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Résumé. — Dans une série d’articles, nous avons construit de grandes
familles de nombres normaux en utilisant la concaténation des valeurs
successives du plus grand facteur premier P (n), où n parcourt certaines
suites d’entiers positifs. Une approche similaire en utilisant la fonction
plus petit facteur premier nous a aussi permis de construire d’autres
familles de nombres normaux. En désignant par ω(n) le nombre de
nombres premiers distincts de n, nous avons montré que la concaténation
des valeurs successive de |ω(n)−blog log nc| dans une base fixe q ≥ 2, où
n parcourt les entiers n ≥ 3, donne place à un nombre normal. Ici, nous
démontrons le résultat suivant. Soit q ≥ 2 un entier fixe. Étant donné
un entier n ≥ n0 = max(q, 3), soit N l’unique entier positif satisfaisant
qN ≤ n < qN+1 et désignons par h(n, q) le résidu modulo q du nombre
de facteurs premiers distincts de n situés dans l’intervalle [logN,N ]. En
posant xN := eN , nous créons alors un nombre normal dans la base q en
utilisant la concaténation des nombres h(n, q), où n parcourt les entiers
≥ xn0 .

Classification mathématique par sujets (2000). — 11K16, 11N37, 11N41.
Mots clefs. — normal numbers, number of prime factors.
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Abstract. — In a series of papers, we constructed large families of
normal numbers using the concatenation of the values of the largest
prime factor P (n), as n runs through particular sequences of positive
integers. A similar approach using the smallest prime factor function
also allowed for the construction of normal numbers. Letting ω(n) stand
for the number of distinct prime factors of the positive integer n, we
then showed that the concatenation of the successive values of |ω(n) −
blog log nc| in a fixed base q ≥ 2, as n runs through the integers n ≥ 3,
yields a normal number. Here we prove the following. Let q ≥ 2 be a
fixed integer. Given an integer n ≥ n0 = max(q, 3), let N be the unique
positive integer satisfying qN ≤ n < qN+1 and let h(n, q) stand for the
residue modulo q of the number of distinct prime factors of n located
in the interval [logN,N ]. Setting xN := eN , we then create a normal
number in base q using the concatenation of the numbers h(n, q), as n
runs through the integers ≥ xn0

.

1. Introduction

Given an integer q ≥ 2, we say that an irrational number η is a q-

normal number if the q-ary expansion of η is such that any preassigned

sequence of length k ≥ 1, taken within this expansion, occurs with the

expected limiting frequency, namely 1/qk.

Even though constructing specific normal numbers is a very difficult

problem, several authors picked up this challenge. One of the first was

Champernowne [2] who, in 1933, showed that the number made up of

the concatenation of the natural numbers, namely the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [4] proved that

the same is true if one replaces the sequence of natural numbers by the

sequence of primes, namely for the number

0.23571113171923293137 . . .

In the same paper, they conjectured that if f(x) is any nonconstant

polynomial whose values at x = 1, 2, 3, . . . are positive integers, then the

decimal 0.f(1)f(2)f(3) . . ., where f(n) is written in base 10, is a normal

number. Six years later, Davenport and Erdős [5] proved this conjecture.
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Since then, many others have constructed various families of normal

numbers. To name only a few, let us mention Nakai and Shiokawa [15],

Madritsch, Thuswaldner and Tichy [14] and finally Vandehey [17]. More

examples of normal numbers as well as numerous references can be found

in the recent book of Bugeaud [1].

In a series of papers, we also constructed large families of normal num-

bers using the distribution of the values of P (n), the largest prime factor

function (see [6], [7], [8] and [9]). Recently [10], we showed how the

concatenation of the successive values of the smallest prime factor p(n),

as n runs through the positive integers, can also yield a normal number.

Letting ω(n) stand for the number of distinct prime factors of the posi-

tive integer n, we then showed that the concatenation of the successive

values of |ω(n)−blog log nc| in a fixed base q ≥ 2, as n runs through the

integers n ≥ 3, yields a normal number.

Given an integer N ≥ 1, for each integer n ∈ JN := (eN , eN+1), let

qN(n) be the smallest prime factor of n which is larger than N ; if no

such prime factor exists, set qN(n) = 1. Fix an integer Q ≥ 3 and con-

sider the function f(n) = fQ(n) defined by f(n) = ` if n ≡ ` (mod Q)

with (`,Q) = 1 and by f(n) = ε otherwise, where ε stands for the

empty word. Then consider the sequence (κ(n))n≥3 = (κQ(n))n≥3 de-

fined by κ(n) = f(qN(n)) if n ∈ JN with qN(n) > 1 and by κ(n) = ε

if n ∈ JN with qN(n) = 1. Then, given an integer N ≥ 1 and writ-

ing JN = {j1, j2, j3, . . .}, consider the concatenation of the numbers

κ(j1), κ(j2), κ(j3), . . ., that is define

θN := Concat(κ(n) : n ∈ JN) = 0.κ(j1)κ(j2)κ(j3) . . . .

Then, set αQ := Concat(θN : N = 1, 2, 3, . . .) and letBQ = {`1, `2, . . . , `ϕ(Q)}
be the set of reduced residues modulo Q, where ϕ stands for the Euler

function. In [11], we showed that αQ is a normal sequence over BQ, that

is, the real number 0.αQ is a normal number over BQ.

Here we prove the following. Let q ≥ 2 be a fixed integer. Given

an integer n ≥ n0 = max(q, 3), let N be the unique positive integer

satisfying qN ≤ n < qN+1 and let h(n, q) stand for the residue modulo

q of the number of distinct prime factors of n located in the interval

[logN,N ]. Setting xN := eN , we then create a normal number in base
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q using the concatenation of the numbers h(n, q), as n runs through the

integers ≥ xn0 .

2. The main result

Théorème 2.1. — Let q ≥ 2 be a fixed integer. Given an integer n ≥
n0 = max(q, 3), let N be the unique positive integer satisfying qN ≤ n <

qN+1 and let h(n, q) stand for the residue modulo q of the number of

distinct prime factors of n located in the interval [logN,N ]. For each

integer N ≥ 1, set xN := eN . Then, Concat(h(n, q) : xn0 ≤ n ∈ N) is a

q-ary normal sequence.

Démonstration. — For each integerN ≥ 1, let JN = (xN , xN+1). Further

let SN stand for the set of primes located in the interval [logN,N ] and

TN for the product of the primes in SN . Let n0 = max(q, 3). Given a

large integer N , consider the function

(1) f(n) = fN(n) =
∑
p|n

logN≤p≤N

1.

Let us further introduce the following sequences:

UN = Concat (h(n, q) : n ∈ JN) ,

V∞ = Concat (UN : N ≥ n0) = Concat (h(n, q) : n ≥ xn0) ,

Vx = Concat (h(n, q) : xn0 ≤ n ≤ x) .

Let us set Aq := {0, 1, . . . , q− 1}. If we fix an arbitrary integer r, it is

sufficient to prove that given any particular word w ∈ Arq, the number of

occurrences Fw(Vx) of w in Vx satisfies

(2) Fw(Vx) = (1 + o(1))
x

qr
(x→∞).

For each integer r ≥ 1, considering the polynomial

Qr(u) = u(u+ 1) · · · (u+ r − 1).

and letting

ρr(d) = #{u (mod d) : Qr(u) ≡ 0 (mod d)},
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it is clear that, since N is large,

(3) ρr(p) = r if p ∈ SN .

Observe that it follows from the Turán-Kubilius Inequality (see for

instance Theorem 7.1 in the book of De Koninck and Luca [12]), that

for some positive constantC,

(4)
∑
n∈JN

(f(n)− log logN)2 ≤ CeN log logN.

Letting εN = 1/ log log logN , it follows from (4) that

(5)
1

xN
#{n ∈ JN : |f(n)− log logN | > 1

εN

√
log logN} → 0 (εN → 0).

This means that in the estimation of Fw(Vx), we may ignore those integers

n appearing in the concatenation h(2, q)h(3, q) . . . h(bxc, q) for which the

corresponding f(n) is “far” from log logN in the sense described in (5).

Let X be a large number. Then there exists a large integer N such

that
X

e
< xN ≤ X. Letting L =

]
X

e
,X

]
, we write

L =

]
X

e
, xN

]
∪ ]xN , X] = L1 ∪L2,

say, and λ(Li) for the length of the interval Li for i = 1, 2.

Given an arbitrary function δN which tends to 0 arbitrarily slowly, it

is sufficient to consider those L1 and L2 such that

(6) λ(L1) ≥ δNX and λ(L2) ≥ δNX.

The reason for this is that those n ∈ L1 (resp. n ∈ L2) for which

λ(L1) < δNX (resp. λ(L2) < δNX) are o(x) in number and can therefore

be ignored in the proof of (2).

Let us first consider the set L2. We start by observing that any sub-

word taken in the concatenation h(n, q)h(n + 1, q) . . . h(n + r − 1, q) is

made of co-prime divisors of TN (since no two members of the sequence

h(n, q), h(n + 1, q), . . . , h(n + r − 1, q) of r elements may have a com-

mon prime divisor p > logN). So, let d0, d1, . . . , dr−1 be co-prime di-

visors of TN and let BN(L2; d0, d1, . . . , dr−1) stand for the number of

those n ∈ L2 for which dj | n + j for j = 0, 1, . . . , r − 1 and such
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that

(
Qr(n),

TN
d0d1 · · · dr−1

)
= 1. We can assume that each of the dj’s is

squarefree, since the number of those n+ j ≤ X for which p2 | n+ j for

some p > logN is � X
∑

p>logN

1

p2
= o(X).

In light of (4), we may assume that

(7) ω(dj) ≤ 2 log logN for j = 0, 1, . . . , r − 1.

By using the Eratosthenian sieve (see for instance the book of De Koninck

and Luca [12]) and recalling that condition (6) ensures that X − xN is

large, we obtain that, as N →∞,

BN(L2; d0, d1, . . . , dr−1) =
X − xN

d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

)

+o

 xN
d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

) .(8)

Letting θN :=
∏
p|TN

(
1− r

p

)
, one can easily see that

(9) θN = (1 + o(1))
(log logN)r

(logN)r
(N →∞).

Let us also introduce the strongly multiplicative function κ defined on

primes p by κ(p) = p− r. Then, (8) can be written as

(10)

BN(L2; d0, d1, . . . , dr−1) =
X − xN

κ(d0)κ(d1) · · ·κ(dr−1)
θN+o

(
xN

κ(d0)κ(d1) · · ·κ(dr−1)
θN

)
as N →∞. For each integer N > ee, let

RN :=

[
log logN −

√
log logN

εN
, log logN +

√
log logN

εN

]
.

Let `0, `1, . . . , `r−1 be an arbitrary collection of non negative integers

< q. Note that there are qr such collections. Our goal is to count

how many times, amongst the integers n ∈ L2, we have f(n + j) ≡ `j
(mod q) for j = 0, 1, . . . , r − 1. In light of (5), we only need to consider
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those n ∈ L2 for which

f(n+ j) ∈ RN (j = 0, 1, . . . , r − 1).

Let

(11) S (`0, `1, . . . , `r−1) :=
∑∗

f(dj)≡`j (mod q)

dj |TN
j=0,1,...,r−1

1

κ(d0)κ(d1) · · ·κ(dr−1)
,

where the star over the sum indicates that the summation runs only on

those dj satisfying f(dj) ∈ RN for j = 0, 1, . . . , r − 1.

From (10), we therefore obtain that

#{n ∈ L2 : f(n+ j) ≡ `j (mod q), j = 0, 1, . . . , r − 1}
= (X − xN)θNS (`0, `1, . . . , `r−1) + o (xNθNS (`0, `1, . . . , `r−1))(12)

as N →∞. Let us now introduce the function

η = ηN =
∑
p|TN

1

κ(p)
.

Observe that, as N →∞,

η =
∑

logN≤p≤N

1

p(1− r/p)
=

∑
logN≤p≤N

1

p
+O

( ∑
logN≤p≤N

1

p2

)

= log logN − log log logN + o(1) +O

(
1

logN

)
= log logN − log log logN + o(1).(13)

From the definition (11), one easily sees that

(14)

S (`0, `1, . . . , `r−1) = (1 + o(1))
∑

tj≡`j (mod q)

tj∈RN

ηt0+t1+···+tr−1

t0!t1! · · · tr−1!
(N →∞),

where we ignore in the denominator of the summands the factors κ(p)a

(with a ≥ 2) since their contribution is negligible.

Moreover, for t ∈ RN , one can easily establish that

ηt+1

(t+ 1)!
= (1 + o(1))

ηt

t!
(N →∞)
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and consequently that, for each j ∈ {0, 1, . . . , r − 1},

(15)
∑

tj≡`j (mod q)

tj∈RN

ηtj

tj!
= (1+o(1))

1

q

∑
t∈RN

ηt

t!
= (1+o(1))

eη

q
(N →∞).

Using (15) in (14), we obtain that

(16) S (`0, `1, . . . , `r−1) = (1 + o(1))
eηr

qr
(N →∞).

Combining (12) and (16), we obtain that

#{n ∈ L2 : f(n+ j) ≡ `j (mod q), j = 0, 1, . . . , r − 1}

= (X − xN)θN
eηr

qr
+ o

(
xNθN

eηr

qr

)
=

X − xN
qr

+ o

(
xN

1

qr

)
(N →∞),(17)

where we used (9) and (13).

Since the first term on the right hand side of (17) does not depend on

the particular collection `0, `1, . . . , `r−1, we may conclude that the fre-

quency of those integers n ∈ L2 for which f(n+ j) ≡ `j (mod q) for j =

0, 1, . . . , r − 1 is the same independently of the choice of `0, `1, . . . , `r−1.

The case of those n ∈ L1 can be handled in a similar way.

We have thus shown that the number of occurrences of any word w ∈
Arq in h(n, q)h(n+ 1, q) . . . h(n+ r − 1, q) as n runs over the bX −X/ec

elements of L is (1 + o(1))
(X −X/e)

qr
. Repeating this for each of the

intervals ]
X

ej+1
,
X

ej

]
(j = 0, 1, . . . , blog xc),

we obtain that the number of occurrences of w for n ≤ x is (1 + o(1))
x

qr
,

as claimed.

The proof of (2) is thus complete and the Theorem is proved.
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3. Final remarks

First of all, let us first mention that our main result can most likely

be generalized in order that the following statement will be true:

Let a(n) and b(n) be two monotonically increasing sequences of

n for n = 1, 2, . . . such that n/b(n), b(n)/a(n) and a(n) all tend

to infinity monotonically as n → ∞. Let f(n) stand for the

number of prime divisors of n located in the interval [a(n), b(n)]

and let h(n, q) be the residue of f(n) modulo q; then, the

sequence h(n, q), n = 1, 2, ..., is a q-ary normal sequence.

Secondly, let us first recall that it was proven by Pillai [16] (with a

more general result by Delange [13]) that the values of ω(n) are equally

distributed over the residue classes modulo q for every integer q ≥ 2, and

that the same holds for the function Ω(n), where Ω(n) :=
∑

pα‖n α. We

believe that each of the sequences Concat(ω(n) (mod q) : n ∈ N) and

Concat(Ω(n) (mod q) : n ∈ N) represents a normal sequence for each

base q = 2, 3, . . .. However, the proof of these statements could be very

difficult to obtain. Indeed, in the particular case q = 2, such a result

would imply the famous Chowla conjecture

lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0,

where λ(n) := (−1)Ω(n) is known as the Liouville function and where

a1, a2, . . . , ak are k distinct positive integers (see Chowla [3]).

Thirdly, we had previously conjectured that, given any integer q ≥ 2

and letting resq(n) stand for the residue of n modulo q, it may not be

possible to create an infinite sequence of positive integers n1 < n2 < · · ·
such that

0.Concat(resq(nj) : j = 1, 2, . . .)

is a q-normal number. However, we now have succeeded in creating such

a monotonic sequence. It goes as follows. Let us define the sequence

(mk)k≥1 by

mk = f(k) + k!,
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where f is the function defined in (1). In this case, we obtain that

mk+1 −mk = k! · k + f(k + 1)− f(k),

a quantity which is positive for all integers k ≥ 1 provided

(18) f(k + 1)− f(k) > −k! · k,
that is if

(19) f(k) < k! · k.
But since we trivially have

f(k) ≤ ω(k) ≤ 2 log k ≤ k! · k,
then (19) follows and therefore (18) as well.

Hence, in light of Theorem 2.1, if we choose nk = mk, our conjecture

is disproved.
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[8] J.M. De Koninck and I. Kátai, Construction of normal numbers using
the distribution of the k-th largest prime factor, Bull. Australian Math-
ematical Society 88 (2013), 158-168.
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