w_N(h, \alpha)) \le \frac{C}{K}.$$

Since K can be chosen arbitrarily large, it follows that the left hand side of (3.4) is zero, thus completing the proof of Theorem 2.

References

 H. Daboussi and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C. R. Acad. Sci. Paris Série A 278 (1974), 657–660.

- [2] H. Daboussi and H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. (2) 26 (1982), no. 2, 245– 264.
- [3] P. Erdős and P. Turán, On a problem in the theory of uniform distribution I, Nederl. Akad. Wetensch. 51 (1948), 1146–1154
- [4] P. Erdős and P. Turán, On a problem in the theory of uniform distribution II, Nederl. Akad. Wetensch. 51 (1948), 1262–1269.
- [5] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), no. 1-2, 223-225.

Jean-Marie De Koninck Dép. math. et statistique Université Laval Québec Québec G1V 0A6 Canada jmdk@mat.ulaval.ca Imre Kátai Computer Algebra Department Eötvös Loránd University 1117 Budapest Pázmány Péter Sétány I/C Hungary katai@inf.elte.hu

JMDK, le 5 décembre 2015; fichier: unsolved-normal-numbers.tex