Constructing normal numbers using residues of selective prime factors of integers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$
Dedicated to Professor András Benczur
on the occasion of his seventieth anniversary

Édition du 25 janvier 2014

Abstract

Given an integer $N \geq 1$, for each integer $n \in J_{N}:=\left[e^{N}, e^{N+1}\right)$, let $q_{N}(n)$ be the smallest prime factor of n which is larger than N; if no such prime factor exists, set $q_{N}(n)=1$. Fix an integer $Q \geq 3$ and consider the function $f(n)=f_{Q}(n)$ defined by $f(n)=\ell$ if $n \equiv \ell(\bmod Q)$ with $(\ell, Q)=1$ and by $f(n)=\Lambda$ otherwise, where Λ stands for the empty word. Then consider the sequence $(\kappa(n))_{n \geq 1}=\left(\kappa_{Q}(n)\right)_{n \geq 1}$ defined by $\kappa(n)=f\left(q_{N}(n)\right)$ if $n \in J_{N}$ with $q_{N}(n)>1$ and by $\kappa(n)=\Lambda$ if $n \in J_{N}$ with $q_{N}(n)=1$. Then, for each integer $N \geq 1$, consider the concanetation of the numbers $\kappa(1), \kappa(2), \ldots$, that is define $\theta_{N}:=\operatorname{Concat}\left(\kappa(n): n \in J_{N}\right)$. Then, set $\alpha_{Q}:=\operatorname{Concat}\left(\theta_{N}: N=1,2,3, \ldots\right)$. Finally, let $B_{Q}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{\varphi(Q)}\right\}$ be the set of reduced residues modulo Q, where φ stands for the Euler function. We show that α_{Q} is a normal sequence over B_{Q}.

AMS Subject Classification numbers: 11K16, 11N37, 11N41
Key words: normal numbers, smallest prime factor

1 Introduction

In previous papers ([1], [2], [3]), we showed how one could construct normal numbers by concatenating the digits of the numbers $P(2), P(3), P(4), \ldots$, where $P(n)$ stands for the largest prime factor of n, then similarly by using the k-th largest prime factor instead of the largest prime factor and finally by doing the same replacing $P(n)$ by $p(n)$, the smallest prime factor of n.

Here, we consider a different approach which uses the residue modulo an integer $Q \geq 3$ of the smallest element of a particular set of prime factors of an integer n. But first, we need to set the table.

For a given integer $Q \geq 3$, let $A_{Q}:=\{0,1, \ldots, Q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{Q}$, is called a finite word of length

[^0]t. The symbol Λ will denote the empty word. We let A_{Q}^{t} stand for the set of all words of length t. An infinite sequence of digits $a_{1} a_{2} \ldots$, where each $a_{i} \in A_{Q}$, is called an infinite word.

An infinite sequence $a_{1} a_{2} \ldots$ of base Q digits is called a normal sequence over A_{Q} if any preassigned sequence of k digits occurs at the expected frequency of $1 / Q^{k}$.

Given a fixed integer $Q \geq 3$, let

$$
f_{Q}(n):=\left\{\begin{array}{lll}
\Lambda & \text { if } & (n, Q) \neq 1 \tag{1.1}\\
\ell & \text { if } & n \equiv \ell \quad(\bmod Q), \quad(\ell, Q)=1
\end{array}\right.
$$

Write $p_{1}<p_{2}<\cdots$ for the sequence of consecutive primes, and consider the infinite word

$$
\xi_{Q}=f_{Q}\left(p_{1}\right) f_{Q}\left(p_{2}\right) f_{Q}\left(p_{3}\right) \ldots
$$

Let

$$
B_{Q}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{\varphi(Q)}\right\}
$$

be the set of reduced residues modulo Q, where φ stands for the Euler totient function.
In an earlier paper [4], we conjectured that the word ξ_{Q} is a normal sequence over B_{Q} in the sense that given any integer $k \geq 1$ and any word $\beta=r_{1} \ldots r_{k} \in B_{Q}^{k}$, and further setting

$$
\xi_{Q}^{(N)}=f_{Q}\left(p_{1}\right) f_{Q}\left(p_{2}\right) \ldots f_{Q}\left(p_{N}\right) \quad \text { for each } \quad N \in \mathbb{N}
$$

and

$$
M_{N}\left(\xi_{Q} \mid \beta\right):=\#\left\{\left(\gamma_{1}, \gamma_{2}\right) \mid \xi_{Q}^{(N)}=\gamma_{1} \beta \gamma_{2}\right\}
$$

we have

$$
\lim _{N \rightarrow \infty} \frac{M_{N}\left(\xi_{Q} \mid \beta\right)}{N}=\frac{1}{\varphi(Q)^{k}}
$$

In this paper, we consider a somewhat similar but more simple problem, namely by using the residue of the smallest prime factor of n (modulo Q) which is larger than a certain quantity, and this time we obtain an effective result.

2 Main result

Given an integer $N \geq 1$, for each integer $n \in J_{N}:=\left[x_{N}, x_{N+1}\right):=\left[e^{N}, e^{N+1}\right)$, let $q_{N}(n)$ be the smallest prime factor of n which is larger than N; if no such prime factor exists, set $q_{N}(n)=1$. Fix an integer $Q \geq 3$ and consider the function $f(n)=f_{Q}(n)$ defined by (1.1). Then consider the sequence $(\kappa(n))_{n \geq 1}=\left(\kappa_{Q}(n)\right)_{n \geq 1}$ defined by $\kappa(n)=f\left(q_{N}(n)\right)$ if $n \in J_{N}$ with $q_{N}(n)>1$ and by $\kappa(n)=\Lambda$ if $n \in J_{N}$ with $q_{N}(n)=1$. Then, for each integer $N \geq 1$, consider the concatenation of $\kappa(1), \kappa(2), \kappa(3), \ldots$, that is define

$$
\theta_{N}:=\operatorname{Concat}\left(\kappa(n): n \in J_{N}\right) .
$$

Then, settting

$$
\alpha_{Q}:=\operatorname{Concat}\left(\theta_{N}: N=1,2,3, \ldots\right),
$$

we will prove the following result.
Theorem 1. The sequence α_{Q} is a normal sequence over B_{Q}.

3 Proof of the main result

We first introduce the notation $\lambda_{N}=\log \log N$. Moreover, from here one, the letters p and π, with or without subscript, always stand for primes. Finally, let \wp stand for the set of all primes.

Fix an arbitrary large integer N and consider the interval $J:=[x, x+y] \subseteq J_{N}$. Let $p_{1}, p_{2}, \ldots, p_{k}$ be k distinct primes belonging to the interval ($N, N^{\lambda_{N}}$]. Then, set

$$
S_{J}\left(p_{1}, p_{2}, \ldots, p_{k}\right):=\#\left\{n \in J: q_{N}(n+j)=p_{j} \text { for } j=1,2, \ldots, k\right\} .
$$

We know by the Chinese Remainder Theorem that the system of congruences (*) $n+j \equiv 0\left(\bmod p_{j}\right), j=1,2, \ldots, k$, has a unique solution $n_{0}<p_{1} p_{2} \cdots p_{k}$ and that any solution $n \in J$ of $\left({ }^{*}\right)$ is of the form

$$
n=n_{0}+m p_{1} p_{2} \cdots p_{k} \quad \text { for some non negative integer } m .
$$

Let us now reorder the primes $p_{1}, p_{2}, \ldots, p_{k}$ as

$$
p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{k}} .
$$

If $\pi \in \wp$ and $N<\pi<p_{i_{1}}$, it is clear that we will have $(n+j, \pi)=1$ for each $j \in\{1,2, \ldots, k\}$. Similarly, if $\pi \in \wp$ and $p_{i_{1}}<\pi<p_{i_{2}}$, then $(n+j, \pi)=1$ for each $j \in\{1,2, \ldots, k\} \backslash\left\{i_{1}\right\}$, and so on. Let us now introduce the function $\rho: \wp \cap\left(N, p_{i_{k}}\right] \rightarrow\{0,1,2, \ldots, k\}$ defined by

$$
\rho(\pi)=\left\{\begin{array}{lll}
k & \text { if } & N<\pi<p_{i_{1}} \\
k-1 & \text { if } & p_{i_{1}}<\pi<p_{i_{2}}, \\
\vdots & & \vdots \\
1 & \text { if } & p_{i_{k-1}}<\pi<p_{i_{k}} \\
0 & \text { if } & \pi \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} .
\end{array}\right.
$$

By using the Eratosthenian sieve (see for instance the book of Halberstam and Richert [5]), we easily obtain that, as $y \rightarrow \infty$,

$$
\begin{equation*}
S_{J}\left(p_{1}, \ldots, p_{k}\right)=(1+o(1)) \frac{y}{p_{1} \cdots p_{k}} \prod_{N<\pi<p_{i_{k}}}\left(1-\frac{\rho(\pi)}{\pi}\right) . \tag{3.1}
\end{equation*}
$$

Setting $U:=\prod_{N<\pi<p_{i_{k}}}\left(1-\frac{\rho(\pi)}{\pi}\right)$, one can see that, as $N \rightarrow \infty$,

$$
\begin{aligned}
\log U= & k \log \log N-k \log \log p_{i_{1}}-(k-1) \log \log p_{i_{2}}+(k-1) \log \log p_{i_{1}} \\
& -\cdots-\log \log p_{i_{k}}+\log \log p_{i_{k-1}}+o(1) \\
= & k \log \log N-\log \log p_{i_{1}}-\cdots-\log \log p_{i_{k}}+o(1),
\end{aligned}
$$

implying that

$$
\begin{equation*}
U=(1+o(1)) \prod_{j=1}^{k} \frac{\log N}{\log p_{j}} \quad(N \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

Hence, in light of (3.2), relation (3.1) can be replaced by

$$
\begin{equation*}
S_{J}\left(p_{1}, \ldots, p_{k}\right)=(1+o(1)) \frac{y}{p_{1} \cdots p_{k}} \prod_{j=1}^{k} \frac{\log N}{\log p_{j}} \quad(y \rightarrow \infty) . \tag{3.3}
\end{equation*}
$$

Now let r_{1}, \ldots, r_{k} be an arbitrary collection of reduced residues modulo Q and let us define

$$
B_{y}\left(r_{1}, \ldots, r_{k}\right):=\sum_{\substack{p_{j}=r_{j}(\bmod Q) \\ N_{j}<p_{j} \leq N_{N} N_{N} \\ j=1, \ldots, k}} S_{J}\left(p_{1}, \ldots, p_{k}\right) .
$$

From the Prime Number Theorem in arithmetic progressions, we have that

$$
\begin{equation*}
\sum_{\substack{u \leq p \leq u+u /(\log u) 10 \\ p \equiv \ell(\bmod Q)}} \frac{1}{p \log p}=(1+o(1)) \frac{1}{\varphi(Q)} \sum_{\substack{u \leq p \leq u+u /(\log u)^{10}}} \frac{1}{p \log p} \quad(u \rightarrow \infty) . \tag{3.4}
\end{equation*}
$$

On the other hand, it is clear that, from the Prime Number Theorem,

$$
\begin{equation*}
\sum_{N<p \leq N^{\lambda_{N}}} \frac{1}{p \log p}=(1+o(1)) \int_{N}^{N^{\lambda_{N}}} \frac{d u}{u \log ^{2} u}=\frac{1+o(1)}{\log N} \quad(N \rightarrow \infty) . \tag{3.5}
\end{equation*}
$$

Combining (3.3), (3.5), and (3.4), it follows that, as $y \rightarrow \infty$,

$$
\begin{align*}
B_{y}\left(p_{1}, \ldots, p_{k}\right) & =(1+o(1)) y \sum_{\substack{p_{j} \equiv r_{j}(\text { mod } Q) \\
N<p_{j}<N_{N} \\
j=1, \ldots, k}} \prod_{j=1}^{k} \frac{\log N}{p_{j} \log p_{j}} \\
& =(1+o(1)) \frac{y}{\varphi(Q)^{k}} . \tag{3.6}
\end{align*}
$$

Observe also that

$$
\begin{equation*}
\frac{1}{x_{N}} \#\left\{n \in J_{N}: q_{N}(n)>N^{\lambda_{N}}\right\} \rightarrow 0 \quad \text { as } x_{N} \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Indeed, it is clear that if $q_{N}(n)>N^{\lambda_{N}}$, then $\left(n, \prod_{N<\pi<N^{\lambda_{N}}} \pi\right)=1$. Therefore, for some positive absolute constant C, we have

$$
\#\left\{n \in J_{N}: q_{N}(n)>N^{\lambda_{N}}\right\} \leq C x_{N} \prod_{N<\pi \leq N^{\lambda_{N}}}\left(1-\frac{1}{\pi}\right) \leq C \frac{x_{N}}{\lambda_{N}}
$$

which proves (3.7).
We now examine the first M digits of α_{Q}, say $\alpha_{Q}^{(M)}$. Let N be such that $x_{N} \leq$ $M<x_{N+1}$ and set $x:=x_{N}, y:=M-x_{N}$ and $J_{0}=[x, x+y]$.

It follows from (3.6) that, as $y \rightarrow \infty$,
$\#\left\{n \in J_{0}: q_{N}(n+j) \equiv r_{j} \quad(\bmod Q)\right.$ for $\left.j=1, \ldots, k\right\}=(1+o(1)) \frac{y}{\varphi(Q)^{k}}+O\left(\frac{x_{N}}{\lambda_{N}}\right)$,
where the error term comes from (3.7) and accounts for those integers $n \in J_{N}$ for which $q_{N}(n)>N^{\lambda_{N}}$. Running the same procedure for each positive integer $H<N$, each time choosing $J_{H}=\left[x_{H}, x_{H+1}\right)$, we then obtain a formula similar to the one in (3.8).

Gathering the resulting relations allows us to obtain that, for $X=x+y$,

$$
\begin{aligned}
& \lim _{X \rightarrow \infty} \frac{1}{X} \#\left\{n \leq X: q_{N}(n+j) \equiv r_{j} \quad(\bmod Q) \text { for } j=1,2, \ldots, k\right\} \\
& =\lim _{X \rightarrow \infty} \frac{1}{X}\left(\sum_{H=1}^{N-1} \#\left\{n \in J_{H}: q_{N}(n+j) \equiv r_{j} \quad(\bmod Q) \text { for } j=1,2, \ldots, k\right\}\right. \\
& \\
& \left.\quad+\#\left\{n \in J_{0}: q_{N}(n+j) \equiv r_{j} \quad(\bmod Q) \text { for } j=1, \ldots, k\right\}\right) \\
& \quad=\frac{1}{\varphi(Q)^{k}},
\end{aligned}
$$

thus completing the proof of Theorem 1.

4 Final remarks

Let $\Omega(n):=\sum_{p^{\alpha} \| n} \alpha$ stand for the number of prime factors of n counting their multiplicity. Fix an integer $Q \geq 3$ and consider the function $u_{Q}(m)=\ell$, where ℓ is the unique non negative number $\leq Q-1$ such that $m \equiv \ell(\bmod Q)$. Now consider the infinite sequence

$$
\xi_{Q}=\operatorname{Concat}\left(u_{Q}(\Omega(n)): n \in \mathbb{N}\right) .
$$

We conjecture that ξ_{Q} is a normal sequence over $\{0,1, \ldots, Q-1\}$.

Moreover, let $\widetilde{\wp} \subset \wp$ be a subset of primes such that $\sum_{p \in \widetilde{\wp}} 1 / p=+\infty$ and consider the function $\Omega_{\widetilde{\Omega}}(n):=\sum_{\substack{p^{\alpha} \| n \\ p \in \mathscr{\mathscr { F }}}} \alpha$. We conjecture that

$$
\xi_{Q}(\widetilde{\wp}):=\operatorname{Concat}\left(u_{Q}\left(\Omega_{\widetilde{\wp}}(n)\right): n \in \mathbb{N}\right)
$$

is also a normal sequence over $\{0,1, \ldots, Q-1\}$.
Finally, observe that we can also construct normal numbers by first choosing a monotonically growing sequence $\left(w_{N}\right)_{N \geq 1}$ such that $w_{N}>N$ for each positive integer N and such that $\left(\log w_{N}\right) / N \rightarrow 0$ as $N \rightarrow \infty$, and then defining $q_{N}(n)$ as the smallest prime factor of n larger than w_{N} if $n \in J_{N}$, setting $q_{N}(n)=1$ otherwise. The proof follows along the same lines as the one of our main result.

References

[1] J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bulletin of the Australian Mathematical Society 84 (2011), 337-349.
[2] J.M. De Koninck and I. Kátai, Construction of normal numbers using the distribution of the k-th largest prime factor, Journal of the Australian Mathematical Society 88 (2013), 158-168.
[3] J.M. De Koninck and I. Kátai, Normal numbers generated using the smallest prime factor function, preprint.
[4] J.M. De Koninck and I. Kátai, Prime-like sequences leading to the construction of normal numbers, Functiones et Approximatio (to appear).
[5] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 25 janvier 2014; fichier: normal-smallest-prime-factor-Q-2014.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

