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Département de mathématiques et de statistique
Université Laval
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Eötvös Loránd University
1117 Budapest
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Abstract

We obtain estimates for the average value of the largest prime
factor P (n) in short intervals [x, x + y] and of h(P (n) + 1), where
h is a complex valued additive function or multiplicative function
satisfying certain conditions. Letting sq(n) stand for the sum of the
digits of n in base q ≥ 2, we show that if α is an irrational number,
the sequence (αsq(P (n)))n∈N is uniformly distributed modulo 1.
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1 Introduction and notation

Let P (n) stand for the largest prime factor of an integer n ≥ 2 and set
P (1) = 1. This function has been extensively studied over the past decades,
in particular its average value, sums involving the reciprocal of its values,
as well as its most frequent value in the interval [2, x].

Here, we obtain estimates for
∑

x≤n≤x+y P (n) when y = x
7
12

+ε for any
0 < ε < 5/12. Given an integer a 6= 0, we also obtain estimates for the
average value of h(P (n) + a) for various arithmetic functions h satisfying
certain regularity conditions. Letting sq(n) stand for the sum of the digits
of n in base q ≥ 2, we show that if α ∈ R \Q, the sequence (αsq(P (n)))n∈N
is uniformly distributed modulo 1.

Before we state these results more explicitly, we provide some back-
ground results.

In 1984, De Koninck and Ivić [4] proved that, given an arbitrary positive
integer m, there exist computable constants d1 = π2/12, d2, . . . , dm such
that

(1.1)
∑
n≤x

P (n) = x2
(

d1
log x

+
d2

log2 x
+ · · ·+ dm

logm x
+O

(
1

logm+1 x

))
.

Recently, Naslund [21] improved (1.1) by showing that, given any ε > 0,
there exists a positive constant c such that∑

n≤x

P (n) = xlig(x) +Oε

(
x2 exp{−c(log x)

3
5
−ε}
)
,

where

lig(x) =

∫ x

2

t

x

bx/tc
log t

dt =
c0

log x
+

c1

log2 x
+· · ·+cm−1(m− 1)!

logm x
+O

(
1

logm+1 x

)
(for any given m ∈ N) with the constants ci’s being defined by

ci =
1

2i+1

i∑
j=0

2j(−1)jζ(j)(2)

j!
,

where ζ stands for the Riemann Zeta Function.
In 1986, Erdős, Ivić and Pomerance [11] proved that

∑
n≤x

1

P (n)
= xδ(x)

(
1 +O

(√
log log x

log x

))
,

where δ(x) is some continuous function which decreases to 0 very slowly as
x→∞ and in fact satisfies

δ(x) = exp{−
√

2 log x log log x(1 + o(1))} as x→∞.

2



On the other hand, it is known (see Problem 9.33 in the book of De
Koninck and Luca [5]) that

(1.2)
∑

2≤n≤x

logP (n) = Cx log x+O(x log log x),

where C = 1−
∫ ∞
1

ρ(v)

v2
dv and ρ(v) stands for the Dickman function.

In 1987, De Koninck and Sitaramachandrarao [6] proved that∑
2≤n≤x

1

n logP (n)
= eγ log log x+O(1),

where γ stands for the Euler-Mascheroni constant.
In 1994, the first author [3] and later De Koninck and Sweeney [7] studied

the function

(1.3) f(x, p) := #{n ≤ x : P (n) = p}

and proved in particular that the maximum value of f(x, p), as p runs over
the interval [2, x], is reached at

p = exp

{√
1

2
log x log log x

(
1 + λ(x) + o(

1

log log x
)

)}
(x→∞),

where λ(x) =
1

2

log log log x

log log x
, in which case f(x, p) is equal to

(1.4)

x exp

{
−
√

2 log x log log x

(
1 +

λ(x)

2
− 2 + log 2 + o(1)

2 log log x

)}
(x→∞).

Some improvements of this particular result have recently been obtained by
McNew [20].

From here on, we shall write π(x) for the number of primes p ≤ x
and π(x; k, `) for the number of primes p ≡ ` (mod k) not exceeding x.
Moreover, we let ℘ stand for the set of all primes.

Now, given a real valued additive function g such that the set {g(p) :
p ∈ ℘} is bounded, let

Ax :=
∑
p≤x

g(p)

p
and B2

x :=
∑
p≤x

g2(p)

p

and further set

κn :=
g(n)− An

Bn

(n ∈ N) and Φ(u) :=
1√
2π

∫ u

−∞
e−w

2/2 dw (u ∈ R).

3



According to the Erdős-Kac Theorem (see Theorem 12.3 in the book of
Elliott [9]), if Bx →∞ as x→∞, then

lim
x→∞

1

x
#{n ≤ x : κn < u} = Φ(u) for every real u.

Given a positive integer N , let ℘N := {p ≤ N : p ∈ ℘}. We shall say
that the function ρN : ℘N −→ [0, 1) is a prime weight function if it satisfies
the following four conditions:

(i)
∑
p∈℘N

ρN(p) = 1 for each integer N ≥ 2;

(ii) for every non increasing sequence (λN)N∈N tending to 0 as N → ∞,
the following two assertions hold:∑

p<NλN
p∈℘N

ρN(p)→ 0 and
∑

N1−λN <p<N
p∈℘N

ρN(p)→ 0 (N →∞);

(iii) with (λN)N∈N as in (ii),

max
NλN<p1<p2<2p1<N

1−λN
p1,p2∈℘N

∣∣∣∣ρN(p1)

ρN(p2)
− 1

∣∣∣∣→ 0 as N →∞;

(iv) sup
H≤N

∣∣∣∣∣∣∣
∑

H≤p<2H
p∈℘N

ρN(p)

∣∣∣∣∣∣∣→ 0 as N →∞.

It is known (see Theorem 12.4 in the book of Elliott [9]) that, under the
conditions of the Erdős-Kac Theorem, for every a ∈ Z \ {0},

lim
N→∞

#{p ∈ ℘N : κp+a < u} = Φ(u) for every real u

and that
lim
N→∞

∑
κp+a<u

ρN(p) = Φ(u) for every real u.

According to the Erdős-Wintner Theorem (see Theorem 5.1 in the book
of Elliott [8]), in order for a real-valued additive function g to have a limiting
distribution, it is both sufficient and necessary that it satisfies the three-
series condition

(1.5)
∑
|g(p)|≥1

1

p
<∞,

∑
|g(p)|<1

g(p)

p
converge,

∑
|g(p)|<1

g2(p)

p
<∞.
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In 1968, the second author [16] proved that if g is a real valued ad-

ditive function and Fx(y) :=
1

li(x)

∑
p≤x

g(p+1)<y

1, where li(x) :=

∫ x

2

dt

log t
, and if

moreover the function g satisfies the three-series condition (1.5), then the
distribution functions Fx(y) tend to a limiting distribution function F (y)
as x → ∞ at all points of continuity of F (y). In the same paper, he also
showed that, provided g satisfies the three-series condition, then g(p + 1)
(and more generally g(p+ a), where a ∈ Z \ {0}) has a limit distribution.

Erdős and Kubilius asked whether the three-series condition is necessary
or not in this case of the shifted primes. In fact, partial results were achieved
by Elliott [10], Kátai [17] and Timofeev [24]. In the end, Hildebrand [13]
proved the necessity of the three-series condition for shifted primes.

Now, letting

(1.6) Qpr(x) =
1

π(x)
sup
h∈R

#{p ≤ x : g(p+ a) ∈ [h, h+ 1]},

going back to an idea of Ruzsa [23], Timofeev [24] proved that

(1.7) Qpr(x) ≤ c
log2(2 +W (x))√

W (x)
,

where

(1.8) W (x) := min
λ

(
λ2 +

∑
p≤x

1

p
min(1, (g(p)− λ log p)2)

)
.

Later, Elliott [10] refined (1.7) and obtained

Qpr(x)� W (x)−1/2.

Let τ(n) stand for the number of positive divisors of n. Using his dis-
persion method, Linnik [18] proved in 1963 that

(1.9)
∑
p≤x

τ(p+ a) = C1x+O

(
x

logc x

)
,

where c = 0.999 and C1 =
ζ(2)ζ(3)

ζ(6)

∏
p|a

(
1− p

p2 − p+ 1

)
. Later, in 1986,

Bombieri, Friedlander and Iwaniec [1], and independently Fouvry [12], im-
proved (1.9) by showing that, given any A > 0 and any integer a 6= 0,

(1.10)
∑
p≤x

τ(p+ a) = C1x+ 2C2li(x) +O

(
x

logA x

)
,
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where C2 = C1

γ −∑
p

log p

p2 − p+ 1
+
∑
p|a

p2 log p

(p− 1)(p2 − p+ 1)

.

On the other hand, letting r(n) stand for the number of representations
of the positive integer n as a sum of two squares, it was proved by Hooley [15]
that, given any a ∈ Z \ {0} and assuming the General Riemann Hypothesis
(GRH),

(1.11)
∑
p≤x

r(p+ a) = (Ca + o(1))li(x) (x→∞),

for a certain positive constant Ca. Later Bredihin [2] proved (1.11) without
assuming GRH; he did so by using the Linnik dispersion method.

Given an integer q ≥ 2, let sq(n) be the sum of the digits of n in base q.
Mauduit and Rivat [19] proved that

(i) there exists a constant σq(α) > 0 such that∑
n≤x

Λ(n)e(αsq(n)) = Oq,α(x1−σq(α)),

where Λ stands for the von Mangoldt function;

(ii) given an integer m ≥ 2 and setting d = (q − 1,m), there exists a
constant σq,m > 0 such that for every a ∈ Z \ {0}, we have

#{p ≤ x : sq(p) ≡ a (mod m)} =
d

m
π(x; d, a) +Oq,m(x1−σq,m).

(iii) the sequence (αsq(p))p∈℘ is uniformly distributed modulo 1 if and only
if α ∈ R \Q.

In what follows, the letters c and C stand for positive constants, but not
necessarily the same at each occurrence.

2 Main results

Theorem 1. Let f : ℘→ C be a bounded function. Assume that for some
constant C ∈ C,

(2.1) S(x) :=
∑
p≤x

f(p) = (C + o(1))π(x) (x→∞).

Then ∑
p≤N

f(p)ρN(p)→ C (N →∞).
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Theorem 2. Let g be a real valued additive function. Then, the function
g(P (n) + 1) has a limiting distribution if and only if g satisfies the three-
series condition (1.5).

Theorem 3. Let a ∈ Z \ {0}. Then,∑
n≤x

τ(P (n) + a) = (C1 + o(1))x log x (x→∞).

Theorem 4. Let a ∈ Z \ {0}. Then,∑
n≤x

r(P (n) + a) = (Ca + o(1))x (x→∞).

Theorem 5. Let y = x
7
12

+ε where 0 < ε < 5/12 is a fixed number. Then,
given an arbitrary M ∈ N,

1

xy

∑
x≤n≤x+y

P (n) =
M∑
k=0

Dk

logk+1 x
+O

(
1

logM+2 x

)
,

where

(2.2) Dk =
∞∑
ν=1

logk ν

ν2
.

Theorem 6. Let sq(n) stand for the sum of the digits of n in base q and
let a ∈ Z \ {0}. Then,

lim
x→∞

1

x

∑
n≤x

e(αsq(P (n))) = 0.

Given an integer n ≥ 2, write its prime factorisation as

n = Pr(n)Pr−1(n) · · ·P1(n),

where r = Ω(n) and Pr(n) ≤ Pr−1(n) ≤ · · · ≤ P1(n). We thus let Pj(n)
stand for the j-th largest prime factor of n, setting for convenience Pj(n) = 1
if j > Ω(n).

Theorem 7. Let k ∈ N. Let f1(p), . . . , fk(p) be k functions defined on
primes p. Assuming that each fi(p) is bounded as p runs over ℘ and is such
that there exist positive constants C1, C2, . . . , Ck for which

Sj(x) :=
∑
p≤x

fj(p) = (Cj + o(1))
x

log x
(x→∞).

Then,

lim
x→∞

1

x

∑
n≤x

k∏
j=1

fj(Pj(n)) = C1C2 · · ·Ck.
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3 Proof of Theorem 1

Let NλN ≤ H < 2H < N1−λN . If p ∈ [H, 2H], then, due to condition (iv),∣∣∣∣∣∣∣ρN(p)− 1

π([H, 2H])

∑
q∈[H,2H]
q∈℘N

ρN(q)

∣∣∣∣∣∣∣ ≤ εN ,

where limN→∞ εN = 0. Thus,
(3.1)∣∣∣∣∣∣∣

∑
p∈[H,2H]
p∈℘N

f(p)ρN(p)− 1

π([H, 2H])

∑
p,q∈[H,2H]
p,q∈℘N

f(p)ρN(q)

∣∣∣∣∣∣∣ ≤ εN
∑

p∈[H,2H]

ρN(p).

Moreover,

1

π([H, 2H])

∑
p,q∈[H,2H]
p,q∈℘N

f(p)ρN(q) =
∑

q∈[H,2H]
q∈℘N

ρN(q) · 1

π([H, 2H])
· (S(2H)− S(H))

=

{
C
π(2H)− π(H)

π([H, 2H])
+ o

(
π(2H)

π([H, 2H])

)} ∑
q∈[H,2H]
q∈℘N

ρN(q)

= (C + o(1))
∑

q∈[H,2H]
q∈℘N

ρN(q) as H,N →∞.(3.2)

Then, consider the sequence H0 = NλN , Hj+1 = 2Hj for each integer 0 ≤
j ≤ J where J is such that HJ ≤ N1−λN ≤ 2HJ . We then have, in light of
(3.1) and (3.2), as N →∞,

∑
p∈[H0,HJ ]
p∈℘N

f(p)ρN(p) = (C + o(1))
J∑
j=0

∑
p∈[Hj,Hj+1]

p∈℘N

f(p)ρN(p)

= (C + o(1))
J∑
j=0

∑
q∈[Hj,Hj+1]

q∈℘N

ρN(q)

= (C + o(1))
∑

q∈[H0,HJ ]
q∈℘N

ρN(q).(3.3)

On the other hand, because of the conditions (i) and (ii) imposed on the
function ρN(p), we have
(3.4)∑
q∈[H0,HJ ]
q∈℘N

ρN(q) = 1−
∑
q<H0

ρN(q)−
∑
q>HJ

ρN(q) = 1−o(1)−o(1) as H,N →∞.
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Gathering (3.3) and (3.4) completes the proof of Theorem 1.

Remark 1. In the line of the function f(x, p) defined in (1.3), let

γN(p) =
1

N
#{n ≤ N : P (n) = p} =

1

N
Ψ

(
N

p
, p

)
,

where Ψ(x, y) := #{n ≤ x : P (n) ≤ y} for 2 ≤ y ≤ x. Then, one can
easily check that γN(p) is a prime weight function, since it satisfies the four
conditions (i)-(iv). More generally, given an integer k ≥ 1 and recalling
that Pk(n) stands for the k-th largest prime factor of the integer n with
Ω(n) ≥ k, the function

γ
(k)
N (p) :=

1

N
#{n ≤ N : Pk(n) = p}

is also a prime weight function. This follows essentially by observing that

γ
(k)
N (p) =

1

N

∑
p1≥···≥pk−1≥p

Ψ

(
N

p1 · · · pk−1
, p

)
and then using the properties of the function Ψ(x, y).

As consequences of Theorem 1, we have the following results.

Corollary 1. Let k be a fixed positive integer and let f be a function sat-
isfying (2.1). Then, for some constant ck,

1

N

∑
n≤N

f(Pk(n))→ ck (N →∞).

Corollary 2. Let (ϕn)n∈N be a sequence of positive real numbers for which
the limit

F (u) := lim
N→∞

1

π(N)
#{p ∈ ℘N : ϕp < u}

exists, where F (u) is a distribution function. Assume moreover that ρN(p)
is a prime weight function. Then,

lim
N→∞

∑
p∈℘N
ϕp<u

ρN(p) = F (u).

Proof. Indeed, one only needs to choose

f(p) =

{
1 if ϕp < u,
0 otherwise

and then to apply Theorem 1.
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4 Proof of Theorem 2

Let ρN(p) be a prime weight function and assume that the function g is
such that if, setting

FN(u) :=
∑
p∈℘N

g(p+1)<u

ρN(p),

then the limit

(4.1) lim
N→∞

FN(u) = F (u)

exists for almost all real numbers u and F is a distribution function. Then,
since F (−∞) = 0 and F (∞) = 1, there exists a real number b for which the
limit in (4.1) exists for u = b and u = b+1 and such that F (b+1)−F (b) > 0.
In this case, we get that there exists a real number D such that

lim
N→∞

∑
p∈℘N

g(p+1)∈[b,b+1)

ρN(p) = D.

It follows from this that there exists a sequence (HN)N∈N which tends to
infinity with N and such that 2HN < N and∑

p∈[HN,2Hn]

g(p+1)∈[b,b+1)

ρN(p) >
D

2

∑
p∈[HN ,2HN ]

ρN(p),

thus implying that for some positive constant c, we have Qpr(2HN) > c for
every positive integer N , where Qpr is the function defined in (1.6). From
this, it follows that (W (2HN))N∈N is a bounded sequence, where W is the
function defined in (1.8). But this can only hold if λ = 0, in which case we
get that

(4.2)
∑
p

min(1, g2(p))

p
<∞.

Now let

(4.3) Am :=
∑
p≤m
|g(p)|<1

g(p)

p
(m = 1, 2, . . .).

It is known that (4.3) implies that g(p+ 1)−Ap has a limiting distribution

lim
x→∞

1

π(x)
#{p ≤ x : g(p+ 1)− Ap < u} := L(u).
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This implies that

lim
N→∞

∑
p∈℘N

g(p+1)−Ap<u

ρN(p) = L(u).

In light of (4.2), we obtain that

Ax − Am =
∑
m<p≤x
|g(p)|<1

g(p)

p

and therefore that

|Ax − Am|2 ≤
∑

m<p≤x

1

p
·
∑
m<p≤x
|g(p)|<1

g2(p)

p
.

From this, we may conclude that there exists λx which tends to 0 as x→∞
and for which if m ≥ xλx , then

|Ax − Am|2 ≤
(

log

(
log x

log xλx

)) ∑
xλx≤p≤x

g2(p)

p
→ 0 as x→∞,

provided λx is chosen appropriately.
We will now prove that AN is bounded as N →∞. Assume the contrary,

that is that there exists a sequence of positive integers N1 < N2 < · · · such
that ANν →∞ as ν →∞, in which case, for every ε > 0, we have

L(u) = lim
ν→∞

∑
p∈℘Nν

g(p+1)<Ap+u

ρNν (p)

≥ lim
ν→∞

∑
p∈℘Nν

g(p+1)<ANν
+u−ε

ρNν (p)−
∑
p<Nλν

ν

ρNν (p)

≥ lim
ν→∞

∑
p∈℘Nν

g(p+1)<ANν
+u−ε

ρNν (p)− ε(4.4)

since λν → 0 as ν →∞, where we used condition (ii).
Now, since ANν →∞ as ν →∞, given any large number E, we get that

ANν ≥ E provided ν is sufficiently large, in which case it follows from (4.4)
that

L(u) ≥ FNν (E + u− ε)− ε,
implying that

L(u) ≥ F (E + u− ε)− ε,
so that

(4.5) L(u) ≥ F (E + u).
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Since E can be chosen arbitrarily large, it follows from (4.5) that L(u) = 1.
Since this is true for every u, it means that L cannot be a distribution
function. The case lim infN→∞AN = −∞ can be treated similarly. We
have thus established that (AN)N∈N is bounded. We will now prove that
(AN)N∈N is a convergent sequence. We will do this by assuming that

(4.6) lim sup
N→∞

AN = α and lim inf
N→∞

AN = β with α > β,

that is

(4.7) AMν → α and ANν → β for two subsequences AMν and ANν .

We would then have

L(u) = lim
Mν→∞

∑
p∈℘Mν

g(p+1)<Ap+u

ρMν (p) ≥ F (α + u− ε)

and that the above limit would also be ≤ F (α + u+ ε), while

L(u) = lim
Nν→∞

∑
p∈℘Nν

g(p+1)<Ap+u

ρNν (p) ≥ F (β + u− ε)

with the same limit ≤ F (β + u+ ε). This shows that we must have β = α
and therefore that

L(u) = F (α + u).

Since Am is bounded, we have proved that the series
∑
|g(p)|<1

g(p)

p
is conver-

gent, thus completing the proof of Theorem 2.

5 Proof of Theorem 3

Let λx → 0 as x→∞ be a function which is to be chosen later in the proof

and let us set T (x) :=
∑
n≤x

τ(P (n) + a). We split this sum as follows:

T (x) =
∑
n≤x

P (n)≤xλx

τ(P (n) + a) +
∑
n≤x

xλx<P (n)≤x1−λx

τ(P (n) + a) +
∑
n≤x

x1−λx<P (n)≤x

τ(P (n) + a)

= S1(x) + S2(x) + S3(x),

say.
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Setting M(x) :=
∑

p≤x τ(p+a) and using the estimate of M(x) provided
in (1.10), we get by partial summation,∑
p≤x

τ(p+ a)

p
=

∫ x

2−0

1

u
dM(u) =

M(u)

u

∣∣∣∣x
2−0

+

∫ x

2−0

M(u)

u2
du

=
C1x+ 2C2x/ log x+O(x/ log2 x)

x

+

∫ x

2−0

(
C1

u
+

2C2

u log u
+O

(
1

u log2 u

))
du

= C1 +
2C2

log x
+O

(
1

log2 x

)
+ C1 log x+ 2C2 log log x+O(1),

from which it follows that

(5.1)
∑
p≤x

τ(p+ a)

p
= C1 log x+ 2C2 log log x+O(1).

On the other hand, using the same technique, we get, for all Y ≥ 2,

(5.2)
∑

Y≤p<2Y

τ(p+ a)

p
= C1 log 2 +O

(
1

log Y

)
.

We also easily establish that

(5.3)
∑
p≤x

τ(p+ a)

p log p
= C1 log log x+O(1).

Using the well known estimate

(5.4) Ψ(x, y) ≤ cx exp

{
−1

2

log x

log y

}
(2 ≤ y ≤ x)

(see for instance Theorem 9.5 in De Koninck and Luca [5]), we find that

S1(x) =
∑
p≤xλx

τ(p+ a)Ψ

(
x

p
, p

)

≤ c1x
∑
p≤xλx

τ(p+ a)

p
exp

{
−1

2

log x

log p

}

≤ c1x exp

{
−1

2

1

λx

} ∑
p≤xλx

τ(p+ a)

p
,

which combined with (5.1) and choosing

(5.5) λx =
1

log log x

13



yields

(5.6) S1(x)� x√
log x

1

log log x
· log x =

x
√

log x

log log x
,

On the other hand, using (5.1), we get that

S3(x) =
∑

x1−λx<p≤x

τ(p+ a)Ψ

(
x

p
, p

)
≤ x

∑
x1−λx<p≤x

τ(p+ a)

p

= x(C1 log x− C1 log x1−λx +O(log log x)

� λxx log x.(5.7)

For the evaluation of S2(x), we proceed as follows. First, we set Jx :=
]
xλx , x1−λx

]
.

We may thus write

(5.8) S2(x) =
∑
n≤x

P (n)∈Jx

τ(P (n) + a) =
∑
p∈Jx

τ(p+ a)Ψ

(
x

p
, p

)
.

Recalling the Hildebrand [14] estimate

(5.9) Ψ(x, y) = xρ(u)

(
1 +O

(
log(u+ 1)

log y

))
,

which is valid uniformly for x ≥ 3, exp{(log log x)
5
3
+ε} ≤ y ≤ x, and setting

up =
log x− log p

log p
, we find that, for p ∈ Jx,

(5.10) ψ

(
x

p
, p

)
=
x

p
ρ(up)

(
1 +O

(
log(up + 1)

log p

))
and

(5.11) up ∈
[

λx
1− λx

,
1− λx
λx

]
.

Thus in light of (5.8), (5.10) and (5.11), we have that

S2(x) = x
∑
p∈Jx

τ(p+ a)

p
ρ(up) +O

(
x
∑
p∈Jx

τ(p+ a)

p log p
log(up + 1)

)

= x
∑
p∈Jx

τ(p+ a)

p
ρ(up) +O

(
x log(1/λx)

∑
p∈Jx

τ(p+ a)

p log p

)

14



= xL(x) +O(xK(x)),(5.12)

say, where we used the fact that log(up + 1)� log(1/λx) for p ∈ Jx.
On the other hand, we have∑

n≤x

logP (n) =
∑
n≤x

P (n)≤xλx

logP (n) +
∑
n≤x

xλx<P (n)≤x1−λx

logP (n) +
∑
n≤x

P (n)>x1−λx

logP (n)

= R1(x) +R2(x) +R3(x),

say. Since, using (5.4), we have, recalling our choice (5.5) of λx,

R1(x) =
∑
p≤xλx

log p Ψ

(
x

p
, p

)
� x

∑
p≤xλx

log p

p
exp

{
−1

2

log x

log p

}

� x exp

{
−1

2

1

λx

} ∑
p≤xλx

log p

p
� x√

log x
λx · log x = x

√
log x

log log x

and similarly

R3(x)� x
∑

x1−λx<p≤x

log p

p
= (1 + o(1))x (log x− (1− λx) log x)� x log x

log log x
,

it follows that ∑
n≤x

logP (n) = R2(x) + o(x log x),

which implies in light of (1.2) that

(5.13) R2(x) = Cx log x+ o(x log x) (x→∞).

Since

R2(x) =
∑
p∈Jx

log p Ψ

(
x

p
, p

)
= x

∑
p∈Jx

log p

p
ρ(up) + o(x log x) (x→∞),

it follows from (5.13) that

(5.14)
∑
p∈Jx

log p

p
ρ(up) = C log x+ o(log x) (x→∞).

As a consequence of the Prime Number Theorem,∑
Y≤p<2Y

log p

p
= log 2 +O

(
1

log Y

)
.
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Using this along with estimate (5.2) and the fact that the ρ function satisfies

max
xλx<p1<p2<2p1<x1−λx

∣∣∣∣ρ(up1)

ρ(up2)
− 1

∣∣∣∣→ 0 as x→∞,

it follows that
(5.15)∣∣∣∣∣ ∑

Y≤p<2Y

τ(p+ a)

p
ρ(up)− C1

∑
Y≤p<2Y

log p

p
ρ(up)

∣∣∣∣∣ = O

(
ρ(uY )

log Y

)
(Y ≥ 2).

Let us now define the sequence (Hj)j≥0 as follows:

H0 = xλx , Hj = 2jH0 for j = 1, 2, . . . , I,

where HI−1 < x1−λx ≤ HI , so that I =

⌈
(1− 2λx) log x

log 2

⌉
. Hence, it follows

from (5.15) that∣∣∣∣∣ ∑
H0≤p<HI

τ(p+ a)

p
ρ(up)− C1

∑
H0≤p<HI

log p

p
ρ(up)

∣∣∣∣∣ ≤
I−1∑
j=0

O

(
ρ(uj)

logHj

)
� I

logH0

� 1

λx
.(5.16)

Since we clearly have that∣∣∣∣∣∣
∑

x1−λx<p<HI

(
τ(p+ a)

p
− C1

log p

p

)
ρ(up)

∣∣∣∣∣∣� 1,

it follows from (5.16) that

(5.17)

∣∣∣∣∣∑
p∈Jx

τ(p+ a)

p
ρ(up)− C1

∑
p∈Jx

log p

p
ρ(up)

∣∣∣∣∣� 1

λx
.

Using (5.17) and (5.14), we get

(5.18) L(x) = C1C log x+O

(
1

λx

)
,

On the other hand, using (5.3), it follows that

(5.19) K(x)� log(1/λx)
∑
p∈Jx

τ(p+ a)

p log p
� log(1/λx) · log log x.

Combining (5.18) and (5.19) in (5.12) yields

(5.20) S2(x) = C1Cx log x+ o(x log x) (x→∞).

Gathering estimates and (5.6), (5.7) and (5.20) completes the proof of The-
orem 3.
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6 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3 and we will therefore
omit it.

7 Proof of Theorem 5

It is clear that in order to prove our result, we may assume that y = xλ,

with
7

12
< λ <

11

12
, say.

It follows from Corollary 1 in Ramachandra, Sankaranarayana and Srini-
vas [22] that

(7.1)
∑

n≤x≤x+y

Λ(n) = y +O
(
y exp{−(log x)1/6}

)
.

Now, observe that if p ∈ [x, x+ y],

log x ≤ log p ≤ log x+ log(1 + y/x) = log x+O(y/x)

while∑
x≤p`<x+y

`≥2

log p ≤ (2 log x)(
√
x+ y−

√
x)+O(x1/3) ≤ 2(log x)y√

x
+O(x1/3)� x1/3,

so that, using (7.1), we get
(7.2)∑
x≤p≤x+y

(log x+O(y/x)) +O((y/x)(log x)) = y +O
(
y exp{−(log x)1/6}

)
,

which then allows us to write

∑
p∈[x,x+y]

1 =
y

log x
+O

y

x

∑
p∈[x,x+y]

1

+O
(
y exp{−(log x)1/6}

)
=

y

log x
+O

(
y

x

y

log x

)
+O

(
y exp{−(log x)1/6}

)
.

Consequently,∑
p∈[x,x+y]

p =
xy

log x
+O

(
y2

log x

)
+O

(
xy exp{−(log x)1/6}

)
=

xy

log x
+O

(
xy exp{−(log x)1/6}

)
,(7.3)
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where we used the fact that
y2

log x
< xy exp{−(log x)1/6}.

Now, provided that
7

12
+ ε1 <

log v

log u
<

11

12
, say, where ε1 > 0 is an arbi-

trarily small number, we have∑
x≤n≤x+y

P (n) =
∑

x≤νp≤x+y
P (ν)≤p

p

=
∑
ν<xε2

∑
x
ν
<p≤x

ν
+ y
ν

p+
∑

xε2≤ν≤x

∑
x
ν
<p≤x

ν
+ y
ν

p,

= S1(x, y) + S2(x, y),(7.4)

say. Now it is clear that

(7.5) S2(x, y) ≤ x1−ε2y.

On the other hand, writing

(7.6) S1(x, y) =
∑
ν<xε2

Aν ,

say, and assuming that
log x

log y
<

log(y/ν)

log(x/ν)
<

log x

log y
+ ε (which holds if in

(7.6), ν runs from 1 to xε2 for some positive ε2 sufficiently small), we obtain
from (7.3) that

(7.7) Aν =
xy

ν2 log(x/ν)
+O

(xy
ν2

exp{−(log
√
x)1/6}

)
,

where we used the fact that log(x/ν) > log
√
x.

It follows from (7.6) and (7.7) that, for some positive constant c,

(7.8) S1(x, y) =
∑
ν<xε2

xy

ν2 log(x/ν)
+O

(
xy exp{−(c log x)1/6}

)
,

Now, observe that

T :=
∑
ν<xε2

1

ν2 log(x/ν)
=
∑
ν<xε2

1

ν2 log x

1

1− log ν
log x

=
∞∑
k=0

∑
ν<xε2

1

ν2 log x

logk ν

logk x

=
M∑
k=0

1

logk+1 x

∑
ν<xε2

logk ν

ν2
+O

(∑
ν

logM+1 ν

ν2 logM+2 x

)
.(7.9)
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We easily see that, for each integer k ≥ 0, by partial integration,

Jk(z) :=

∫ ∞
z

ηke−η dη = ηk(−e−η)
∣∣∞
z

+ k

∫ ∞
z

ηk−1e−η dη

= zke−z + kJk−1(z)(7.10)

with, in particular J0(z) = e−z.

Setting Rk :=
∑
ν≥xε2

logk ν

ν2
and using (7.10), it is clear that

(7.11) Rk ≤ 2

∫ ∞
xε2

logk t

t2
dt = 2

∫ ∞
ε2 log x

ηke−ηdη = 2Jk(ε2 log x).

Assuming that M is fixed, it follows from (7.11) that

(7.12) Rk � (ε2 log x)ke−ε2 log x (k ≤M).

Recalling the definition of Dk given in (2.2), and using (7.12) in (7.9), it
follows that

(7.13) T =
M∑
k=0

Dk

logk+1 x
+O

(
1

logM+2 x

)
Using (7.13) in (7.8), and substituting the resulting estimate in (7.4),

taking into account estimate (7.5), the proof of Theorem 5 is complete.

8 Proof of Theorem 6

Setting f(p) := e(αsq(p)), it has been shown by Mauduit and Rivat [19]
that

lim
x→∞

1

π(x)

∑
p≤x

f(p) = 0.

Using this and Theorem 1, the proof of Theorem 6 follows.

9 Proof of Theorem 7

Given J ⊆ N, we set ωJ(n) := #{p ∈ J : p | n}. Let δ be a small positive
number. Given a large number x and setting J = Jx = [xδ, x], it follows
from the Turán-Kubilius inequality that

∑
n≤x

(
ωJ(n)−

∑
p∈J

1

p

)2

≤ Cx
∑

xδ≤p≤x

1

p
.
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Since ∑
n≤x

∑
p|n

x1−δ≤p≤x

1 ≤ x
∑

x1−δ≤p≤x

1

p
≤ x

(
log

1

1− δ
+ o(1)

)
≤ 2δx,

provided x is large enough, and since∑
xδ≤p≤x

1

p
= log

1

δ
+ o(1) (x→∞),

it follows that there exists an absolute constant c > 0 and a number x0 such
that if x > x0, then

xδ ≤ Pk(n) < · · · < P1(n) ≤ x1−δ

holds for every integer n ∈ [2, x] with the exception of at most cδx integers.
Now let λ be a small positive number such that λ log 1/δ ≤ δ and let us

consider the set Dx of those positive integers n ≤ x which have two prime
divisors p, q such that xδ < p < q < p1+λ. It turns out that

#Dx ≤ x
∑

xδ<p<q<p1+λ

1

pq
≤ x

∑
xδ<p≤

√
x

1

p

∑
p<q<p1+λ

1

q

≤ 2x
∑

xδ<p≤x

log(1 + λ)

p
≤ 2xλ log

1

δ
≤ 2δx.(9.1)

Let B = Bx be the set of those k-tuples of primes (p1, . . . , pk) such that

xδ ≤ Pk(n) < · · · < P1(n) ≤ x1−δ, pj+1 < p1−λj for j = 1, . . . , k and p1 · · · pk < x1−δ.

First observe that the size of the set of those positive integers n ≤ x for
which the k-tuples (P1(n), . . . , Pk(n)) 6∈ B is O(δx). We thus have
(9.2)

T :=
∑
n≤x

k∏
j=1

fj(Pj(n)) =
∑

(p1,...,pk)∈B

k∏
j=1

fj(pj)Ψ

(
x

p1 · · · pk
, pk

)
+O(δx).

Then, if (p1, . . . , pk) ∈ B, one can easily see that with

u =
log(x/p1 · · · pk)

log pk
,

we get

u =
log x−

∑k
j=1 log pj

log pk
≤ 1

δ
,
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so that
log(u+ 1)

log y
=

log(u+ 1)

log pk
≤ log(1/δ)

δ log x
.

We thus obtain, using (5.9),

Ψ

(
x

p1 · · · pk
, pk

)
=

x

p1 · · · pk
ρ

(
log(x/p1 · · · pk)

log pk

)
+O

(
x

p1 · · · pk
log(1/δ)

δ

1

log x

)
.

Hence, it follows from (9.2) that

T =
∑

(p1,...,pk)∈B

k∏
j=1

fj(pj)
x

p1 · · · pk
ρ

(
log(x/p1 · · · pk)

log pk

)

+ O

 ∑
(p1,...,pk)∈B

k∏
j=1

fj(pj)
x

p1 · · · pk
log(1/δ)

δ log x

 .(9.3)

Since the above error term is, as x→∞,

� log(1/δ)

δ log x

∑
(p1,...,pk)∈B

k∏
j=1

fj(pj)

 ∑
xδ<pj<x1−δ

1

pj

k

� log(1/δ)

δ log x

(
log

1− δ
δ

)k
= o(x),

it follows, in light of (9.3), that estimate (9.2) can be replaced by
(9.4)

T = x
∑

(p1,...,pk)∈B

k∏
j=1

fj(pj)

pj
ρ

(
log(x/p1 · · · pk)

log pk

)
+O(δx)+o(x) (x→∞).

Now, given any k primes q1 < q2 < · · · < qk with the property that
1

2
<
qj
pj
< 2 for j = 1, 2, . . . , k and setting

ε(x) := max
(p1,...,pk)∈B

max
q1,...,qk

qj/pj∈(1/2,2)

∣∣∣∣∣ρ
(

log x−
∑k

j=1 log qj

log qk

)
− ρ

(
log x−

∑k
j=1 log pj

log pk

)∣∣∣∣∣ ,
it follows from the continuity of the ρ function that ε(x) → 0 as x → ∞.
We can then use this in the estimate of the main term in (9.4) so that,
arguing as we did in the proof of Theorem 1, we obtain that (9.4) can be
replaced by

T = x
∑

(p1,...,pk)∈B

k∏
j=1

fj(pj)

pj
ρ

(
log(x/p1 · · · pk)

log pk

)
+O(δx) + o(x)

= C1 · · ·Ck
∑

(p1,...,pk)∈B

x

k∏
j=1

1

pj
ρ

(
log(x/p1 · · · pk)

log pk

)
+O(δx) + o(x)
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= C1 · · ·Ck (x+O(δx)) +O(δx) + o(x)

= C1 · · ·Ckx+O(δx).

Since δ can be chosen arbitrarily small, the proof of Theorem 7 is complete.

10 Final remarks

Given a real valued additive function g and a ∈ Z \ {0}, let

FN(y) :=
1

π(N)
#{p ∈ N : g(p+ a) < y} and F (y) = lim

N→∞
FN(y).

We then have the following results.

Theorem 8. Given arbitrary real numbers y1, . . . , yk,

lim
N→∞

1

N
#{n ≤ N : g(Pj(n) + a) < yj, j = 1, . . . , k} =

k∏
j=1

F (yj).

Theorem 9. Given any real number z, set G(z) :=

∫ ∞
−∞

F (y + z) dF (y).

Then,

lim
N→∞

1

N
#{n ≤ N : g(P1(n) + a)− g(P2(n) + a) < z} = G(z).

Theorem 10. Let a1, . . . , ak be non zero integers and let g1, . . . , gk be real
valued additive functions each satisfying the three-series condition. Set

FN,j(y) :=
1

π(N)
#{p ≤ N : gj(p+ aj) < y}.

Then, for each j ∈ {1, . . . , k}, we have lim
N→∞

FN,j(y) = Fj(N). Moreover,

lim
N→∞

1

N
#{n ≤ N : gj(Pj(n) + aj) < yj, j = 1, . . . , k} exists

and is equal to
k∏
j=1

Fj(yj).

Theorem 11. Let a1, . . . , ak be non zero integers and let g1, . . . , gk be real
valued additive functions each satisfying gj(p) = O(1) for p ∈ ℘. Letting

Aj(x) :=
∑
p≤x

gj(p)

p
and Bj(x)2 =

∑
p≤x

g2j (p)

p
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and assuming that Bj(x)→∞ as x→∞, then

lim
N→∞

1

N
#{n ≤ N :

gj(Pj(n) + aj)− Aj(N)

Bj(N)
< yj, j = 1, . . . , k} =

k∏
j=1

Φ(yj).

The above theorems are essentially consequences of Theorem 7. For
instance, in order to prove Theorem 10, one can proceed as follows. First
define

fj(p) =

{
1 if gj(p+ aj) < yj,
0 otherwise

(j = 1, . . . , k).

Then, we have

lim
N→∞

1

π(N)

∑
p≤N

fj(p) = Fj(pj) (j = 1, . . . , k),

implying that

lim
N→∞

1

N

∑
n≤N

fj(Pj(n)) = Fj(yj) (j = 1, . . . , k).

It follows that, using Theorem 7, we get that

lim
N→∞

1

N

∑
n≤N

k∏
j=1

fj(Pj(n)) =
k∏
j=1

Fj(yj),

which is precisely the conclusion of Theorem 10.
To prove Theorem 9, we first observe that g(P1(n)+a) and g(P2(n)+a)

are independent. Then, applying the result of Theorem 8, the conclusion of
Theorem 9 follows.

The proof of Theorem 11 needs more attention. First we let

hj(p) =
gj(p+ aj)− Aj(p)

Bj(p)

and define

fj(p) =

{
1 if hj(p) < yj,
0 otherwise

(j = 1, . . . , k).

Now, it is known that

lim
N→∞

1

π(N)
#

{
p ≤ N :

gj(p+ aj)− Aj(N)

Bj(N)
< yj

}
= Φ(yj) (j = 1, . . . , k).

On the other hand, it is clear that, for every ε > 0, we have

lim
N→∞

1

π(N)
#

{
p ≤ N :

∣∣∣∣gj(p+ aj)− Aj(N)

Bj(N)
− gj(p+ aj)− Aj(p)

Bj(p)

∣∣∣∣ > ε

}
= 0.
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From this, it follows that

lim
N→∞

1

π(N)

∑
p≤x

fj(p) = Φ(yj) (j = 1, . . . , k).

On the other hand, it is a consequence of Theorem 8 that, for every ε > 0,

lim
N→∞

1

N
#

{
n ≤ N : max

j=1,...,k

∣∣∣∣gj(Pj(n) + aj)− Aj(Pj(n))

Bj(Pj(n))
− gj(Pj(n) + aj)− Aj(N)

Bj(N)

∣∣∣∣ > ε

}
= 0.

Combining the above estimates, the proof of Theorem 11 is complete.

References

[1] E. Bombieri, J. Friedlander, H. Iwaniec, Primes in arithmetic progres-
sions to large moduli, Acta Math. 156 (1986), no. 3-4, 203–251.

[2] B.M. Bredihin, The dispersion method and binary additive problems
of definite type (Russian), Uspehi Mat. Nauk 20 (1965), no. 2 (122)
89–130.

[3] J.M. De Koninck, On the largest prime divisors of an integer, Procee-
dings of the Conference on Extreme Value Theory and Applications,
Vol. 1, Gaithersburg Maryland, 1994, 447-462.
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