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Édition du 26 mai 2014

Abstract

Given an arbitrary prime number q, set ξ = e2πi/q. We use a clever selection
of the values of ξα, α = 1, 2, . . ., in order to create normal numbers. We also
use a famous result of André Weil concerning Dirichlet characters to construct
a family of normal numbers.
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1 Introduction and statement of the results

Let λ(n) be the Liouville function (defined by λ(n) := (−1)Ω(n) where Ω(n) :=∑
pα‖n α). It is well known that the statement “

∑
n≤x λ(n) = o(x) as x → ∞” is

equivalent to the Prime Number Theorem. It is conjectured that if b1 < b2 < · · · < bk
are arbitrary positive integers, then

∑
n≤x λ(n)λ(n + b1) · · ·λ(n + bk) = o(x) as

x → ∞. This conjecture seems presently out of reach since we cannot even prove
that

∑
n≤x λ(n)λ(n+ 1) = o(x) as x→∞.

The Liouville function belongs to a particular class of multiplicative functions,
namely the class M∗ of completely multiplicative functions. Recently, Indlekofer,
Kátai and Klesov [2] considered a very special function f ∈ M∗ constructed in the
following manner. Let ℘ stand for the set of all primes. For each q ∈ ℘, let Cq = {ξ ∈
C : ξq = 1} be the group of complex roots of unity of order q. As p runs through the
primes, let ξp be independent random variables distributed uniformly on Cq. Then,
let f ∈ M∗ be defined on ℘ by f(p) = ξp, so that f(n) yields a random variable. In
their 2011 paper, Indlekofer, Kátai and Klesov proved that, if (Ω,A, ℘) stands for a
probability space where ξp (p ∈ ℘) are the independent random variables, then for
almost all ω ∈ Ω, the sequence α = f(1)f(2)f(3) . . . is a normal sequence over Cq
(see Definition 1 below).

Let us now consider a somewhat different set up. Let q ≥ 2 be a fixed prime
number and set Aq := {0, 1, . . . , q − 1}. Given an integer t ≥ 1, an expression of the
form i1i2 . . . it, where each ij ∈ Aq, is called a word of length t. We use the symbol
Λ to denote the empty word. Then, Atq will stand for the set of words of length t
over Aq, while A∗q will stand for the set of all words over Aq regardless of their length,
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including the empty word Λ. Similarly, we define C∗q to be the set of words over Cq
regardless of their length.

Given a positive integer n, we write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation, we associate
the word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1
q .

Definition 1. Given a sequence of integers a(1), a(2), a(3), . . ., we will say that the
concatenation of their q-ary digit expansions a(1) a(2) a(3) . . ., denoted by Concat(a(n) :
n ∈ N), is a normal sequence if the number 0.a(1) a(2) a(3) . . . is a q-normal number.

It can be proved using a theorem of Halász (see [1]) that if f ∈M∗ is defined on
the primes p by f(p) = ξa (a 6= 0), then

∑
n≤x f(n) = o(x) as x→∞.

Now, given u0, u1, . . . , u`−1 ∈ Aq, let Q(n) :=
∏`−1

j=0(n + j)uj . We believe that if
maxj∈{0,1,...,`−1} uj > 0, then

(1.1)
∑
n≤x

f(Q(n)) = o(x) as x→∞.

If this were true, it would follow that

Concat(f(n) : n ∈ N) is a normal sequence over Cq.

We cannot prove (1.1), but we can prove the following. Let q ∈ ℘ and set ξ :=

e2πi/q. Further set xk = 2k and yk = x
1/
√
k

k for k = 1, 2, . . . Then, consider the sequence
of completely multiplicative functions fk, k = 1, 2, . . ., defined on the primes p by

(1.2) fk(p) =

{
ξ if k ≤ p ≤ yk,
1 if p < k or p > yk.

Then, set

ηk := fk(xk)fk(xk + 1)fk(xk + 2) . . . fk(xk+1 − 1) (k ∈ N)

and
θ := Concat(ηk : k ∈ N).

Theorem 1. The sequence θ is a normal sequence over Cq.

We now use a famous result of André Weil to construct a large family of normal
numbers.

Let q be a fixed prime and set ξ := e2πi/q and ξa := e2πia/q = ξa. Recall that Cq
stands for the group of complex roots of unity of order q, that is,

Cq = {ς ∈ C : ςq = 1} = {ξa : a = 0, 1, . . . , q − 1}.
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Let p ∈ ℘ be such that q|p−1. Moreover, let χp be a Dirichlet character modulo p
of order q, meaning that the smallest positive integer t for which χtp = χ0 is q. (Here
χ0 stands for the principal character.)

Let u0, u1, . . . , uk−1 ∈ Aq and consider the polynomial

(1.3) F (z) = Fu0,...,uk−1
(z) =

k−1∏
j=0

(z + j)uj

and assume that its degree is at least 1, that is, that there exists one j ∈ {0, . . . , k−1}
for which uj 6= 0. Further set

Su0,...,uk−1
(χp) =

∑
n (mod p)

χp
(
Fu0,...,uk−1

(n)
)
.

According to a 1948 result of André Weil [4],

(1.4)
∣∣Su0,...,uk−1

(χp)
∣∣ ≤ (k − 1)

√
p.

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski
[3].

We can prove the following.

Theorem 2. Let p1 < p2 < · · · be an infinite set of primes such that q | pj − 1 for
all j ∈ N. For each j ∈ N, let χpj be a character modulo pj of order q. Further set

Γp = χp(1)χp(2) . . . χp(p− 1) (p = p1, p2, . . .)

and

(1.5) η := Γp1Γp2 . . .

Then η is a normal sequence over Cq.

As an immediate consequence of this theorem, we have the following corollary.

Corollary 1. Let ϕ : Cq → Aq be defined by ϕ(ξa) = a. Extend the function ϕ to
ϕ : C∗q → A∗q by ϕ(αβ) = ϕ(α)ϕ(β) and let

ϕ(η) = ϕ(Γp1)ϕ(Γp2) . . .

and consider the q-ary expansion of the real number

(1.6) κ = 0.ϕ(Γp1)ϕ(Γp2) . . .

Then κ is a normal number in base q.

Example 1. Choosing q = 3 and {p1, p2, p3, . . .} = {7, 13, 19, . . .} as the set of
primes pj ≡ 1 (mod 3), then, the sequence η defined by (1.5) is normal sequence
over {0, e2πi/3, e4πi/3}, while κ defined by (1.6) is a ternary normal number.
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2 Proof of Theorem 1

Let ` be a fixed positive integer. Let a0, a1, . . . , a`−1 ∈ Aq. Recall the notation
ξ = e2πi/q. Given a positive integer k, let x, y be such that xk ≤ x < x+y ≤ xk+1− `.
We will now count the number M([x, x+ y] | (a0, . . . , a`−1)) of those n ∈ [x, x+ y] for
which fk(n+ j) = ξaj (j = 0, . . . , `− 1) holds.

Consider the polynomial

Pd(x) =
xq − 1

x− ξd
=

q−1∏
h=0
h 6=d

(x− ξh),

so that in particular
(x− ξd)Pd(x) = xq − 1.

Taking the derivatives on both sides of the above equation yields

Pd(x) + (x− ξd)P ′d(x) = qxq−1.

Thus,
Pd(fk(m)) + (fk(m)− ξd)P ′d(fk(m)) = qfk(m),

where z stands for the complex conjugate of z.
We then have

Pd(fk(m)) =

{
qfk(m) if fk(m) = ξd,
0 if fk(m) 6= ξd.

Write the polynomial Pd as Pd(m) =

q−1∑
u=0

eu(d)mu, so that Pd(0) = ξ
d
, that is,

e0(d) = ξ
d
. We then have

Pa0(fk(n)) · · ·Pa`−1
(fk(n+ `− 1)) =

`−1∏
h=0

{
q−1∑
uh=0

euh(ah)f
uh
k (n+ h)

}

=
∑

u0,...,u`−1∈Aq

A(u0, . . . , u`−1)fk

(
`−1∏
j=0

(n+ j)uj

)
,(2.1)

where A(u0, . . . , u`−1) = eu0(a0) · · · eu`−1
(a`−1), with A(0, . . . , 0) = ξ

a0+···+a`−1
.

With integers x, y such that xk ≤ x < x + y ≤ xk+1 − `, we now sum both sides
of (2.1) for n = x, . . . , x+ y, we then obtain that

q`
`−1∏
j=0

ξ
aj ·M([x, x+ y] | (a0, . . . , a`−1)) = y

`−1∏
j=0

ξ
aj
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+
∑

u0,...,u`−1∈Aq
(u0,...,u`−1)6=(0,...,0)

A(u0, . . . , u`−1)

x+y∑
n=x

fk

(
`−1∏
j=0

(n+ j)uj

)
.

Setting

Q(n) =
`−1∏
j=0

(n+ j)uj ,

it remains to prove that

(2.2) lim
k→∞

1

xk
max

xk≤x<x+y≤xk+1−`

∣∣∣∣∣
x+y∑
n=x

fk (Q(n))

∣∣∣∣∣ = 0.

To prove this, we proceed using standard techniques. Let ρ(δ) stand for the
number of solutions of the congruence Q(n) ≡ 0 (mod δ), in which case we have
ρ(pα) = ρ(p) for all primes p > k and integers α ≥ 1. Now define the completely
multiplicative function gk implicitly by the relation

fk(m) =
∑
d|m

gk(d),

thus implying, in light of (1.2), that

gk(p) = fk(p)− 1 =

{
0 if p < k or p > yk,
ξ − 1 if k ≤ p ≤ yk.

It follows that ∑
n∈[x,x+y]

fk (Q(n)) =
∑

n∈[x,x+y]

∑
δ|Q(n)

gk(δ)

=
∑
δ

gk(δ)
∑

n∈[x,x+y])
Q(n)≡0 (mod δ)

1

= y
∑
δ

gk(δ)ρ(δ)

δ
+ o(1).(2.3)

Now, observe that since gk(p
α) = fk(p

α)− fk(pα−1) = ξα−1(ξ − 1), it follows that∑
δ

gk(δ)ρ(δ)

δ
=

∏
p

(
1 +

gk(p)ρ(p)

p
+
gk(p

2)ρ(p2)

p2
+ · · ·

)
=

∏
k≤p≤yk

(
1 +

ρ(p)(ξ − 1)

p

(
1 +

ξ

p
+
ξ2

p2
+ · · ·

))
=

∏
k≤p≤yk

(
1 +

ρ(p)(ξ − 1)

p
· 1

1− ξ/p

)
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=
∏

k≤p≤yk

(
1 +

ρ(p)(ξ − 1)

p− ξ

)

= exp

{
ρ(p)(ξ − 1)

∑
k≤p≤yk

1

p
+O(1)

}
.(2.4)

But, since <(ξ − 1) < 0, we have that

(2.5) exp

{
ρ(p)(ξ − 1)

∑
k≤p≤yk

1

p
+O(1)

}
→ 0 as k →∞.

Hence, combining (2.5) with (2.4) and (2.3), we obtain (2.2).
We have thus established that

M([x, x+ y] | (a0, . . . , a`−1))− y

q`
= o(xk) (k →∞),

which completes the proof of Theorem 1.

3 Proof of Theorem 2

As we will see, the proof of Theorem 2 is essentially a consequence of Weil’s result
(1.4).

Let ` be a fixed positive integer. Fix a prime p and let β = ξe0 . . . ξe`−1
be any

word belonging to C`
q . Consider the expression

fβ(n) =
`−1∏
j=0

∏
ξ∈Cq
ξ 6=ξej

(χp(n+ j)− ξ) .

Observe that fβ(n) = 0 if χ(n) . . . χ(n + ` − 1) ∈ C`
q is different from β. But if

χ(n) . . . χ(n+ `− 1) = β, then

fβ(n) =
`−1∏
j=0

∏
ξ∈Cq
ξ 6=ξej

(
ξej − ξ

)
.

Since, for each j = 0, . . . , `− 1,

d

dx
(xq − 1)

∣∣∣∣
x=ξej

= qξq−1
ej

= qξej ,

it follows that
fβ(n) = q`

(
ξe0 . . . ξe`−1

)
,
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where again z stands for the complex conjugate of z. Hence, letting Mp(β) stand for
the number of occurrences of β as a subword in the word Γp, we have

(3.1) ξe0 . . . ξe`−1
q`Mp(β) =

p−`∑
n=1

fβ(n).

Now fβ(n) can be written as

(3.2) fβ(n) =
∑

(u0,...,u`−1)∈A`q

A(u0, . . . , u`−1)χ(Fu0,...,u`−1
(n)),

where

Fu0,...,u`−1
(n) =

`−1∏
j=0

(n+ j)uj ,

A(0, . . . , 0) = ξe0 . . . ξe`−1
.

Thus taking into account (1.3), the Weil inequality (1.4) and the above relations (3.1)
and (3.2), we obtain that∣∣ξe0 . . . ξe`−1

(
q`Mp(β)− (p− `)

)∣∣
≤

∑
(u0,...,u`−1)∈A

`
q

(u0,...,u`−1)6=(0,...,0)

|A(u0, . . . , u`−1)| ·

∣∣∣∣∣
p−`∑
n=1

χ(Fu0,...,u`−1
(n))

∣∣∣∣∣
≤

∑
(u0,...,u`−1)∈A

`
q

(u0,...,u`−1)6=(0,...,0)

|A(u0, . . . , u`−1)| · ((`− 1)
√
p+ `)

≤ c1(`)
√
p.

We have thus shown that ∣∣∣∣Mp(β)− p− `
q`

∣∣∣∣ ≤ c(`)
√
p,

thus completing the proof of Theorem 2.
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[2] K.H. Indlekofer, I. Kátai and O. Klesov, Renewal theorems for some weighted re-
newal functions, Ann. Univ. Sci. Budapest. Sect. Comput. 34 (2011), 179-194.

[3] H. Iwaniec and E. Kowalski, Analytic number theory, Volume 53, AMS, 2004.

[4] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci.U. S. A. 34 (1948),
204–207.

Jean-Marie De Koninck Imre Kátai
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