Normal numbers generated using the smallest prime factor function

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Édition du 13 mai 2014

Abstract

In a series of papers, we constructed large families of normal numbers using the distribution of the values of the largest prime factor function. Here, letting $p(n)$ stand for the smallest prime factor of n, we show how a concatenation of the successive values of $p(n)$ can yield a normal number in any given basis $q \geq 2$. We further expand on this idea to create various large families of normal numbers.

AMS Subject Classification numbers: 11K16, 11N37, 11N41
Key words: normal numbers, smallest prime factor

1 Introduction

Given an integer $q \geq 2$, we say that an irrational number η is a q-normal number if the q-ary expansion of η is such that any preassigned sequence of length $k \geq 1$, taken within this expansion, occurs with the expected limiting frequency, namely $1 / q^{k}$.

In a series of recent papers, we constructed large families of normal numbers using the distribution of the values of the largest prime factor function (see for instance [3], [4] and [5]).

Here, letting $p(n)$ stand for the smallest prime factor of n, we show how a concatenation of the successive values of $p(n)$ can yield a normal number. We further expand on this idea to create various large families of normal numbers.

2 Notation

Let \wp stand for the set of all the prime numbers. The letters p and π with or without subscript will always denote prime numbers. The letter c, with or without subscript, always denotes a positive constant, but not necessarily the same at each occurrence. At times, we will use the notation $x_{1}=\log x, x_{2}=\log \log x, x_{3}=\log \log \log x$.

We let $P(n)$ stand for the largest prime factor of the integer $n \geq 2$, with $P(1)=1$, and we let $\omega(n)$ stand for the number of distinct prime factors of the integer $n \geq 2$,

[^0]with $\omega(1)=0$. As usual, φ will denote the Euler totient function and $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$ stands for the logarithmic integral. Finally, we set $\pi(x ; k, \ell):=\#\{p \leq x: p \equiv \ell$ $(\bmod k)$.

Let $q \geq 2$ be a fixed integer and let $A=A_{q}=\{0,1,2, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{q}$, is called a word of length t. Given a word α, we shall write $\lambda(\alpha)=t$ to indicate that α is a word of length t. We shall also use the symbol Λ to denote the empty word.

Then, $A^{t}=A_{q}^{t}$ will stand for the set of words of length t over A, while A^{*} will stand for the set of all words over A regardless of their length, including the empty word Λ. Observe that the concatenation of two words $\alpha, \beta \in A^{*}$, written $\alpha \beta$, also belongs to A^{*}. Finally, given a word α and a subword β of α, we will denote by $F_{\beta}(\alpha)$ the number of occurrences of β in α, that is, the number of pairs of words μ_{1}, μ_{2} such that $\mu_{1} \beta \mu_{2}=\alpha$.

Given a positive integer n, we write its q-ary expansion as

$$
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) q+\cdots+\varepsilon_{t}(n) q^{t}
$$

where $\varepsilon_{i}(n) \in A$ for $0 \leq i \leq t$ and $\varepsilon_{t}(n) \neq 0$. To this representation, we associate the word

$$
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n) \in A^{t+1}
$$

For convenience, if $n \leq 0$, we will write $\bar{n}=\Lambda$, the empty word.
The number of digits of such a number \bar{n} will be $\lambda(\bar{n})=\left\lfloor\frac{\log n}{\log q}\right\rfloor+1$.
Finally, given a sequence of integers $a(1), a(2), a(3), \ldots$, we will say that the concatenation of their q-ary digit expansions $\overline{a(1)} \overline{a(2)} \overline{a(3)} \ldots$, denoted by Concat $\overline{a(n)}$: $n \in \mathbb{N}$), is a normal sequence if the number $0 . \overline{a(1)} \overline{a(2)} \overline{a(3)} \ldots$ is a q-normal number.

3 Main results

Theorem 1. The expression $n_{1}=\operatorname{Concat}(\overline{p(n)}: n \in \mathbb{N})$ is a normal sequence.
Theorem 2. Let $R \in \mathbb{Z}[x]$ be a polynomial such that $R(x) \geq 0$ for all $x>0$ and satisfying $\lim _{x \rightarrow \infty} R(x)=\infty$. The expression $n_{2}=\operatorname{Concat}(\overline{R(p(n))}: n \in \mathbb{N})$ is a normal sequence.
Theorem 3. Let $a \in \mathbb{Z}$ be an even integer. The expression $n_{3}=\operatorname{Concat}(\overline{p(\pi+a)}$: $\pi \in \wp)$ is a normal sequence.
Remark 1. Observe that the particular case $a=0$ has been proved by Davenport and Erdős [2].
Theorem 4. Let $a \in \mathbb{Z}$ be an even integer and let R be as in Theorem 2. The expression $n_{4}=\operatorname{Concat}(\overline{R(p(\pi+a))}: \pi \in \wp)$ is a normal sequence.

We will only provide the proofs of Theorems 1 and 3 , since the proofs of Theorems 2 and 4 can be obtained along the same lines.

4 Preliminary results

For each integer $n \geq 2$, let $L(n)=\left\lceil\frac{\log n}{\log q}\right\rceil$.
The next two lemmas follow as a particular case of Theorem 1 of Bassily and Kátai [1].

Lemma 1. Let κ_{u} be a function of u such that $\kappa_{u}>1$ for all u. Given a word $\beta \in A_{q}^{k}$ and setting

$$
V_{\beta}(u):=\#\left\{p \in \wp: u \leq p \leq 2 u \text { such that }\left|F_{\beta}(\bar{p})-\frac{L(u)}{q^{k}}\right|>\kappa_{u} \sqrt{L(u)}\right\}
$$

then, there exists a positive constant c such that

$$
V_{\beta}(u) \leq \frac{c u}{(\log u) \kappa_{u}^{2}} .
$$

Lemma 2. Let κ_{u} be as in Lemma 1. Given $\beta_{1}, \beta_{2} \in A_{q}^{k}$ with $\beta_{1} \neq \beta_{2}$, set

$$
\Delta_{\beta_{1}, \beta_{2}}(u):=\#\left\{p \in \wp: u \leq p \leq 2 u \text { such that }\left|F_{\beta_{1}}(\bar{p})-F_{\beta_{2}}(\bar{p})\right|>\kappa_{u} \sqrt{L(u)}\right\}
$$

Then, for some positive constant c,

$$
\Delta_{\beta_{1}, \beta_{2}}(u) \leq \frac{c u}{(\log u) \kappa_{u}^{2}}
$$

Lemma 3. Let $f(n)$ be a non negative real valued arithmetic function. Let $a_{n}, n=$ $1, \ldots, N$, be a sequence of integers. Let r be a positive real number, and let $p_{1}<p_{2}<$ $\cdots<p_{s} \leq r$ be prime numbers. Set $Q=p_{1} \cdots p_{s}$. If $d \mid Q$, then let

$$
\sum_{\substack{n=1 \\ a_{n} \equiv 0 \\(\bmod d)}}^{N} f(n)=\kappa(d) X+R(N, d)
$$

where X and R are real numbers, $X \geq 0$, and $\kappa\left(d_{1} d_{2}\right)=\kappa\left(d_{1}\right) \kappa\left(d_{2}\right)$ whenever d_{1} and d_{2} are co-prime divisors of Q.

Assume that for each prime $p, 0 \leq \kappa(p)<1$. Setting

$$
I(N, Q):=\sum_{\substack{n=1 \\\left(a_{n}, Q\right)=1}}^{N} f(n)
$$

then the estimate

$$
I(N, Q)=\left\{1+2 \theta_{1} H\right\} X \prod_{p \mid Q}(1-\kappa(p))+2 \theta_{2} \sum_{\substack{d \mid Q \\ d \leq z^{3}}} 3^{\omega(d)}|R(N, d)|
$$

holds uniformly for $r \geq 2, \max (\log r, S) \leq \frac{1}{8} \log z$, where $\left|\theta_{1}\right| \leq 1,\left|\theta_{2}\right| \leq 1$, and

$$
H=\exp \left(-\frac{\log z}{\log r}\left\{\log \left(\frac{\log z}{S}\right)-\log \log \left(\frac{\log z}{S}\right)-\frac{2 S}{\log z}\right\}\right)
$$

and

$$
S=\sum_{p \mid Q} \frac{\kappa(p)}{1-\kappa(p)} \log p
$$

When these conditions are satisfied, there exists an absolute positive constant c such that $2 H \leq c<1$.

Proof. This result is Lemma 2.1 in the book of Elliott [6].

5 Proof of Theorem 1

Let x be a large number, but fixed. Consider the interval

$$
I_{x}:=\left[\left\lfloor\frac{x}{2}\right\rfloor+1,\lfloor x\rfloor\right)
$$

and the following two truncated words of n_{1} :

$$
\eta_{x}:=\operatorname{Concat}(\overline{p(n)}: n \leq x), \quad \rho_{x}:=\operatorname{Concat}\left(\overline{p(n)}: n \in I_{x}\right) .
$$

Let β be an arbitrary word in A_{q}^{k}.
Letting ℓ_{0} be the largest integer such that $2^{\ell_{0}}<x$, it is clear that

$$
\begin{align*}
F_{\beta}\left(\eta_{x}\right) & =\sum_{\ell=0}^{\ell_{0}} F_{\beta}\left(\rho_{x / 2^{\ell}}\right)+O(\log x), \tag{5.1}\\
F_{\beta}\left(\rho_{x / 2^{\ell}}\right) & =\sum_{n \in I_{x / 2^{\ell}}} F_{\beta}(\overline{p(n)})+O\left(\frac{x}{2^{\ell}}\right), \tag{5.2}
\end{align*}
$$

where the error term on the right hand side of (5.1) accounts for the cases where the word β overlaps two consecutive intervals $I_{x / 2^{\ell+1}}$ and $I_{x / 2^{\ell}}$. Note that here and throughout this section, the constants implied by the Landau notation $O(\cdots)$ may depend of the particular basis q and on the particular word β.

Hence, in light of (5.1) and (5.2), in order to prove that n_{1} is a normal sequence, it will be sufficient to show that, given any two words $\beta_{1}, \beta_{2} \in A_{q}^{k}$, we have

$$
\begin{equation*}
\frac{\left|F_{\beta_{1}}\left(\rho_{x}\right)-F_{\beta_{2}}\left(\rho_{x}\right)\right|}{\lambda\left(\rho_{x}\right)} \rightarrow 0 \quad \text { as } x \rightarrow \infty . \tag{5.3}
\end{equation*}
$$

We first start by establishing the exact order of $\lambda\left(\rho_{x}\right)$.

For each $Q \in \wp$, we let

$$
\nu_{x}(Q)=\#\left\{n \in I_{x}: p(n)=Q\right\}
$$

Let ε_{x} be a function such that $\lim _{x \rightarrow \infty} \varepsilon_{x}=0$. Let also $Y_{x}<Z_{x}$ be two positive functions tending to infinity with x, that we will specify later. It is clear, using Mertens' formula, that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\nu_{x}(Q)=(1+o(1)) \frac{x}{2 Q} \prod_{\substack{\pi<Q \\ \pi \in \mathscr{\bullet}}}\left(1-\frac{1}{\pi}\right)=(1+o(1)) \frac{e^{-\gamma}}{2} \frac{x}{Q \log Q} \tag{5.4}
\end{equation*}
$$

uniformly for $Y_{x}<Q \leq x^{\varepsilon_{x}}$ (here γ stands for the Euler-Mascheroni constant). By a sieve approach, we may say that for some absolute constant $c_{1}>0$, we have

$$
\nu_{x}(Q) \begin{cases}\leq c_{1} \frac{x}{Q \log Q} & \text { for all } Q \leq \sqrt{x} \tag{5.5}\\ \leq \frac{x}{Q} & \text { for } \sqrt{x}<Q \leq x\end{cases}
$$

We may then write

$$
\begin{align*}
\lambda\left(\rho_{x}\right) & =\sum_{Q<Y_{x}} \nu_{x}(Q) \lambda(\bar{Q})+\sum_{Y_{x} \leq Q<Z_{x}} \nu_{x}(Q) \lambda(\bar{Q})+\sum_{Z_{x} \leq Q \leq x} \nu_{x}(Q) \lambda(\bar{Q})+O(x) \\
& =\Sigma_{1}+\Sigma_{2}+\Sigma_{3}+O(x), \tag{5.6}
\end{align*}
$$

say. As we will see, the main contribution will come from the term Σ_{2}.
Using (5.4) and (5.5), we easily obtain

$$
\begin{align*}
& \Sigma_{1} \leq c_{2} x \sum_{Q<Y_{x}} \frac{1}{Q \log Q} \cdot \log Q \leq c_{3} x \log \log Y_{x}, \tag{5.7}\\
& \Sigma_{3} \leq c_{4} x \sum_{Z_{x} \leq Q \leq x} \frac{1}{Q} \leq c_{5} x \log \left(\frac{\log x}{\log Z_{x}}\right) . \tag{5.8}
\end{align*}
$$

Choosing Y_{x} so that $\log Y_{x}=(\log x)^{\varepsilon_{x}}$ and Z_{x} so that $\frac{\log x}{\log Z_{x}}=(\log x)^{\varepsilon_{x}}$, it follows from (5.7) and (5.8) that, as $x \rightarrow \infty$,

$$
\begin{align*}
& \Sigma_{1}=o(x \log \log x), \tag{5.9}\\
& \Sigma_{3}=o(x \log \log x) . \tag{5.10}
\end{align*}
$$

Now, in light of (5.4), we have, as $x \rightarrow \infty$,

$$
\begin{aligned}
\Sigma_{2} & =\sum_{Y_{x} \leq Q<Z_{x}} \nu_{x}(Q) \lambda(\bar{Q}) \\
& =(1+o(1)) c_{6} x \sum_{Y_{x} \leq Q<Z_{x}} \frac{\lambda(\bar{Q})}{Q \log Q}=(1+o(1)) \frac{c_{7} x}{\log q} \sum_{Y_{x} \leq Q<Z_{x}} \frac{1}{Q}
\end{aligned}
$$

(5.11) $=(1+o(1)) c_{7} x \log \left(\frac{\log Z_{x}}{\log Y_{x}}\right)=(1+o(1)) c_{7} x \log \log x+O\left(x \varepsilon_{x} \log \log x\right)$,
for some positive constants c_{6} and c_{7}.
Hence, gathering estimates (5.9), (5.10) and (5.11) and substituting them into (5.6), we obtain that

$$
\lambda\left(\rho_{x}\right)=c_{7} x \log \log x+o(x \log \log x),
$$

thus establishing that the true order of $\lambda\left(\rho_{x}\right)$ is $x \log \log x$. Therefore, in light of our ultimate goal (5.3), we now only need to show that

$$
\begin{equation*}
\left|F_{\beta_{1}}\left(\rho_{x}\right)-F_{\beta_{2}}\left(\rho_{x}\right)\right|=o(x \log \log x) \quad(x \rightarrow \infty) \tag{5.12}
\end{equation*}
$$

To accomplish this, using the same approach as above, we easily get that

$$
\begin{equation*}
\left|F_{\beta_{1}}\left(\rho_{x}\right)-F_{\beta_{2}}\left(\rho_{x}\right)\right| \leq \sum_{Y_{x}<Q<Z_{x}}\left|F_{\beta_{1}}(\bar{Q})-F_{\beta_{2}}(\bar{Q})\right| \nu_{x}(Q)+o(x \log \log x) \tag{5.13}
\end{equation*}
$$

We further set ℓ_{1} as the largest integer such that $2^{\ell_{1}+1} \leq Y_{x}$ and ℓ_{2} as the smallest integer such that $2^{\ell_{2}+1} \geq Z_{x}$. We then write the interval $\left[Y_{x}, Z_{x}\right]$ as a subset of the union of a finite number of intervals, namely as follows:

$$
\begin{equation*}
\left[Y_{x}, Z_{x}\right] \subseteq \bigcup_{\ell=\ell_{1}}^{\ell_{2}}\left[\frac{x}{2^{\ell+1}}, \frac{x}{2^{\ell}}\right] \tag{5.14}
\end{equation*}
$$

that is the union of a finite number of intervals of the form $[u, 2 u]$.
For each of these intervals $[u, 2 u]$, we have

$$
\begin{equation*}
T(u):=\sum_{u \leq Q \leq 2 u}\left|F_{\beta_{1}}(\bar{Q})-F_{\beta_{2}}(\bar{Q})\right| \nu_{x}(Q)=S_{1}(u)+S_{2}(u), \tag{5.15}
\end{equation*}
$$

where $S_{1}(u)$ is the same as $T(u)$ but with the restriction that the sum runs only over those primes $Q \in[u, 2 u]$ for which

$$
\left|F_{\beta_{1}}(\bar{Q})-F_{\beta_{2}}(\bar{Q})\right| \leq \kappa_{u} \sqrt{L(u)},
$$

while $S_{2}(u)$ accounts for the other primes $Q \in[u, 2 u]$, namely those for which

$$
\left|F_{\beta_{1}}(\bar{Q})-F_{\beta_{2}}(\bar{Q})\right|>\kappa_{u} \sqrt{L(u)} .
$$

Using Lemma 2 and (5.5), we thus have that, for some positive constants c_{8} and c_{9},

$$
S_{1}(u) \leq c_{8} \sum_{u \leq Q \leq 2 u} \kappa_{u} \sqrt{\log u} \nu_{x}(Q) \leq c_{8} \kappa_{u} \sqrt{\log u} x \sum_{u \leq Q \leq 2 u} \frac{1}{Q \log Q}
$$

$$
\begin{equation*}
\leq c_{9} \frac{x \kappa_{u}}{(\log u)^{3 / 2}} \tag{5.16}
\end{equation*}
$$

On the other hand, using the trivial estimate $F_{\beta_{i}}(\bar{Q}) \leq \lambda(\bar{Q}) \ll \log u$, we easily get, again using Lemma 2 and (5.5), that, for some positive constant c_{10},

$$
\begin{equation*}
S_{2}(u) \leq \frac{c_{10} x}{u} \frac{u}{(\log u) \kappa_{u}^{2}}=\frac{c_{10} x}{(\log u) \kappa_{u}^{2}} . \tag{5.17}
\end{equation*}
$$

Substituting (5.16) and (5.17) in (5.15), we obtain that

$$
\begin{equation*}
T(u) \leq c x\left(\frac{\kappa_{u}}{(\log u)^{3 / 2}}+\frac{1}{(\log u) \cdot \kappa_{u}^{2}}\right) \tag{5.18}
\end{equation*}
$$

We now choose $\kappa_{u}=\log \log \log x$. Then, in light of (5.14) and using (5.18), we may conclude that

$$
\sum_{Y_{x}<Q<Z_{x}}\left|F_{\beta_{1}}\left(\rho_{x}\right)-F_{\beta_{2}}\left(\rho_{x}\right)\right| \leq \sum_{\ell=\ell_{1}}^{\ell_{2}} T\left(\frac{x}{2^{\ell}}\right) \leq o(x \log \log x),
$$

which in light of (5.13) proves (5.12), thereby completing the proof of Theorem 1.

6 Proof of Theorem 3

We let x be a large number and turn our attention to the truncated word

$$
\sigma_{x}=\operatorname{Concat}\left(\overline{p(\pi+a)}: \pi \in I_{x}\right),
$$

of which we first plan to estimate the length $\lambda\left(\sigma_{x}\right)$.
For each prime number U, let

$$
M_{x}(U)=\#\left\{\pi \in I_{x}: p(\pi+a)=U\right\}
$$

This allows us to write

$$
\begin{equation*}
\lambda\left(\sigma_{x}\right)=\sum_{U \in \wp} M_{x}(U) \lambda(\bar{U})=\sum_{\substack{U \leq x^{\varepsilon} x \\ U \epsilon_{\wp}}}+\sum_{\substack{U \geq x^{x} x \\ U \epsilon_{\wp}}}=\Sigma_{1}+\Sigma_{2}, \tag{6.1}
\end{equation*}
$$

say. Using Theorem 4.2 of Halberstam and Richert [7], we get that

$$
\begin{align*}
\Sigma_{2} & \leq(\log x) \cdot \#\left\{\pi<x: p(\pi+a) \geq x^{\varepsilon_{x}}\right\} \\
& \leq c \frac{x \log x}{\log x} \prod_{p<x^{\varepsilon_{x}}}\left(1-\frac{1}{p}\right) \leq c_{1} \frac{x}{\varepsilon_{x} \log x}, \tag{6.2}
\end{align*}
$$

by Mertens' estimate.

Let us choose ε_{x} so that $1 / \varepsilon_{x}$ tends monotonically to infinity, but very slowly. We will now use Lemma 3 and the Bombieri-Vinogradov theorem to estimate $M_{x}(U)$ for $U<x^{\varepsilon_{x}}$ for almost all U. Choose $\kappa_{U}=1 / \sqrt{\varepsilon_{U}}$.

Following the notation of Lemma 3, we have

$$
\begin{gathered}
T_{U}=\prod_{p<U} p, \quad p_{1}<\cdots<p_{s}(\leq U), \quad \Delta=\pi(U)-1, \\
\left(\frac{x}{2} \leq\right) \pi_{1}<\cdots<\pi_{N}(\leq x), \quad \pi_{j}+a \equiv 0 \quad(\bmod U), \\
a_{n}=\pi_{n}+a \text { for } n=1,2, \ldots, N, \quad f(n)=1 \text { for all } n \in \mathbb{N} .
\end{gathered}
$$

Moreover, for each $d \mid T_{U}$,

$$
\pi\left(I_{x} ; d U,-a\right)=\sum_{a_{n} \equiv 0} f(n)=\frac{1}{\varphi(d)(U-1)}(\operatorname{li}(x)-\operatorname{li}(x / 2))+R(N, d U,-a)
$$

say. We have

$$
|R(N, d U,-a)| \leq\left|\pi(x ; d U,-a)-\frac{\operatorname{li}(x)}{\varphi(d Q)}\right|+\left|\pi\left(\frac{x}{2} ; d U,-a\right)-\frac{\operatorname{li}(x / 2)}{\varphi(d Q)}\right|
$$

Let η be the multiplicative function defined on the squarefree integers by

$$
\eta(p)= \begin{cases}1 /(p-1) & \text { if } p \nmid a, \\ 0 & \text { if } p \mid a .\end{cases}
$$

We then have

$$
S=\sum_{\substack{p \mid T_{U} \\ p \nmid a}} \frac{\log p}{p-2}=\log U+O(1) .
$$

Then, the condition

$$
\frac{1}{8} \log z \geq \max (\log \pi(U), \log U)
$$

clearly holds for every large U. Further set

$$
H=H_{U}=\exp \left\{-\kappa_{U}\left(\log \kappa_{U}-\log \log \kappa_{U}-\frac{2}{\kappa_{U}}\right)\right\} .
$$

We then have

$$
\begin{equation*}
M_{x}(U)=\left\{1+2 \theta_{1} H\right\} \frac{\operatorname{li}(x)-\operatorname{li}(x / 2)}{U-1} \prod_{\substack{2<p<U \\ p \nmid a}}\left(1-\frac{1}{p-1}\right)+B(U), \tag{6.3}
\end{equation*}
$$

where

$$
B(U)=2 \theta_{2} \sum_{\substack{d \mid T_{U} \\ d \leq U^{W} U}} 3^{\omega(d)}|R(N, d)|,
$$

and where $\left|\theta_{1}\right| \leq 1,\left|\theta_{2}\right| \leq 1$.
On the one hand, there exists a constant $A_{1}=A_{1}(a)>0$ such that

$$
\begin{equation*}
\prod_{\substack{2<p<U \\ p \nmid a}}\left(1-\frac{1}{p-1}\right)=(1+o(1)) \frac{A_{1}}{\log U} \quad(U \rightarrow \infty) . \tag{6.4}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\sum_{U \leq x^{\varepsilon_{x}}} B(U) \leq & \sum_{U \leq x^{\varepsilon_{x} x}} \sum_{\substack{d \mid T_{U} \\
d \leq U^{\kappa} U}} 3^{\omega(d)}\left|\pi(x ; d U,-a)-\frac{\operatorname{li}(x)}{\varphi(d U)}\right| \\
& +\sum_{U \leq x^{\varepsilon_{x}}} \sum_{\substack{d \mid T_{U} \\
d \leq U^{\kappa} U}} 3^{\omega(d)}\left|\pi(x / 2 ; d U,-a)-\frac{\operatorname{li}(x / 2)}{\varphi(d U)}\right| \\
= & S_{1}(x)+S_{2}(x), \tag{6.5}
\end{align*}
$$

say. We have $d U \leq U^{\kappa_{U}+1}$. Set $m=d U$. Since $U=P(m)$, it follows that m determines d and U uniquely.

We shall now provide an estimate for $S_{1}(x)$ by using the Brun-Titchmarsh inequality and the Bombieri-Vinogradov inequality. So, let $B>0$ and $E>0$ be arbitrary numbers. We then have

$$
\begin{align*}
S_{1}(x) & \ll \sum_{\substack{m \leq x \sqrt{\varepsilon x}+\varepsilon_{x} \\
\omega(m) \leq B x_{2}}} 3^{B x_{2}}\left|\pi(x ; m,-a)-\frac{\operatorname{li}(x)}{\varphi(m)}\right|+\sum_{\substack{m \leq x \sqrt{\varepsilon x}+\varepsilon_{x} \\
\omega(m)>B x_{2}}} 3^{\omega(m)} \frac{\operatorname{li}(x)}{\varphi(m)} \\
& \ll \frac{x \cdot 3^{B x_{2}}}{x_{1}^{E}}+\frac{\operatorname{li}(x)}{3^{B x_{2}}} \sum_{\substack{m \leq x^{1 / 4} \\
P(m)<x^{\varepsilon} x}} \frac{3^{2 \omega(m)}}{\varphi(m)} \\
& \ll \frac{x \cdot 3^{B x_{2}}}{x_{1}^{E}}+\frac{\operatorname{li}(x)}{3^{B x_{2}}} \prod_{p<x^{\varepsilon x}}\left(1+\frac{9 p}{(p-1)^{2}}\right) . \tag{6.6}
\end{align*}
$$

It follows from (6.6) that, given any fixed number $A>0$, an appropriate choice of B and E will lead to

$$
\begin{equation*}
S_{1}(x) \ll \frac{\operatorname{li}(x)}{\log ^{A} x} . \tag{6.7}
\end{equation*}
$$

Proceeding in a similar manner, we easily obtain that

$$
\begin{equation*}
S_{2}(x) \ll \frac{\operatorname{li}(x)}{\log ^{A} x} \tag{6.8}
\end{equation*}
$$

Using (6.7) and (6.8) in (6.5), and combining this with (6.4) and (6.3) in our estimate (6.2), and recalling (6.1), we obtain

$$
\begin{equation*}
\lambda\left(\sigma_{x}\right)=\sum_{U \in \wp} M_{x}(U) \lambda(\bar{U})=\Sigma_{1}+\Sigma_{2} \ll \Sigma_{1}+\frac{x}{(\log x) \varepsilon_{x}} . \tag{6.9}
\end{equation*}
$$

Let us now write

$$
\begin{equation*}
\Sigma_{1}=\sum_{U<\log x}+\sum_{\log x \leq U<x^{\varepsilon x}}=T_{1}+T_{2} \tag{6.10}
\end{equation*}
$$

say.
First observe that, using (6.3), as $x \rightarrow \infty$,

$$
\begin{align*}
T_{1} & =\sum_{U<\log x}(1+o(1)) \frac{A_{1}(\operatorname{li}(x)-\operatorname{li}(x / 2))}{(U-1) \log U} \lambda(\bar{U})+O\left(\frac{\operatorname{li}(x)}{\log ^{A} x}\right) \\
& \ll \operatorname{li}(x) \sum_{U<\log x} \frac{1}{U}+O\left(\frac{\operatorname{li}(x)}{\log ^{A} x}\right) \\
& \ll \operatorname{li}(x) \cdot x_{3}, \tag{6.11}
\end{align*}
$$

while

$$
\begin{align*}
T_{2} & \ll(\operatorname{li}(x)-\operatorname{li}(x / 2)) \sum_{\log x \leq U<x^{\varepsilon_{x}}} \frac{1}{(U-1) \log U}\left\lceil\frac{\log U}{\log q}\right\rceil \\
& \ll \frac{1}{\log q}(\operatorname{li}(x)-\operatorname{li}(x / 2)) \sum_{\log x \leq U<x^{\varepsilon_{x}}} \frac{1}{U} \\
& =(1+o(1)) \frac{1}{\log q}(\operatorname{li}(x)-\operatorname{li}(x / 2)) \log \log x . \tag{6.12}
\end{align*}
$$

Gathering (6.11), (6.12) and (6.10) in (6.9), we get

$$
\begin{equation*}
\lambda\left(\sigma_{x}\right) \ll \frac{1}{2 \log q \cdot \log x}(\operatorname{li}(x)-\operatorname{li}(x / 2)) x_{2} \ll \frac{x x_{2}}{\log x} . \tag{6.13}
\end{equation*}
$$

Let $\beta_{1}, \beta_{2} \in A_{q}^{k}$ and set $\Delta(\alpha)=F_{\beta_{1}}(\alpha)-F_{\beta_{2}}(\alpha)$. We will prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\left|\Delta\left(\sigma_{x}\right)\right|}{\lambda\left(\sigma_{x}\right)}=0 \tag{6.14}
\end{equation*}
$$

First, observe that it is clear that

$$
\left|\Delta\left(\sigma_{x}\right)\right| \leq \sum_{U \in \wp} M_{x}(U)|\Delta(\bar{U})|+O(1) \sum_{U \in \wp} M_{x}(U) .
$$

By using (6.2), we obtain that

$$
\sum_{U>x^{\varepsilon_{x}}} M_{x}(U) \leq c \frac{x}{\varepsilon_{x} \log ^{2} x} .
$$

By using (6.7) and (6.8), we obtain that

$$
\sum_{\substack{U \in \mathscr{\mathscr { C }} \\ U \leq x^{x} x}} B(U)|\Delta(\bar{U})| \leq \log x \cdot \sum_{\substack{U \in \mathscr{g} \\ U \leq x^{x x}}} B(U) \leq \frac{x}{\log ^{2} x}
$$

provided $x>x_{0}$.
Thus, by using (6.3) and (6.11), we obtain that

$$
\left|\Delta\left(\sigma_{x}\right)\right| \leq \sum_{\substack{U \in \dot{S} \\ \log x \leq U \leq x^{\varepsilon x}}} c \frac{x}{\log x} \cdot \frac{\Delta(\bar{U})}{U \log U}+O\left(\frac{x \cdot x_{3}}{\log x}\right) .
$$

By using Lemma 2, it follows that

$$
\sum_{\substack{U \in \mathscr{y} \\ V \leq U \leq 2 V}}|\Delta(\bar{U})| \leq \frac{c V \log V}{\log V \cdot \kappa_{V}^{2}}+\frac{c V}{\log V} \cdot \kappa_{V} \cdot \log V=\frac{c V}{\kappa_{V}^{2}}+c V \kappa_{V} .
$$

Thus,

$$
\begin{equation*}
\sum_{\substack{U \in \in \\ V \leq U \leq 2 V}} \frac{|\Delta(\bar{U})|}{U \log U} \leq \frac{c}{\log V \cdot \kappa_{V}^{2}}+\frac{c \kappa_{V}}{\log ^{3 / 2} V} . \tag{6.15}
\end{equation*}
$$

Let us apply this with $V=V_{j}$ for $j=0,1, \ldots, j_{0}$, where $V_{0}=\log x, V_{j}=2^{j} V_{0}$, with $V_{j_{0}} \leq x^{\varepsilon_{x}}<V_{j_{0}+1}$.

Thus, it follows from (6.15) that

$$
\begin{align*}
\sum_{\substack{U \in \xi^{\prime} \\
\log x \leq U \leq x^{\varepsilon} x}} \frac{|\Delta(\bar{U})|}{U \log U} & \leq \frac{c}{\kappa_{V_{0}}^{2}} \sum_{j=0}^{j_{0}} \frac{1}{\log \left(V_{0} \cdot 2^{j}\right)}+c \kappa_{V_{j_{0}+1}} \sum_{j=0}^{j_{0}} \frac{1}{\log ^{3 / 2} V_{j}} \\
& =W_{1}+W_{2} \tag{6.16}
\end{align*}
$$

say. Since

$$
W_{1} \leq \frac{c_{1}}{\kappa_{V_{0}}^{2}} \log j_{0} \leq \frac{c_{1} x_{2}}{\kappa_{V_{0}}^{2}}
$$

and noting that $\kappa_{V_{0}} \rightarrow \infty$ as $x \rightarrow \infty$, and since

$$
W_{2} \leq c \kappa_{x} \sum_{j \geq 0} \frac{1}{\left(\log V_{0}+j\right)^{3 / 2}} \leq \frac{c_{2} \kappa_{x}}{x_{2}^{1 / 2}},
$$

it follows from (6.16), that if we choose $\kappa_{x} \leq \sqrt{x_{2}}$ say, then

$$
\sum_{\substack{U \in \in_{1} \\ \log \left(x \leq U \leq x^{\varepsilon_{x}}\right.}} \frac{|\Delta(\bar{U})|}{U \log U}=o\left(x_{2}\right),
$$

which, in light of (6.13), proves (6.14) and thus completes the proof of Theorem 3.

7 Further remarks

Using the same approach, one can also prove the following two theorems.
Theorem 5. Let $G(n)=n^{2}+1$ and set

$$
\begin{aligned}
& \xi_{1}=\operatorname{Concat}(\overline{p(G(n))}: n \in \mathbb{N}), \\
& \xi_{2}=\operatorname{Concat}(\overline{p(G(\pi))}: \pi \in \wp) .
\end{aligned}
$$

Then ξ_{1} and ξ_{2} are q-normal sequences.
We further let $p_{k}(n)$ stand for the k-th smallest prime factor of n, that is, if $n=q_{1}^{\alpha_{1}} \cdots q_{r}^{\alpha_{r}}$, where $q_{1}<\cdots<q_{r}$ are primes and each α_{i} an integer, then

$$
p_{k}(n)= \begin{cases}q_{k} & \text { if } k \leq r \\ 1 & \text { if } k>r\end{cases}
$$

Theorem 6. Let $G(x)=a_{r} x^{r}+a_{r-1} x^{r-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ be irreducible and satisfying $\left(a_{r}, a_{r-1}, \ldots, a_{0}\right)=1, a_{r}>0$ and $G(x)>0$ for $x>x_{0}$. Then

$$
\eta_{k}=\operatorname{Concat}\left(\overline{p_{k}(G(n))}: x_{0}<n \in \mathbb{N}\right)
$$

is a q-normal sequence.
Observe that the proof of Theorem 6 is very similar to that of Theorem 1. Indeed, we first define

$$
\kappa_{x}:=\operatorname{Concat}\left(\overline{p_{k}(G(n))}: n \in I_{x}\right),
$$

where $I_{x}=[\lfloor x / 2\rfloor+1,\lfloor x\rfloor)$. Then, for each prime Q, we set

$$
T(Q):=\#\left\{n \in I_{x}: p_{k}(G(n))=Q\right\}
$$

so that

$$
\lambda\left(\kappa_{x}\right)=\sum_{n \in I_{x}} \lambda\left(\overline{p_{k}(G(n))}\right)=\sum_{Q \leq x} \lambda(\bar{Q}) T(Q) .
$$

As can be shown using sieve methods, the main contribution to the above sum comes from those primes $Q \leq x^{1 / 2 k}$, while that coming from the primes $Q>x^{1 / 2 k}$ can be neglected. This allows us to establish that the order of $\lambda\left(\kappa_{x}\right)$ is $x(\log \log x)^{k}$.

Then, it is enough to prove that, given an arbitrary $t \in \mathbb{N}$ and any two words $\beta_{1}, \beta_{2} \in A_{q}^{t}$,

$$
\frac{\left|F_{\beta_{1}}\left(\kappa_{x}\right)-F_{\beta_{2}}\left(\kappa_{x}\right)\right|}{\lambda\left(\kappa_{x}\right)} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

and this is done by showing that

$$
\left|F_{\beta_{1}}\left(\kappa_{x}\right)-F_{\beta_{2}}\left(\kappa_{x}\right)\right|=o\left(x(\log \log x)^{k}\right) \quad \text { as } x \rightarrow \infty
$$

References

[1] N.L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some sequences of integers, Journal of Mathematical Sciences 78, no. 1 (1996), 11-17.
[2] H. Davenport and P. Erdős, Note on normal decimals, Canadian J. Math. 4 (1952). 58-63.
[3] J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bulletin of the Australian Mathematical Society 84 (2011), 337-349.
[4] J.M. De Koninck and I. Kátai, Some new methods for constructing normal numbers, Annales des Sciences Mathématiques du Québec 36 (2012), no.2, 349-359.
[5] J.M. De Koninck and I. Kátai, Construction of normal numbers using the distribution of the k-th largest prime factor, Journal of the Australian Mathematical Society 88 (2013), 158-168.
[6] P.D.T.A.Elliott, Probabilistic Number Theory I, Mean Value Theorems, Springer-Verlag, Berlin, 1979.
[7] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 13 mai 2014; fichier: normal-smallest-prime-factor-2014.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by ELTE IK.

