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Abstract

Given an integer N ≥ 1, for each integer n ∈ JN := [eN , eN+1), let qN (n)
be the smallest prime factor of n which is larger than N ; if no such prime
factor exists, set qN (n) = 1. Fix an integer Q ≥ 3 and consider the function
f(n) = fQ(n) defined by f(n) = ` if n ≡ ` (mod Q) with (`,Q) = 1 and by
f(n) = Λ otherwise, where Λ stands for the empty word. Then consider the
sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by κ(n) = f(qN (n)) if n ∈ JN with
qN (n) > 1 and by κ(n) = Λ if n ∈ JN with qN (n) = 1. Then, for each integer
N ≥ 1, consider the concanetation of the numbers κ(1), κ(2), . . ., that is define
θN := Concat(κ(n) : n ∈ JN ). Then, set αQ := Concat(θN : N = 1, 2, 3, . . .).
Finally, let BQ = {`1, `2, . . . , `ϕ(Q)} be the set of reduced residues modulo Q,
where ϕ stands for the Euler function. We show that αQ is a normal sequence
over BQ.
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1 Introduction

In previous papers ([1], [2], [3]), we showed how one could construct normal numbers
by concatenating the digits of the numbers P (2), P (3), P (4), . . ., where P (n) stands
for the largest prime factor of n, then similarly by using the k-th largest prime factor
instead of the largest prime factor and finally by doing the same replacing P (n) by
p(n), the smallest prime factor of n.

Here, we consider a different approach which uses the residue modulo an integer
Q ≥ 3 of the smallest element of a particular set of prime factors of an integer n. But
first, we need to set the table.

For a given integer Q ≥ 3, let AQ := {0, 1, . . . , Q− 1}. Given an integer t ≥ 1, an
expression of the form i1i2 . . . it, where each ij ∈ AQ, is called a finite word of length
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t. The symbol Λ will denote the empty word. We let AtQ stand for the set of all words
of length t. An infinite sequence of digits a1a2 . . ., where each ai ∈ AQ, is called an
infinite word.

An infinite sequence a1a2 . . . of base Q digits is called a normal sequence over AQ
if any preassigned sequence of k digits occurs at the expected frequency of 1/Qk.

Given a fixed integer Q ≥ 3, let

(1.1) fQ(n) :=

{
Λ if (n,Q) 6= 1,
` if n ≡ ` (mod Q), (`,Q) = 1.

Write p1 < p2 < · · · for the sequence of consecutive primes, and consider the
infinite word

ξQ = fQ(p1)fQ(p2)fQ(p3) . . .

Let
BQ = {`1, `2, . . . , `ϕ(Q)}

be the set of reduced residues modulo Q, where ϕ stands for the Euler totient function.
In an earlier paper [4], we conjectured that the word ξQ is a normal sequence over

BQ in the sense that given any integer k ≥ 1 and any word β = r1 . . . rk ∈ Bk
Q, and

further setting

ξ
(N)
Q = fQ(p1)fQ(p2) . . . fQ(pN) for each N ∈ N

and
MN(ξQ|β) := #{(γ1, γ2)|ξ(N)

Q = γ1βγ2},

we have

lim
N→∞

MN(ξQ|β)

N
=

1

ϕ(Q)k
.

In this paper, we consider a somewhat similar but more simple problem, namely
by using the residue of the smallest prime factor of n (modulo Q) which is larger than
a certain quantity, and this time we obtain an effective result.

2 Main result

Given an integer N ≥ 1, for each integer n ∈ JN := [xN , xN+1) := [eN , eN+1), let
qN(n) be the smallest prime factor of n which is larger than N ; if no such prime factor
exists, set qN(n) = 1. Fix an integer Q ≥ 3 and consider the function f(n) = fQ(n)
defined by (1.1). Then consider the sequence (κ(n))n≥1 = (κQ(n))n≥1 defined by
κ(n) = f(qN(n)) if n ∈ JN with qN(n) > 1 and by κ(n) = Λ if n ∈ JN with qN(n) = 1.
Then, for each integer N ≥ 1, consider the concatenation of κ(1), κ(2), κ(3), . . ., that
is define

θN := Concat(κ(n) : n ∈ JN).
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Then, settting
αQ := Concat(θN : N = 1, 2, 3, . . .),

we will prove the following result.

Theorem 1. The sequence αQ is a normal sequence over BQ.

3 Proof of the main result

We first introduce the notation λN = log logN . Moreover, from here one, the letters
p and π, with or without subscript, always stand for primes. Finally, let ℘ stand for
the set of all primes.

Fix an arbitrary large integer N and consider the interval J := [x, x + y] ⊆ JN .
Let p1, p2, . . . , pk be k distinct primes belonging to the interval (N,NλN ]. Then, set

SJ(p1, p2, . . . , pk) := #{n ∈ J : qN(n+ j) = pj for j = 1, 2, . . . , k}.

We know by the Chinese Remainder Theorem that the system of congruences (*)
n + j ≡ 0 (mod pj), j = 1, 2, . . . , k, has a unique solution n0 < p1p2 · · · pk and that
any solution n ∈ J of (*) is of the form

n = n0 +mp1p2 · · · pk for some non negative integer m.

Let us now reorder the primes p1, p2, . . . , pk as

pi1 < pi2 < · · · < pik .

If π ∈ ℘ and N < π < pi1 , it is clear that we will have (n + j, π) = 1 for
each j ∈ {1, 2, . . . , k}. Similarly, if π ∈ ℘ and pi1 < π < pi2 , then (n + j, π) = 1
for each j ∈ {1, 2, . . . , k} \ {i1}, and so on. Let us now introduce the function
ρ : ℘ ∩ (N, pik ]→ {0, 1, 2, . . . , k} defined by

ρ(π) =



k if N < π < pi1 ,
k − 1 if pi1 < π < pi2 ,
...

...
1 if pik−1

< π < pik ,
0 if π ∈ {p1, p2, . . . , pk}.

By using the Eratosthenian sieve (see for instance the book of Halberstam and
Richert [5]), we easily obtain that, as y →∞,

(3.1) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

∏
N<π<pik

(
1− ρ(π)

π

)
.
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Setting U :=
∏

N<π<pik

(
1− ρ(π)

π

)
, one can see that, as N →∞,

logU = k log logN − k log log pi1 − (k − 1) log log pi2 + (k − 1) log log pi1
− · · · − log log pik + log log pik−1

+ o(1)

= k log logN − log log pi1 − · · · − log log pik + o(1),

implying that

(3.2) U = (1 + o(1))
k∏
j=1

logN

log pj
(N →∞).

Hence, in light of (3.2), relation (3.1) can be replaced by

(3.3) SJ(p1, . . . , pk) = (1 + o(1))
y

p1 · · · pk

k∏
j=1

logN

log pj
(y →∞).

Now let r1, . . . , rk be an arbitrary collection of reduced residues modulo Q and let
us define

By(r1, . . . , rk) :=
∑

pj≡rj (mod Q)

N<pj≤N
λN

j=1,...,k

SJ(p1, . . . , pk).

From the Prime Number Theorem in arithmetic progressions, we have that

(3.4)
∑

u≤p≤u+u/(log u)10
p≡` (mod Q)

1

p log p
= (1 + o(1))

1

ϕ(Q)

∑
u≤p≤u+u/(log u)10

1

p log p
(u→∞).

On the other hand, it is clear that, from the Prime Number Theorem,

(3.5)
∑

N<p≤NλN

1

p log p
= (1 + o(1))

∫ NλN

N

du

u log2 u
=

1 + o(1)

logN
(N →∞).

Combining (3.3), (3.5), and (3.4), it follows that, as y →∞,

By(p1, . . . , pk) = (1 + o(1))y
∑

pj≡rj (mod Q)

N<pj<N
λN

j=1,...,k

k∏
j=1

logN

pj log pj

= (1 + o(1))
y

ϕ(Q)k
.(3.6)

Observe also that

(3.7)
1

xN
#{n ∈ JN : qN(n) > NλN} → 0 as xN →∞.
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Indeed, it is clear that if qN(n) > NλN , then

n, ∏
N<π<NλN

π

 = 1. Therefore, for

some positive absolute constant C, we have

#{n ∈ JN : qN(n) > NλN} ≤ CxN
∏

N<π≤NλN

(
1− 1

π

)
≤ C

xN
λN

,

which proves (3.7).

We now examine the first M digits of αQ, say α
(M)
Q . Let N be such that xN ≤

M < xN+1 and set x := xN , y := M − xN and J0 = [x, x+ y].
It follows from (3.6) that, as y →∞,

(3.8)

#{n ∈ J0 : qN(n+j) ≡ rj (mod Q) for j = 1, . . . , k} = (1+o(1))
y

ϕ(Q)k
+O

(
xN
λN

)
,

where the error term comes from (3.7) and accounts for those integers n ∈ JN for
which qN(n) > NλN . Running the same procedure for each positive integer H < N ,
each time choosing JH = [xH , xH+1), we then obtain a formula similar to the one in
(3.8).

Gathering the resulting relations allows us to obtain that, for X = x+ y,

lim
X→∞

1

X
# {n ≤ X : qN(n+ j) ≡ rj (mod Q) for j = 1, 2, . . . , k}

= lim
X→∞

1

X

(N−1∑
H=1

# {n ∈ JH : qN(n+ j) ≡ rj (mod Q) for j = 1, 2, . . . , k}

+ #{n ∈ J0 : qN(n+ j) ≡ rj (mod Q) for j = 1, . . . , k}
)

=
1

ϕ(Q)k
,

thus completing the proof of Theorem 1.

4 Final remarks

Let Ω(n) :=
∑

pα‖n α stand for the number of prime factors of n counting their

multiplicity. Fix an integer Q ≥ 3 and consider the function uQ(m) = `, where ` is
the unique non negative number ≤ Q − 1 such that m ≡ ` (mod Q). Now consider
the infinite sequence

ξQ = Concat (uQ(Ω(n)) : n ∈ N) .

We conjecture that ξQ is a normal sequence over {0, 1, . . . , Q− 1}.
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Moreover, let ℘̃ ⊂ ℘ be a subset of primes such that
∑

p∈℘̃ 1/p = +∞ and consider

the function Ω℘̃(n) :=
∑
pα‖n
p∈℘̃

α. We conjecture that

ξQ(℘̃) := Concat (uQ(Ω℘̃(n)) : n ∈ N)

is also a normal sequence over {0, 1, . . . , Q− 1}.
Finally, observe that we can also construct normal numbers by first choosing a

monotonically growing sequence (wN)N≥1 such that wN > N for each positive integer
N and such that (logwN)/N → 0 as N →∞, and then defining qN(n) as the smallest
prime factor of n larger than wN if n ∈ JN , setting qN(n) = 1 otherwise. The proof
follows along the same lines as the one of our main result.
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