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Abstract

We obtain estimates for the average value of the largest prime
factor P(n) in short intervals [z,x + y] and of h(P(n) + 1), where
h is a complex valued additive function or multiplicative function
satisfying certain conditions. Letting sq(n) stand for the sum of the
digits of n in base ¢ > 2, we show that if « is an irrational number,
the sequence (asq(P(n)))nen is uniformly distributed modulo 1.
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1 Introduction and notation

Let P(n) stand for the largest prime factor of an integer n > 2 and set
P(1) = 1. This function has been extensively studied over the past decades,
in particular its average value, sums involving the reciprocal of its values,
as well as its most frequent value in the interval [2, z].

Here, we obtain estimates for > _ . . P(n) when y = z127¢ for any
0 < e < 5/12. Given an integer a # 0, we also obtain estimates for the
average value of h(P(n) + a) for various arithmetic functions h satisfying
certain regularity conditions. Letting s,(n) stand for the sum of the digits
of n in base ¢ > 2, we show that if & € R\ Q, the sequence (asy(P(n)))nen
is uniformly distributed modulo 1.

Before we state these results more explicitly, we provide some back-
ground results.

In 1984, De Koninck and Ivi¢ [4] proved that, given an arbitrary positive

integer m, there exist computable constants d; = 72/12, d, ..., d,, such
that
d d dp, 1
— logz  log”x log™ x log™ ™" x

Recently, Naslund [21] improved (1.1) by showing that, given any ¢ > 0,
there exists a positive constant ¢ such that

Z P(n) = alig(z) + O, (:1:'2 exp{—c(log x)%*s}) ,

n<x

where

- 5, e ens(me1) |
1 = R Rt SV AN g
1g (37) /2 - logt log . + 10g2 - +- -t log™ + 10gm+1 -

(for any given m € N) with the constants ¢;’s being defined by

1 < 29(—1) W) (9
3 (=1)/¢¥(2)

- - ,
2z+1 = j'

C; =

where ( stands for the Riemann Zeta Function.
In 1986, Erdés, Ivié and Pomerance [11] proved that

log1
Z ;= abla <1+0<,/—0g ng)),
n<mP log x

where d(x) is some continuous function which decreases to 0 very slowly as
x — oo and in fact satisfies

6(z) = exp{—+/2log zloglog z(1 + o(1))} as r — o0.
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On the other hand, it is known (see Problem 9.33 in the book of De
Koninck and Luca [5]) that

(1.2) Z log P(n) = Czlogx + O(xloglog x),

2<n<zx

where C' =1 — / @ dv and p(v) stands for the Dickman function.
v

1
In 1987, De Koninck and Sitaramachandrarao [6] proved that

1
Z ———— =¢€"loglogx + O(1),

L log P(n)

where ~ stands for the Euler-Mascheroni constant.
In 1994, the first author [3] and later De Koninck and Sweeney [7] studied
the function

(1.3) flz,p) :=#{n <z:P(n)=p}

and proved in particular that the maximum value of f(x,p), as p runs over
the interval [2, z], is reached at

1 1
p = exp {\/5 log z1og log = (1 + ANx) + 0(log10gx>> } (x — 00),

1loglogl
where \(x) = —w, in which case f(z,p) is equal to
2 loglogx
(1.4)
A 2+ log 2 1
T exp {—\/210g3:loglogx <1 + <2x) - +2100gg10—g;( )>} (x — 00).

Some improvements of this particular result have recently been obtained by
McNew [20].

From here on, we shall write m(z) for the number of primes p < x
and 7(z;k,¢) for the number of primes p = ¢ (mod k) not exceeding x.
Moreover, we let g stand for the set of all primes.

Now, given a real valued additive function g such that the set {g(p) :
p € p} is bounded, let

A, = Z % and Bﬁ = Z g°(p)

b

p<w p<z

and further set

K 1= g(n)B—:An (neN) and ®(u):= \/%7 /_OO e dw  (ueR).



According to the Erdés-Kac Theorem (see Theorem 12.3 in the book of
Elliott [9]), if B, — oo as @ — oo, then

1
lim —#{n <z: kK, <u}=>(u) for every real u.

T—00 I

Given a positive integer N, let py = {p < N : p € p}. We shall say
that the function py : pn — [0,1) is a prime weight function if it satisfies
the following four conditions:

(i) Z pn(p) = 1 for each integer N > 2;
PEPN

(ii) for every non increasing sequence (Ay)yen tending to 0 as N — oo,
the following two assertions hold:

Z pn(p) — 0 and Z pn(p) — 0 (N — o0);

p<N N NI=AN <p<N
PEPN PEPN

(iii) with (Ax)yen as in (i),

NP1
max '0(>—1 —0 as N — o
NAN <py <pa<2p1<N'7AN | PN (p2>

P1,P2EPN

(iv) sup Z pn(p)| =0 as N — oo.

H<N H<p<2H
PEPN

It is known (see Theorem 12.4 in the book of Elliott [9]) that, under the
conditions of the Erdés-Kac Theorem, for every a € Z \ {0},

]\}im #{p € pn : Kpra < u} = P(u) for every real u
—00
and that
lim pn(p) = ©(u) for every real u.
N—o00 -
Kp+a<u

According to the Erdés-Wintner Theorem (see Theorem 5.1 in the book
of Elliott [8]), in order for a real-valued additive function ¢ to have a limiting
distribution, it is both sufficient and necessary that it satisfies the three-
series condition

(1.5) Z E < 00, 9(p) converge, Z @ < 00.

lg(p)|>1 p lg(p)I<1 P lg(p)|<1



In 1968, the second author [16] proved that if g is a real valued ad-
1 Todt
ditive function and F,(y) := i) Z 1, where li(z) := /2 Tog i’ and if

p<z
g(p+1)<y

moreover the function g satisfies the three-series condition (1.5), then the
distribution functions F,(y) tend to a limiting distribution function F(y)
as ¢ — oo at all points of continuity of F(y). In the same paper, he also
showed that, provided ¢ satisfies the three-series condition, then g(p + 1)
(and more generally g(p + a), where a € Z \ {0}) has a limit distribution.

Erdés and Kubilius asked whether the three-series condition is necessary
or not in this case of the shifted primes. In fact, partial results were achieved
by Elliott [10], Katai [17] and Timofeev [24]. In the end, Hildebrand [13]
proved the necessity of the three-series condition for shifted primes.

Now, letting

16)  Qulx) = %?J;E#{p <z:iglpta)elhh+1]),

going back to an idea of Ruzsa [23], Timofeev [24] proved that

g2+ W)
(L.7) Qurl) < —

where

(1.8) W(x):= m}%n ()\2 + Z % min(1, (g(p) — )\logp)2)> :

p<z
Later, Elliott [10] refined (1.7) and obtained
Qpr(@) < W ()72

Let 7(n) stand for the number of positive divisors of n. Using his dis-
persion method, Linnik [18] proved in 1963 that

(1.9) ZT(]?—I—CL):Clx-I—O( ’ )

— log®
¢(2)¢(3) ( p ) .
where ¢ = 0.999 and C} = ——= 1 — ———— ). Later, in 1986,
NG g[ pP—p+l

Bombieri, Friedlander and Iwaniec [1], and independently Fouvry [12], im-
proved (1.9) by showing that, given any A > 0 and any integer a # 0,

(1.10) ZT(}? +a) = Ciz + 2CLli(z) + O < xA ) ,
o< log” x



log p p*logp
where Cy = C | v — —_— +
o zp:pQ—erl %(p—l)(pz—wl)

On the other hand, letting (n) stand for the number of representations
of the positive integer n as a sum of two squares, it was proved by Hooley [15]
that, given any a € Z\ {0} and assuming the General Riemann Hypothesis
(GRH),

(1.11) > rp+a)=(Catoli(z)  (z— o0),

p<z

for a certain positive constant C,. Later Bredihin [2] proved (1.11) without
assuming GRH; he did so by using the Linnik dispersion method.

Given an integer ¢ > 2, let s,(n) be the sum of the digits of n in base g.
Mauduit and Rivat [19] proved that

(i) there exists a constant o,(a) > 0 such that

> Aln)e(asy(n)) = Ogala =),

where A stands for the von Mangoldt function;

(ii) given an integer m > 2 and setting d = (¢ — 1,m), there exists a
constant o,,, > 0 such that for every a € Z \ {0}, we have

d
#{p<z:sp)=a (modm)}= ET{'(ZL‘; d,a) + qu(ml_‘T%M).
(iii) the sequence (s,(p))pep is uniformly distributed modulo 1 if and only

ifa e R\ Q.

In what follows, the letters ¢ and C' stand for positive constants, but not
necessarily the same at each occurrence.

2 Main results

Theorem 1. Let f: o — C be a bounded function. Assume that for some
constant C' € C,

(2.1) S(x) =Y flp)=(C+o(L)m(x)  (z—o0).
Then
> fpn(p) = C (N = o0).

p<N



Theorem 2. Let g be a real valued additive function. Then, the function
g(P(n) + 1) has a limiting distribution if and only if g satisfies the three-
series condition (1.5).

Theorem 3. Let a € Z\ {0}. Then,
Y 7(P(n) +a) = (C +o(1))zlogz  (x— o0).

n<x

Theorem 4. Let a € Z\ {0}. Then,
Zr(P(n) +a) = (Cy+o(1))z (x — 00).

n<x

Theorem 5. Let y = 215t where 0 < € < 5/12 is a fized number. Then,
given an arbitrary M € N,

M
1 Dy, 1
- Pin) =Sk -
oy Z () Z oF 1, T 0 (logM“x) )

z<n<z+y k=0 08 X
where
00 k
log™ v
(2.2) Dp=)_ =

Theorem 6. Let s,(n) stand for the sum of the digits of n in base q¢ and
let a € Z\ {0}. Then,

lim % > " e(as,(P(n))) = 0.

n<z
Given an integer n > 2, write its prime factorisation as
n= P.(n)P_i(n)--- Pi(n),

where r = Q(n) and P.(n) < P._1(n) < --- < Pi(n). We thus let Pj(n)
stand for the j-th largest prime factor of n, setting for convenience Pj(n) =1
if 7 > Q(n).

Theorem 7. Let k € N. Let fi(p),..., fr(p) be k functions defined on
primes p. Assuming that each f;(p) is bounded as p runs over o and is such
that there exist positive constants Cy,Cy, ..., Cy for which

Si(x) =Y fi(p) = (C; + o(1))

p<lzx

gz (x — 00).

Then,
k

tim LS T AR ) = G0 G

n<zx j=1



3 Proof of Theorem 1

Let N*v < H < 2H < N7 If p € [H,2H], then, due to condition (iv),

1

. — <
pN(p) W([H, 2H]) qG;H] pN<q) > En,
where limy_,o ey = 0. Thus,
(3.1)
Z f(p)pn(p H2H Z f()pn(a)| <en Z pn(P)
pepé{p?le P, Zi[éiif pE[H 2H)]
Moreover,
1
— - . 2H) —
quZHQH f ION qe[H;H] pN(Q) 71_([]_]72]_”) (S( ) S(
P,gEPN qEP N
w(2H) — 7(H) ( > }
C 4+ o0
{ m([H,2H]) ([H,
(3.2) = (C+o(1)) > pnlg)  as H N —
q€[H,2H)]

Then, consider the sequence Hy = N*¥, H,., = 2H; for each integer 0 <
j < J where J is such that H; < N1~ A < 2H;. We then have, in light of
(3.1) and (3.2), as N — oo,

S fwenlp) = (C+o(1)> . D fp)on(p)

PE[Hg, H j] J=0 pE€[H;,Hj 1]
PEON PEPN

(3.3) = (C+o(1)) Z PN(q)-

9€(Ho,H ]

a€PN
On the other hand, because of the conditions (i) and (ii) imposed on the
function py(p), we have

(3.4)

H))

ZION

g€[H,2H)]
9€EPN

Q.

Z pN(q):l—ZpN ZpN =1-0(1)—0(1) as H,N — 0.

q€[Hg,H j] q<Hp q>Hjy
9EPN



Gathering (3.3) and (3.4) completes the proof of Theorem 1.

Remark 1. In the line of the function f(x,p) defined in (1.3), let
1 1 N
o) = g < Vs P =) = 50 (Tp).

where V(z,y) := #{n < x : P(n) <y} for 2 <y < x. Then, one can
easily check that vy (p) is a prime weight function, since it satisfies the four
conditions (i)-(iv). More generally, given an integer k > 1 and recalling
that Py(n) stands for the k-th largest prime factor of the integer n with
Q(n) > k, the function

1
k
WP = ~H{n SN Pi(n) = p}
is also a prime weight function. This follows essentially by observing that
W (p) =+ Z v (f&)
N P1>>pr_12P P1tPr—1
and then using the properties of the function ¥ (x,y).
As consequences of Theorem 1, we have the following results.

Corollary 1. Let k be a fized positive integer and let f be a function sat-
isfying (2.1). Then, for some constant cy,

% > f(Bn) s (N = o).

n<N

Corollary 2. Let (¢,)nen be a sequence of positive real numbers for which
the limat

Fu) = lim %N)#{pe ox t o < u}

exists, where F'(u) is a distribution function. Assume moreover that py(p)
is a prime weight function. Then,

Proof. Indeed, one only needs to choose

f(p)z{(l) oy <

otherwise

and then to apply Theorem 1. O]



4 Proof of Theorem 2

Let pn(p) be a prime weight function and assume that the function g is
such that if, setting

Fy(u):= Y px(p),

PEPN
g(p+1)<u
then the limit
(4.1) lim Fy(u) = F(u)

N—oo

exists for almost all real numbers u and F' is a distribution function. Then,
since F'(—oo) = 0 and F(co) = 1, there exists a real number b for which the
limit in (4.1) exists for w = b and u = b+1 and such that F'(b+1)—F(b) > 0.
In this case, we get that there exists a real number D such that

dm oY pn(p) = D.

PEPN
g(p+1)€[b,b+1)

It follows from this that there exists a sequence (Hy)nen which tends to
infinity with N and such that 2Hy < N and

Z pN(P)>§ Z pn (),

pE[H N ,2Hn] pE[HN,2H ]

g(p+1)€[b,b+1)
thus implying that for some positive constant ¢, we have Q,(2Hy) > ¢ for
every positive integer N, where @), is the function defined in (1.6). From
this, it follows that (W(2Hy))nyen is a bounded sequence, where W is the
function defined in (1.8). But this can only hold if A = 0, in which case we
get that

(4.2) > min(l,6°P) _

» p

Now let

(4.3) Ap= > @ (m=1,2,...).

p<m
lg(p)I<1

It is known that (4.3) implies that g(p+ 1) — A, has a limiting distribution

lim %#{p <z:g(p+1)— A, <u}:= L(u).

10



This implies that

lim > pn(p) = L(u).

N—oo
PEPN

g(p+1)—Ap<u

In light of (4.2), we obtain that

Ap—An= ) %?

m<p<x
lg(p)|<1

and therefore that
1 9*(p)
Ar =A< Y =0 Y =
m<p§xp m<p<x p

lg(p)|<1

From this, we may conclude that there exists A, which tends to 0 as z — oo
and for which if m > 2+, then

1 2
|Ax—Am\2§<log( 08 % )) Z g(p)_>0 as r — 00,

log xA=
& ep<a

provided A, is chosen appropriately.

We will now prove that Ay is bounded as N — oco. Assume the contrary,
that is that there exists a sequence of positive integers N; < Ny < --- such
that Ay, — 0o as ¥ — o0, in which case, for every € > 0, we have

L{u) = lim > o)
PEPN,,

g(p+1)<Ap+u

Vh_g)lo Z pn, (P) — Z pn, (P)

PEPN,, Av
<N,
g(p+1)<ApN, +u—e p v

(4.4) > lim Z pn,(p) — €

vV—00

v

PEPN,,
g(p+1)<Ap, tu—c

since A\, — 0 as ¥ — oo, where we used condition (ii).

Now, since Ay, — 00 as v — 00, given any large number F, we get that
Ay, > E provided v is sufficiently large, in which case it follows from (4.4)
that

L(u) > Fy,(E+u—e¢)—¢,
implying that
Lu)> F(E4+u—c¢)—c¢,

so that

(4.5) L(u) > F(E +u).

11



Since E can be chosen arbitrarily large, it follows from (4.5) that L(u) = 1.
Since this is true for every w, it means that L cannot be a distribution
function. The case liminfy_,,o Ay = —oo can be treated similarly. We
have thus established that (Ax)nen is bounded. We will now prove that
(An)nen is a convergent sequence. We will do this by assuming that

(4.6) limsup Ay =a and liminf Ay =7 with o > 3,
N—oo N—o0

that is

(4.7) Ay, > a and Ay, — f8 for two subsequences Ay, and Ay, .

We would then have

= > ~
L(u) = Jim Z pu, (p) > Fla+u—e)

g(p+1)<Ap+u

and that the above limit would also be < F(a + u + ¢), while

L= Jim S o) F(B+u-c)

g(p+1)<Ap+u

with the same limit < F'(8 4+ u + €). This shows that we must have = «
and therefore that
L(u) = F(a+u).
9(p)
p

Since A,, is bounded, we have proved that the series is conver-

lg(p)I<1
gent, thus completing the proof of Theorem 2.

5 Proof of Theorem 3

Let A\, — 0 as x — oo be a function which is to be chosen later in the proof
and let us set T'(x) := Z 7(P(n) + a). We split this sum as follows:

n<z
T = > rPm+a+ 3 wP@+a+ 3 r(Pw)+a)
i e pl et A O

= Si(x) + So(z) + S3(x),

say.

12



Setting M(z) := > _, T(p+a) and using the estimate of M (z) provided
in (1.10), we get by partial summation,
T Y
+ / # du
u
2—0 2-0

ZM — /; ldM(u): @
Ciz + 2052/ log x + O(z/ log® )

p - U
x
T (C 2C 1
+/ (—1+ 2 +O< . )> du
so\u ulogu ulog®u

2C: 1
- O, + 2 +O< 5 )+C’110gx+20210g10gx+0(1);
log x log” x

p<w

from which it follows that

(5.1) Z@ — Cy log  + 2, loglog & + O(1).

p<z

On the other hand, using the same technique, we get, for all Y > 2,

(5.2) 3 0+ g2 40 (@) .

vepeoy P
We also easily establish that

T(p+a)
) _ = log 1 1).
(5.3) ) Dlogp Cyloglogz + O(1)

p<w
Using the well known estimate

1logx

(5.4) U(z,y) < crexp {_ﬁlogy

RNCETER

(see for instance Theorem 9.5 in De Koninck and Luca [5]), we find that

Sie) = Y r(p+a)v (g,p)

p<ztz
11
< ox Z 7(p+a) exp 4 —— 0gx
p 2logp
p<aite
11 T(p+a)
< _-
qxem;{ QAw} PRA]
p<ate
which combined with (5.1) and choosing
1
5.5 o
(55) log log x

13



yields

x 1 xry/logx

1 -
< Vl1og z log log x o8 loglog
On the other hand, using (5.1), we get that

S0 = % v (D)

rl-rz<p<z

T(p+a
sz(pp)

xl-Ae <p<w

(5.6) Si(z)

= 2(Cilogz — Cylogz' ™ + O(loglog z)
(5.7) < Axloge.
For the evaluation of Sy(x), we proceed as follows. First, we set J, := ] zhe xlﬂw} )
We may thus write

(5.8) So(x) = Z 7(P(n) +a) = Z T(p+a)¥ (g,p) .

n<z =
P(n)EJs peJw

Recalling the Hildebrand [14] estimate

(5.9) Uz, y) = 2p(u) (1 +0 (M)) ,

log y

which is valid uniformly for = > 3, exp{(log log x)§+5} <y < z, and setting

| —1

upzw,weﬁndthat, for p € J,,
log p
(5.10) w(m ) :1:( )(1+O(log(up+1))>
: —p | =—plu —
p p ot log p
and
A 1—A

A1 I i
(5.11) “I’EL—A; N }

Thus in light of (5.8), (5.10) and (5.11), we have that

So(x) = = Z T+ a)p(up) +0 <:U Z T(p+a) log(u, + 1))

PEJy p pEJy plogp

=z Z T<p;— a)p(up) +0 <:v log(1/Az) Z T(p + CL))

pESy pEJ: plogp

14



(5.12) = zL(z)+ O(zK(x)),

say, where we used the fact that log(u, + 1) < log(1/A;) for p € J,.
On the other hand, we have

Z log P(n) = Z log P(n) + Z log P(n) + Z log P(n)

n<x n<z n<z n<z
P(n)<azz zAz <P(n)<zl—Az P(n)>zl=—Az

= Ri(z) + Rao(x) + Rs(w),

say. Since, using (5.4), we have, recalling our choice (5.5) of A,

x log p 1logx
Ri(z) = Z logp ¥ <5,p) Lz Z TeXp{_§logp

p<aie p<aie
11 log p x Viogx
S < )\x -] =
< xexp{ 2)\x} Z P < Vlog z 0Bt xlogloga:

p<zrx
and similarly
xlog x

Rs3(z) < x Z logp =(1+o(1))x(logx — (1 — A\)logr) <

zl- Az <p<z

loglog x’

it follows that
Z log P(n) = Ra(z) + o(z log x),

n<x

which implies in light of (1.2) that
(5.13) Ry(x) = Cxlogx + o(xlog x) (x — o0).

Since

Rafe) = S togp ¥ (2p) =0 3 ELpfu) + ofwloga) (2 - o0),

it follows from (5.13) that

(5.14) Z lngp(up) = Clogz + o(log z) (x — o00).

PEJx p

As a consequence of the Prime Number Theorem,

logp 1

yp<oy P

15



Using this along with estimate (5.2) and the fact that the p function satisfies

max IO(U’IH) _1‘ _>O asx—>00,
AT <py<pa<2pi<zl—Az p(um)
it follows that
(5.15)
7(p+ a) log p _ pluy)
Z Tp(up) -y Z » p(up)| = O <10gY Y =>2)
Y<p<2y Y <p<2Y

Let us now define the sequence (H;),>o as follows:
Hy = a7, H;=2'Hy forj=1,2,...,T,

(1 —=2X;)logx
log 2

where Hr_; < '™ < Hy, sothat Z = {
from (5.15) that
T(p+a) log p
Z ———p(up) — C Z p(up)
Ho<p<Hz p Ho<p<Hz p

(5.16) <

—‘ . Hence, it follows

Since we clearly have that

> (T(pm) _Cllogp) | <1

1=z <p<H1 p p

it follows from (5.16) that

Z T(p;- a)p(up) _q Z lo]g)ppwp)

pEJy pEJy

Using (5.17) and (5.14), we get

(5.17)

<<1
A

1
(5.18) L(z) = C1Clogz + O ()\—) :
On the other hand, using (5.3), it follows that
(5.19) K(z) < log(1/A;) Z T ta) < log(1/A;) - loglog .
=5 plogp
Combining (5.18) and (5.19) in (5.12) yields
(5.20) So(z) = C1Cxlogx + o(z log x) (x — 00).

Gathering estimates and (5.6), (5.7) and (5.20) completes the proof of The-
orem 3.

16



6 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3 and we will therefore
omit it.

7 Proof of Theorem 5

It is clear that in order to prove our result, we may assume that y = a2,

7 11
with E <A< E, say.
It follows from Corollary 1 in Ramachandra, Sankaranarayana and Srini-
vas [22] that

(7.1) Z An)=y+0 (y exp{—(log x)1/6}) )

n<zr<z+y

Now, observe that if p € [z, + y],
logz <logp < logx +log(1+y/z) = logz + O(y/z)

while

> logp < @loga)(VaT -V +O) < 2B L0 <t

z<pl<zty
£>2

so that, using (7.1), we get
(7.2)

Y. (ogz+O0(y/z)) + O((y/x)(logz)) = y + O (yexp{—(log )'/°}) ,

r<p<zty

which then allows us to write

_ Y Yy _ 1/6
o1 = rrndd b > 1] +0 (yexp{—(logz)"/*})

pE[z,+y] pE|z,z+y]

— o (Y ) O (el -(oga) )

log x xlogx
Consequently,
2
Ty Y
> = 20 () + 0 levespi-tosa))
pE[az,x+y]
(7.3) = loxgyx + O (zy exp{—(log :L‘)l/ﬁ}) ,

17



2
< zyexp{—(logz)'/°}.

7 1 11
Now, provided that — +¢; < 08y < —, say, where £; > 0 is an arbi-
12 logu 12

trarily small number, we have

Y Pn) = > p

where we used the fact that

log

r<n<z+y ISPV(P)Sngy
v)<p
= > D> pt > >
V<o 2peiel  atSuSeZopeiil
(74) = Sl(x7y>+52(xay)a

say. Now it is clear that
(7.5) So(z,y) < z' =2y,

On the other hand, writing

(7.6) Si(z,y) = Z A,

v<ze2

logz  log(y/v) logz

logy log(z/v) ~logy
(7.6), v runs from 1 to 2% for some positive 5 sufficiently small), we obtain

from (7.3) that

say, and assuming that

+ & (which holds if in

Ty xry 1/6
(7.7) A, = W +0 <; exp{—(log vz) / }> )

where we used the fact that log(xz/v) > log\/z.
It follows from (7.6) and (7.7) that, for some positive constant c,

(7.8) Siey) =Y 5t 4 O (eyexp{—(clogz)"/}) |

SV log(z/v)

Now, observe that

1 1 1
T = —_ =
Z v?log(z/v) VZ v?loga 1 — lsv

v<ze2 <zf2 logx
e =, v?logx log®
M k M+1
1 log™ v log v
7.9 = +0 — | .
(7.9) 2 iy 2 (Z > logMHx)

18



We easily see that, for each integer £ > 0, by partial integration,

Je(2) = / n*e " dn = nk(—e_””:o + k/ n" e dn
(7.10) = e pkJi1(2)

—Zz

with, in particular Jy(z) = e

1 k
Setting Ry := Z 0g2 Y and using (7.10), it is clear that
v

v>xc2

(7.11) Ry, < 2/ Otg dt = 2/ n*e dn = 2Jy (2 log x).

€2 2logx

Assuming that M is fixed, it follows from (7.11) that
(7.12) Ry, < (e2logx)Fe=2loer (k< M).

Recalling the definition of Dy given in (2.2), and using (7.12) in (7.9), it
follows that

1
7.13 T = E - -
( ) longrl <logMJr2 x)

Using (7.13) in (7.8), and substituting the resulting estimate in (7.4),
taking into account estimate (7.5), the proof of Theorem 5 is complete.

8 Proof of Theorem 6

Setting f(p) := e(asy(p)), it has been shown by Mauduit and Rivat [19]

that 1
lim o) Z f(p) =

Using this and Theorem 1, the proof of Theorem 6 follows.

9 Proof of Theorem 7

Given J C N, we set wy(n) := #{p € J: p| n}. Let § be a small positive
number. Given a large number z and setting J = J, = [2°, 7], it follows
from the Turan-Kubilius inequality that

> (wJ(n)—Z%>2 <Cz Y. %.

n<x peJ 9 <p<z
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Since

1 1
g E 1<z 5 ]ng(logl_5+o(1)>§25x,
n<z 11*§|2p<:c rl-d<p<a

provided z is large enough, and since
1 1
E - =log - +0(1) (x — 00),
ot P 0
z®<p<w

it follows that there exists an absolute constant ¢ > 0 and a number xy such
that if x > x¢, then

' < Pi(n) <---< P(n) <a'™°

holds for every integer n € [2, 2] with the exception of at most cix integers.

Now let A be a small positive number such that Alog1/d < § and let us
consider the set D, of those positive integers n < x which have two prime
divisors p, ¢ such that 2% < p < ¢ < p'**. It turns out that

#0. <@ Y —<e 3 ¥ o

xd<p<g<plt? pq O <p<\x~ p<g<p'tH
log(1 + A 1
(9.1) < 20 ) log(1+4) _ 2eAlog 5 < 20w.
p
rd<p<z

Let B = B, be the set of those k-tuples of primes (py, ..., px) such that

2 < P(n)<---< Pi(n) <2 pig <p}_’\ for j=1,...,kand py---pp < z'7°.

First observe that the size of the set of those positive integers n < x for
which the k-tuples (Py(n),..., Py(n)) & B is O(dz). We thus have
(9.2)

r= I = X T (5 ) + 0,

. ! o
<z j=1 (p1,pr)EB j=1 prop

Then, if (p1,...,px) € B, one can easily see that with

u— 10g<33'/p1 e 'pk)
log pr,

we get
. logz — Zle log p;
log pi

1
<_a
)
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so that
log(u+1)  log(u+1) < log(1/0)

logy logpry — dlogz
We thus obtain, using (5.9),

\IJ( x ,pk): x p(log(a:/p1~-pk)>+0( x  log(1/0) 1 )
PLc Dk PLccDe log pi pr-opr 0 logw

Hence, it follows from (9.2) that

r- Y Hf;pj lmpkp(log(w/pl---pk))

(P1r--pk)EB =1 log pi,

9.3) + ol ¥ Hfj x log(1/9)

(P1,-pr)EB j=1 -pr Ologx

Since the above error term is, as x+ — oo,

log(1/8 1 log(1/8 1-08\"
< (5g1£)g/x) Z Hfﬂ | 2 ) < flf)g/a:) <1°g 5 ) = ol@),

~~~~~ pr)EB j=1 zd<pj<zl—9d P

it follows, in light of (9.3), that estimate (9.2) can be replaced by
(9.4)

T=z Y Hfﬂpﬂ (logx/pl )>+O(5x)—|—o(x) (z — o0).

(p1,--pr)EB =1 log pi.

Now, given any k primes ¢ < o < --- < qp with the property that

1 .
Py for j =1,2,...,k and setting
2 pj
k k
logx — ijl log ¢; logx — ijl log p;
e(z) := max max |p —p ,
(prpr)€B ik log g log py,

it follows from the continuity of the p function that e(x) — 0 as x — oc.
We can then use this in the estimate of the main term in (9.4) so that,
arguing as we did in the proof of Theorem 1, we obtain that (9.4) can be
replaced by

T = x Z Hf] ) <10g t/p ))+O((5a:)+0(3:)

log px,

= C)---C, Z xHip(log(x/pln.pk»+O(51’)+0(x)

log pr,
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= (- Cp(x+0(92)) + O(dz) + o(x)
Cy -+ Crx + O(dx).

Since ¢ can be chosen arbitrarily small, the proof of Theorem 7 is complete.

10 Final remarks

Given a real valued additive function g and a € Z \ {0}, let

Fy(y) = ﬁ#{p €N:glpt+a)<yy and  Fly)= lim Fy(y).

We then have the following results.

Theorem 8. Given arbitrary real numbers yy, ..., Y,

. k
lim N#{n <N :g(Pj(n)+a)<yj,j=1,....k} :jl_[lF(yj)-

N—oo

Theorem 9. Given any real number z, set G(z) ::/ Fly+z)dF(y).
Then, -

Jim —{n < N 2 g(R(n) +a) — g(Pa(n) +a) < 2} = G(2).

Theorem 10. Let ay,...,a; be non zero integers and let gy, ..., gr be real
valued additive functions each satisfying the three-series condition. Set

Fy(y) = ﬁ#{p <N:g(p+ay) <y}

Then, for each j € {1,...,k}, we have A}im Fn;(y) = Fj(N). Moreover,
—00

1 : :
]&glgo N#{n <N :9;(Pj(n)+a;) <yj,j=1,...,k} exists

k
and is equal to HFj(yj)'

J=1

Theorem 11. Let ay,...,a; be non zero integers and let gy, ..., gx be real
valued additive functions each satisfying g;(p) = O(1) for p € p. Letting

Aj(x) = Z % and ~ Bj(z)’ = Z QJT@

p<z p<z
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and assuming that Bj(x) — 0o as x — 0o, then

k
<ypj=1... .k} =]

j=1

(Pj(n) +a;) — A;(N)
Bj(N)

.1 9;
— < :
W s N

The above theorems are essentially consequences of Theorem 7. For
instance, in order to prove Theorem 10, one can proceed as follows. First

define o )
‘ . 1 1 g;\p + a;) < yj, -

filp) = { 0 otherwise G=1...,k).
Then, we have

1
lim

N—o0 7T(N)

Y L) =Fipy)  (G=1,....k),

p<N

implying that

which is precisely the conclusion of Theorem 10.

To prove Theorem 9, we first observe that g(P;(n)+a) and g(Ps(n) +a)
are independent. Then, applying the result of Theorem 8, the conclusion of
Theorem 9 follows.

The proof of Theorem 11 needs more attention. First we let

_ 9ilp+a;) — A;i(p)

hj(p)
’ B;(p)
and define
oy b1 ifEh(p) <y, -
filp) = { 0 otherwise G=1....%).

Now, it is known that

(p+a;) — A;(N)
B;(N)

lim

N—o0 W(N)

#{pswit Sup=B) =)

>5}:0.

On the other hand, it is clear that, for every € > 0, we have

gi(p+a;) — A;(N)  g;(p+a;) — A;(p)

B;(N) B;(p)

1\}520 m(N)

#{pSN:
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From this, it follows that

1
lim

Jim 5 D h) =) =Tk

p<z

On the other hand, it is a consequence of Theorem 8 that, for every € > 0,

9;(Pj(n) +a;) — A;(P;(n))  g;(Fi(n) + a;) —Aj(N)‘ - 5} _o

1 .
lim 4 {n SN max, B;(P;(n)) B;j(N)

N—o0

Combining the above estimates, the proof of Theorem 11 is complete.
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