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Abstract

Given an additive function f and a multiplicative function g,
let E(f, g;x) = #{n ≤ x : f(n) = g(n)}. We study the size of
E(f, g;x) for functions f such that f(n) 6= 0 for at least one integer
n > 1. In particular, we show that for those additive functions f
whose values f(n) are concentrated around their mean value λ(n),
one can find a multiplicative function g such that, given any ε > 0,
then E(f, g;x) � x/λ(x)1+ε. We also show that given any additive
function satisfying certain regularity conditions, no multiplicative
function can coincide with it on a set of positive density. It follows
that if ω(n) stands for the number of distinct prime factors of n, then,
given any ε > 0, there exists a multiplicative function g such that
E(ω, g;x)� x/(log log x)1+ε, while for all multiplicative functions g,
we have E(ω, g;x) = o(x) as x→∞.
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Key words and phrases: Additive functions, Multiplicative functions, Num-
ber of distinct prime factors of an integer

1 Introduction

We investigate the deceptively simple question of whether the behavior of
a multiplicative function can resemble that of an additive function. More
precisely, letting N stand for the set of all positive integers, we ask the
following question: can one find an additive function f and a multiplicative
function g such that f(n) = g(n) for all n ∈ R ?

For convenience, let us write A for the set of all additive functions f
such that f(1) = 0 and M for the set of all multiplicative functions g such
that g(1) = 1. From here on, we only consider real arithmetic functions.
Given f ∈ A and g ∈M, we define

E(f, g;x) := #{n ≤ x : f(n) = g(n)}.

A strongly additive function (resp. strongly multiplicative function) h is a
function in A (resp. inM) such that h(pa) = h(p) for all integers a ≥ 1 and
all primes p. We shall write A∗ (resp. M∗) for the set of strongly additive
functions (resp. strongly multiplicative functions). Given an integer n ≥ 2,
we let ω(n) stand for the number of distinct prime factors of n, and set
ω(1) = 0.
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Of course, we are not interested in the trivial case f(n) = 0 for all n ≥ 1
and g(n) = 0 for all n ≥ 2, since in this case we simply get E(f, g;x) =
bxc − 1. We are instead interested in studying the size of E(f, g;x) when
the functions f ∈ A and g ∈ M are such that f(n) 6= 0 for at least one
integer n > 1, in which case one can prove that they differ infinitely often.

Here we show that for those additive functions f whose values f(n) are
concentrated around their mean value λ(n) in the sense that, given any
ε > 0,

lim
x→∞

1

x
#{n < x : |f(n)− λ(x)| > λ(x)1−ε| = 0,

then, one can find a multiplicative function g such that

E(f, g;x)� x

λ(x)1+ε
.

We also show that given an additive function f satisfying certain regularity
conditions, no function g ∈ M can coincide with f on a set of positive
density.

In the case where the additive function f is chosen to be ω, it follows
that, given any ε > 0, there exists a multiplicative function g such that

E(ω, g;x)� x

(log log x)1+ε
,

while for all g ∈M we have

E(ω, g;x) = o(x) (x→∞).

2 Notation and preliminary results

Before stating our results, we introduce additional notation and state pre-
liminary results.

We shall write ℘ for the set of all prime numbers, while the letter p will
always stand for a prime number. The letter c, with or without subscript,
always denotes a constant, but not necessarily the same at each occurrence.
By log2 x, we mean max(1, log log x); by log3 x, we mean max(1, log log log x);
and so on. We will use P+(n) for the largest prime factor of n ≥ 2 and
P−(n) for the smallest prime factor of n ≥ 2. For convenience, we set
P+(1) = P−(1) = 1. We also define as is customary, for 2 ≤ y ≤ x,

Ψ(x, y) := #{n ≤ x : P+(n) ≤ y} and Φ(x, y) := #{n ≤ x : P−(n) > y}.

Lemma 1. Let D ≥ 3 be a fixed integer and let 0 < a1 < a2 < 1 with
a2 > 2a1. Then,

(2.1) SD(x) :=
∑

a1x≤n≤a2x
P−(n)>D

1

n
� log(a2/a1)

logD
.
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Proof. Using the Stieltjes integral representation of the sum in (2.1), we
obtain that

(2.2) SD(x) =

∫ a2x

a1x

1

t
dΦ(t,D) =

Φ(t,D)

t

∣∣∣∣a2x
a1x

+

∫ a2x

a1x

Φ(t,D)

t2
dt.

Setting u = log t/ logD and using the estimate

Φ(t,D) =
tω0(u)

logD
− D

logD
+O

(
t

log2D

)
,

where ω0(u) stands for the Buchstab function (see Theorem 6.4 in the book
of Tenenbaum [7]) and recalling that 1

2
≤ ω0(u) ≤ 1 for all u ≥ 1, it follows

from (2.2) that

SD(x) =
ω0(u)

logD

∣∣∣∣a2x
a1x

+O

(
1

log2D

)
+

∫ a2x

a1x

(
ω0(u)

t logD
+O

(
1

t log2D

))
dt

= O

(
1

logD

)
+O

(
1

logD

∫ a2x

a1x

dt

t

)
� log(a2/a1)

logD
,

thus establishing our claim.

Lemma 2. There exists a positive constant c3 such that

Ψ(x, y) ≤ c3x exp

{
−1

2

log x

log y

}
(2 ≤ y ≤ x).

Proof. For a proof, see Theorem 5.1 in the book of Tenenbaum [7].

Lemma 3. Uniformly for x ≥ 3 and 0 ≤ ξ(x) ≤
√

log log x,

#{n ≤ x : |ω(n)− log log x| > ξ(x)
√

log log x} � xe−ξ(x)
2/3.

Proof. This result follows immediately from Theorem 3.8 in the book of
Tenenbaum [7].

Lemma 4. For each positive integer k, let πk(x) := #{n ≤ x : ω(n) = k}.
Then the maximum value of πk(x) is attained when k = k0 = log log x +
O(1), in which case we have πk0(x) = (1 + o(1))x/

√
log log x as x→∞.

Proof. This follows from a result of Balazard [1].

Lemma 5. Let f be a complex-valued additive function and set
(2.3)

A(x) = Af (x) :=
∑
pα≤x

f(pα)

pα

(
1− 1

p

)
and B(x)2 = Bf (x)2 :=

∑
pα≤x

|f(pα)|2

pα
.
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Then there exists an absolute constant C > 0 such that for all x ≥ 2, we
have

1

x

∑
n≤x

|f(n)− A(x)|2 ≤ CB(x)2,

where the constant C can be replaced by
3

2
+O

(
1√

log x

)
.

Proof. See Kubilius [5] and Hildebrand [4].

To each real number D > 1 we associate the multiplicative function

GD(n) =
∏
pα‖n
p≤D

pα.

Lemma 6. Let ε > 0 be a small number and let D be a large number
satisfying

(2.4) D > e12/ε.

Then, there exist two positive constants c1 = c1(ε) and c2 = c2(ε), with
c1 < 1 < c2, and a real number x0 = x0(ε) such that

(2.5) #{n ≤ x : Dc1 < GD(n) < Dc2} ≥ (1− ε)x (x ≥ x0).

Proof. In order to prove (2.5), we will prove that for some large x1 = x1(ε),

(2.6) #{n ≤ x : GD(n) ≤ Dc1} ≤ ε

2
x (x ≥ x1)

and that

(2.7) #{n ≤ x : GD(n) ≥ Dc2} ≤ ε

2
x (x ≥ 1).

The result will then follow by choosing x0 = x1.
First recall that, for some positive constant c4,

(2.8)
∑
p≤x

1

p
= log log x+ c4 +

θx

log2 x
(x ≥ 286),

where |θx| ≤ 1/2, an estimate due to Rosser and Schoenfeld [6].
With c1 < 1, it follows from (2.8) that there exists x1 = x1(ε) ≥ 286

such that for all x ≥ x1,

#{n ≤ x : GD(n) ≤ Dc1} ≤ #{n ≤ x : there exists no prime p | n with Dc1 < p ≤ D}

≤ 3

2
x

∏
Dc1<p≤D

(
1− 1

p

)
=

3

2
x exp

∑
Dc1<p≤D

log

(
1− 1

p

)
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<
3

2
x exp

(
−

∑
Dc1<p≤D

1

p
+

1

2Dc1

)

≤ 3

2
x exp

(
log logDc1 − log logD +

1

2Dc1
+

1

2 log2Dc1

)
=

3

2
xc1 exp

(
1

2Dc1
+

1

log2Dc1

)
<

3

2
xc12 = 3c1x,(2.9)

where we used (2.4). Choosing c1 = ε/6, then (2.9) yields (2.6).
On the other hand, in order to prove (2.7), first apply Lemma 5 to the

additive function f(n) = logGD(n) for which the corresponding sums A(x)
and B(x) satisfy

A(x) = logD +O(1) and B2(x) =
log2D

2
+O(1),

from which it follows that, for all x ≥ 1,

#{n ≤ x : GD(n) ≥ Dc2} = #{n ≤ x : f(n) ≥ c2 logD}
≤ #{n ≤ x : |f(n)− logD|2 ≥ (c2 − 1)2 log2D}

≤
∑
n≤x

|f(n)− logD|2

(c2 − 1)2 log2D

≤ 1

(c2 − 1)2 log2D
Cx

log2D

2

<
ε

2
x,

provided we choose c2 >

√
C

ε
+ 1, thus establishing (2.7).

3 Lower bounds

It is easy to show that for any f ∈ A, there exists g ∈ M for which
E(f, g;x) > x/ log x for all x ≥ 11. Indeed, since any additive or multi-
plicative function is entirely determined by its values at prime powers, we
only need to choose g(pα) = f(pα) for all p ∈ ℘ and α ∈ N. Then, letting
R stand for the set of all prime powers, it is clear that g(n) = f(n) for
all n ∈ R, whose counting function R(x) satisfies R(x) > x/ log x for all
x ≥ 11.

We now turn to a general question: Given f ∈ A, can one find g ∈ M
such that E(f, g;x) is maximal ? The answer is of course highly dependant
on the particular function f considered and we will show that the size of
E(x) can range from E(x) = 0 (simply choose f ∈ A∗ defined by f(p) = −1
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for all p ∈ ℘ and g ∈ M∗ defined by g(p) = 1 for all p ∈ ℘) to E(x) ≥ cx
for any positive constant c < 1.

To show that for any given positive constant c < 1, there exist a function
f ∈ A and a corresponding function g ∈ M which yields E(f, g;x) ≥ cx,
as x→∞, we first let S ⊂ ℘ be a set satisfying

(3.1)
∑
p∈S

1

p
<∞

and define f ∈ A∗ by

f(p) =

{
1 if p ∈ S,
0 if p ∈ ℘ \ S.

It is easy to see that f(n) will be zero on a subset of N of positive density

c =
∏

p∈S

(
1− 1

p

)
. It follows that the strongly multiplicative function g

defined by f(p) = g(p) on all primes p will give E(f, g;x) ≥ cx. It is also
straightforward, given the construction of S, that the constant c can be
chosen arbitrarily close to 1.

More generally, if f is a strongly additive function such that f(p) 6= 0 on
a set of primes S satisfying (3.1), then one can construct a strongly multi-
plicative function g such that E(f, g;x) ≥ c1x for some positive constant c1
depending on f . One way to construct this corresponding function g is to
choose

g(p) =

{
f(p) if p ∈ S,
1 if p ∈ ℘ \ S.

This will give g(n) = f(n) = f(p) for a certain p ∈ S, that is provided that∏
q|n
q∈S

q = p,

and thus

E(f, g;x) &
∑
p∈S

∑
a≥1

x

pa

∏
p∈S

(
1− 1

p

)
= c · x

∑
p∈S

∑
a≥1

1

pa
=: c1x.

In some instances, it is easy to show that this strategy is optimal. Indeed,
consider the additive function f defined by f(2) = b, where b is any fixed
real number, and f(p) = 0 for all primes p ≥ 3, and take the strongly
multiplicative function g as g(2) = b and g(p) = 1 for all primes p ≥
3. Then, since f(n) and g(n) agree at even integers, we easily see that
E(f, g;x) = bx/2c. But we cannot hope to do any better. Indeed, for an
arbitrary multiplicative function g, let κ be the proportion of those odd
integers m for which g(m) = f(m) = 0. Then, since g(2am) 6= f(2am) for
all a ∈ N, the proportion of even integers for which g agrees with f is at
most 1− κ. It follows from this observation that

E(f, g;x) . x

(
1

2
κ+

1

2
(1− κ)

)
=
x

2
.
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If one considers a more common additive function, say f = ω, then
determining the maximal size of E(ω, g;x) for an optimal g is much more
difficult. A natural way to proceed is the following. Fix an arbitrary integer
k ≥ 2. One can prove that for f = ω ∈ A, there exists g ∈ M such that,
for some positive constant C > 0,

(3.2) E(ω, g;x) > C
x

log x
· (log log x)k−1

(k − 1)!
(for x sufficiently large).

Indeed, consider the strongly multiplicative function g defined on primes p
by g(p) = k1/k. Then, clearly, for those integers n such that ω(n) = k, we
have g(n) = (k1/k)ω(n) = k.

It remains to count the number of integers n ≤ x such that ω(n) = k.
But this is well known. Indeed, letting πr(x) stand for the number of positive
integers n ≤ x such that ω(n) = r, it is known since Landau (see Theorem
10.3 in De Koninck and Luca [3]) that, for each fixed r ∈ N,

πr(x) = (1 + o(1))
x

log x
· (log log x)r−1

(r − 1)!
(x→∞).

It is also known that π(x) > x/ log x for all x ≥ 11 (see for instance Rosser
and Schoenfeld [6]). Using this, one can easily prove by induction that for
each integer r ≥ 2, there exists a positive constant cr and a number xr such
that

(3.3) πr(x) > cr
x

log x
· (log log x)r−1

(r − 1)!
(for all x > xr).

Hence, choosing r = k in (3.3), estimate (3.2) follows immediately.

Does this provide an optimal result ? Can we construct a multiplicative
function g which agrees with ω on a larger set ? Let us first consider a
multiplicative function g which has “natural” properties. For example, since
the mean and normal orders of ω(n) are log log n, it would seem natural to
look for a multiplicative function g(n) which also has mean and normal
orders of log log n. But this is impossible. Indeed, Birch [2] has proven that
the only unbounded multiplicative functions g(n) with a non-decreasing
normal order are the powers of n. Let us therefore consider a seemingly
unnatural multiplicative function g that agrees with ω on a large set of
values. One key idea to construct such a tricky function is to choose g such
that g(p) 6= 1 only if p ∈ S, where S is an infinite set of primes satisfying∑

p∈S

1

p
<∞.

Given an integer n ≥ 2, we shall write

n =
∏
pa‖n
p∈S

pa ·
∏
pa‖n
p6∈S

pa = s ·m,
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say. This means that the value of g(n) will be determined by s while the
value of ω(n) will essentially be determined by ω(m). Thus, in order for
g(n) to be equal to ω(n) for many n ≤ x, we will arrange for g(s) to be
close to log log x as often as possible. This idea is expressed in the following
theorem, where we consider a more general strongly additive function f .

Theorem 1. Let S := {s1, s2, . . .} be an infinite set of primes such that

s1 < s2 < · · · and satisfying
∞∑
j=1

1

sj
<∞. Assume that f is a non negative

integer valued strongly additive function and λ(x) a function which tends to
infinity with x such that

(3.4) #

{
n ≤ x

sdλ(x)e
: f(n) > λ(x)

}
= o

(
x

sdλ(x)e

)
(x→∞).

Then, letting g be the strongly multiplicative function defined on the primes
p by

g(p) =

{
j + f(sj) if p = sj for some sj ∈ S,
1 if p 6∈ S,

we have

(3.5) E(f, g;x)� x

sdλ(x)e
.

Remark 1. Clearly Theorem 1 implies in particular that, given any ε > 0,

E(f, g;x)� x

λ(x)1+ε
.

Proof of Theorem 1. In order to find a lower bound for E(f, g;x) = #{n ≤
x : f(n) = g(n)}, we will only count those positive integers n ≤ x which
can be written as n = m · sj with an m such that sk - m for all integers
k ≥ 1. Hence,

(3.6) E(f, g;x) ≥
∑
j≥1

#{n = m · sj ≤ x : sk - m ∀ k, f(n) = g(n)}.

Given that g(n) = g(m · sj) = g(sj) = j + f(sj) and that f(n) = f(m ·
sj) = f(m) + f(sj), the condition f(n) = g(n) is equivalent to f(m) = j.
Inequality (3.6) can therefore be replaced by

E(f, g;x) ≥
∑
j≥1

#{n = m · sj ≤ x : sk - m ∀ k, f(m) = j},

which is equivalent to

(3.7) E(f, g;x) ≥
∑
j≥1

#

{
m ≤ x

sj
: sk - m ∀ k, f(m) = j

}
.
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It follows from (3.7) that

E(f, g;x) ≥
∑
j≤λ(x)

#

{
m ≤ x

sj
: sk - m ∀ k, f(m) = j

}

≥
∑
j≤λ(x)

#

{
m ≤ x

sdλ(x)e
: sk - m ∀ k, f(m) = j

}

≥ #

{
m ≤ x

sdλ(x)e
: sk - m ∀ k

}
(3.8)

+O

(
#

{
m ≤ x

sdλ(x)e
: f(m) > λ(x)

})
.

Setting C(S) :=
∞∏
j=1

(
1− 1

sj

)
, which is positive because

∞∑
j=1

1

sj
<∞, we

obtain, in light of inequality (3.8) and hypothesis (3.4),

E(f, g;x)� C(S)
x

sdλ(x)e
+ o

(
x

sdλ(x)e

)
,

from which conclusion (3.5) follows immediately.

A direct application of this theorem is the following.

Corollary 1. Given an arbitrary integer k ≥ 1 and any real number δ > 0,
there exists a multiplicative function g such that

(3.9) E(ω, g;x)� x(∏k
r=1 logr+1 x

)
(logk+2 x)1+δ

.

In particular, given any ε > 0, there exists a multiplicative function g such
that

(3.10) E(ω, g;x)� x

(log log x)1+ε
.

Proof. In Theorem 1, take f = ω. Then, for any positive integer k and fixed
δ > 0, let S := {s1, s2, . . .} be an infinite set of primes defined as follows:
first set s1 = 2 and, for each j ≥ 2, let sj be the smallest prime number
larger than

max

(
sj−1, j

(
k∏
r=1

logr j

)
(logk+1 j)

1+δ

)
.

Then, choosing λ(x) = log log x+ξ(x)
√

log log x, where ξ(x) is any function
tending to infinity with x, we immediately obtain (3.9).

Finally, (3.10) is an easy consequence of (3.9).
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Can we improve the lower bound obtained in (3.10) ? While an optimal
answer to this question is difficult to provide, the next theorem and the
remark that follows provide a partial answer.

Theorem 2. Given any small number ε > 0, there exists a multiplicative
function g and an infinite sequence of integers r such that

E(ω, g; r)� r

(log log r)1/2+ε
.

Proof. Let δ > 0 be a fixed small number. Let s1 = 2, and for each integer
j ≥ 2, let sj be the smallest prime number larger than max(sj−1, j

1+δ) and
set S := {s1, s2, . . .}. Define the sequence of positive real numbers r1, r2, . . .

by rj = ee
2j

. Further consider the sequence of positive integers (zj), where
each zj is the integer maximizing the quantity

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = zj − 1

}
.

Consider the strongly multiplicative function g defined on the primes p by

g(p) =

{
zj if p = sj for some sj ∈ S,
1 if p 6∈ S.

Setting Ij := [log log rj − (log log rj)
1/2+ε, log log rj + (log log rj)

1/2+ε], we
have

(3.11) #

{
m ≤ rj

sj
: ω(m) 6∈ Ij

}
= o

(
rj
sj

)
(j →∞),

which allows us to write that, as j →∞,

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S

}
=
∑
ν∈Ij

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = ν

}
+ o

(
rj
sj

)
.(3.12)

Since by the very nature of the sequence (zj), we have that∑
ν∈Ij

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = ν

}
≤ 2(log log rj)

1/2+ε#

{
m ≤ rj

sj
: sk - m, for each sk ∈ S, ω(m) = zj − 1

}
,

it follows from (3.12), using (3.11), that

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = zj − 1

}
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≥
#{m ≤ rj

sj
: sk - m for each sk ∈ S}+ o(

rj
sj

)

2(log log rj)1/2+ε
.(3.13)

On the other hand, letting C(δ) :=
∞∏
j=1

(
1− 1

sj

)
, it is easy to see that

(3.14)

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S

}
= (1 + o(1))C(δ)

rj
sj

(j →∞).

We thus obtain, combining (3.13) and (3.14), that as j →∞,

#

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = zj − 1

}
≥
(

1

2
+ o(1)

)
C(δ)

rj
sj(log log rj)1/2+ε

.(3.15)

Now, it is clear that, writing each integer n ≤ rj as n = sj ·m, we have

E(ω, g; rj) ≥ #{n ≤ rj : g(n) = zj, ω(n) = zj}
≥ #{n ≤ rj : sj|n, sk - n for k 6= j, ω(n) = zj}

≥ #

{
m ≤ rj

sj
: sk - m for each sk ∈ S, ω(m) = zj − 1

}
,

which implies, in light of (3.15), that as j →∞,

(3.16) E(ω, g; rj) ≥
(

1

2
+ o(1)

)
C(δ)

rj
sj(log log rj)1/2+ε

.

Now, using the fact that, for j sufficiently large, we have

sj < j1+2δ < (2j)ε = (log log rj)
ε,

it follows from (3.16) that

E(ω, g; rj)�
rj

(log log rj)1/2+2ε
,

thus completing the proof of Theorem 2.

Remark 2. The lower bound of Theorem 2 is better than the one in Corol-
lary 1 but only over a thin subset of the integers, while Theorem 1 provides
a stronger uniform bound.

The next theorem states the limitation of the strategy used to construct
the “optimal” function g of Theorem 1.
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Theorem 3. Let g be a multiplicative function for which the corresponding
set Sg := {p ∈ ℘ : g(p) 6= 1} is such that

(3.17)
∑
p∈Sg

1

p
<∞.

Then, for any ε > 0, there exists a sequence of real number xk tending to
infinity such that

E(ω, g;xk) ≤
xk

(log log xk)1−ε
(k = 1, 2, . . .).

Proof. First, we introduce the sets

A := {n ∈ N : p|n⇒ p ∈ Sg} and B := {n ∈ N : p|n⇒ p 6∈ Sg}.

Observe that the condition (3.17) implies that there exists a real number
Cg such that

Cg =
∑
a∈A

1

a
.

For each positive integer j, define the numbers cj implicitly by the relation

(3.18)
∑
a∈A
g(a)=j

1

a
= cjCg,

so that in particular we have

(3.19)
∞∑
j=1

cj ≤ 1.

Let us now introduce the additive function ω∗ defined by

ω∗(n) =
∑
p|n
p∈Sg

1.

If we apply Lemma 5 to the function ω∗, we obtain that the corresponding
sums A(x) and B(x) defined in (2.3) satisfy A(x)� 1 and B(x)� 1, thus
yielding

#{n ≤ x : ω∗(n) > (log log x)1−δ} � x

(log log x)2−2δ

for any δ > 0. Thus from now on we can assume that ω∗(n) ≤ (log log x)1−δ.
Now fix an arbitrary ε ∈ (0, 1). For each integer k ≥ 1, let yk = k2+6ε

and consider the intervals

Jk :=
(
yk − y1/2+εk , yk + y

1/2+ε
k

]
(k = 1, 2, 3, . . .).
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Observe that these intervals do not overlap for k large enough (say k > k0)
since

yk+1 − y1/2+εk+1 = (k + 1)2+6ε − (k + 1)(2+6ε)(1/2+ε)

> k2+6ε + (2 + 6ε)k1+6ε − (k + 1)1+5ε+6ε2

= yk + (2 + 6ε)k1+6ε − k
log(k+1)

log k
(1+5ε+6ε2) > yk + k1+6ε

> yk + k(2+6ε)(1/2+ε) = yk + y
1/2+ε
k .

Finally define the sequence (Dk) by

(3.20) Dk :=
∑
j∈Jk

cj (k > k0).

The fact that
∑
k>k0

Dk ≤ 1 (because of (3.19)) implies that Dk ≤
1

k
for in-

finitely many integers k. For each such integer k, let xk = ee
yk . Then, for

each such k,

E(ω, g;xk) =
∑
j∈Jk

#{n ≤ xk : ω(n) = j, g(n) = j}+O
(
xk exp(−(log log xk)

2ε/3)
)
,

where for the error term we used Lemma 3 to account for those integers
n ≤ x counted by E(ω, g;xk) for which the corresponding ω(n) value lies
outside Jk.

On the other hand, for each j ∈ Jk, we have
(3.21)

#{n ≤ xk : ω(n) = j, g(n) = j} ≤
∑
a∈A
g(a)=j

#
{
b ≤ xk

a
: b ∈ B, ω(b) = j − ω(a)

}
.

In the above sum, first consider those a ∈ A such that a <
xk

e
√
log xk

. Then,

in light of Lemma 4, there exists a positive constant c such that

#
{
b ≤ xk

a
: b ∈ B, ω(b) = j − ω(a)

}
≤ c

xk

a
√

log log(xk/a)

≤ 2c

a
√

log log xk
.(3.22)

Secondly, for those a ∈ A with a ≥ xk

e
√
log xk

, we have that b ≤ xk
a
≤ e

√
log xk ,

which implies that log log b ≤ 1
2

log log xk and that j − ω(a) ≥ 2
3

log log xk.
Applying one more time Lemma 5 yields

#
{
b ≤ xk

a
: b ∈ B, ω(b) = j − ω(a)

}
.

2xk
a

log log(xk/a)

((1/6) log log xk)2

.
6xk

a log log xk
.(3.23)
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Using (3.22) and (3.23) in (3.21), we get that

#{n ≤ xk : ω(n) = j, g(n) = j} ≤ c
∑
a∈A
g(a)=j

xk

a
√

log log xk
.

We thus obtain, recalling (3.18) and (3.20),

E(ω, g;xk) ≤ cCg
∑
j∈Jk

cj
xk√

log log xk
+O

(
xk exp(−(log log xk)

2ε/3)
)

= cCgDk
xk√

log log xk
+O

(
xk exp(−(log log xk)

2ε/3)
)

≤ cCg xk

k
√

log log xk
+O

(
xk exp(−(log log xk)

2ε/3)
)
.(3.24)

Since k = y
1/(2+6ε)
k ≥ y

1/2−2ε
k = (log log xk)

1/2−2ε, we obtain from (3.24) that

E(ω, g;xk) ≤
cCg xk

(log log xk)1−2ε
+O

(
xk exp(−(log log xk)

2ε/3)
)
,

thus completing the proof of Theorem 3.

This last theorem essentially confirms that if one hopes to obtain sig-
nificant improvements of the results in this section, it can only be possible
using a different approach.

4 An upper bound

In this section, we show that, given an additive function f satisfying certain
basic conditions, no function g ∈ M can agree with f on a set of positive
density. More precisely, our goal in this section is to prove the following
result.

Theorem 4. Let f be an integer valued additive function for which the
corresponding sums A(x) and B(x) defined in (2.3) satisfy the conditions

(i) ϕ(x) = ϕf (x) :=
B(x)

A(x)
→ 0 as x→∞,

(ii) max
z∈N

#{n ≤ x : f(n) = z} = O

(
x

H(x)

)
,

where H(x) = Hf (x)→∞ as x→∞.

Then, given any multiplicative function g, we have E(f, g;x) = o(x) as
x→∞.

Remark 3. Observe that in the case f = ω, we have A(x) = (1+o(1)) log log x
and B(x) = (1+o(1))

√
log log x as x→∞, so that ϕ(x) = (1+o(1))/

√
log log x

as x→∞, while in light of Lemma 4 we have H(x) =
√

log log x.
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Before we start the proof of Theorem 4, observe that it is clear that we
can discard those integers n ≤ x for which

|f(n)− A(x)| > ϕ(x)−1/3B(x)

since, in light of Lemma 5, their contribution to E(f, g;x) is o(x). This
means that throughout the rest of the proof we only need to consider those
n ≤ x for which

(4.1) |f(n)− A(x)| ≤ ϕ(x)−1/3B(x) = ϕ(x)2/3A(x).

We now introduce a key set of integers. Let D and k be positive integers.
Later, D and k will be chosen large. Define the set TD,k by

TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for any prime p

}
.

Observe that for any given D and k, the set TD,k is finite, which implies
in particular that if g(n) 6= 1 for some positive integer n, then, for D large
enough and depending only on g, the quantity

VD,k := min
m,n∈TD,k
|g(n)|>|g(m)|

|g(n)|
|g(m)|

is well defined, in which case VD,k > 1. Now choose x large enough so that

(4.2) 1 + ϕ(x)1/3 < VD,k.

Let us further introduce the set UD defined by

UD := {n ∈ N : P−(n) > D}.

Note that the counting function of the set UD is the function Φ(x,D). Fi-
nally, for each positive integer k, let Sk stand for the set of those positive
integers n such that pk+1|n for some prime number p, and let Sk(x) be the
counting function of Sk. Observe that

(4.3) Sk(x) ≤
∑
p≤x

⌊
x

pk+1

⌋
≤ x

∫ x

2

dt

tk+1
<

x

2k
.

Observe also that, given any fixed positive integers D and k, the prime
powers dividing an arbitrary integer n ≥ 2 either belong to TD,k or to UD
or to Sk.

Before we move on to the proof of Theorem 4, we need an additional
result which essentially says that if we gather the prime powers pa dividing
n into two parts, namely the part u(n) made up of the product of those pa

which are not in TD,k and the part t(n) made up of the product of those
pa which belong to TD,k, and if two integers n ≤ x such that g(n) = f(n)
happen to have an identical u(n) part, then their t(n) parts have the same
image under f . This is formally expressed in the following lemma.
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Lemma 7. Let g be a multiplicative function. Under the assumption (4.1),
write each integer n ∈ [2, x] as

(4.4) n =
∏
pa‖n
p6∈TD,k

pa ·
∏
pa‖n
p∈TD,k

pa = u(n) · t(n).

Let n1 and n2 be two integers such that g(n1) = f(n1) and g(n2) = f(n2).
Write uj = u(nj) and tj = t(nj) for j = 1, 2. If u1 = u2, then f(t1) = f(t2).

Proof. We will first show that g(t1) = g(t2). Indeed, it is clear that

(4.5)
f(n1)

f(n2)
=
g(n1)

g(n2)
=
g(u1t1)

g(u2t2)
=
g(t1)

g(t2)
.

Hence, assuming that g(t1) 6= g(t2), we have by the definition of VD,k and
in light of (4.2), that

(4.6) max

(
g(t1)

g(t2)
,
g(t2)

g(t1)

)
≥ VD,k > 1 + ϕ(x)1/3.

Taking into account (4.5), (4.6) and assumption (4.1), we have, assuming
say that f(n2) ≥ f(n1) and that x is sufficiently large,

f(n2) = f(n1) ·
f(n2)

f(n1)
>
(
A(x)− ϕ(x)−1/3B(x)

) (
1 + ϕ(x)1/3

)
> A(x) +

1

2
ϕ(x)1/3A(x)

while

f(n1) = f(n2) ·
f(n1)

f(n2)
<
(
A(x) + ϕ(x)−1/3B(x)

) (
1 + ϕ(x)1/3

)−1
< A(x)− 3

4
ϕ(x)1/3A(x),

from which it follows that f(n2)− f(n1) >
5

4
ϕ(x)1/3A(x), thus contradict-

ing our assumption (4.1). It follows that we must have g(t1) = g(t2). Hence,
by (4.5), we have that f(n1) = f(n2) and therefore that f(t1) = f(t2), as
requested.

We are now ready to begin the proof of Theorem 4.

Proof. As we did in the statement of Lemma 7, write those numbers n ≤ x
for which g(n) = f(n) as in (4.4). Then, Lemma 7 guarantees that, for each
fixed positive integer u ≤ x, we only need to count the number of positive
integers t ≤ x/u, with t ∈ TD,k, knowing that these t’s have the same value
under f , say the value z.
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This allows us to write that
(4.7)

E(f, g;x) ≤
∑
u≤x
u∈UD

#
{
t ≤ x

u
: t ∈ TD,k, g(u · t) = f(u · t)

}
+O

( x
2k

)
+ o(x),

where the first error term is a consequence of (4.3) while the second one
comes from the fact that we chose to discard those n ≤ x for which |f(n)−
A(x)| > ϕ(x)−1/3B(x).

Suppose that for a fixed value of u ≤ x, the numbers t1, t2, . . . , tN are
the integers counted by the counting function

#
{
t ≤ x

u
: t ∈ TD,k, g(u · t) = f(u · t)

}
,

then by Lemma 7, there exists an integer z such that

f(t1) = f(t2) = · · · = f(tN) = z.

We thus obtain from (4.7) that

E(f, g;x) ≤
∑
u≤x
u∈UD

max
z≥1

#
{
t ≤ x

u
: t ∈ TD,k, f(t) = z

}
+O

( x
2k

)
+ o(x)

= R(x) +O
( x

2k

)
+ o(x),(4.8)

say.
Lemma 6 allows us to discard those n ≤ x for which t(n) ≤ Dc1 or

t(n) ≥ Dc2 , that is those n ≤ x for which u(n) ≥ n/Dc1 or u(n) ≤ n/Dc2 ,
and therefore it follows that
(4.9)

R(x) =
∑

x
Dc2

<u< x
Dc1

P−(u)>D

max
z≥1

#
{
t ≤ x

u
: t ∈ TD,k, f(t) = z

}
+o(x) = R0(x)+o(x),

say. Using condition (ii) and Lemma 1 with a1 = 1/Dc2 and a2 = 1/Dc1 ,
we obtain that

R0(x) ≤
∑

x
Dc2

<u< x
Dc1

P−(u)>D

max
z≥1

#
{
t ≤ x

u
: f(t) = z

}

≤ x

H(Dc1)

∑
x

Dc2
<u< x

Dc1
P−(u)>D

1

u

� x

H(Dc1)

(c2 − c1)
logD

logD � x

H(Dc1)
.(4.10)

Substituting (4.9) and (4.10) in (4.8), it follows that

E(f, g;x) ≤ x

H(Dc1)
+O

( x
2k

)
+ o(x).
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Since both D and k can be chosen to be arbitrarily large, this completes
the proof of Theorem 4.
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