VOL. $135 \quad 2014 \quad$ NO. 1

NORMAL NUMBERS AND THE MIDDLE PRIME FACTOR OF AN INTEGER

BY

JEAN-MARIE DE KONINCK (Québec) and IMRE KÁTAI (Budapest)

Abstract

Let $p_{m}(n)$ stand for the middle prime factor of the integer $n \geq 2$. We first establish that the size of $\log p_{m}(n)$ is close to $\sqrt{\log n}$ for almost all n. We then show how one can use the successive values of $p_{m}(n)$ to generate a normal number in any given base $D \geq 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.

1. Introduction. Given an integer $D \geq 2$, a D-normal number is an irrational number ξ such that any preassigned sequence of l digits occurs in the D-ary expansion of ξ at the expected frequency, namely $1 / D^{l}$.

In a series of recent papers, we constructed large families of D-normal numbers using the distribution of the values of the largest prime factor function $P(n)$ (see for instance [2], [3] and [4]). We also showed [5] how one can use the large prime divisors of an integer to construct normal numbers. Recently, we proved [6] that the concatenation of the successive values of $p(n)$, the smallest prime factor of n, in a given base $D \geq 2$, yields a D-normal number.

Given an integer $n \geq 2$, write it as $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, where $p_{1}<\cdots<p_{k}$ are its distinct prime factors and $\alpha_{1}, \ldots, \alpha_{k}$ are positive integers. We let $p_{m}(n)=p_{\max (1,\lfloor k / 2\rfloor)}$ and say that $p_{m}(n)$ is the "middle" prime factor of n. Recently, De Koninck and Luca [7] showed that as $x \rightarrow \infty$,

$$
\sum_{n \leq x} \frac{1}{p_{m}(n)}=\frac{x}{\log x} \exp ((1+o(1)) \sqrt{2 \log \log x \log \log \log x})
$$

thus answering in part a question raised by Paul Erdős.
Here, we first establish that the size of $\log p_{m}(n)$ is, for almost all n, close to $\sqrt{\log n}$, and then we show how one can use the middle prime factor of an integer to generate a normal number in any given base $D \geq 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.

[^0]2. Notation. The letters p, q and π, with or without subscript, will always denote prime numbers. The letter c, with or without subscript, will always denote a positive constant, but not necessarily the same at each occurrence.

Let $D \geq 2$ be a fixed integer and let $A=A_{D}=\{0,1, \ldots, D-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} \ldots i_{t}$, where each $i_{j} \in A_{D}$, is called a word of length t. Given a word α, we shall write $\lambda(\alpha)=t$ to indicate that α is a word of length t. We shall also use the symbol Λ to denote the empty word. For each $t \in \mathbb{N}$, we let $A^{t}=A_{D}^{t}$ stand for the set of words of length t over A, while $A^{*}=A_{D}^{*}$ will stand for the set of all words over A regardless of their length, including the empty word Λ. Observe that the concatenation of two words $\alpha, \beta \in A^{*}$, written $\alpha \beta$, also belongs to A^{*}. Finally, given a word α and a subword β of α, we will denote by $F_{\beta}(\alpha)$ the number of occurrences of β in α, that is, the number of pairs of words μ_{1}, μ_{2} such that $\mu_{1} \beta \mu_{2}=\alpha$.

Given a positive integer n, we write its D-ary expansion as

$$
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) D+\cdots+\varepsilon_{t}(n) D^{t},
$$

where $\varepsilon_{i}(n) \in A$ for $0 \leq i \leq t$ and $\varepsilon_{t}(n) \neq 0$. To this representation we associate the word

$$
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n) \in A^{t+1} .
$$

For convenience, if $n \leq 0$, we will write $\bar{n}=\Lambda$. Observe that the number of digits of such a number \bar{n} will thus be $\lambda(\bar{n})=\lfloor(\log n) / \log D\rfloor+1$.

Finally, given a sequence of integers $a(1), a(2), \ldots$, we will say that the concatenation of their D-ary digit expansions $\overline{a(1)} \overline{a(2)} \ldots$, denoted Concat $(\overline{a(n)}: n \in \mathbb{N})$, is a D-normal sequence if the number $0 . \overline{a(1)} \overline{a(2)} \ldots$ is a D-normal number.

3. Main results

Theorem 3.1. Let $g(x)$ be a function which tends to infinity with x but arbitrarily slowly. Set $x_{2}=\log \log x$. Then, as $x \rightarrow \infty$,

$$
\begin{align*}
\frac{1}{x} \#\left\{n \in[x, 2 x]: e^{-\sqrt{x_{2}} g(x)} \leq \frac{\log p_{m}(n)}{\sqrt{\log x}} \leq e^{\sqrt{x_{2}} g(x)}\right\} & \rightarrow 1, \tag{3.1}\\
\frac{1}{x} \#\left\{n \leq x: e^{-\sqrt{x_{2}} g(x)} \leq \frac{\log p_{m}(n)}{\sqrt{\log x}} \leq e^{\sqrt{x_{2}} g(x)}\right\} & \rightarrow 1 . \tag{3.2}
\end{align*}
$$

Analogously, as $x \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x:\left|\log \log p_{m}(n)-\frac{1}{2} x_{2}\right| \leq \sqrt{x_{2}} g(x)\right\} \rightarrow 1 \tag{3.3}
\end{equation*}
$$

Theorem 3.2. The sequence $\operatorname{Concat}\left(\overline{p_{m}(n)}: n \in \mathbb{N}\right)$ is D-normal in every basis $D \geq 2$.

From here on, we will be using the standard notation $e(y):=\exp (2 \pi i y)$. We now introduce the sum

$$
T(x):=\sum_{n \leq x} \log p_{m}(n)
$$

Theorem 3.3. Consider the real-valued polynomial $Q(x)=\alpha_{k} x^{k}+\cdots$ $+\alpha_{1} x$, where at least one of the coefficients $\alpha_{k}, \ldots, \alpha_{1}$ is irrational, and set

$$
E_{Q}(x):=\sum_{n \leq x} \log p_{m}(n) \cdot e\left(Q\left(p_{m}(n)\right)\right) .
$$

Then,

$$
E_{Q}(x)=o(T(x)) \quad(x \rightarrow \infty)
$$

Remark 3.4. Observe that Theorem 3.3 includes the interesting case $Q(x)=\alpha x$, where α is an arbitrary irrational number.

4. Preliminary results

Lemma 4.1. Given a positive integer k, let β_{1} and β_{2} be distinct words belonging to A_{D}^{k}. Let $c_{0}>0$ be an arbitrary number and consider the intervals

$$
J_{w}:=\left[w, w+w / \log ^{c_{0}} w\right] \quad(w>1) .
$$

Further, let $\pi\left(J_{w}\right)$ stand for the number of prime numbers belonging to the interval J_{w}. Then

$$
\frac{1}{\pi\left(J_{w}\right)} \sum_{p \in J_{w}} \frac{\left|F_{\beta_{1}}(\bar{p})-F_{\beta_{2}}(\bar{p})\right|}{\log p} \rightarrow 0 \quad \text { as } w \rightarrow \infty .
$$

Proof. This result is a consequence of Theorem 1 in the paper of Bassily and Kátai [1].

Lemma 4.2. Let

$$
E_{x}:=\sum_{\substack{n \leq x \\ q p_{m}(n) \mid n \\ p_{m}(n) / 3<q<3 p_{m}(n)}} \log p_{m}(n) .
$$

Then there exists a positive constant c such that

$$
E_{x} \leq c x \log \log x .
$$

Proof. We have

$$
\begin{aligned}
E_{x} & \leq \sum_{p \leq x} \log p \sum_{\substack{q p r \leq x \\
p / 3<q<3 p}} 1 \leq x \sum_{p \leq x} \frac{\log p}{p} \sum_{p / 3<q<3 p} \frac{1}{q} \\
& \leq c_{1} x \sum_{p \leq x} \frac{1}{p} \leq c_{2} x \log \log x
\end{aligned}
$$

Lemma 4.3. Let $Q(x)=\alpha_{k} x^{k}+\cdots+\alpha_{1} x$ be a real-valued polynomial such that at least one of its coefficients $\alpha_{k}, \ldots, \alpha_{1}$ is irrational. If $p_{1}<p_{2}<\cdots$ stands for the sequence of primes, then

$$
\sum_{n \leq x} e\left(Q\left(p_{n}\right)\right)=o(x) \quad \text { as } x \rightarrow \infty
$$

Proof. For a proof of this result, see Chapters 7 and 8 in the book of I. M. Vinogradov [8].

5. Proof of Theorem 3.1, Let

$$
\begin{equation*}
y=\exp (\sqrt{\log x}), \quad \text { so that } \quad \log \log y=\frac{1}{2} x_{2} \tag{5.1}
\end{equation*}
$$

Then set

$$
\omega_{y}(n)=\sum_{\substack{p \mid n \\ p<y}} 1, \quad R_{y}(n)=\sum_{\substack{p \mid n \\ p>y}} 1, \quad \Delta_{y}(n)=\omega_{y}(n)-R_{y}(n)
$$

It is well known that, if $\varepsilon_{x} \rightarrow 0$ arbitrarily slowly as $x \rightarrow \infty$, then

$$
\frac{1}{x} \#\left\{n \leq x:\left|\omega(n)-x_{2}\right|>\frac{1}{\varepsilon_{x}} \sqrt{x_{2}}\right\} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

On the other hand, from the Turán-Kubilius inequality and in light of our choice of y given by (5.1), we have

$$
\sum_{n \leq x}\left(\omega_{y}(n)-\frac{1}{2} x_{2}\right)^{2}=\sum_{n \leq x}\left|\omega_{y}(n)-\log \log y\right|^{2}=O\left(x x_{2}\right)
$$

Secondly,

$$
\begin{align*}
\left|R_{y}(n)-\frac{1}{2} x_{2}\right|^{2} & \leq\left(\left|\omega(n)-x_{2}\right|+\left|\omega_{y}(n)-\frac{1}{2} x_{2}\right|\right)^{2} \\
& \leq 2\left(\left(\omega(n)-x_{2}\right)^{2}+\left(\omega_{y}(n)-\frac{1}{2} x_{2}\right)^{2}\right) \tag{5.2}
\end{align*}
$$

where we used the basic inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ valid for all real numbers a and b. Then, summing both sides of 5.2 for $n \leq x$, we obtain, for some positive constant C,

$$
\begin{equation*}
\sum_{n \leq x}\left|\Delta_{y}(n)\right|^{2} \leq \sum_{n \leq x} 2\left|\omega_{y}(n)-\frac{1}{2} x_{2}\right|^{2}+\sum_{n \leq x} 2\left|R_{y}(n)-\frac{1}{2} x_{2}\right|^{2} \leq C x x_{2} \tag{5.3}
\end{equation*}
$$

It follows from (5.3) that

$$
\begin{equation*}
\left|\Delta_{y}(n)\right| \leq \frac{1}{\varepsilon_{x}} \sqrt{x_{2}} \quad \text { for all but at most } o(x) \text { integers } n \leq x \tag{5.4}
\end{equation*}
$$

Let us now choose z and w so that

$$
\log z=(\log y) e^{-\sqrt{x_{2}} g(x)}, \quad \log w=(\log y) e^{\sqrt{x_{2}} g(x)}
$$

Since

$$
\sum_{z<p<y} \frac{1}{p}=\log \frac{\log y}{\log z}+o(1)=\sqrt{x_{2}} g(x)+o(1)=A(x)+o(1)
$$

say, and similarly,

$$
\sum_{y<p<w} \frac{1}{p}=\log \frac{\log w}{\log y}+o(1)=\sqrt{x_{2}} g(x)+o(1)=A(x)+o(1)
$$

setting

$$
\omega_{[a, b]}(n):=\sum_{\substack{p \mid n \\ p \in[a, b]}} 1,
$$

and again using the Turán-Kubilius inequality, we have

$$
\begin{aligned}
& \sum_{n \leq x}\left(\omega_{[z, y]}(n)-A(x)\right)^{2} \leq C x A(x) \\
& \sum_{n \leq x}\left(\omega_{[y, w]}(n)-A(x)\right)^{2} \leq C x A(x)
\end{aligned}
$$

from which it follows that

$$
\begin{align*}
\left|\omega_{[z, y]}(n)-A(x)\right| & \leq \frac{1}{\varepsilon_{x}} \sqrt{A(x)} \tag{5.5}\\
\left|\omega_{[y, w]}(n)-A(x)\right| & \leq \frac{1}{\varepsilon_{x}} \sqrt{A(x)} \tag{5.6}
\end{align*}
$$

Now, recall that from 5.4 , we only need to consider those $n \leq x$ for which

$$
\left|\omega_{y}(n)-R_{y}(n)\right| \leq \frac{1}{\varepsilon_{x}} \sqrt{x_{2}}
$$

and for which (5.5) and (5.6 hold. So, let us choose $\varepsilon_{x}=2 / g(x)$, in which case we have $\overline{A(x)}=\sqrt{x_{2}} \cdot g(x)=\left(2 / \varepsilon_{x}\right) \sqrt{x_{2}}$. Thus, assuming first that $0 \leq R_{y}(n)-\omega_{y}(n)<\frac{1}{\varepsilon_{x}} \sqrt{x_{2}}$, we have $p_{m}(n)>y$ and by 5.6$), p_{m}(n)<w$, provided x is large enough. On the other hand, if $-\frac{1}{\varepsilon_{x}} \sqrt{x_{2}} \leq R_{y}(n)-\omega_{y}(n)$ ≤ 0, then $p_{m}(n) \leq y$ and by (5.5), $p_{m}(n)>z$, provided x is large enough. Hence, in any case, we get

$$
z \leq p_{m}(n) \leq w
$$

which proves (3.2), from which (3.1) and (3.3) follow as well, thus completing the proof of Theorem 3.1.
6. Proof of Theorem 3.2, Let x be a fixed large number. Let $L_{x}:=$ $\{n \in \mathbb{N}:\lfloor x\rfloor \leq n \leq\lfloor 2 x\rfloor-1\}$ and set

$$
\rho_{x}:=\operatorname{Concat}\left(\overline{p_{m}(n)}: n \in L_{x}\right) .
$$

It is clear that

$$
\begin{equation*}
\lambda\left(\rho_{x}\right)=\sum_{n \in L_{x}} \lambda\left(\overline{p_{m}(n)}\right) \tag{6.1}
\end{equation*}
$$

$$
\begin{align*}
F_{\beta}\left(\rho_{x}\right) & =\sum_{n \in L_{x}} F_{\beta}\left(\overline{p_{m}(n)}\right)+O(x), \tag{6.2}\\
\lambda(\bar{p}) & =\frac{\log p}{\log D}+O(1) . \tag{6.3}
\end{align*}
$$

It follows from (6.1), (6.3) and Theorem 3.1 that there exists $c_{1}>0$ such that

$$
\begin{equation*}
\lambda\left(\rho_{x}\right) \geq c_{1} x \sqrt{\log x} \exp \left(-\sqrt{x_{2}} g(x)\right) \tag{6.4}
\end{equation*}
$$

Given arbitrary distinct words $\beta_{1}, \beta_{2} \in A_{D}^{k}$, we set

$$
\Delta(\alpha):=F_{\beta_{1}}(\alpha)-F_{\beta_{2}}(\alpha) \quad\left(\alpha \in A_{D}^{*}\right)
$$

Our main task will be to prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\Delta\left(\rho_{x}\right)}{\lambda\left(\rho_{x}\right)}=0 \tag{6.5}
\end{equation*}
$$

This will prove that, for any word $\beta \in A_{D}^{k}$,

$$
\begin{equation*}
\frac{F_{\beta}\left(\rho_{x}\right)}{\lambda\left(\rho_{x}\right)}-\frac{1}{D^{k}}=o(1) \quad \text { as } x \rightarrow \infty \tag{6.6}
\end{equation*}
$$

and therefore the sequence Concat $\left.\overline{\left(\overline{p_{m}(n)}\right.}: n \in \mathbb{N}\right)$ is D-normal, thus completing the proof of Theorem 3.2 .

To see how (6.6) follows from (6.5), observe that, in light of the fact that, for fixed $k \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{\gamma \in A_{D}^{k}} F_{\gamma}\left(\rho_{x}\right)=\lambda\left(\rho_{x}\right)-k+1=\lambda\left(\rho_{x}\right)+O(1) \tag{6.7}
\end{equation*}
$$

we have, as $x \rightarrow \infty$,

$$
\begin{aligned}
F_{\beta}\left(\rho_{x}\right)-\frac{\lambda\left(\rho_{x}\right)}{D^{k}} & =\frac{F_{\beta}\left(\rho_{x}\right) D^{k}-\lambda\left(\rho_{x}\right)}{D^{k}} \\
& =\frac{F_{\beta}\left(\rho_{x}\right) D^{k}-\sum_{\gamma \in A_{D}^{k}} F_{\gamma}\left(\rho_{x}\right)+O(1)}{D^{k}} \\
& =\frac{1}{D^{k}} \sum_{\gamma \in A_{D}^{k}}\left(F_{\beta}\left(\rho_{x}\right)-F_{\gamma}\left(\rho_{x}\right)\right)+O(1) \\
& =\frac{1}{D^{k}} D^{k} o\left(\lambda\left(\rho_{x}\right)\right)=o\left(\lambda\left(\rho_{x}\right)\right),
\end{aligned}
$$

thus proving (6.6).
Hence, we only need to prove 6.5).

Now, from 6.2, it follows that

$$
\begin{equation*}
\Delta\left(\rho_{x}\right)=\sum_{n \in L_{x}} \Delta\left(\overline{p_{m}(n)}\right)+O(x) \tag{6.8}
\end{equation*}
$$

Let us further introduce the sets

$$
\begin{aligned}
& L_{x}^{(0)}=\left\{n \in L_{x}: q p_{m}(n) \mid n \text { for some prime } q \in\left(p_{m}(n) / 3,3 p_{m}(n)\right)\right\} \\
& L_{x}^{(1)}=\left\{n \in L_{x}: \log p_{m}(n) \leq \sqrt{\log x} \exp \left(-2 \sqrt{x_{2}} g(x)\right)\right\}
\end{aligned}
$$

With this notation, in light of Lemma 4.2 and (6.4), we then have

$$
\begin{align*}
\sum_{n \in L_{x}^{(0)} \cup L_{x}^{(1)}} \log p_{m}(n) & \leq c x \log \log x+x \sqrt{\log x} \exp \left(-2 \sqrt{x_{2}} g(x)\right) \tag{6.9}\\
& =o\left(x \sqrt{\log x} \exp \left(-\sqrt{x_{2}} g(x)\right)\right)=o\left(\lambda\left(\rho_{x}\right)\right)
\end{align*}
$$

Hence, setting $L_{x}^{(2)}=L_{x} \backslash\left(L_{x}^{(0)} \cup L_{x}^{(1)}\right)$, it follows from 6.8 and 6.9 that

$$
\begin{equation*}
\Delta\left(\rho_{x}\right)=\sum_{n \in L_{x}^{(2)}} \Delta\left(\overline{p_{m}(n)}\right)+o\left(\lambda\left(\rho_{x}\right)\right) \tag{6.10}
\end{equation*}
$$

Let us now write each integer $n \in L_{x}^{(2)}$ as $n=a p_{m}(n) b$, where

$$
P(a) \leq p_{m}(n) \leq p(b)
$$

Thus setting $M=a b$ and given an arbitrarily small $\varepsilon>0$, from Theorem 1 we have

$$
\begin{equation*}
M \leq 2 x / e^{(\log x)^{1 / 2-\varepsilon}} \tag{6.11}
\end{equation*}
$$

Now, let us fix $M=a b$. It is clear that we may ignore those integers $n \leq x$ for which $p_{m}(n)^{2} \mid n$ since there are at most $o(x)$ of them anyway. Once this is done, it is clear that in the factorization $n=a p_{m}(n) b$, we have $P(a)<p(b)$, so that M determines a and b uniquely. Then, in light of 6.11), we may consider the set

$$
\mathcal{E}_{M}:=\left\{n \in L_{x}^{(2)}: n=a p_{m}(n) b=M p_{m}(n)\right\}
$$

Let $n_{1}<\cdots<n_{H}$ be the list of all elements of \mathcal{E}_{M}, and further set $\pi_{j}=$ $p_{m}\left(n_{j}\right)$ for $j=1, \ldots, H$. By construction, it is clear that $\pi_{1}<\cdots<\pi_{H}$, all consecutive primes, and since x / M is large by (6.11), it follows that $\pi_{H}>(3 / 2) \pi_{1}$.

Next, let \mathcal{K} be the set of those M 's such that the corresponding set \mathcal{E}_{M} contains at least one $n \in L_{x}^{(2)}$, since the others need not be accounted for. Hence, for $a b=M$, we deduce that \mathcal{E}_{M} contains at least $\pi_{1} /\left(2 \log \pi_{1}\right)$ elements, thus implying that $H \geq \pi_{1} /\left(2 \log \pi_{1}\right)$, provided x is chosen to be large enough.

Using Lemma 4.1, it follows that, when $M \in \mathcal{K}$, we have

$$
\frac{1}{H} \sum_{j=1}^{H} \frac{\left|\Delta\left(\overline{p_{m}\left(n_{j}\right)}\right)\right|}{\log p_{m}\left(n_{j}\right)} \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

From this, it follows that, for $M \in \mathcal{K}$, there exists a function $\varepsilon_{x} \rightarrow 0$ as $x \rightarrow \infty$ such that

$$
\begin{equation*}
\sum_{M \in \mathcal{K}} \sum_{n \in \mathcal{E}_{M}}\left|\Delta\left(\overline{p_{m}(n)}\right)\right|<\varepsilon_{x} \sum_{M \in \mathcal{K}} \sum_{n \in \mathcal{E}_{M}} \lambda\left(\overline{p_{m}(n)}\right) . \tag{6.12}
\end{equation*}
$$

Using (6.12), estimate (6.5) follows, thus completing the proof of Theorem 3.2,
7. Proof of Theorem 3.3. We first write

$$
\begin{equation*}
E_{Q}(2 x)-E_{Q}(x)=\sum_{x \leq n \leq 2 x} \log p_{m}(n) \cdot e\left(Q\left(p_{m}(n)\right)\right) . \tag{7.1}
\end{equation*}
$$

Using the notation introduced in the proof of Theorem 3.2, in the above sum we can drop all $n \in L_{x}^{(0)} \cup L_{x}^{(1)}$. It follows that we only need to consider $M \in \mathcal{K}$. Now, for a fixed $M \in \mathcal{K}$, we only need to examine the sum

$$
\sum_{j=1}^{H} \log \pi_{j} \cdot e\left(Q\left(\pi_{j}\right)\right),
$$

where π_{1}, \ldots, π_{H} are consecutive primes and $\pi_{H}>(3 / 2) \pi_{1}$. Using Lemma 3 , we then obtain

$$
\left|\sum_{j=1}^{H} \log \pi_{j} \cdot e\left(Q\left(\pi_{j}\right)\right)\right| \leq \varepsilon_{x}\left|\sum_{j=1}^{H} \log \pi_{j}\right| .
$$

Using this in (7.1), it follows that, as $x \rightarrow \infty$,

$$
\begin{aligned}
\left|E_{Q}(2 x)-E_{Q}(x)\right| & =\left|\sum_{\substack{x \leq n \leq 2 x \\
n \in L_{x}^{(2)}}} \log p_{m}(n) \cdot e\left(Q\left(p_{m}(n)\right)\right)\right|+o(T(x)) \\
& \leq \varepsilon_{x} T(x)+o(T(x))=o(T(x)),
\end{aligned}
$$

as requested.
8. Final remarks. Instead of considering the middle prime factor of an integer, that is the prime factor whose rank amongst the $\omega(n)$ distinct prime factors of an integer n is the $\left\lfloor\frac{1}{2} \omega(n)\right\rfloor$ th one, we could have also studied the prime factor whose rank is the $\lfloor\alpha \omega(n)\rfloor$ th one, for any given real number $\alpha \in(0,1)$. In this more general case, say with $p^{(\alpha)}(n)$ in place of $p_{m}(n)$, the same type of results as above would also hold, meaning in particular that $\log p^{(\alpha)}(n)$ would be close to $\log ^{\alpha} n$ instead of $\sqrt{\log n}$.

Acknowledgments. The research of the first author was partly supported by a grant from NSREC. The research of the second author was supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

REFERENCES

[1] N. L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some sequences of integers, J. Math. Sci. 78 (1996), 11-17.
[2] J. M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bull. Austral. Math. Soc. 84 (2011), 337-349.
[3] J. M. De Koninck and I. Kátai, Some new methods for constructing normal numbers, Ann. Sci. Math. Québec 36 (2012), 349-359.
[4] J. M. De Koninck and I. Kátai, Construction of normal numbers using the distribution of the kth largest prime factor, Bull. Austral. Math. Soc. 88 (2013), 158-168.
[5] J. M. De Koninck and I. Kátai, Using large prime divisors to construct normal numbers, Ann. Univ. Sci. Budapest. Sect. Comput. 39 (2013), 45-62.
[6] J. M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, preprint.
[7] J. M. De Koninck and F. Luca, On the middle prime factor of an integer, J. Integer Seq. 13 (2013), art. 13.5.5.
[8] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publ., Mineola, NY, 2004.

Jean-Marie De Koninck
Département de mathématiques et de statistique
Université Laval
Québec, QC G1V 0A6, Canada
E-mail: jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department Eötvös Lorand University
Pázmány Péter sétány $1 / \mathrm{C}$ 1117 Budapest, Hungary
E-mail: katai@compalg.inf.elte.hu

Received 7 December 2013; revised 22 January 2014

[^0]: 2010 Mathematics Subject Classification: Primary 11K16; Secondary 11N37. Key words and phrases: normal numbers, middle prime factor.

