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Abstract

In a series of papers, we constructed large families of normal numbers using
the distribution of the values of the largest prime factor function. Here, letting
p(n) stand for the smallest prime factor of n, we show how a concatenation
of the successive values of p(n) can yield a normal number in any given basis
q ≥ 2. We further expand on this idea to create various large families of normal
numbers.
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1 Introduction

Given an integer q ≥ 2, we say that an irrational number η is a q-normal number if
the q-ary expansion of η is such that any preassigned sequence of length k ≥ 1, taken
within this expansion, occurs with the expected limiting frequency, namely 1/qk.

In a series of recent papers, we constructed large families of normal numbers using
the distribution of the values of the largest prime factor function (see for instance [3],
[4] and [5]).

Here, letting p(n) stand for the smallest prime factor of n, we show how a con-
catenation of the successive values of p(n) can yield a normal number. We further
expand on this idea to create various large families of normal numbers.

2 Notation

Let ℘ stand for the set of all the prime numbers. The letters p and π with or without
subscript will always denote prime numbers. The letter c, with or without subscript,
always denotes a positive constant, but not necessarily the same at each occurrence.
At times, we will use the notation x1 = log x, x2 = log log x, x3 = log log log x.

We let P (n) stand for the largest prime factor of the integer n ≥ 2, with P (1) = 1,
and we let ω(n) stand for the number of distinct prime factors of the integer n ≥ 2,

1Research supported in part by a grant from NSERC.
2Research supported by ELTE IK.
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with ω(1) = 0. As usual, ϕ will denote the Euler totient function and li(x) :=
∫ x
2

dt
log t

stands for the logarithmic integral. Finally, we set π(x; k, `) := #{p ≤ x : p ≡ `
(mod k).

Let q ≥ 2 be a fixed integer and let A = Aq = {0, 1, 2, . . . , q−1}. Given an integer
t ≥ 1, an expression of the form i1i2 . . . it, where each ij ∈ Aq, is called a word of
length t. Given a word α, we shall write λ(α) = t to indicate that α is a word of
length t. We shall also use the symbol Λ to denote the empty word.

Then, At = Atq will stand for the set of words of length t over A, while A∗ will
stand for the set of all words over A regardless of their length, including the empty
word Λ. Observe that the concatenation of two words α, β ∈ A∗, written αβ, also
belongs to A∗. Finally, given a word α and a subword β of α, we will denote by Fβ(α)
the number of occurrences of β in α, that is, the number of pairs of words µ1, µ2 such
that µ1βµ2 = α.

Given a positive integer n, we write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where εi(n) ∈ A for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate the
word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1.

For convenience, if n ≤ 0, we will write n = Λ, the empty word.

The number of digits of such a number n will be λ(n) =

⌊
log n

log q

⌋
+ 1.

Finally, given a sequence of integers a(1), a(2), a(3), . . ., we will say that the con-
catenation of their q-ary digit expansions a(1) a(2) a(3) . . ., denoted by Concat(a(n) :
n ∈ N), is a normal sequence if the number 0.a(1) a(2) a(3) . . . is a q-normal number.

3 Main results

Theorem 1. The expression n1 = Concat(p(n) : n ∈ N) is a normal sequence.

Theorem 2. Let R ∈ Z[x] be a polynomial such that R(x) > 0 for all x > 0 and
satisfying limx→∞R(x) = ∞. The expression n2 = Concat(R(p(n)) : n ∈ N) is a
normal sequence.

Theorem 3. Let a ∈ Z be an even integer. The expression n3 = Concat(p(π + a) :
π ∈ ℘) is a normal sequence.

Remark 1. Observe that the particular case a = 0 has been proved by Davenport and
Erdős [2].

Theorem 4. Let a ∈ Z be an even integer and let R be as in Theorem 2. The
expression n4 = Concat(R(p(π + a)) : π ∈ ℘) is a normal sequence.

We will only provide the proofs of Theorems 1 and 3, since the proofs of Theorems
2 and 4 can be obtained along the same lines.
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4 Preliminary results

For each integer n ≥ 2, let L(n) =

⌈
log n

log q

⌉
.

The next two lemmas follow as a particular case of Theorem 1 of Bassily and
Kátai [1].

Lemma 1. Let κu be a function of u such that κu > 1 for all u. Given a word β ∈ Akq
and setting

Vβ(u) := #

{
p ∈ ℘ : u ≤ p ≤ 2u such that

∣∣∣∣Fβ(p)− L(u)

qk

∣∣∣∣ > κu
√
L(u)

}
,

then, there exists a positive constant c such that

Vβ(u) ≤ cu

(log u)κ2u
.

Lemma 2. Let κu be as in Lemma 1. Given β1, β2 ∈ Akq with β1 6= β2, set

∆β1,β2(u) := #
{
p ∈ ℘ : u ≤ p ≤ 2u such that |Fβ1(p)− Fβ2(p)| > κu

√
L(u)

}
.

Then, for some positive constant c,

∆β1,β2(u) ≤ cu

(log u)κ2u
.

Lemma 3. Let f(n) be a non negative real valued arithmetic function. Let an, n =
1, . . . , N , be a sequence of integers. Let r be a positive real number, and let p1 < p2 <
· · · < ps ≤ r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

N∑
n=1

an≡0 (mod d)

f(n) = κ(d)X +R(N, d),

where X and R are real numbers, X ≥ 0, and κ(d1d2) = κ(d1)κ(d2) whenever d1 and
d2 are co-prime divisors of Q.

Assume that for each prime p, 0 ≤ κ(p) < 1. Setting

I(N,Q) :=
N∑
n=1

(an,Q)=1

f(n),

then the estimate

I(N,Q) = {1 + 2θ1H}X
∏
p|Q

(1− κ(p)) + 2θ2
∑
d|Q
d≤z3

3ω(d)|R(N, d)|
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holds uniformly for r ≥ 2, max(log r, S) ≤ 1
8

log z, where |θ1| ≤ 1, |θ2| ≤ 1, and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
and

S =
∑
p|Q

κ(p)

1− κ(p)
log p.

When these conditions are satisfied, there exists an absolute positive constant c such
that 2H ≤ c < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [6].

5 Proof of Theorem 1

Let x be a large number, but fixed. Consider the interval

Ix :=
[⌊x

2

⌋
+ 1, bxc

)
and the following two truncated words of n1:

ηx := Concat(p(n) : n ≤ x), ρx := Concat(p(n) : n ∈ Ix).

Let β be an arbitrary word in Akq .
Letting `0 be the largest integer such that 2`0 < x, it is clear that

Fβ(ηx) =

`0∑
`=0

Fβ(ρx/2`) +O(log x),(5.1)

Fβ(ρx/2`) =
∑

n∈I
x/2`

Fβ(p(n)) +O
( x

2`

)
,(5.2)

where the error term on the right hand side of (5.1) accounts for the cases where
the word β overlaps two consecutive intervals Ix/2`+1 and Ix/2` . Note that here and
throughout this section, the constants implied by the Landau notation O(· · · ) may
depend of the particular basis q and on the particular word β.

Hence, in light of (5.1) and (5.2), in order to prove that n1 is a normal sequence,
it will be sufficient to show that, given any two words β1, β2 ∈ Akq , we have

(5.3)
|Fβ1(ρx)− Fβ2(ρx)|

λ(ρx)
→ 0 as x→∞.

We first start by establishing the exact order of λ(ρx).

4



For each Q ∈ ℘, we let

νx(Q) = #{n ∈ Ix : p(n) = Q}.

Let εx be a function such that limx→∞ εx = 0. Let also Yx < Zx be two positive
functions tending to infinity with x, that we will specify later. It is clear, using
Mertens’ formula, that, as x→∞,

(5.4) νx(Q) = (1 + o(1))
x

2Q

∏
π<Q
π∈℘

(
1− 1

π

)
= (1 + o(1))

e−γ

2

x

Q logQ

uniformly for Yx < Q ≤ xεx (here γ stands for the Euler-Mascheroni constant). By a
sieve approach, we may say that for some absolute constant c1 > 0, we have

(5.5) νx(Q)

{
≤ c1

x
Q logQ

for all Q ≤
√
x,

≤ x
Q

for
√
x < Q ≤ x.

We may then write

λ(ρx) =
∑
Q<Yx

νx(Q)λ(Q) +
∑

Yx≤Q<Zx

νx(Q)λ(Q) +
∑

Zx≤Q≤x

νx(Q)λ(Q) +O(x)

= Σ1 + Σ2 + Σ3 +O(x),(5.6)

say. As we will see, the main contribution will come from the term Σ2.
Using (5.4) and (5.5), we easily obtain

Σ1 ≤ c2x
∑
Q<Yx

1

Q logQ
· logQ ≤ c3x log log Yx,(5.7)

Σ3 ≤ c4x
∑

Zx≤Q≤x

1

Q
≤ c5x log

(
log x

logZx

)
.(5.8)

Choosing Yx so that log Yx = (log x)εx and Zx so that
log x

logZx
= (log x)εx , it follows

from (5.7) and (5.8) that, as x→∞,

Σ1 = o(x log log x),(5.9)

Σ3 = o(x log log x).(5.10)

Now, in light of (5.4), we have, as x→∞,

Σ2 =
∑

Yx≤Q<Zx

νx(Q)λ(Q)

= (1 + o(1))c6x
∑

Yx≤Q<Zx

λ(Q)

Q logQ
= (1 + o(1))

c7x

log q

∑
Yx≤Q<Zx

1

Q
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= (1 + o(1))c7x log

(
logZx
log Yx

)
= (1 + o(1))c7x log log x+O(xεx log log x),(5.11)

for some positive constants c6 and c7.
Hence, gathering estimates (5.9), (5.10) and (5.11) and substituting them into

(5.6), we obtain that

λ(ρx) = c7x log log x+ o(x log log x),

thus establishing that the true order of λ(ρx) is x log log x. Therefore, in light of our
ultimate goal (5.3), we now only need to show that

(5.12) |Fβ1(ρx)− Fβ2(ρx)| = o(x log log x) (x→∞).

To accomplish this, using the same approach as above, we easily get that

(5.13) |Fβ1(ρx)− Fβ2(ρx)| ≤
∑

Yx<Q<Zx

∣∣Fβ1(Q)− Fβ2(Q)
∣∣ νx(Q) + o(x log log x).

We further set `1 as the largest integer such that 2`1+1 ≤ Yx and `2 as the smallest
integer such that 2`2+1 ≥ Zx. We then write the interval [Yx, Zx] as a subset of the
union of a finite number of intervals, namely as follows:

(5.14) [Yx, Zx] ⊆
`2⋃
`=`1

[ x

2`+1
,
x

2`

]
,

that is the union of a finite number of intervals of the form [u, 2u].
For each of these intervals [u, 2u], we have

(5.15) T (u) :=
∑

u≤Q≤2u

∣∣Fβ1(Q)− Fβ2(Q)
∣∣ νx(Q) = S1(u) + S2(u),

where S1(u) is the same as T (u) but with the restriction that the sum runs only over
those primes Q ∈ [u, 2u] for which∣∣Fβ1(Q)− Fβ2(Q)

∣∣ ≤ κu
√
L(u),

while S2(u) accounts for the other primes Q ∈ [u, 2u], namely those for which∣∣Fβ1(Q)− Fβ2(Q)
∣∣ > κu

√
L(u).

Using Lemma 2 and (5.5), we thus have that, for some positive constants c8 and
c9,

S1(u) ≤ c8
∑

u≤Q≤2u

κu
√

log u νx(Q) ≤ c8κu
√

log u x
∑

u≤Q≤2u

1

Q logQ
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≤ c9
xκu

(log u)3/2
.(5.16)

On the other hand, using the trivial estimate Fβi(Q) ≤ λ(Q) � log u, we easily get,
again using Lemma 2 and (5.5), that, for some positive constant c10,

(5.17) S2(u) ≤ c10x

u

u

(log u)κ2u
=

c10x

(log u)κ2u
.

Substituting (5.16) and (5.17) in (5.15), we obtain that

(5.18) T (u) ≤ cx

(
κu

(log u)3/2
+

1

(log u) · κ2u

)
.

We now choose κu = log log log x. Then, in light of (5.14) and using (5.18), we
may conclude that

∑
Yx<Q<Zx

|Fβ1(ρx)− Fβ2(ρx)| ≤
`2∑
`=`1

T
( x

2`

)
≤ o(x log log x),

which in light of (5.13) proves (5.12), thereby completing the proof of Theorem 1.

6 Proof of Theorem 3

We let x be a large number and turn our attention to the truncated word

σx = Concat(p(π + a) : π ∈ Ix),

of which we first plan to estimate the length λ(σx).
For each prime number U , let

Mx(U) = #{π ∈ Ix : p(π + a) = U}.

This allows us to write

(6.1) λ(σx) =
∑
U∈℘

Mx(U)λ(U) =
∑
U<xεx

U∈℘

+
∑
U≥xεx
U∈℘

= Σ1 + Σ2,

say. Using Theorem 4.2 of Halberstam and Richert [7], we get that

Σ2 ≤ (log x) ·#{π < x : p(π + a) ≥ xεx}

≤ c
x log x

log x

∏
p<xεx

(
1− 1

p

)
≤ c1

x

εx log x
,(6.2)

by Mertens’ estimate.
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Let us choose εx so that 1/εx tends monotonically to infinity, but very slowly. We
will now use Lemma 3 and the Bombieri-Vinogradov theorem to estimate Mx(U) for
U < xεx for almost all U . Choose κU = 1/

√
εU .

Following the notation of Lemma 3, we have

TU =
∏
p<U

p, p1 < · · · < ps(≤ U), ∆ = π(U)− 1,

(x
2
≤
)
π1 < · · · < πN(≤ x), πj + a ≡ 0 (mod U),

an = πn + a for n = 1, 2, . . . , N, f(n) = 1 for all n ∈ N.

Moreover, for each d|TU ,

π(Ix; dU,−a) =
∑

an≡0 (mod d)

f(n) =
1

ϕ(d)(U − 1)
(li(x)− li(x/2)) +R(N, dU,−a),

say. We have

|R(N, dU,−a)| ≤
∣∣∣∣π(x; dU,−a)− li(x)

ϕ(dQ)

∣∣∣∣+

∣∣∣∣π(
x

2
; dU,−a)− li(x/2)

ϕ(dQ)

∣∣∣∣ .
Let η be the multiplicative function defined on the squarefree integers by

η(p) =

{
1/(p− 1) if p - a,
0 if p | a.

We then have

S =
∑
p|TU
p-a

log p

p− 2
= logU +O(1).

Then, the condition
1

8
log z ≥ max(log π(U), logU)

clearly holds for every large U . Further set

H = HU = exp

{
−κU

(
log κU − log log κU −

2

κU

)}
.

We then have

(6.3) Mx(U) = {1 + 2θ1H}
li(x)− li(x/2)

U − 1

∏
2<p<U
p-a

(
1− 1

p− 1

)
+B(U),

where
B(U) = 2θ2

∑
d|TU
d≤UκU

3ω(d)|R(N, d)|,
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and where |θ1| ≤ 1, |θ2| ≤ 1.
On the one hand, there exists a constant A1 = A1(a) > 0 such that

(6.4)
∏

2<p<U
p-a

(
1− 1

p− 1

)
= (1 + o(1))

A1

logU
(U →∞).

On the other hand,∑
U≤xεx

B(U) ≤
∑
U≤xεx

∑
d|TU
d≤UκU

3ω(d)
∣∣∣∣π(x; dU,−a)− li(x)

ϕ(dU)

∣∣∣∣
+
∑
U≤xεx

∑
d|TU
d≤UκU

3ω(d)
∣∣∣∣π(x/2; dU,−a)− li(x/2)

ϕ(dU)

∣∣∣∣
= S1(x) + S2(x),(6.5)

say. We have dU ≤ UκU+1. Set m = dU . Since U = P (m), it follows that m
determines d and U uniquely.

We shall now provide an estimate for S1(x) by using the Brun-Titchmarsh inequal-
ity and the Bombieri-Vinogradov inequality. So, let B > 0 and E > 0 be arbitrary
numbers. We then have

S1(x) �
∑

m≤x
√
εx+εx

ω(m)≤Bx2

3Bx2
∣∣∣∣π(x;m,−a)− li(x)

ϕ(m)

∣∣∣∣+
∑

m≤x
√
εx+εx

ω(m)>Bx2

3ω(m) li(x)

ϕ(m)

� x · 3Bx2
xE1

+
li(x)

3Bx2

∑
m≤x1/4
P (m)<xεx

32ω(m)

ϕ(m)

� x · 3Bx2
xE1

+
li(x)

3Bx2

∏
p<xεx

(
1 +

9p

(p− 1)2

)
.(6.6)

It follows from (6.6) that, given any fixed number A > 0, an appropriate choice of B
and E will lead to

(6.7) S1(x)� li(x)

logA x
.

Proceeding in a similar manner, we easily obtain that

(6.8) S2(x)� li(x)

logA x
.

Using (6.7) and (6.8) in (6.5), and combining this with (6.4) and (6.3) in our
estimate (6.2), and recalling (6.1), we obtain

(6.9) λ(σx) =
∑
U∈℘

Mx(U)λ(U) = Σ1 + Σ2 � Σ1 +
x

(log x)εx
.
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Let us now write

(6.10) Σ1 =
∑

U<log x

+
∑

log x≤U<xεx
= T1 + T2,

say.
First observe that, using (6.3), as x→∞,

T1 =
∑

U<log x

(1 + o(1))
A1(li(x)− li(x/2))

(U − 1) logU
λ(U) +O

(
li(x)

logA x

)
� li(x)

∑
U<log x

1

U
+O

(
li(x)

logA x

)
� li(x) · x3,(6.11)

while

T2 � (li(x)− li(x/2))
∑

log x≤U<xεx

1

(U − 1) logU

⌈
logU

log q

⌉
� 1

log q
(li(x)− li(x/2))

∑
log x≤U<xεx

1

U

= (1 + o(1))
1

log q
(li(x)− li(x/2)) log log x.(6.12)

Gathering (6.11), (6.12) and (6.10) in (6.9), we get

(6.13) λ(σx)�
1

2 log q · log x
(li(x)− li(x/2))x2 �

xx2
log x

.

Let β1, β2 ∈ Akq and set ∆(α) = Fβ1(α)− Fβ2(α). We will prove that

(6.14) lim
x→∞

|∆(σx)|
λ(σx)

= 0.

First, observe that it is clear that

|∆(σx)| ≤
∑
U∈℘

Mx(U)|∆(U)|+O(1)
∑
U∈℘

Mx(U).

By using (6.2), we obtain that∑
U>xεx

Mx(U) ≤ c
x

εx log2 x
.

By using (6.7) and (6.8), we obtain that∑
U∈℘
U≤xεx

B(U)|∆(U)| ≤ log x ·
∑
U∈℘
U≤xεx

B(U) ≤ x

log2 x
,
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provided x > x0.
Thus, by using (6.3) and (6.11), we obtain that

|∆(σx)| ≤
∑
U∈℘

log x≤U≤xεx

c
x

log x
· ∆(U)

U logU
+O

(
x · x3
log x

)
.

By using Lemma 2, it follows that∑
U∈℘

V≤U≤2V

|∆(U)| ≤ cV log V

log V · κ2V
+

cV

log V
· κV · log V =

cV

κ2V
+ cV κV .

Thus,

(6.15)
∑
U∈℘

V≤U≤2V

|∆(U)|
U logU

≤ c

log V · κ2V
+

cκV

log3/2 V
.

Let us apply this with V = Vj for j = 0, 1, . . . , j0, where V0 = log x, Vj = 2jV0, with
Vj0 ≤ xεx < Vj0+1.

Thus, it follows from (6.15) that

∑
U∈℘

log x≤U≤xεx

|∆(U)|
U logU

≤ c

κ2V0

j0∑
j=0

1

log(V0 · 2j)
+ cκVj0+1

j0∑
j=0

1

log3/2 Vj

= W1 +W2,(6.16)

say. Since

W1 ≤
c1
κ2V0

log j0 ≤
c1x2
κ2V0

and noting that κV0 →∞ as x→∞, and since

W2 ≤ cκx
∑
j≥0

1

(log V0 + j)3/2
≤ c2κx

x
1/2
2

,

it follows from (6.16), that if we choose κx ≤
√
x2 say, then

∑
U∈℘

log x≤U≤xεx

|∆(U)|
U logU

= o(x2),

which, in light of (6.13), proves (6.14) and thus completes the proof of Theorem 3.
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7 Further remarks

Using the same approach, one can also prove the following two theorems.

Theorem 5. Let G(n) = n2 + 1 and set

ξ1 = Concat(p(G(n)) : n ∈ N),

ξ2 = Concat(p(G(π)) : π ∈ ℘).

Then ξ1 and ξ2 are q-normal sequences.

We further let pk(n) stand for the k-th smallest prime factor of n, that is, if
n = qα1

1 · · · qαrr , where q1 < · · · < qr are primes and each αi an integer, then

pk(n) =

{
qk if k ≤ r,
1 if k > r.

Theorem 6. Let G(x) = arx
r+ar−1x

r−1+· · ·+a0 ∈ Z[x] be irreducible and satisfying
(ar, ar−1, . . . , a0) = 1, ar > 0 and G(x) > 0 for x > x0. Then

ηk = Concat
(
pk(G(n)) : x0 < n ∈ N

)
is a q-normal sequence.

Observe that the proof of Theorem 6 is very similar to that of Theorem 1. Indeed,
we first define

κx := Concat
(
pk(G(n)) : n ∈ Ix

)
,

where Ix = [bx/2c+ 1, bxc). Then, for each prime Q, we set

T (Q) := #{n ∈ Ix : pk(G(n)) = Q},

so that
λ(κx) =

∑
n∈Ix

λ(pk(G(n))) =
∑
Q≤x

λ(Q)T (Q).

As can be shown using sieve methods, the main contribution to the above sum comes
from those primes Q ≤ x1/2k, while that coming from the primes Q > x1/2k can be
neglected. This allows us to establish that the order of λ(κx) is x(log log x)k.

Then, it is enough to prove that, given an arbitrary t ∈ N and any two words
β1, β2 ∈ Atq,

|Fβ1(κx)− Fβ2(κx)|
λ(κx)

→ 0 as x→∞

and this is done by showing that

|Fβ1(κx)− Fβ2(κx)| = o(x(log log x)k) as x→∞.

12



References
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[3] J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor
Shparlinski, Bulletin of the Australian Mathematical Society 84 (2011), 337–349.
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Québec G1V 0A6 Pázmány Péter Sétány I/C
Canada Hungary
jmdk@mat.ulaval.ca katai@compalg.inf.elte.hu

JMDK, le 13 mai 2014; fichier: normal-smallest-prime-factor-2014.tex

13


