VOL. 135

2014

NO. 1

NORMAL NUMBERS AND THE MIDDLE PRIME FACTOR OF AN INTEGER

BҮ

JEAN-MARIE DE KONINCK (Québec) and IMRE KÁTAI (Budapest)

Abstract. Let $p_m(n)$ stand for the middle prime factor of the integer $n \ge 2$. We first establish that the size of $\log p_m(n)$ is close to $\sqrt{\log n}$ for almost all n. We then show how one can use the successive values of $p_m(n)$ to generate a normal number in any given base $D \ge 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.

1. Introduction. Given an integer $D \ge 2$, a *D*-normal number is an irrational number ξ such that any preassigned sequence of l digits occurs in the *D*-ary expansion of ξ at the expected frequency, namely $1/D^l$.

In a series of recent papers, we constructed large families of *D*-normal numbers using the distribution of the values of the largest prime factor function P(n) (see for instance [2], [3] and [4]). We also showed [5] how one can use the large prime divisors of an integer to construct normal numbers. Recently, we proved [6] that the concatenation of the successive values of p(n), the smallest prime factor of n, in a given base $D \geq 2$, yields a *D*-normal number.

Given an integer $n \geq 2$, write it as $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, where $p_1 < \cdots < p_k$ are its distinct prime factors and $\alpha_1, \ldots, \alpha_k$ are positive integers. We let $p_m(n) = p_{\max(1,\lfloor k/2 \rfloor)}$ and say that $p_m(n)$ is the "middle" prime factor of n. Recently, De Koninck and Luca [7] showed that as $x \to \infty$,

$$\sum_{n \le x} \frac{1}{p_m(n)} = \frac{x}{\log x} \exp\left((1 + o(1))\sqrt{2\log\log \log x}\log\log\log x\right),$$

thus answering in part a question raised by Paul Erdős.

Here, we first establish that the size of $\log p_m(n)$ is, for almost all n, close to $\sqrt{\log n}$, and then we show how one can use the middle prime factor of an integer to generate a normal number in any given base $D \ge 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.

²⁰¹⁰ Mathematics Subject Classification: Primary 11K16; Secondary 11N37. Key words and phrases: normal numbers, middle prime factor.

2. Notation. The letters p, q and π , with or without subscript, will always denote prime numbers. The letter c, with or without subscript, will always denote a positive constant, but not necessarily the same at each occurrence.

Let $D \geq 2$ be a fixed integer and let $A = A_D = \{0, 1, \ldots, D-1\}$. Given an integer $t \geq 1$, an expression of the form $i_1 \ldots i_t$, where each $i_j \in A_D$, is called a *word* of length t. Given a word α , we shall write $\lambda(\alpha) = t$ to indicate that α is a word of length t. We shall also use the symbol Λ to denote the *empty word*. For each $t \in \mathbb{N}$, we let $A^t = A_D^t$ stand for the set of words of length t over A, while $A^* = A_D^*$ will stand for the set of all words over A regardless of their length, including the empty word Λ . Observe that the concatenation of two words $\alpha, \beta \in A^*$, written $\alpha\beta$, also belongs to A^* . Finally, given a word α and a subword β of α , we will denote by $F_{\beta}(\alpha)$ the number of occurrences of β in α , that is, the number of pairs of words μ_1, μ_2 such that $\mu_1 \beta \mu_2 = \alpha$.

Given a positive integer n, we write its D-ary expansion as

$$n = \varepsilon_0(n) + \varepsilon_1(n)D + \dots + \varepsilon_t(n)D^t,$$

where $\varepsilon_i(n) \in A$ for $0 \leq i \leq t$ and $\varepsilon_t(n) \neq 0$. To this representation we associate the word

$$\overline{n} = \varepsilon_0(n)\varepsilon_1(n)\ldots\varepsilon_t(n) \in A^{t+1}.$$

For convenience, if $n \leq 0$, we will write $\overline{n} = \Lambda$. Observe that the number of digits of such a number \overline{n} will thus be $\lambda(\overline{n}) = \lfloor (\log n)/\log D \rfloor + 1$.

Finally, given a sequence of integers $a(1), a(2), \ldots$, we will say that the concatenation of their *D*-ary digit expansions $\overline{a(1)} \overline{a(2)} \ldots$, denoted $\operatorname{Concat}(\overline{a(n)} : n \in \mathbb{N})$, is a *D*-normal sequence if the number $0.\overline{a(1)} \overline{a(2)} \ldots$ is a *D*-normal number.

3. Main results

THEOREM 3.1. Let g(x) be a function which tends to infinity with x but arbitrarily slowly. Set $x_2 = \log \log x$. Then, as $x \to \infty$,

(3.1)
$$\frac{1}{x} \# \left\{ n \in [x, 2x] : e^{-\sqrt{x_2} g(x)} \le \frac{\log p_m(n)}{\sqrt{\log x}} \le e^{\sqrt{x_2} g(x)} \right\} \to 1,$$

(3.2)
$$\frac{1}{x} \# \left\{ n \le x : e^{-\sqrt{x_2} g(x)} \le \frac{\log p_m(n)}{\sqrt{\log x}} \le e^{\sqrt{x_2} g(x)} \right\} \to 1.$$

Analogously, as $x \to \infty$,

(3.3)
$$\frac{1}{x} \# \left\{ n \le x : \left| \log \log p_m(n) - \frac{1}{2} x_2 \right| \le \sqrt{x_2} g(x) \right\} \to 1.$$

THEOREM 3.2. The sequence $\operatorname{Concat}(\overline{p_m(n)} : n \in \mathbb{N})$ is D-normal in every basis $D \geq 2$.

NORMAL NUMBERS

From here on, we will be using the standard notation $e(y) := \exp(2\pi i y)$. We now introduce the sum

$$T(x) := \sum_{n \le x} \log p_m(n).$$

THEOREM 3.3. Consider the real-valued polynomial $Q(x) = \alpha_k x^k + \cdots + \alpha_1 x$, where at least one of the coefficients $\alpha_k, \ldots, \alpha_1$ is irrational, and set

$$E_Q(x) := \sum_{n \le x} \log p_m(n) \cdot e(Q(p_m(n))).$$

Then,

$$E_Q(x) = o(T(x)) \quad (x \to \infty).$$

REMARK 3.4. Observe that Theorem 3.3 includes the interesting case $Q(x) = \alpha x$, where α is an arbitrary irrational number.

4. Preliminary results

LEMMA 4.1. Given a positive integer k, let β_1 and β_2 be distinct words belonging to A_D^k . Let $c_0 > 0$ be an arbitrary number and consider the intervals

$$J_w := [w, w + w/\log^{c_0} w] \quad (w > 1).$$

Further, let $\pi(J_w)$ stand for the number of prime numbers belonging to the interval J_w . Then

$$\frac{1}{\pi(J_w)} \sum_{p \in J_w} \frac{|F_{\beta_1}(\overline{p}) - F_{\beta_2}(\overline{p})|}{\log p} \to 0 \quad as \ w \to \infty.$$

Proof. This result is a consequence of Theorem 1 in the paper of Bassily and Kátai [1]. \bullet

LEMMA 4.2. Let

$$E_x := \sum_{\substack{n \le x \\ qp_m(n)|n \\ p_m(n)/3 < q < 3p_m(n)}} \log p_m(n).$$

Then there exists a positive constant c such that

$$E_x \leq cx \log \log x.$$

Proof. We have

$$E_x \le \sum_{p \le x} \log p \sum_{\substack{qpr \le x \\ p/3 < q < 3p}} 1 \le x \sum_{p \le x} \frac{\log p}{p} \sum_{\substack{p/3 < q < 3p \\ q < 3p}} \frac{1}{q}$$
$$\le c_1 x \sum_{p \le x} \frac{1}{p} \le c_2 x \log \log x. \quad \bullet$$

LEMMA 4.3. Let $Q(x) = \alpha_k x^k + \cdots + \alpha_1 x$ be a real-valued polynomial such that at least one of its coefficients $\alpha_k, \ldots, \alpha_1$ is irrational. If $p_1 < p_2 < \cdots$ stands for the sequence of primes, then

$$\sum_{n \le x} e(Q(p_n)) = o(x) \quad \text{ as } x \to \infty.$$

Proof. For a proof of this result, see Chapters 7 and 8 in the book of I. M. Vinogradov [8]. \blacksquare

5. Proof of Theorem 3.1. Let

(5.1)
$$y = \exp\left(\sqrt{\log x}\right)$$
, so that $\log\log y = \frac{1}{2}x_2$.

Then set

$$\omega_y(n) = \sum_{\substack{p|n\\p < y}} 1, \quad R_y(n) = \sum_{\substack{p|n\\p > y}} 1, \quad \Delta_y(n) = \omega_y(n) - R_y(n).$$

It is well known that, if $\varepsilon_x \to 0$ arbitrarily slowly as $x \to \infty$, then

$$\frac{1}{x} \# \left\{ n \le x : |\omega(n) - x_2| > \frac{1}{\varepsilon_x} \sqrt{x_2} \right\} \to 0 \quad \text{as } x \to \infty.$$

On the other hand, from the Turán–Kubilius inequality and in light of our choice of y given by (5.1), we have

$$\sum_{n \le x} \left(\omega_y(n) - \frac{1}{2} x_2 \right)^2 = \sum_{n \le x} |\omega_y(n) - \log \log y|^2 = O(x x_2).$$

Secondly,

(5.2)
$$|R_y(n) - \frac{1}{2}x_2|^2 \leq \left(|\omega(n) - x_2| + |\omega_y(n) - \frac{1}{2}x_2| \right)^2 \\ \leq 2\left((\omega(n) - x_2)^2 + \left(\omega_y(n) - \frac{1}{2}x_2 \right)^2 \right),$$

where we used the basic inequality $(a + b)^2 \leq 2(a^2 + b^2)$ valid for all real numbers a and b. Then, summing both sides of (5.2) for $n \leq x$, we obtain, for some positive constant C,

(5.3)
$$\sum_{n \le x} |\Delta_y(n)|^2 \le \sum_{n \le x} 2 |\omega_y(n) - \frac{1}{2}x_2|^2 + \sum_{n \le x} 2 |R_y(n) - \frac{1}{2}x_2|^2 \le Cxx_2.$$

It follows from (5.3) that

(5.4)
$$|\Delta_y(n)| \le \frac{1}{\varepsilon_x} \sqrt{x_2}$$
 for all but at most $o(x)$ integers $n \le x$.

Let us now choose z and w so that

$$\log z = (\log y)e^{-\sqrt{x_2}g(x)}, \quad \log w = (\log y)e^{\sqrt{x_2}g(x)}.$$

Since

$$\sum_{x$$

z say, and similarly,

$$\sum_{y$$

setting

$$\omega_{[a,b]}(n):=\sum_{\substack{p\mid n\\ p\in [a,b]}}1,$$

and again using the Turán–Kubilius inequality, we have

$$\sum_{n \le x} (\omega_{[z,y]}(n) - A(x))^2 \le CxA(x),$$
$$\sum_{n \le x} (\omega_{[y,w]}(n) - A(x))^2 \le CxA(x),$$

from which it follows that

(5.5)
$$|\omega_{[z,y]}(n) - A(x)| \le \frac{1}{\varepsilon_x} \sqrt{A(x)}$$

(5.6)
$$|\omega_{[y,w]}(n) - A(x)| \le \frac{1}{\varepsilon_x} \sqrt{A(x)}.$$

Now, recall that from (5.4), we only need to consider those $n \leq x$ for which

$$|\omega_y(n) - R_y(n)| \le \frac{1}{\varepsilon_x} \sqrt{x_2},$$

and for which (5.5) and (5.6) hold. So, let us choose $\varepsilon_x = 2/g(x)$, in which case we have $A(x) = \sqrt{x_2} \cdot g(x) = (2/\varepsilon_x)\sqrt{x_2}$. Thus, assuming first that $0 \leq R_y(n) - \omega_y(n) < \frac{1}{\varepsilon_x}\sqrt{x_2}$, we have $p_m(n) > y$ and by (5.6), $p_m(n) < w$, provided x is large enough. On the other hand, if $-\frac{1}{\varepsilon_x}\sqrt{x_2} \leq R_y(n) - \omega_y(n)$ ≤ 0 , then $p_m(n) \leq y$ and by (5.5), $p_m(n) > z$, provided x is large enough. Hence, in any case, we get

$$z \le p_m(n) \le w_i$$

which proves (3.2), from which (3.1) and (3.3) follow as well, thus completing the proof of Theorem 3.1.

6. Proof of Theorem 3.2. Let x be a fixed large number. Let $L_x := \{n \in \mathbb{N} : \lfloor x \rfloor \le n \le \lfloor 2x \rfloor - 1\}$ and set

$$\rho_x := \operatorname{Concat}(p_m(n) : n \in L_x).$$

It is clear that

(6.1)
$$\lambda(\rho_x) = \sum_{n \in L_x} \lambda(\overline{p_m(n)}),$$

(6.2)
$$F_{\beta}(\rho_x) = \sum_{n \in L_x} F_{\beta}(\overline{p_m(n)}) + O(x),$$

(6.3)
$$\lambda(\overline{p}) = \frac{\log p}{\log D} + O(1).$$

It follows from (6.1), (6.3) and Theorem 3.1 that there exists $c_1 > 0$ such that

(6.4)
$$\lambda(\rho_x) \ge c_1 x \sqrt{\log x} \exp(-\sqrt{x_2}g(x)).$$

Given arbitrary distinct words $\beta_1, \beta_2 \in A_D^k$, we set

$$\Delta(\alpha) := F_{\beta_1}(\alpha) - F_{\beta_2}(\alpha) \quad (\alpha \in A_D^*).$$

Our main task will be to prove that

(6.5)
$$\lim_{x \to \infty} \frac{\Delta(\rho_x)}{\lambda(\rho_x)} = 0.$$

This will prove that, for any word $\beta \in A_D^k$,

(6.6)
$$\frac{F_{\beta}(\rho_x)}{\lambda(\rho_x)} - \frac{1}{D^k} = o(1) \quad \text{as } x \to \infty,$$

and therefore the sequence $\text{Concat}(\overline{p_m(n)}:n\in\mathbb{N})$ is *D*-normal, thus completing the proof of Theorem 3.2.

To see how (6.6) follows from (6.5), observe that, in light of the fact that, for fixed $k \in \mathbb{N}$,

(6.7)
$$\sum_{\gamma \in A_D^k} F_{\gamma}(\rho_x) = \lambda(\rho_x) - k + 1 = \lambda(\rho_x) + O(1),$$

we have, as $x \to \infty$,

$$F_{\beta}(\rho_x) - \frac{\lambda(\rho_x)}{D^k} = \frac{F_{\beta}(\rho_x)D^k - \lambda(\rho_x)}{D^k}$$
$$= \frac{F_{\beta}(\rho_x)D^k - \sum_{\gamma \in A_D^k} F_{\gamma}(\rho_x) + O(1)}{D^k}$$
$$= \frac{1}{D^k} \sum_{\gamma \in A_D^k} (F_{\beta}(\rho_x) - F_{\gamma}(\rho_x)) + O(1)$$
$$= \frac{1}{D^k} D^k o(\lambda(\rho_x)) = o(\lambda(\rho_x)),$$

thus proving (6.6).

Hence, we only need to prove (6.5).

Now, from (6.2), it follows that

(6.8)
$$\Delta(\rho_x) = \sum_{n \in L_x} \Delta(\overline{p_m(n)}) + O(x).$$

Let us further introduce the sets

$$L_x^{(0)} = \{ n \in L_x : qp_m(n) \mid n \text{ for some prime } q \in (p_m(n)/3, 3p_m(n)) \},\$$

$$L_x^{(1)} = \{ n \in L_x : \log p_m(n) \le \sqrt{\log x} \exp(-2\sqrt{x_2} g(x)) \}.$$

With this notation, in light of Lemma 4.2 and (6.4), we then have

(6.9)
$$\sum_{n \in L_x^{(0)} \cup L_x^{(1)}} \log p_m(n) \le cx \log \log x + x \sqrt{\log x} \exp(-2\sqrt{x_2} g(x)) = o(x\sqrt{\log x} \exp(-\sqrt{x_2} g(x))) = o(\lambda(\rho_x)).$$

Hence, setting $L_x^{(2)} = L_x \setminus (L_x^{(0)} \cup L_x^{(1)})$, it follows from (6.8) and (6.9) that

(6.10)
$$\Delta(\rho_x) = \sum_{n \in L_x^{(2)}} \Delta(\overline{p_m(n)}) + o(\lambda(\rho_x)).$$

Let us now write each integer $n \in L_x^{(2)}$ as $n = ap_m(n)b$, where

 $P(a) \le p_m(n) \le p(b).$

Thus setting M = ab and given an arbitrarily small $\varepsilon > 0$, from Theorem 1 we have

(6.11)
$$M \le 2x/e^{(\log x)^{1/2-\varepsilon}}.$$

Now, let us fix M = ab. It is clear that we may ignore those integers $n \leq x$ for which $p_m(n)^2 | n$ since there are at most o(x) of them anyway. Once this is done, it is clear that in the factorization $n = ap_m(n)b$, we have P(a) < p(b), so that M determines a and b uniquely. Then, in light of (6.11), we may consider the set

$$\mathcal{E}_M := \{ n \in L_x^{(2)} : n = ap_m(n)b = Mp_m(n) \}.$$

Let $n_1 < \cdots < n_H$ be the list of all elements of \mathcal{E}_M , and further set $\pi_j = p_m(n_j)$ for $j = 1, \ldots, H$. By construction, it is clear that $\pi_1 < \cdots < \pi_H$, all consecutive primes, and since x/M is large by (6.11), it follows that $\pi_H > (3/2)\pi_1$.

Next, let \mathcal{K} be the set of those M's such that the corresponding set \mathcal{E}_M contains at least one $n \in L_x^{(2)}$, since the others need not be accounted for. Hence, for ab = M, we deduce that \mathcal{E}_M contains at least $\pi_1/(2\log \pi_1)$ elements, thus implying that $H \geq \pi_1/(2\log \pi_1)$, provided x is chosen to be large enough.

Using Lemma 4.1, it follows that, when $M \in \mathcal{K}$, we have

$$\frac{1}{H}\sum_{j=1}^{H}\frac{|\Delta(\overline{p_m(n_j)})|}{\log p_m(n_j)} \to 0 \quad \text{as } x \to \infty.$$

From this, it follows that, for $M \in \mathcal{K}$, there exists a function $\varepsilon_x \to 0$ as $x \to \infty$ such that

(6.12)
$$\sum_{M \in \mathcal{K}} \sum_{n \in \mathcal{E}_M} |\Delta(\overline{p_m(n)})| < \varepsilon_x \sum_{M \in \mathcal{K}} \sum_{n \in \mathcal{E}_M} \lambda(\overline{p_m(n)}).$$

Using (6.12), estimate (6.5) follows, thus completing the proof of Theorem 3.2.

7. Proof of Theorem 3.3. We first write

(7.1)
$$E_Q(2x) - E_Q(x) = \sum_{x \le n \le 2x} \log p_m(n) \cdot e(Q(p_m(n)))$$

Using the notation introduced in the proof of Theorem 3.2, in the above sum we can drop all $n \in L_x^{(0)} \cup L_x^{(1)}$. It follows that we only need to consider $M \in \mathcal{K}$. Now, for a fixed $M \in \mathcal{K}$, we only need to examine the sum

$$\sum_{j=1}^{H} \log \pi_j \cdot e(Q(\pi_j)),$$

where π_1, \ldots, π_H are consecutive primes and $\pi_H > (3/2)\pi_1$. Using Lemma 3, we then obtain

$$\Big|\sum_{j=1}^{H} \log \pi_j \cdot e(Q(\pi_j))\Big| \le \varepsilon_x \Big|\sum_{j=1}^{H} \log \pi_j\Big|.$$

Using this in (7.1), it follows that, as $x \to \infty$,

$$\begin{aligned} |E_Q(2x) - E_Q(x)| &= \left| \sum_{\substack{x \le n \le 2x \\ n \in L_x^{(2)}}} \log p_m(n) \cdot e(Q(p_m(n))) \right| + o(T(x)) \\ &\le \varepsilon_x T(x) + o(T(x)) = o(T(x)), \end{aligned}$$

as requested.

8. Final remarks. Instead of considering the middle prime factor of an integer, that is the prime factor whose rank amongst the $\omega(n)$ distinct prime factors of an integer n is the $\lfloor \frac{1}{2}\omega(n) \rfloor$ th one, we could have also studied the prime factor whose rank is the $\lfloor \alpha\omega(n) \rfloor$ th one, for any given real number $\alpha \in (0, 1)$. In this more general case, say with $p^{(\alpha)}(n)$ in place of $p_m(n)$, the same type of results as above would also hold, meaning in particular that $\log p^{(\alpha)}(n)$ would be close to $\log^{\alpha} n$ instead of $\sqrt{\log n}$.

Acknowledgments. The research of the first author was partly supported by a grant from NSREC. The research of the second author was supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

REFERENCES

- N. L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some sequences of integers, J. Math. Sci. 78 (1996), 11–17.
- [2] J. M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bull. Austral. Math. Soc. 84 (2011), 337–349.
- [3] J. M. De Koninck and I. Kátai, Some new methods for constructing normal numbers, Ann. Sci. Math. Québec 36 (2012), 349–359.
- [4] J. M. De Koninck and I. Kátai, Construction of normal numbers using the distribution of the kth largest prime factor, Bull. Austral. Math. Soc. 88 (2013), 158–168.
- J. M. De Koninck and I. Kátai, Using large prime divisors to construct normal numbers, Ann. Univ. Sci. Budapest. Sect. Comput. 39 (2013), 45–62.
- [6] J. M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, preprint.
- [7] J. M. De Koninck and F. Luca, On the middle prime factor of an integer, J. Integer Seq. 13 (2013), art. 13.5.5.
- [8] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publ., Mineola, NY, 2004.

Jean-Marie De Koninck Imre Kátai Département de mathématiques et de statistique Université Laval Computer Algebra Department E-mail: jmdk@mat.ulaval.ca Pázmány Péter sétány 1/C E-mail: katai@compalg.inf.elte.hu

> Received 7 December 2013; revised 22 January 2014

(6094)