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Abstract

Any integer n ≥ 2 can be written in a unique way as the product of its powerful
part and its squarefree part, that is as n = mr where m is a powerful number and r
a squarefree number, with (m, r) = 1. We denote these two parts of an integer n by
pow(n) and sq(n) respectively, setting for convenience pow(1) = sq(1) = 1. We first
examine the behavior of the counting functions

∑
n≤x, sq(n)≤y 1 and

∑
n≤x,pow(n)≤y 1.

Letting P (n) stand for the largest prime factor of n, we then provide asymptotic values
of Ay(x) :=

∑
n≤x, P (n)≤y pow(n) and By(x) :=

∑
n≤x, P (n)≤y sq(n) when y = x1/u with

u ≥ 1 fixed. We also examine the size of Ay(x) and By(x) when y = (log x)η for
some η > 1. Finally, we prove that Ay(x) will coincide with By(x) in the sense that
log(Ay(x)/x) = (1 + o(1)) log(By(x)/x) as x→∞ if we choose y = 2 log x.

1 Introduction and notation

A powerful number (or square-full number) is a positive integer n such that p2 | n for every
prime factor p of n. In 1934, Erdős and Szekeres [5] were the first to study the distribution
of these numbers. In 1958, Bateman and Grosswald [1] established a very accurate estimate
for the number N(x) of powerful numbers not exceeding x, namely

N(x) = C2x
1/2 + C3x

1/3 + o(x1/6) (x→∞),

where C2 =
ζ(3/2)

ζ(3)
≈ 2.1732 and C3 =

ζ(2/3)

ζ(2)
≈ −1.4879. Here ζ stands for the Riemann

Zeta Function.
Further estimates and generalizations concerning powerful numbers were later obtained

by Ivić and Shiu [8].
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On the other hand, a squarefree number is a positive integer n such that p2 - n for every
prime factor p of n. It is well known (see for instance Hardy and Wright [6], pp. 169-170)
that the number Z(x) of squarefree numbers not exceeding x can be written as

Z(x) =
∑
n≤x

µ2(n) =
6

π2
x+O

(
x1/2

)
,

where µ stands for the Moebius function.
Interestingly, any integer n ≥ 2 can be written in a unique way as the product of its

powerful part and its squarefree part, that is as n = mr where m is a powerful number and r
a squarefree number, with (m, r) = 1. We denote these two parts of an integer n by pow(n)
and sq(n) respectively, setting for convenience pow(1) = sq(1) = 1.

In his master’s thesis, Cloutier [2] obtained asymptotic values for
∑

n≤x pow(n)a sq(n)b,
where a and b are fixed integers. Particular cases of his results yield the following estimates.∑

n≤x

pow(n) =
d1

3
x3/2 +O(x4/3), (1.1)

∑
n≤x

sq(n) =
d2

2
x2 +O(x3/2), (1.2)

∑
n≤x

1

pow(n)
= d2x+O(x1/2), (1.3)

∑
n≤x

1

sq(n)
= d1x

1/2 +O(x1/3), (1.4)

where

d1 =
∏
p

(
1 +

2

p3/2
− 1

p5/2

)
≈ 3.52, (1.5)

d2 =
∏
p

(
1− 1

p2
+

1

p3(p+ 1)

)
≈ 0.65. (1.6)

In particular, it follows from (1.1) and (1.2) that B(x) :=
∑

n≤x sq(n) is much larger
than A(x) :=

∑
n≤x pow(n) for large values of x. However, letting P (n) stand for the largest

prime factor of n, with P (1) = 1, one can easily check that if we set

Ay(x) :=
∑
n≤x

P (n)≤y

pow(n) and By(x) =
∑
n≤x

P (n)≤y

sq(n), (1.7)

then, for small values of y = y(x), we have By(x) = o(Ay(x)) as x → ∞, while for large
values of y = y(x), we have Ay(x) = o(By(x)).

Here, after examining the comparative sizes of #{n ≤ x : sq(n) ≤ y} and #{n ≤
x : pow(n) ≤ y}, we show that #{n ≤ x : pow(n) > sq(n)} is asymptotic to cx3/4 for
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some computable constant c > 0. We then provide asymptotic values for Ay(x) and By(x)
when y = x1/u with u ≥ 1 fixed. We also examine the size of Ay(x) and By(x) when
y = (log x)η for some η > 1. Finally, we establish that if y = 2 log x, then log(Ay(x)/x) =
(1 + o(1)) log(By(x)/x) as x→∞.

Throughout this paper, we let φ stand for the Euler totient function, ω(n) for the number
of distinct prime factors of n (with ω(1) = 0), Ω(n) for the number of prime factors of n
counting their multiplicity (with Ω(1) = 0) and p(n) for the smallest prime factor of n (with
p(1) = 1). We shall also be using the function Ψ(x, y) := #{n ≤ x : P (n) ≤ y} defined for
2 ≤ y ≤ x.

Denoting by π(x) the number of prime numbers not exceeding x, we shall be using the
prime number theorem in its various forms, in particular as:

π(x) = (1 + o(1))
x

log x
(x→∞), (1.8)∏

p≤z

p = exp{(1 + o(1))z} (z →∞), (1.9)∑
p≤x

log p = (1 + o(1))x (x→∞), (1.10)

pk = (1 + o(1))k log k (k →∞), (1.11)

where pk stands for the k-th prime number.

2 The distribution of the values of pow(n) and of sq(n)

We examine the distribution of the values of pow(n) and of sq(n) separately in the following
two theorems.

Theorem 1. For 2 ≤ y ≤ x,∑
n≤x

sq(n)≤y

1 = 2C0
ζ(3/2)

ζ(3)

√
xy +O

(
x1/3y2/3 log y

)
, (2.1)

where

C0 =
∏
p

(
1 +

1− 1/p

p(1 + 1/p3/2)

)(
1− 1

p

)
≈ 0.38. (2.2)

Remark 1. It is clear that estimate (2.1) has some interest only if the error term is of
smaller order than the main term, that is when y log6 y = o(x) as x→∞.

Theorem 2. For 2 ≤ y ≤ x,∑
n≤x

pow(n)≤y

1 = x
6

π2

∑
m≤y

m powerful

1

m
∏

p|m

(
1 + 1

p

) +O
(√

x log y
)
. (2.3)
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Remark 2. Observe that the main term on the right hand side of (2.3) is asymptotic to x
as y →∞. Indeed, this follows from the fact that

6

π2
lim
y→∞

∑
m≤y

m powerful

1

m
∏

p|m

(
1 + 1

p

) =
∏
p

(
1− 1

p2

)∏
p

(
1 +

1

p2(1 + 1
p
)

+
1

p3(1 + 1
p
)

+ · · ·

)

=
∏
p

(
1− 1

p2

)∏
p

(
1 +

1

p2 − 1

)
= 1.

In order to prove these two theorems, we first establish some preliminary results.

Lemma 1. Given an arbitrary positive integer r,

#{n ≤ x : n powerful, (n, r) = 1} =
φ(r)

r

ζ(3/2)

ζ(3)

∏
p|r

(
1 +

1

p3/2

)−1√
x+O

(
2ω(r)x1/3

)
,

(2.4)
where the constant implied by the Landau symbol is absolute.

Proof. Using the estimate∑
n≤X

(n,r)=1

1 =
φ(r)

r
X +O

(
2ω(r)

)
uniform for r ≥ 1, (2.5)

we have, using the fact that any powerful number n can be written in a unique way as
n = a2b3 with µ2(b) = 1,∑

n≤x
n powerful

(n,r)=1

1 =
∑
a2b3≤x
(a,r)=1
(b,r)=1

µ2(b) =
∑
b3≤x

(b,r)=1

µ2(b)
∑

a2≤x/b3
(a,r)=1

1

=
∑
b3≤x

(b,r)=1

µ2(b)

(
φ(r)

r

x1/2

b3/2
+O

(
2ω(r)

))

= x1/2φ(r)

r

∑
b≤x1/3
(b,r)=1

µ2(b)

b3/2
+O

(
2ω(r)x1/3

)
. (2.6)

Using the fact that

∑
b≤x1/3
(b,r)=1

µ2(b)

b3/2
=

∞∑
b=1

(b,r)=1

µ2(b)

b3/2
+O

 ∑
b>x1/3

1

b3/2


=

∏
p-r

(
1 +

1

p3/2

)
+O

(∫ ∞
x1/3

1

t3/2
dt

)
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=
∏
p-r

(
1 +

1

p3/2

)
+O

(
1

x1/6

)
,

we obtain from (2.6) that

∑
n≤x

n powerful
(n,r)=1

1 = x1/2φ(r)

r

∏
p-r

(
1 +

1

p3/2

)
+O

(
1

x1/6

)+O
(
2ω(r)x1/3

)

= x1/2φ(r)

r

∏
p-r

(
1 +

1

p3/2

)
+O

(
2ω(r)x1/3

)

= x1/2φ(r)

r

∏
p

(
1 + 1

p3/2

)
∏

p|r

(
1 + 1

p3/2

) +O
(
2ω(r)x1/3

)
,

which proves (2.4).

Lemma 2. Given an arbitrarily small δ > 0, as x→∞,∑
r≤x

µ2(r)φ(r)

r
∏

p|r

(
1 + 1

p3/2

) = C0x+O
(
x

1
2

+δ
)
, (2.7)

where C0 is the constant defined in (2.2).

Proof. For s > 1, we have

∞∑
n=1

µ2(n)φ(n)/(n
∏

p|n(1 + 1
p3/2

))

ns
=

∏
p

(
1 +

1− 1/p

1 + 1
p3/2

1

ps

)

= ζ(s)
∏
p

(
1− 1

ps

)∏
p

(
1 +

1− 1/p

1 + 1
p3/2

1

ps

)
= ζ(s)H(s),

say. Observing that, for any fixed s > 1
2
, the infinite product H(s) is absolutely convergent,

then (2.7) follows by using Wintner’s Theorem (see for instance Theorem 6.13 and Problem
6.3 in the book of De Koninck and Luca [4]).

As an immediate consequence of this lemma, we obtain the following.

Lemma 3. Given an arbitrarily small δ > 0,∑
r≤y

µ2(r)φ(r)

r3/2
∏

p|r

(
1 + 1

p3/2

) = 2C0
√
y +O

(
y

1
4

+δ
)
.
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Lemma 4. Given an arbitrary powerful number m,

∑
r≤x/m
(r,m)=1

µ2(r) = α(m)x+O

(√
x

m
β(m)

)
,

where

α(m) =
6

π2m

∏
p|m

(
1 +

1

p

)−1

and β(m) =
∏
p|m

(
1− 1
√
p

)−1

.

Proof. This is relation (1) in the paper of De Koninck, Kátai and Subbarao [3] with a
correction by Cloutier [2].

We now have the necessary tools to prove Theorems 1 and 2.

Proof of Theorem 1. As a consequence of Lemma 1, we have, as x→∞,∑
n≤x

sq(n)≤y

1 =
∑
mr≤x

m powerful
r≤y

(m,r)=1

µ2(r) =
∑
r≤y

µ2(r)
∑
m≤x/r

m powerful
(m,r)=1

1

=
∑
r≤y

µ2(r)

φ(r)

r

ζ(3/2)

ζ(3)

∏
p|r

(
1 +

1

p3/2

)−1√
x

r
+O

(
2ω(r)

(x
r

)1/3
)

=
√
x
ζ(3/2)

ζ(3)

∑
r≤y

µ2(r)φ(r)

r3/2
∏

p|r

(
1 + 1

p3/2

) +O

(
x1/3

∑
r≤y

2ω(r)

r1/3

)

=
√
x
ζ(3/2)

ζ(3)

∑
r≤y

µ2(r)φ(r)

r3/2
∏

p|r

(
1 + 1

p3/2

) +O
(
x1/3y2/3 log y

)
,

where we used the fact that, since
∞∑
r=1

2ω(r)

rs
=
ζ2(s)

ζ(2s)
say for s > 1, it follows that

∑
r≤y

2ω(r) =
1

ζ(2)
y log y +O(y), (2.8)

implying by partial summation that

∑
r≤y

2ω(r)

r1/3
� y2/3 log y.

Using Lemma 3, the proof of Theorem 1 is thus complete.
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Proof of Theorem 2. Using Lemma 4, we may write

∑
n≤x

pow(n)≤y

1 =
∑
m≤y

m powerful

∑
r≤x/m
(r,m)=1

µ2(r) = x
∑
m≤y

m powerful

α(m) +O

 ∑
m≤y

m powerful

√
x

m
β(m)


= x

6

π2

∑
m≤y

m powerful

1

m
∏

p|m(1 + 1
p
)

+O

√x ∑
m≤y

m powerful

β(m)√
m

 . (2.9)

Using the estimate∑
m≤y

m powerful

β(m)√
m
≤
∏
p≤y

(
1 +

β(p)

p2/2
+
β(p)

p3/2
+ · · ·

)
≤
∏
p≤y

(
1 +

1

p
+O

(
1

p3/2

))
� log y

in (2.9) completes the proof of Theorem 2.

3 How often is pow(n) larger than sq(n)

In this section, we show that the set of positive integers n such that pow(n) > sq(n) is of
zero density. In fact, we show much more.

Theorem 3. As x becomes large,

#{n ≤ x : pow(n) > sq(n)} = D0x
3/4 +O

(
x2/3 log x

)
, (3.1)

where D0 =
4

3
C0
ζ(3/2)

ζ(3)
≈ 1.10.

Proof. We clearly have

#{n ≤ x : pow(n) > sq(n)} =
∑
r≤
√
x

µ2(r)
∑

r<m≤x/r
m powerful
(m,r)=1

1

=
∑
r≤
√
x

µ2(r)
∑
m≤x/r

m powerful
(m,r)=1

1−
∑
r≤
√
x

µ2(r)
∑
m≤r

m powerful
(m,r)=1

1

= T1(x)− T2(x), (3.2)

say. On the one hand, using Lemma 1 and (2.8), we have

T1(x) =
√
x
ζ(3/2)

ζ(3)

∑
r≤
√
x

µ2(r)φ(r)

r3/2
∏

p|r(1 + 1/p3/2)
+O(x1/3 log x)
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= 2C0
ζ(3/2)

ζ(3)
x3/4 +O(x1/3 log x). (3.3)

On the other hand, using (2.5) and following the same reasoning as in the proof of Lemma
2, we obtain ∑

m≤r
m powerful
(m,r)=1

1 =
∑
a2b3≤r
(a,r)=1
(b,r)=1

µ2(b) =
∑
b3≤r

(b,r)=1

µ2(b)
∑

a2≤r/b3
(a,r)=1

1

=
∑
b≤r1/3
(b,r)=1

µ2(b)

(
φ(r)

r

r1/2

b3/2
+O(2ω(r))

)

=
φ(r)

r1/2

∑
b≤r1/3
(b,r)=1

µ2(b)

b3/2
+O

(
2ω(r)r1/3

)

=
φ(r)

r1/2

ζ(3/2)

ζ(3)

∏
p|r

(
1 +

1

p3/2

)−1

+O
(
2ω(r)r1/3

)
.

Using this last estimate, we obtain that

T2(x) =
ζ(3/2)

ζ(3)

∑
r≤
√
x

µ2(r)φ(r)

r1/2
∏

p|r

(
1 + 1

p3/2

) +O

∑
r≤
√
x

2ω(r)r1/3


=

2

3
C0
ζ(3/2)

ζ(3)
x3/4 +O

(
x2/3 log x

)
. (3.4)

Using (3.3) and (3.4) in (3.2), estimate (3.1) follows thus completing the proof of Theorem 3.

4 The sums Ay(x) and By(x)

Recall the definitions of Ay(x) and By(x) given in (1.7) as well as the following.

Definition 1. The Dickman function ρ(u) is the continuous function satisfying ρ(u) = 1 for
0 ≤ u ≤ 1 and uρ′(u) = −ρ(u− 1) for u > 1.

It follows from this definition that

ρ(u) = ρ(k)−
∫ u

k

ρ(z − 1)

z
dz. (4.1)

Theorem 4. Let y = x1/u, with u ≥ 1 fixed. Then, as x→∞,∑
n≤x

P (n)≤y

sq(n) = (1 + o(1))ρ(u)
d2

2
x2 (4.2)
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and ∑
n≤x

P (n)≤y

pow(n) = (1 + o(1))ρ(u/2)
d1

3
x3/2. (4.3)

Proof. The proof of Theorem 4 is very similar to the proof of the estimate

Ψ(x, x1/u) = (1 + o(1))ρ(u)x (x→∞),

as performed for instance in the book of Tenenbaum [10]. We start by studying the expression∑
n≤x

y<P (n)≤x

sq(n) =
∑
y<p≤x

∑
n≤x

P (n)=p

sq(n)

=
∑
y<p≤x

∑
m≤x/p
P (m)<p

sq(mp) +
∑
y<p≤x

∑
m≤x/p
P (m)=p

sq(mp)

= Σ1(x) + Σ2(x), (4.4)

say.
We first show that Σ2(x) is relatively small and can thus be neglected. Writing m = r ·p,

we obtain

Σ2(x) =
∑
y<p≤x

∑
rp≤x/p
P (r)≤p

sq(rp2) ≤
∑
y<p≤x

∑
r≤x/p2

sq(r) ≤
∑
y<p≤x

∑
r≤x/p2

r � x2
∑
y<p≤x

p−4 � x2

y3
.

(4.5)
We now turn our attention to the estimation of Σ1(x), which we can write as

Σ1(x) =
∑
y<p≤x

p
∑
m≤x/p
P (m)<p

sq(m).

In the range 1 ≤ u ≤ 2, the condition m ≤ x/p implies P (m) ≤ x1/2 < p, so we can drop
the condition P (m) < p. Hence, using equation (1.2), we obtain, as x→∞,

Σ1(x) =
∑
y<p≤x

p
∑
m≤x/p

sq(m) = (1 + o(1))
∑
y<p≤x

p
d2

2

(
x

p

)2

= (1 + o(1))
d2

2
x2
∑
y<p≤x

1

p
= (1 + o(1))

d2

2
x2

∫ x

y

1

t log t
dt

= (1 + o(1))
d2

2
(log u)x2. (4.6)

Again using (1.2) and after substituting (4.6) and (4.5) in (4.4), we obtain that, in the range
1 ≤ u ≤ 2, ∑

n≤x
P (n)≤y

sq(n) =
∑
n≤x

sq(n)−
∑
n≤x

y<P (n)≤x

sq(n)
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= (1 + o(1))
d2

2
(1− log u)x2 +O

(
x2

y3

)
= (1 + o(1))

d2

2
ρ(u)x2, (4.7)

where we used the fact that ρ(u) = 1− log u when u ∈ [1, 2].
In order to extend the range of validity of (4.7) for u > 2, we proceed recursively. Let

M ≥ 2 be a positive integer and assume that the asymptotic estimate∑
n≤x

P (n)≤x1/u

sq(n) = (1 + o(1))
d2

2
ρ(u)x2 holds for any u ∈ [1,M ] as x→∞. (4.8)

We will then show that it also holds for u ∈ [M,M + 1].
First observe that, in light of (4.5), we have∑

n≤x
x1/u<P (n)≤x1/M

sq(n) =
∑

x1/u<p≤x1/M

∑
m≤x

p

P (m)≤p

sq(mp)

=
∑

x1/u<p≤x1/M
p
∑
m≤x

p

P (m)<p

sq(m) +O
(
x2−3/u

)

=
∑

x1/u<p≤x1/M
p

 ∑
m≤x

p

P (m)≤p

sq(m)−
∑
m≤x

p

P (m)=p

sq(m)

+O
(
x2−3/u

)
=

∑
x1/u<p≤x1/M

p
∑
m≤x

p

P (m)≤p

sq(m) +O
(
x2−1/u

)
. (4.9)

Using our induction hypothesis (4.8), we obtain, as x→∞,∑
x1/u<p≤x1/M

p
∑
m≤x

p

P (m)≤p

sq(m) = (1 + o(1))
d2

2

∑
x1/u<p≤x1/M

p

(
x

p

)2

ρ

(
log x

log p
− 1

)

= (1 + o(1))
d2

2
x2

∑
x1/u<p≤x1/M

1

p
ρ

(
log x

log p
− 1

)

= (1 + o(1))
d2

2
x2

∫ x1/M

x1/u

1

t log t
ρ

(
log x

log t
− 1

)
dt. (4.10)

Setting z = log x/ log t, we obtain dz = − log x
t(log t)2

dt, so that 1
t log t

dt = −dz
z

and

d2

2
x2

∫ x1/M

x1/u

1

t log t
ρ

(
log x

log t
− 1

)
dt = (1 + o(1))

d2

2
x2

∫ u

M

ρ(z − 1)

z
dz. (4.11)
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Gathering (4.9), (4.10) and (4.11), we obtain∑
n≤x

x1/u<P (n)≤x1/M

sq(n) = (1 + o(1))
d2

2
x2

∫ u

M

ρ(z − 1)

z
dz. (4.12)

From equation (4.12) and our induction hypothesis (4.8), we then obtain∑
n≤x

P (n)≤x1/u

sq(n) =
∑
n≤x

P (n)≤x1/M

sq(n)−
∑
n≤x

x1/u<P (n)≤x1/M

sq(n)

= (1 + o(1))
d2

2
x2

(
ρ(M)−

∫ u

M

ρ(z − 1)

z
dz

)
,

which, in light of (4.1), can be replaced by∑
n≤x

P (n)≤x1/u

sq(n) = (1 + o(1))
d2

2
x2ρ(u),

thus completing the proof of (4.2).
We now turn to the proof of (4.3). We begin by writing∑

n≤x
x1/u<P (n)≤x

pow(n) = Σ1(x) + Σ2(x) + Σ3(x), (4.13)

where Σ1(x),Σ2(x),Σ3(x) stand respectively for the three expressions∑
n≤x

x1/u<P (n)≤x
P (n)‖n

pow(n),
∑
n≤x

x1/u<P (n)≤x
P (n)2‖n

pow(n),
∑
n≤x

x1/u<P (n)≤x
P (n)3|n

pow(n).

First observe that, in light of (1.1),

Σ1(x) =
∑

x1/u<p≤x

∑
m≤x

p

P (m)<p

pow(mp) =
∑

x1/u<p≤x

∑
m≤x

p

P (m)<p

pow(m)

�
∑

x1/u<p≤x

(
x

p

)3/2

� x3/2
∑
t>x1/u

1

t3/2
= O

(
x3/2−1/2u

)
.

On the other hand, again using (1.1), we have

Σ3(x) =
∑
a≥3

∑
x1/u<p≤x

∑
m≤ x

pa

P (m)<p

pow(mpa) ≤
∑
a≥3

∑
x1/u<p≤x

pa
∑
m≤ x

pa

pow(m)

11



� x3/2
∑
a≥3

∑
x1/u<p≤x

1

pa/2
�
∑
a≥3

x
3
2
− 1
u(a2−1) = O

(
x3/2−1/2u

)
.

It follows from these two estimates that

Σ1(x) + Σ3(x) = O
(
x3/2−1/2u

)
. (4.14)

Now estimating Σ2(x) in the range 1 ≤ u ≤ 2, we have, since P (n)2 > x,

Σ2(x) =
∑
n≤x

x1/u<P (n)≤x
P (n)2‖n

pow(n) = 0. (4.15)

Recalling (1.1) and using both (4.14) and (4.15) in (4.13), it follows that, in the range
u ∈ [1, 2], ∑

n≤x
P (n)≤x1/u

pow(n) =
∑
n≤x

pow(n)−
∑
n≤x

x1/u<P (n)≤x

pow(n)

= (1 + o(1))
d1

3
x3/2 − (Σ1(x) + Σ2(x) + Σ3(x))

= (1 + o(1))
d1

3
ρ(u/2)x3/2, (4.16)

where we used the fact that ρ(u/2) = 1 for u ∈ [1, 2].

In order to extend the range of validity of (4.16) for u > 2, we will proceed recursively,
namely by assuming that the asymptotic estimate∑

n≤x
P (n)≤x1/v

pow(n) = (1 + o(1))
d1

3
ρ(v/2)x3/2 holds for any v ∈ [1, 2M ] as x→∞ (4.17)

and then showing that it also holds for u ∈ [2M, 2M + 2]. Indeed we have∑
n≤x

x1/u<P (n)≤x1/2M

pow(n) =
∑

x1/u<p≤x1/2M

∑
m≤ x

p2

P (m)<p

pow(mp2) +O
(
x3/2−1/2u

)

=
∑

x1/u<p≤x1/2M
p2

∑
m≤ x

p2

P (m)<p

pow(m) +O
(
x3/2−1/2u

)

=
∑

x1/u<p≤x1/2M
p2

∑
m≤ x

p2

P (m)≤p

pow(m)− S1(x) +O
(
x3/2−1/2u

)
(4.18)
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where

S1(x) :=
∑

x1/u<p≤x1/2M
p2
∑
j≤ x

p3

P (j)≤p

pow(jp)

=
∑

x1/u<p≤x1/2M
p2

 ∑
j≤ x

p3

P (j)<p

pow(j) +
∑
j≤ x

p3

P (j)=p

pow(jp)


�

∑
x1/u<p≤x1/2M

p2

∑
j≤ x

p3

pow(j) +
∑
a≥1

∑
pak≤ x

p3

pa+1 pow(k)


�

∑
x1/u<p≤x1/2M

p2

((
x

p3

)3/2

+
∑
a≥1

pa+1

(
x

pa+3

)3/2
)

� x3/2−1/u, (4.19)

where again we used estimate (1.1). Combining (4.18) and (4.19) along with our induction
hypothesis (4.17), it follows that∑

n≤x
x1/u<P (n)≤x1/2M

pow(n) = (1 + o(1))
d1

3
x3/2

∑
x1/u<p≤x1/2M

1

p
ρ

(
log x

2 log p
− 1

)
,

which we can rewrite in its integral form as∑
n≤x

x1/u<P (n)≤x1/2M

pow(n) = (1 + o(1))
d1

3
x3/2

∫ x1/2M

x1/u

1

t log t
ρ

(
log x

2 log t
− 1

)
dt. (4.20)

Setting z = log x
2 log t

in (4.20), we obtain∑
n≤x

x1/u<P (n)≤x1/2M

pow(n) = (1 + o(1))
d1

3
x3/2

∫ u/2

M

1

z
ρ (z − 1) dz.

From this we get∑
n≤x

P (n)≤x1/u

pow(n) = (1 + o(1))
d1

3
x3/2

(
ρ(M)−

∫ u/2

M

ρ(z − 1)

z
dz

)
,

which, in light of (4.1), yields∑
n≤x

P (n)≤x1/u

pow(n) = (1 + o(1))
d1

3
x3/2ρ(u/2),
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thus proving (4.3) and completing the proof of Theorem 4.

5 The sizes of Ay(x) and By(x) for small y

In this section, we establish the size of Ay(x) and By(x) when y = (log x)η for some η > 1.
We prove the following.

Theorem 5. Let η > 1 be fixed. Then, as x→∞,∑
n≤x

P (n)≤(log x)η

pow(n) = x
3
2
− 1

2η
+o(1) (5.1)

and ∑
n≤x

P (n)≤(log x)η

sq(n) = x2− 1
η

+o(1). (5.2)

As we will soon see, Theorem 5 is a consequence of the following lemmas.

Lemma 5. Given a real number A > 1,

Ψ(x, logA x) = x1−1/A+o(1) (x→∞).

Proof. This is relation (1.14) in the paper of Granville [7].

Lemma 6. Let η > 1 be fixed. Then, as x→∞,

Fη(x) := #{n ≤ x : P (n) ≤ (log x)η, n powerful} = x
1
2(1− 1

η )+o(1). (5.3)

Proof. Since all perfect squares are powerful numbers, we have, using Lemma 5,

Fη(x) ≥ #{n ≤ x1/2 : P (n) ≤ (log x)η} = x
1
2(1− 1

η )+o(1). (5.4)

On the other hand, using Lemma 5 and writing each powerful number n ≤ x as n = a2b3,
where b is squarefree, we have for any ε > 0,

Fη(x) ≤
∑
a≤
√
x

P (a)≤(log x)η

#

{
b ≤ x1/3

a2/3
: P (b) ≤ (log x)η

}

≤
∑

a≤x
1
2−ε

P (a)≤(log x)η

#

{
b ≤ x1/3

a2/3
: P (b) ≤ (log x)η

}
+

∑
x
1
2−ε<a≤

√
x

P (a)≤(log x)η

x
2ε
3

≤
∑

a≤x
1
2−ε

P (a)≤(log x)η

#

{
b ≤ x1/3

a2/3
: P (b) ≤ (log x)η

}
+ x

2ε
3 Ψ(
√
x, (log x)η)
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=
∑

a≤x
1
2−ε

P (a)≤(log x)η

#

{
b ≤ x1/3

a2/3
: P (b) ≤ (log x)η

}
+ x

2ε
3 · x

1
2

(1− 1
η

)+o(1)

= S1(x) + x
1
2

(1− 1
η

)+O(ε), (5.5)

say. Then, using Lemma 5 again, we obtain

S1(x) ≤
∑

a≤x
1
2−ε

P (a)≤(log x)η

( x
a2

) 1
3

(1− 1
η

)+o(1)

≤ x
1
3

(1− 1
η

)+o(1)
∑
a≤
√
x

P (a)≤(log x)η

a−
2
3

(1− 1
η

)

= x
1
3

(1− 1
η

)+o(1)

∫ √x
1

t−
2
3

(1− 1
η

)dΨ(t, (log x)η)

= x
1
3

(1− 1
η

)+o(1)

(
t−

2
3

(1− 1
η

)Ψ(t, (log x)η)
∣∣∣√x
1

+
2

3

(
1− 1

η

)∫ √x
1

t−
2
3

(1− 1
η

)−1Ψ(t, (log x)η) dt

)

= x
1
3

(1− 1
η

)+o(1)

(
t−

2
3

(1− 1
η

)Ψ(t, (log x)η)
∣∣∣√x
1

+
2

3

(
1− 1

η

)(
I1(x) + I2(x)

))
(5.6)

say, where

I1(x) =

∫ xε

1

t−
2
3

(1− 1
η

)−1Ψ(t, (log x)η) dt and I2(x) =

∫ √x
xε

t−
2
3

(1− 1
η

)−1Ψ(t, (log x)η) dt.

On the one hand,

I1(x) ≤
∫ xε

1

t−
2
3

(1− 1
η

) dt� (xε)−
2
3

(1− 1
η

) = xO(ε). (5.7)

On the other hand, using Lemma 5,

I2(x) =

∫ √x
xε

t−
2
3

(1− 1
η

)−1 · t1−
1
η

+o(1) dt�
(√

x
) 1

3
(1− 1

η
)+o(1)

. (5.8)

Then, combining (5.7), (5.8), (5.6) and (5.5) as well as using Lemma 5 one more time,
we obtain

Fη(x) � x
1
3

(1− 1
η

)+o(1)

(
(
√
x)

1
3

(1− 1
η

)+o(1) +
2

3

(
1− 1

η

)(√
x
) 1

3
(1− 1

η
)+o(1)

)
+ x

1
2

(1− 1
η

)+O(ε)

� x
1
3

(1− 1
η

)+o(1) · x
1
6

(1− 1
η

)+o(1) + x
1
2

(1− 1
η

)+O(ε) � x
1
2

(1− 1
η

)+O(ε),

an estimate which in combination with estimate (5.4) completes the proof of Lemma 6.
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Lemma 7. Let η > 1 be fixed. Then, as x→∞,

Gη(x, y) := #{n ≤ x : pow(n) > y, P (n) ≤ (log x)η} �
(

x

y1/2

)1− 1
η

+o(1)

.

Proof. Writing each integer n ≤ x as n = m · r, where m and r represent their powerful part
and squarefree part, respectively, and using Lemma 5, we get for any ε > 0

Gη(x, y) ≤
∑

y<m≤x
m powerful

P (m)≤(log x)η

∑
r≤x/m

P (r)≤(log x)η

µ2(r) ≤
∑

y<m≤x
m powerful

P (m)≤(log x)η

Ψ
( x
m
, (log x)η

)

=
∑

y<m≤x1−ε
m powerful

P (m)≤(log x)η

Ψ
( x
m
, (log x)η

)
+

∑
x1−ε<m≤x
m powerful

P (m)≤(log x)η

Ψ
( x
m
, (log x)η

)

≤ x1− 1
η

+o(1)
∑

y<m≤x1−ε
m powerful
P (m)≤(log x)η

1

m1− 1
η

+ xε
∑

x1−ε<m≤x
m powerful

P (m)≤(log x)η

1.

Recalling the definition of Fη(x) given in (5.3), we then have, using Lemma 6,

Gη(x, y) � x1− 1
η

+o(1)

∫ x

y

t−1+ 1
η dFη(t) + xεFη(x)

= x1− 1
η

+o(1)

(
t−1+ 1

ηFη(t)
∣∣∣x
y

+

(
1− 1

η

)∫ x

y

t−2+ 1
ηFη(t) dt

)
+ x

1
2

(1− 1
η

)+O(ε)

= x1− 1
η

+o(1)

(
t−

1
2

(1− 1
η

)
∣∣∣x
y

+

(
1− 1

η

)∫ x

y

t−
3
2

+ 1
2η dt

)
+ x

1
2

(1− 1
η

)+O(ε)

≤ x1− 1
η

+o(1)
(
−y−

1
2

(1− 1
η

) + 2y−
1
2

+ 1
2η

)
+ x

1
2

(1− 1
η

)+O(ε)

�
(

x

y1/2

)1− 1
η

+o(1)

,

thus completing the proof of Lemma 7.

We now have the necessary tools to prove Theorem 5.

Proof of Theorem 5. First observe that, using Lemma 6,∑
n≤x

P (n)≤(log x)η

pow(n) ≥
∑
n≤x

P (n)≤(log x)η

n powerful

n =

∫ x

1

t dFη(t) dt = t Fη(t)|x1 −
∫ x

1

Fη(t) dt

= t1+ 1
2

(1− 1
η

)+o(1)
∣∣∣x
1
−
∫ x

1

t
1
2

(1− 1
η

)+o(1) dt� x
3
2
− 1

2η
+o(1). (5.9)
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Similarly, using Lemmas 5 and 6, we have∑
n≤x

P (n)≤(log x)η

pow(n) ≤
∑
m≤x

m powerful
P (m)≤(log x)η

m
∑
r≤x/m

P (r)≤(log x)η

µ2(r) ≤
∑
m≤x

m powerful
P (m)≤(log x)η

mΨ
( x
m
, (log x)η

)

=
∑

m≤x1−ε
m powerful

P (m)≤(log x)η

m
( x
m

)1− 1
η

+o(1)

+
∑

x1−ε<m≤x
m powerful

P (m)≤(log x)η

mΨ
( x
m
, (log x)η

)

≤ x1− 1
η

+o(1)
∑
m≤x

m powerful
P (m)≤(log x)η

m
1
η + xε

∑
m≤x

m powerful
P (m)≤(log x)η

m

= x1− 1
η

+o(1)

∫ x

1

t
1
η dFη(t) + xε

∫ x

1

t dFη(x)

� x1− 1
η

+o(1) · x
1
η

+ 1
2
− 1

2η + xε · x
3
2
− 1

2η
+o(1) � x

3
2
− 1

2η
+O(ε). (5.10)

Combining (5.9) and (5.10) and taking ε arbitrarily small, estimate (5.1) of Theorem 5
follows.

It remains to prove estimate (5.2). First, using Lemma 5, we have∑
n≤x

P (n)≤(log x)η

sq(n) ≤
∑
n≤x

P (n)≤(log x)η

n =

∫ x

1

tdΨ(t, (log x)η)

= tΨ(t, (log x)η)|x1 −
∫ x

1

Ψ(t, (log x)η) dt

≤ x · x1− 1
η

+o(1) −
∫ x

xε
Ψ(t, (log x)η) dt

� x2− 1
η

+o(1). (5.11)

On the other hand, given an arbitrary small number ε > 0, we have, using Lemma 7,∑
n≤x

P (n)≤(log x)η

sq(n) =
∑
n≤x

P (n)≤(log x)η

n

pow(n)
≥ x−ε

∑
n≤x

P (n)≤(log x)η

pow(n)≤xε

n ≥ x−ε
∑

x1−ε<n≤x
P (n)≤(log x)η

pow(n)≤xε

x1−ε

= x1−2ε
(
Ψ(x, (log x)η)−Gη(x, x

ε)−Ψ(x1−ε, (log x)η) +Gη(x
1−ε, xε)

)
� x1−2εx1− 1

η
+o(1) = x2− 1

η
−2ε+o(1). (5.12)

Since ε can be chosen arbitrarily small, combining (5.11) and (5.12), estimate (5.2) fol-
lows, thus completing the proof of Theorem 5.
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6 Determining y such that Ay(x) and By(x) are of the

same order

In this section, the functions

g(x) := x log x− (x− 1) log(x− 1)

and

h(x) := max
0<b<1/2

(x log x− (x− b) log(x− b)− 2b log b+ (1− b) log(1− b)− (1− 2b) log(1− 2b)) ,

both defined for real x > 1, play an important role.
Our goal is to show that when y = C log x the expressions log(Ay(x)/x) and log(By(x)/x)

are equal to (1 + o(1))h(C)
log x

log log x
and (1 + o(1))g(C)

log x

log log x
respectively, so that by

choosing C as the solution of h(C) = g(C), both expressions will be asymptotic as x→∞.

Theorem 6. The estimate

log(Ay(x)/x) = (1 + o(1)) log(By(x)/x) (x→∞)

holds for y = y(x) = 2 log x.

The proof of Theorem 6 will follow from a series of lemmas.

Lemma 8. The only solution x > 1 to g(x) = h(x) is x = 2, in which case g(2) = h(2) =
2 log 2.

Proof. Clearly, g(2) = 2 log 2. We will prove that g(2) = h(2) and then show that the
solution is unique. First observe that

h(2)− g(2) = max
0<b<1/2

(−(2− b) log(2− b)− 2b log b+ (1− b) log(1− b)− (1− 2b) log(1− 2b))

= max
0<b<1/2

f(b),

say. Differentiating f(b) with respect to b yields

f ′(b) = log(2− b)− 2 log b− log(1− b) + 2 log(1− 2b).

We then have

f ′(b) = 0⇐⇒ (2− b)(1− 2b)2

b2(1− b)
= 1⇐⇒ (3b− 2)(b2 − 3b+ 1) = 0,

from which we get b = b0 := 3−
√

5
2

as the only solution to f ′(b) = 0 in (0, 1/2).
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It remains to show that f(b0) = 0. This follows directly from the fact that

f(b) = bf ′(b)− 2 log(2− b) + log(1− b)− log(1− 2b),

which implies that

f(b0) = 0 ⇐⇒ −2 log(2− b0) + log(1− b0)− log(1− 2b0) = 0

⇐⇒ 1− b0

(2− b0)2(1− 2b0)
= 1⇐⇒ (2b0 − 3)(b2

0 − 3b0 + 1) = 0,

completing the first part of the proof. We also have

g′(x)−h′(x) ≥ (log x− log(x− 1))−max
0<b< 1

2

(log x− log(x− b)) > log

(
x− 1

2

)
−log(x−1) > 0,

so that g(x) is increasing at a faster rate than h(x) and thus proving the solution x = 2 to
be unique.

Lemma 9. Given any real number κ > 0,

Ψ(x, κ log x) = exp

{
g(κ+ 1)

log x

log log x

(
1 +O

(
1

log log x

))}
. (6.1)

Proof. This is the first relation on page 271 of the paper of Granville [7].

We now introduce the function

L(x) :=
log x

log log x
.

Lemma 10. Given arbitrary numbers C > D > 0 and integer valued functions a(x) and
b(x) satisfying a(x) = (1 + o(1))C L(x) and b(x) = (1 + o(1))DL(x), then, as x→∞,(

a(x)

b(x)

)
= exp {(1 + o(1))(C logC −D logD − (C −D) log(C −D))L(x)} .

Proof. Using the well known Stirling formula n! = (1+o(1))nne−n
√

2πn as n→∞, we have,
as x→∞,(
a(x)

b(x)

)
=

a(x)!

b(x)! (a(x)− b(x))!

= (1 + o(1))

√
2πa(x)a(x)a(x)√

2πb(x)b(x)b(x) ·
√

2π(a(x)− b(x)) (a(x)− b(x))a(x)−b(x)

= (1 + o(1))
1√
2π

√
C√

D
√

(C −D)L(x)

((1 + o(1))C)a(x)

((1 + o(1))D)b(x)((1 + o(1))(C −D))a(x)−b(x)

= exp {(1 + o(1))(C logC −D logD − (C −D) log(C −D))L(x)} .
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Lemma 11. As x→∞, ∑
n≤x

P (n)≤C log x

sq(n) = xe(1+o(1))g(C)L(x).

Proof. To prove this result, we proceed in two steps, establishing upper and lower bounds.
We start with the upper bound. Let ε > 0 be an arbitrarily small number. It is clear that∑

n≤x
P (n)≤C log x

sq(n) ≤ x#{n ≤ x : P (n) ≤ C log x, sq(n) > x1−ε}+ x1−εΨ(x,C log x). (6.2)

It follows from Lemma 9 that

x1−εΨ(x,C log x) = o(x). (6.3)

Since n = sq(n) pow(n), we have

#{n ≤ x : P (n) ≤ C log x, sq(n) > x1−ε} ≤ E1(x) · E2(x), (6.4)

where

E1(x) := #{m ≤ xε : m powerful, P (m) ≤ C log x},
E2(x) := #{x1−ε < m ≤ x : m squarefree, P (m) ≤ C log x}.

Using Lemma 9, we get

E1(x) ≤ Ψ(xε, C log x) = eO(εL(x)). (6.5)

To estimate E2(x), we will need information on the size of ω(m) for those integers m counted
by E2(x). On the one hand,

x1−ε < sq(m) =
∏

p| sq(m)

p ≤ (C log x)ω(sq(m)) ,

which leads to
ω(sq(m)) ≥ (1− ε) (1 + o (1))L(x). (6.6)

On the other hand, it was proved by Robin [9] that, for n > ee,

ω(n) ≤ L(n) + 1.45743
L(n)

log log n

with equality when n =
47∏
i=1

pi. Hence it follows that for all n ≤ x,

ω(sq(n)) ≤ ω(n) ≤ (1 + o(1))L(x) (x→∞). (6.7)
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Combining equations (6.6) and (6.7), we obtain

ω(sq(n)) = (1 +O (ε))L(x). (6.8)

We can now get an upper bound for E2(x). Equation (6.8) tells us that there exists
δ = δ(ε) > 0 tending to 0 with ε such that

E2(x) ≤
∑

(1−δ)L(x)<r<(1+δ)L(x)

#{n ≤ x : P (n) ≤ C log x, ω(n) = r, µ2(n) = 1}

≤
∑

(1−δ)L(x)<r<(1+δ)L(x)

(
π(C log x)

r

)
= exp {(g(C) + o(1))L(x)} , (6.9)

where the last equality follows as in the proof of Lemma 10 after observing that, in light of
(1.8),

π(C log x) = (1 + o(1))
C log x

log log x
= (1 + o(1))C L(x).

Using (6.5) and (6.9) in (6.4), and then taking into account (6.3) and (6.2), we have
proven the upper bound implied in Lemma 11.

It remains to prove the lower bound. Let us first choose a squarefree number t < x such
that ε log x < p(t) < P (t) ≤ C log x and also satisfying

ω(t) = `1(x) :=
⌊(

1− ε

2

)
L(x)

⌋
.

For such an integer t, using (1.9) and then (1.11), we have

t =
∏
p|t

p ≥
∏

p≤pω(t)

p ≥ eω(t) log(ω(t))(1+o(1)) ≥ x1− ε
2

+o(1) (6.10)

and
t ≤ (C log x)ω(t) ≤ x1− ε

2
+o(1), so that t = x1− ε

2
+o(1). (6.11)

Now define pt as the largest prime number such that

t ·
∏
p≤pt

p ≤ x. (6.12)

Note that such a prime pt exists because of (6.11). It follows from (6.12), using (1.10), that,
as x (and thus t) tends to infinity,

log t+
∑
p≤pt

log p ≤ log x,

log t+ (1 + o(1))pt ≤ log x,

(1 + o(1))pt ≤ log x− (1− ε/2 + o(1)) log x = (ε/2 + o(1)) log x,
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where we used (6.10), thus implying that, if x is sufficiently large,

pt ≤
(ε

2
+ o(1)

)
log x < ε log x.

This allows us to choose an integer st defined by st :=
∏
p≤pt

p such that, in light of (6.12),

n = st · t ≤ x. Observe that we also have

x

log x
≤ n = st · t (6.13)

because if we had st·t < x
log x

, then multiplying both side by ε log x would give us ε log x·st·t <
εx < x, which would contradict the definition of pt. Using (6.13), we therefore have∑

n≤x
P (n)≤C log x

sq(n) ≥ x

log x
#
{
t ≤ x : µ2(t) = 1, ε log x < p(t) < P (t) ≤ C log x, ω(t) = `1(x)

}

≥ x

log x

(
π(C log x)− π(ε log x))

`1(x)

)
. (6.14)

Finally, observing that as a consequence of (1.8),

π(C log x)− π(ε log x) = (1 + o(1))CL(x)

and that `1(x) = (1 + o(1))L(x), it follows from (6.14) and Lemma 10 that∑
n≤x

P (n)≤C log x

sq(n) ≥ xe(g(C)+o(1))L(x),

thus completing the proof of the lower bound and thereby that of Lemma 11.

Lemma 12. As x→∞, we have∑
n≤x

P (n)≤C log x

pow(n) = xe(1+o(1))h(C)L(x). (6.15)

Proof. We begin by proving the implied lower bound by using the trivial inequality∑
n≤x

P (n)≤C log x

pow(n) ≥ x

2
#
{x

2
< n ≤ x : P (n) ≤ C log x, n powerful

}
. (6.16)

In this last set, if we focus only on those n = 2a ·m with m odd and a ≥ 2, we may write

#
{x

2
< n ≤ x : P (n) ≤ C log x, n powerful

}
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≥ #
{
m ≤ x

8
: P (m) ≤ C log x,m odd, powerful

}
.

Letting ε > 0 be a small number, we further focus our attention on those integers m ≤ x/8
such that Ω(m) = `2(x) := b(1− ε)L(x)c, implying that we may write

#
{
m ≤ x

8
: P (m) ≤ C log x,m odd and powerful

}
≥ #{m ≤ x

8
: P (m) ≤ C log x,Ω(m) = `2(x),m odd and powerful}. (6.17)

Note that the two conditions Ω(m) = `2(x) and P (m) ≤ C log x imply that

m ≤ (C log x)`2(x) ≤ x(1−ε)(1+o(1)),

thus allowing us to replace m ≤ x
8

by m ≥ 1 in the last set appearing in (6.17).

We now write each integer m in that set as m = s2 · t where s =
∏

p|m p and t = m/s2.
Observe that for each such integer m, we have

Ω(t) = Ω(m)− Ω(s2) = Ω(m)− 2ω(s) = Ω(m)− 2bΩ(m) = (1− 2b)`2(x)

for some b ∈ (0, 1/2). It follows from these observations that

#{m ≥ 1 : P (m) ≤ C log x,Ω(m) = `2(x),m odd and powerful}
≥ max

0<b<1/2

∑
s≥1

µ2(s)=1
P (s)≤C log x
ω(s)=b`2(x)

s odd

#{t ≥ 1 : Ω(t) = (1− 2b)`2(x), p|t⇒ p|s}. (6.18)

Since ω(s) = b`2(x), we obtain

#{t ≥ 1 : Ω(t) = (1− 2b)`2(x), p|t⇒ p|s} =

(
Ω(t) + ω(s)− 1

Ω(t)

)
=

(
(1− 2b)`2(x) + b`2(x)− 1

(1− 2b)`2(x)

)
=

(
(1− b)`2(x)− 1

(1− 2b)`2(x)

)
(6.19)

and we also have

#{s ≥ 1 : µ2(s) = 1, P (s) ≤ C log x, ω(s) = b`2(x), s odd} =

(
π(C log x)− 1

b`2(x)

)
. (6.20)

From estimates (6.18), (6.19) and (6.20), we obtain

#{m ≥ 1 : P (m) ≤ C log x,Ω(m) = `2(x),m odd and powerful }
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≥ max
0<b<1/2

(
(1− b)`2(x)− 1

(1− 2b)`2(x)

)(
π(C log x)− 1

b`2(x)

)
= exp ((1 + o(1))h(C)L(x)) , (6.21)

where the last equality follows from Lemma 10. The proof of the lower bound in (6.15) then
follows from (6.16) and (6.21).

We now prove the upper bound implied in Lemma 12. Let ε > 0 be small. We start with
the trivial inequality∑

n≤x
P (n)≤C log x

pow(n) ≤ x#{n ≤ x : pow(n) > x1−ε, P (n) ≤ C log x}+ x1−εΨ (x,C log x) .

(6.22)
First observe that, using Lemma 9 and provided that x is large enough, we have

x1−εΨ (x,C log x) ≤ x1−εxε/2 = x1−ε/2. (6.23)

On the other hand, writing each integer n ∈ {n ≤ x : pow(n) > x1−ε, P (n) ≤ C log x} as
n = pow(n) · sq(n) = m · r, we have

#{n ≤ x : pow(n) > x1−ε, P (n) ≤ C log x} ≤ A(x)×B(x), (6.24)

where
A(x) := #{r ≤ xε, µ2(r) = 1, P (r) ≤ C log x}

and
B(x) := #{m ≤ x : m powerful, P (m) ≤ C log x}.

Using Lemma 9, we obtain

A(x) ≤ Ψ(xε, C log x) = exp (O(ε)L(x)) . (6.25)

Concerning B(x), we have
B(x) ≤ #B1(x)×#B2(x), (6.26)

where

B1(x) := {m ≤ x : m powerful, P (m) ≤ ε log x},
B2(x) := {m ≤ x : m powerful, ε log x < p(m) ≤ P (m) ≤ C log x}.

On the one hand, using Lemma 9, we have

#B1(x) ≤ Ψ(x, ε log x) ≤
(

1

ε

)π(ε log x)

= exp

(
O(ε)

log x

log log x

)
. (6.27)

On the other hand, for each m ∈ B2(x), we have (ε log x)Ω(m) < m ≤ x, and therefore, for
some small δ > 0,

Ω(m) ≤ log x

log log x+ log ε
= (1 + δ)L(x),
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provided x is large enough. It follows that

#B2(x) ≤ # {m ≤ x : P (m) ≤ C log x,Ω(m) < (1 + δ)L(x)}
≤ (1 + δ)L(x)×# {m ≤ x : P (m) ≤ C log x,Ω(m) = b(1 + δ)L(x)c}
≤ L(x)2

× max
0<b<1/2

# {m ≤ x : P (m) ≤ C log x,Ω(m) = b(1 + δ)L(x)c , ω(m) = bbL(x)c} .

As we did in the proof of the lower bound, namely when establishing (6.21), it follows from
this last series of inequalities that

max
0<b<1/2

# {n ≤ x : P (n) ≤ C log x,Ω(n) = b(1 + δ)L(x)c , ω(n) = bbL(x)c}

= exp ((1 + o(1))h(C)L(x)) . (6.28)

Gathering estimates (6.26) through (6.28), we obtain that

B(x) ≤ exp ((1 +O(ε))h(C)L(x)) . (6.29)

Collecting estimates (6.22) through (6.25) and also (6.29), the proof of the upper bound
implied in Lemma 12 then follows, thus completing the proof of Lemma 12.

Proof of Theorem 6. The proof of Theorem 6 is an immediate consequence of Lemmas 11
and 12.

Remark 3. While Lemma 12 is valid only if y = C log x with C ≥ 1, the domain of validity
of Lemma 11 can be extended to y = C log x for any C > 0.

Remark 4. As is shown in [2], considering for instance only powers of 2, for any y > 2, we
have Ay(x) > x/2.

Remark 5. For any ε > 0, if C < 1− ε and y ≤ C log x, then

By(x) <

(∏
p<y

p

)
Ψ(x, y) < eC log x+o(1) = xC+o(1).

7 Final remarks

Collecting our results from sections 4, 5 and 6, it is interesting to observe that the behaviors
of Ay(x) and By(x) vary greatly depending on the relative size of y = y(x). Indeed, we
obtained asymptotic estimates for Ay(x) and By(x) when y = x1/u, as x→∞, namely

Ay(x) = (1 + o(1))ρ(u/2)
d1

3
x3/2 and By(x) = (1 + o(1))ρ(u)

d2

2
x2.
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In other ranges, we obtained less precise but nevertheless interesting estimates. In particular,
when y = (log x)η for some η > 1, we obtained asymptotic formulas for log(Ay(x))/ log x
and log(By(x))/ log x, that is,

Ay(x) = x
3
2
− 1

2η
+o(1) and By(x) = x2− 1

η
+o(1) (x→∞).

For even smaller values of y, that is when y = y(x) = 2 log x, we obtained

log(Ay(x)/x) = (1 + o(1)) log(By(x)/x) (x→∞),

since we proved that both Ay(x) and By(x) are equal to x exp
{

(1 + o(1))2 log 2 log x
log log x

}
as

x→∞.
Gathering our results, we obtain that given any ε > 0, if y < (2− ε) log x, then By(x) >

Ay(x). On the other hand, although we did not prove it, we believe that Ay(x) > By(x)
when y > (2 + ε) log x. While this is the case in every range investigated in the paper, a
rigorous proof would require studying Ay(x) and By(x) in the ranges not covered by the
present work, an interesting challenge.
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Collection Échelles. Belin, 2008.

AMS Subject Classification numbers: 11A25, 11N37
Key words: powerful numbers, arithmetic function.
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