Complex roots of unity and normal numbers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Édition du 26 mai 2014

Abstract

Given an arbitrary prime number q, set $\xi=e^{2 \pi i / q}$. We use a clever selection of the values of $\xi^{\alpha}, \alpha=1,2, \ldots$, in order to create normal numbers. We also use a famous result of André Weil concerning Dirichlet characters to construct a family of normal numbers.

AMS Subject Classification numbers: 11K16, 11N37, 11N41
Key words: normal numbers, roots of unity, Dirichlet characters

1 Introduction and statement of the results

Let $\lambda(n)$ be the Liouville function (defined by $\lambda(n):=(-1)^{\Omega(n)}$ where $\Omega(n):=$ $\sum_{p^{\alpha} \mid n} \alpha$). It is well known that the statement " $\sum_{n \leq x} \lambda(n)=o(x)$ as $x \rightarrow \infty$ " is equivalent to the Prime Number Theorem. It is conjectured that if $b_{1}<b_{2}<\cdots<b_{k}$ are arbitrary positive integers, then $\sum_{n \leq x} \lambda(n) \lambda\left(n+b_{1}\right) \cdots \lambda\left(n+b_{k}\right)=o(x)$ as $x \rightarrow \infty$. This conjecture seems presently out of reach since we cannot even prove that $\sum_{n \leq x} \lambda(n) \lambda(n+1)=o(x)$ as $x \rightarrow \infty$.

The Liouville function belongs to a particular class of multiplicative functions, namely the class \mathcal{M}^{*} of completely multiplicative functions. Recently, Indlekofer, Kátai and Klesov [2] considered a very special function $f \in \mathcal{M}^{*}$ constructed in the following manner. Let \wp stand for the set of all primes. For each $q \in \wp$, let $C_{q}=\{\xi \in$ $\left.\mathbb{C}: \xi^{q}=1\right\}$ be the group of complex roots of unity of order q. As p runs through the primes, let ξ_{p} be independent random variables distributed uniformly on C_{q}. Then, let $f \in \mathcal{M}^{*}$ be defined on \wp by $f(p)=\xi_{p}$, so that $f(n)$ yields a random variable. In their 2011 paper, Indlekofer, Kátai and Klesov proved that, if $(\Omega, \mathcal{A}, \wp)$ stands for a probability space where $\xi_{p}(p \in \wp)$ are the independent random variables, then for almost all $\omega \in \Omega$, the sequence $\alpha=f(1) f(2) f(3) \ldots$ is a normal sequence over C_{q} (see Definition 1 below).

Let us now consider a somewhat different set up. Let $q \geq 2$ be a fixed prime number and set $A_{q}:=\{0,1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{t}$, where each $i_{j} \in A_{q}$, is called a word of length t. We use the symbol Λ to denote the empty word. Then, A_{q}^{t} will stand for the set of words of length t over A_{q}, while A_{q}^{*} will stand for the set of all words over A_{q} regardless of their length,

[^0]including the empty word Λ. Similarly, we define C_{q}^{*} to be the set of words over C_{q} regardless of their length.

Given a positive integer n, we write its q-ary expansion as

$$
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) q+\cdots+\varepsilon_{t}(n) q^{t}
$$

where $\varepsilon_{i}(n) \in A_{q}$ for $0 \leq i \leq t$ and $\varepsilon_{t}(n) \neq 0$. To this representation, we associate the word

$$
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n) \in A_{q}^{t+1}
$$

Definition 1. Given a sequence of integers $a(1), a(2), a(3), \ldots$, we will say that the concatenation of their q-ary digit expansions $\overline{a(1)} \overline{a(2)} \overline{a(3)} \ldots$, denoted by Concat $(\overline{a(n)}$: $n \in \mathbb{N}$), is a normal sequence if the number $0 . \overline{a(1)} \overline{a(2)} \overline{a(3)} \ldots$ is a q-normal number.

It can be proved using a theorem of Halász (see [1]) that if $f \in \mathcal{M}^{*}$ is defined on the primes p by $f(p)=\xi_{a}(a \neq 0)$, then $\sum_{n \leq x} f(n)=o(x)$ as $x \rightarrow \infty$.

Now, given $u_{0}, u_{1}, \ldots, u_{\ell-1} \in A_{q}$, let $Q(n):=\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}$. We believe that if $\max _{j \in\{0,1, \ldots, \ell-1\}} u_{j}>0$, then

$$
\begin{equation*}
\sum_{n \leq x} f(Q(n))=o(x) \quad \text { as } x \rightarrow \infty \tag{1.1}
\end{equation*}
$$

If this were true, it would follow that

$$
\operatorname{Concat}(f(n): n \in \mathbb{N}) \quad \text { is a normal sequence over } C_{q} \text {. }
$$

We cannot prove (1.1), but we can prove the following. Let $q \in \wp$ and set $\xi:=$ $e^{2 \pi i / q}$. Further set $x_{k}=2^{k}$ and $y_{k}=x_{k}^{1 / \sqrt{k}}$ for $k=1,2, \ldots$ Then, consider the sequence of completely multiplicative functions $f_{k}, k=1,2, \ldots$, defined on the primes p by

$$
f_{k}(p)= \begin{cases}\xi & \text { if } k \leq p \leq y_{k} \tag{1.2}\\ 1 & \text { if } p<k \text { or } p>y_{k}\end{cases}
$$

Then, set

$$
\eta_{k}:=f_{k}\left(x_{k}\right) f_{k}\left(x_{k}+1\right) f_{k}\left(x_{k}+2\right) \ldots f_{k}\left(x_{k+1}-1\right) \quad(k \in \mathbb{N})
$$

and

$$
\theta:=\operatorname{Concat}\left(\eta_{k}: k \in \mathbb{N}\right)
$$

Theorem 1. The sequence θ is a normal sequence over C_{q}.
We now use a famous result of André Weil to construct a large family of normal numbers.

Let q be a fixed prime and set $\xi:=e^{2 \pi i / q}$ and $\xi_{a}:=e^{2 \pi i a / q}=\xi^{a}$. Recall that C_{q} stands for the group of complex roots of unity of order q, that is,

$$
C_{q}=\left\{\varsigma \in \mathbb{C}: \varsigma^{q}=1\right\}=\left\{\xi^{a}: a=0,1, \ldots, q-1\right\} .
$$

Let $p \in \wp$ be such that $q \mid p-1$. Moreover, let χ_{p} be a Dirichlet character modulo p of order q, meaning that the smallest positive integer t for which $\chi_{p}^{t}=\chi_{0}$ is q. (Here χ_{0} stands for the principal character.)

Let $u_{0}, u_{1}, \ldots, u_{k-1} \in A_{q}$ and consider the polynomial

$$
\begin{equation*}
F(z)=F_{u_{0}, \ldots, u_{k-1}}(z)=\prod_{j=0}^{k-1}(z+j)^{u_{j}} \tag{1.3}
\end{equation*}
$$

and assume that its degree is at least 1 , that is, that there exists one $j \in\{0, \ldots, k-1\}$ for which $u_{j} \neq 0$. Further set

$$
S_{u_{0}, \ldots, u_{k-1}}\left(\chi_{p}\right)=\sum_{n} \chi_{(\bmod p)}\left(F_{u_{0}, \ldots, u_{k-1}}(n)\right) .
$$

According to a 1948 result of André Weil [4],

$$
\begin{equation*}
\left|S_{u_{0}, \ldots, u_{k-1}}\left(\chi_{p}\right)\right| \leq(k-1) \sqrt{p} . \tag{1.4}
\end{equation*}
$$

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski [3].

We can prove the following.
Theorem 2. Let $p_{1}<p_{2}<\cdots$ be an infinite set of primes such that $q \mid p_{j}-1$ for all $j \in \mathbb{N}$. For each $j \in \mathbb{N}$, let $\chi_{p_{j}}$ be a character modulo p_{j} of order q. Further set

$$
\Gamma_{p}=\chi_{p}(1) \chi_{p}(2) \ldots \chi_{p}(p-1) \quad\left(p=p_{1}, p_{2}, \ldots\right)
$$

and

$$
\begin{equation*}
\eta:=\Gamma_{p_{1}} \Gamma_{p_{2}} \ldots \tag{1.5}
\end{equation*}
$$

Then η is a normal sequence over C_{q}.
As an immediate consequence of this theorem, we have the following corollary.
Corollary 1. Let $\varphi: C_{q} \rightarrow A_{q}$ be defined by $\varphi\left(\xi_{a}\right)=a$. Extend the function φ to $\varphi: C_{q}^{*} \rightarrow A_{q}^{*}$ by $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$ and let

$$
\varphi(\eta)=\varphi\left(\Gamma_{p_{1}}\right) \varphi\left(\Gamma_{p_{2}}\right) \ldots
$$

and consider the q-ary expansion of the real number

$$
\begin{equation*}
\kappa=0 . \varphi\left(\Gamma_{p_{1}}\right) \varphi\left(\Gamma_{p_{2}}\right) \ldots \tag{1.6}
\end{equation*}
$$

Then κ is a normal number in base q.
Example 1. Choosing $q=3$ and $\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}=\{7,13,19, \ldots\}$ as the set of primes $p_{j} \equiv 1(\bmod 3)$, then, the sequence η defined by (1.5) is normal sequence over $\left\{0, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\}$, while κ defined by (1.6) is a ternary normal number.

2 Proof of Theorem 1

Let ℓ be a fixed positive integer. Let $a_{0}, a_{1}, \ldots, a_{\ell-1} \in A_{q}$. Recall the notation $\xi=e^{2 \pi i / q}$. Given a positive integer k, let x, y be such that $x_{k} \leq x<x+y \leq x_{k+1}-\ell$. We will now count the number $M\left([x, x+y] \mid\left(a_{0}, \ldots, a_{\ell-1}\right)\right)$ of those $n \in[x, x+y]$ for which $f_{k}(n+j)=\xi^{a_{j}}(j=0, \ldots, \ell-1)$ holds.

Consider the polynomial

$$
P_{d}(x)=\frac{x^{q}-1}{x-\xi^{d}}=\prod_{\substack{h=0 \\ h \neq d}}^{q-1}\left(x-\xi^{h}\right)
$$

so that in particular

$$
\left(x-\xi^{d}\right) P_{d}(x)=x^{q}-1
$$

Taking the derivatives on both sides of the above equation yields

$$
P_{d}(x)+\left(x-\xi^{d}\right) P_{d}^{\prime}(x)=q x^{q-1} .
$$

Thus,

$$
P_{d}\left(f_{k}(m)\right)+\left(f_{k}(m)-\xi^{d}\right) P_{d}^{\prime}\left(f_{k}(m)\right)=q \overline{f_{k}(m)},
$$

where \bar{z} stands for the complex conjugate of z.
We then have

$$
P_{d}\left(f_{k}(m)\right)= \begin{cases}q \overline{f_{k}(m)} & \text { if } f_{k}(m)=\xi^{d} \\ 0 & \text { if } f_{k}(m) \neq \xi^{d}\end{cases}
$$

Write the polynomial P_{d} as $P_{d}(m)=\sum_{u=0}^{q-1} e_{u}(d) m^{u}$, so that $P_{d}(0)=\bar{\xi}^{d}$, that is, $e_{0}(d)=\bar{\xi}^{d}$. We then have
$P_{a_{0}}\left(f_{k}(n)\right) \cdots P_{a_{\ell-1}}\left(f_{k}(n+\ell-1)\right)=\prod_{h=0}^{\ell-1}\left\{\sum_{u_{h}=0}^{q-1} e_{u_{h}}\left(a_{h}\right) f_{k}^{u_{h}}(n+h)\right\}$

$$
\begin{equation*}
=\sum_{u_{0}, \ldots, u_{\ell-1} \in A_{q}} A\left(u_{0}, \ldots, u_{\ell-1}\right) f_{k}\left(\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}\right), \tag{2.1}
\end{equation*}
$$

where $A\left(u_{0}, \ldots, u_{\ell-1}\right)=e_{u_{0}}\left(a_{0}\right) \cdots e_{u_{\ell-1}}\left(a_{\ell-1}\right)$, with $A(0, \ldots, 0)=\bar{\xi}^{a_{0}+\cdots+a_{\ell-1}}$.
With integers x, y such that $x_{k} \leq x<x+y \leq x_{k+1}-\ell$, we now sum both sides of (2.1) for $n=x, \ldots, x+y$, we then obtain that
$q^{\ell} \prod_{j=0}^{\ell-1} \bar{\xi}^{a_{j}} \cdot M\left([x, x+y] \mid\left(a_{0}, \ldots, a_{\ell-1}\right)\right)=y \prod_{j=0}^{\ell-1} \bar{\xi}^{a_{j}}$

$$
+\sum_{\substack{u_{0}, \ldots, u_{\ell-1} \in A_{q} \\\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}} A\left(u_{0}, \ldots, u_{\ell-1}\right) \sum_{n=x}^{x+y} f_{k}\left(\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}\right)
$$

Setting

$$
Q(n)=\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}
$$

it remains to prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{x_{k}} \max _{x_{k} \leq x<x+y \leq x_{k+1}-\ell}\left|\sum_{n=x}^{x+y} f_{k}(Q(n))\right|=0 . \tag{2.2}
\end{equation*}
$$

To prove this, we proceed using standard techniques. Let $\rho(\delta)$ stand for the number of solutions of the congruence $Q(n) \equiv 0(\bmod \delta)$, in which case we have $\rho\left(p^{\alpha}\right)=\rho(p)$ for all primes $p>k$ and integers $\alpha \geq 1$. Now define the completely multiplicative function g_{k} implicitly by the relation

$$
f_{k}(m)=\sum_{d \mid m} g_{k}(d)
$$

thus implying, in light of (1.2), that

$$
g_{k}(p)=f_{k}(p)-1= \begin{cases}0 & \text { if } p<k \text { or } p>y_{k} \\ \xi-1 & \text { if } k \leq p \leq y_{k}\end{cases}
$$

It follows that

$$
\begin{align*}
\sum_{n \in[x, x+y]} f_{k}(Q(n)) & =\sum_{n \in[x, x+y] \delta \mid Q(n)} \sum_{k}(\delta) \\
& =\sum_{\delta} g_{k}(\delta) \sum_{\substack{n \in[x, x+y) \\
Q(n)=0 \\
(\bmod \delta)}} 1 \\
& =y \sum_{\delta} \frac{g_{k}(\delta) \rho(\delta)}{\delta}+o(1) . \tag{2.3}
\end{align*}
$$

Now, observe that since $g_{k}\left(p^{\alpha}\right)=f_{k}\left(p^{\alpha}\right)-f_{k}\left(p^{\alpha-1}\right)=\xi^{\alpha-1}(\xi-1)$, it follows that

$$
\begin{aligned}
\sum_{\delta} \frac{g_{k}(\delta) \rho(\delta)}{\delta} & =\prod_{p}\left(1+\frac{g_{k}(p) \rho(p)}{p}+\frac{g_{k}\left(p^{2}\right) \rho\left(p^{2}\right)}{p^{2}}+\cdots\right) \\
& =\prod_{k \leq p \leq y_{k}}\left(1+\frac{\rho(p)(\xi-1)}{p}\left(1+\frac{\xi}{p}+\frac{\xi^{2}}{p^{2}}+\cdots\right)\right) \\
& =\prod_{k \leq p \leq y_{k}}\left(1+\frac{\rho(p)(\xi-1)}{p} \cdot \frac{1}{1-\xi / p}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\prod_{k \leq p \leq y_{k}}\left(1+\frac{\rho(p)(\xi-1)}{p-\xi}\right) \\
& =\exp \left\{\rho(p)(\xi-1) \sum_{k \leq p \leq y_{k}} \frac{1}{p}+O(1)\right\} . \tag{2.4}
\end{align*}
$$

But, since $\Re(\xi-1)<0$, we have that

$$
\begin{equation*}
\exp \left\{\rho(p)(\xi-1) \sum_{k \leq p \leq y_{k}} \frac{1}{p}+O(1)\right\} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Hence, combining (2.5) with (2.4) and (2.3), we obtain (2.2).
We have thus established that

$$
M\left([x, x+y] \mid\left(a_{0}, \ldots, a_{\ell-1}\right)\right)-\frac{y}{q^{\ell}}=o\left(x_{k}\right) \quad(k \rightarrow \infty),
$$

which completes the proof of Theorem 1.

3 Proof of Theorem 2

As we will see, the proof of Theorem 2 is essentially a consequence of Weil's result (1.4).

Let ℓ be a fixed positive integer. Fix a prime p and let $\beta=\xi_{e_{0}} \ldots \xi_{e_{\ell-1}}$ be any word belonging to C_{q}^{ℓ}. Consider the expression

$$
f_{\beta}(n)=\prod_{j=0}^{\ell-1} \prod_{\xi \in C_{q}}^{\substack{\xi \\ \xi_{j}}} \mid\left(\chi_{p}(n+j)-\xi\right) .
$$

Observe that $f_{\beta}(n)=0$ if $\chi(n) \ldots \chi(n+\ell-1) \in C_{q}^{\ell}$ is different from β. But if $\chi(n) \ldots \chi(n+\ell-1)=\beta$, then

$$
f_{\beta}(n)=\prod_{j=0}^{\ell-1} \prod_{\substack{\xi \in C_{q} \\ \xi \neq \xi_{j}}}\left(\xi_{e_{j}}-\xi\right) .
$$

Since, for each $j=0, \ldots, \ell-1$,

$$
\left.\frac{d}{d x}\left(x^{q}-1\right)\right|_{x=\xi_{e_{j}}}=q \xi_{e_{j}}^{q-1}=q \overline{\xi_{e_{j}}},
$$

it follows that

$$
f_{\beta}(n)=q^{\ell}\left(\overline{\xi_{e_{0}} \ldots \xi_{e_{\ell-1}}}\right),
$$

where again \bar{z} stands for the complex conjugate of z. Hence, letting $M_{p}(\beta)$ stand for the number of occurrences of β as a subword in the word Γ_{p}, we have

$$
\begin{equation*}
\overline{\xi_{e_{0}} \ldots \xi_{e_{\ell-1}}} q^{\ell} M_{p}(\beta)=\sum_{n=1}^{p-\ell} f_{\beta}(n) . \tag{3.1}
\end{equation*}
$$

Now $f_{\beta}(n)$ can be written as

$$
\begin{equation*}
f_{\beta}(n)=\sum_{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{\ell}} A\left(u_{0}, \ldots, u_{\ell-1}\right) \chi\left(F_{u_{0}, \ldots, u_{\ell-1}}(n)\right), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{u_{0}, \ldots, u_{\ell-1}}(n) & =\prod_{j=0}^{\ell-1}(n+j)^{u_{j}} \\
A(0, \ldots, 0) & =\overline{\xi_{e_{0}}} \ldots \overline{\xi_{\ell \ell-1}}
\end{aligned}
$$

Thus taking into account (1.3), the Weil inequality (1.4) and the above relations (3.1) and (3.2), we obtain that

$$
\begin{aligned}
& \left|\overline{\xi_{e_{0}} \ldots \xi_{e_{\ell-1}}}\left(q^{\ell} M_{p}(\beta)-(p-\ell)\right)\right| \\
& \leq \sum_{\substack{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{\ell} \\
\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}}\left|A\left(u_{0}, \ldots, u_{\ell-1}\right)\right| \cdot\left|\sum_{n=1}^{p-\ell} \chi\left(F_{u_{0}, \ldots, u_{\ell-1}}(n)\right)\right| \\
& \leq \sum_{\substack{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{\ell} \\
\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}}\left|A\left(u_{0}, \ldots, u_{\ell-1}\right)\right| \cdot((\ell-1) \sqrt{p}+\ell) \\
& \leq c_{1}(\ell) \sqrt{p} .
\end{aligned}
$$

We have thus shown that

$$
\left|M_{p}(\beta)-\frac{p-\ell}{q^{\ell}}\right| \leq c(\ell) \sqrt{p},
$$

thus completing the proof of Theorem 2.

4 Conflicts of interest

The authors of this manuscript certify that they have no conflicts of interest.

References

[1] G. Halász, Über die Mittelwerte multiplikativen zahlentheoretischer Funktionen, Acta Math. Acad. Scient. Hungaricae 19 (1968), 365-404.
[2] K.H. Indlekofer, I. Kátai and O. Klesov, Renewal theorems for some weighted renewal functions, Ann. Univ. Sci. Budapest. Sect. Comput. 34 (2011), 179-194.
[3] H. Iwaniec and E. Kowalski, Analytic number theory, Volume 53, AMS, 2004.
[4] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci.U. S. A. 34 (1948), 204-207.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department Eötvös Loránd University 1117 Budapest
Pázmány Péter Sétány I/C Hungary
katai@compalg.inf.elte.hu

JMDK, le 26 mai 2014; fichier: normal-numbers-complex-roots-may-2014.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

