Complex roots of unity and normal numbers

JEAN-MARIE DE KoNINCK! and IMRE KATAI?
Edition du 26 mai 201/

Abstract

Given an arbitrary prime number ¢, set & = e2™/9. We use a clever selection
of the values of £%, a = 1,2,..., in order to create normal numbers. We also
use a famous result of André Weil concerning Dirichlet characters to construct
a family of normal numbers.
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1 Introduction and statement of the results

Let A(n) be the Liouville function (defined by A(n) := (—=1)%" where Q(n) :=
> pafn @)- It is well known that the statement 7 _ A(n) = o(z) as ¥ — o0” is
equivalent to the Prime Number Theorem. It is conjectured that if by < by < -+ < by,
are arbitrary positive integers, then > _ A(n)A(n + by)---A(n + by) = o(z) as
r — oo. This conjecture seems presently out of reach since we cannot even prove
that > _ A(n)A(n+1) = o(x) as x — oo.

The Liouville function belongs to a particular class of multiplicative functions,
namely the class M* of completely multiplicative functions. Recently, Indlekofer,
Katai and Klesov [2] considered a very special function f € M* constructed in the
following manner. Let o stand for the set of all primes. For each ¢ € p, let C, = {{ €
C : &7 =1} be the group of complex roots of unity of order q. As p runs through the
primes, let &, be independent random variables distributed uniformly on C,. Then,
let f € M* be defined on p by f(p) =&, so that f(n) yields a random variable. In
their 2011 paper, Indlekofer, Kétai and Klesov proved that, if (£2, A, o) stands for a
probability space where &, (p € p) are the independent random variables, then for
almost all w € Q, the sequence a = f(1)f(2)f(3)... is a normal sequence over C,
(see Definition 1 below).

Let us now consider a somewhat different set up. Let ¢ > 2 be a fixed prime
number and set A, :={0,1,...,¢— 1}. Given an integer ¢t > 1, an expression of the
form ¢4 ...14;, where each i; € A, is called a word of length t. We use the symbol
A to denote the empty word. Then, Aé will stand for the set of words of length ¢
over Ay, while A} will stand for the set of all words over A, regardless of their length,
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including the empty word A. Similarly, we define Cj to be the set of words over C,
regardless of their length.
Given a positive integer n, we write its g-ary expansion as

n=co(n)+ei(n)g+ - +eln)d,

where ¢;(n) € A, for 0 < i <t and ,(n) # 0. To this representation, we associate
the word
n=¢eo(n)er(n)...e(n) € A

Definition 1. Given a sequence of integers a(1),a(2),a(3 ), ..., we will say that the

concatenation of their g-ary digit expansions a(1 ( ) ( , denoted by Concat(a(n) :
n € N), is a normal sequence if the number 0.a(1) a(2 a(3) .. 18 a g-normal number.

[1]) that if f € M* is defined on
o( ) as x — 0.

ee
) =
H o(n+j)%. We believe that if

the primes p by f(p) =&, (a # 0), then Zn<x

Now, given wug, uy,...,ur—q1 € Ay, let Q(n) :
maxje(o,1,..¢~1} Uj > 0, then

(1.1) Zf(@(n)) = o(x) as T — 00.

n<x

1
It can be proved using a theorem of Haldsz (se
(n

If this were true, it would follow that
Concat(f(n) : n € N) is a normal sequence over C,,.

We cannot prove (1.1), but we can prove the following. Let ¢ € p and set £ :=

e?™/4_ Further set x;, = 2* and y;, = m,i/\/g for k =1,2,... Then, consider the sequence
of completely multiplicative functions fx, £ = 1,2, ..., defined on the primes p by

€ iR <p<uyy,
(1.2) fk(p)_{l it p<korp>uy.

Then, set

and
6 := Concat(n : k € N).

Theorem 1. The sequence 0 is a normal sequence over C,.
We now use a famous result of André Weil to construct a large family of normal
numbers.

Let ¢ be a fixed prime and set ¢ := €?™/4 and &, := €?™4/7 = ¢, Recall that C,
stands for the group of complex roots of unity of order q, that is,

Co={ceC:¢"=1} ={":a=0,1,...,qg— 1}
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Let p € p be such that ¢[p—1. Moreover, let x, be a Dirichlet character modulo p
of order ¢, meaning that the smallest positive integer ¢ for which x, = x¢ is ¢. (Here
Xo stands for the principal character.)

Let wo, u1, ..., ur—1 € A, and consider the polynomial
k—1
(1.3) F(2) = Fugu 1 (2) = | [z +3)"
§=0

and assume that its degree is at least 1, that is, that there exists one j € {0, ..., k—1}
for which u; # 0. Further set

n  (mod p)

According to a 1948 result of André Weil [4],

(14) ‘Suo 77777 Uk71(XP>} < (k - 1)\/]_)

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski
[3].

We can prove the following.

Theorem 2. Let p; < py < --- be an infinite set of primes such that q | p; — 1 for
all j € N. For each j € N, let x,, be a character modulo p; of order q. Further set

= Wxp(2) - xp(p—1)  (p=p1p2--)
and
(1.5) n="TpTp...
Then n is a normal sequence over C.
As an immediate consequence of this theorem, we have the following corollary.

Corollary 1. Let p : C; — Ay be defined by p(§a) = a. Extend the function ¢ to
@ : Cr = A7 by p(af) = p(a)p(B) and let
e(n) = o(Tp)e(Tp,) - ..

and consider the q-ary expansion of the real number

(1'6) K= O'QD(FP1)90<F102) s

Then k is a normal number in base q.

Example 1. Choosing ¢ = 3 and {p1,ps,ps,...} = {7,13,19,...} as the set of
primes p; = 1 (mod 3), then, the sequence n defined by (1.5) is normal sequence
over {0, e™/3 e*™i/3} “while r defined by (1.6) is a ternary normal number.



2 Proof of Theorem 1

Let ¢ be a fixed positive integer. Let ag,as,...,a—1 € A;. Recall the notation
€ = €?™/4_ Given a positive integer k, let x,y be such that o, <z < x+y < 21 — L.
We will now count the number M ([z,z+vy] | (ao,...,ar—1)) of those n € [z, +y] for
which fy(n+j)=¢% (j=0,...,¢—1) holds.

Consider the polynomial

q—1

91
Pue) =g = [ =€,
i

so that in particular
(x — D Py(x) = 29 — 1.

Taking the derivatives on both sides of the above equation yields
Pale) + (2 — € Py() = qa~,
Thus,
Pa(fr(m)) + (fu(m) — € Py fr(m)) = ¢ fi(m),

where Z stands for the complex conjugate of z.
We then have

_ J afilm) if fi(m) = €%,
q—1
Write the polynomial P, as Py(m) = Zeu(d)m“, so that Py(0) = Ed, that is,
u=0

eo(d) = Ed. We then have

/—1 q—1
Pao(fu(n)) -+ Py (fstn+£=1)) = ]] { > cunlan) fi*(n+ h)}

h=0

-1
(2.1) = Z Alug, - .-y ug-1) fr (H(H‘Fj)uj) ;

UQ,---,Up—1€Aq Jj=0

up=0

where A(uo, A ,ugfl) = €y, (GO) e 67-%71(@[71)7 with A(()? o ,O) _ an+---+ae71.

With integers z,y such that z, <z < 2+ y < 2541 — ¢, we now sum both sides
of (2.1) for n =z, ...,z +y, we then obtain that

{—1

/—1
¢ T[¢" - M(w,z+ 4] | (a0, ... air)) = y][E"
j=0

J=0



Setting
-1
Q(n) = [J(n+ i),

§=0

it remains to prove that
1 ar

2.2 lim — = 0.
( ) kirgo Tk xk§x<£1k2)§(xk+lf€ nX:g:ﬁ fk (Q<n))

To prove this, we proceed using standard techniques. Let p(d) stand for the
number of solutions of the congruence Q(n) = 0 (mod ¢), in which case we have
p(p®) = p(p) for all primes p > k and integers & > 1. Now define the completely
multiplicative function g implicitly by the relation

frlm) =Y gr(d),

dlm
thus implying, in light of (1.2), that

B _J 0 if p<korp>uy,
w) =sp -1={ ) grher

It follows that

Y oK@m) = > > alo)

nelz,z+y] n€z,z+y §|Q(n)

= Yol >, 1

n€lz,z+y])
Q(n)=0 (mod 9)

(2.3) - yZM—i—o(l).
é

Now, observe that since gx(p*) = fu(p®) — fi(p®~!) = £271(§ — 1), it follows that

gr(0)p(8) g®pp) | g@*)p@?) |
25:—5 — H(1+ ) + + )

p p2
— kglplyk <1+W (1+]§3+§—2+--->)
) kslplyk (1 ! P(p)(i— v L —1€/p)



_ H <1+P(p]))(§g1))

k<p<yx
(2.4) — exp {p<p><s —y Y s om} .
k<p<yx
But, since R(§ — 1) < 0, we have that
(2.5) em{ﬂ@@—n X:1+WD}%O as k — oo.
k<p<yr

Hence, combining (2.5) with (2.4) and (2.3), we obtain (2.2).
We have thus established that

Aﬂ@x+ﬂ“%wwwlﬁ—%:dm) (k — o0),

which completes the proof of Theorem 1.

3 Proof of Theorem 2

As we will see, the proof of Theorem 2 is essentially a consequence of Weil’s result
(1.4).

Let ¢ be a fixed positive integer. Fix a prime p and let 8 = &, ...&,_, be any
word belonging to Cf. Consider the expression

—1
fsm) =11 11 Gut+5)-9).
j=0 €£€Cq
£#e,
Observe that fg(n) = 0if x(n)...x(n+ ¢ —1) € Cf is different from 5. But if
x(n)...x(n+¢—1) =4, then

fa(n) = H IT (& -9

j:() EECq
et

Since, for each j =0,...,¢ —1,

d

%(ﬁq - 1)

= g€t = gt

szej

it follows that
fﬁ(n) = qé (560 .- ‘€6g_1) 5
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where again Z stands for the complex conjugate of z. Hence, letting M,(3) stand for
the number of occurrences of 5 as a subword in the word I',, we have

p—L

(3.1) Seo - Ear a0 My(B) = 3 fo(n).
n=1

Now fz(n) can be written as

(32) fﬁ(n) - Z A(UO, s 7uf—1)X<Fu0 ..... Up_1 (n))7
(uo ..... U,g,l)EAg
where

/-1

Fupoirs(n) = [+ )",

Jj=0

A0,...,0) = &y &y,

Thus taking into account (1.3), the Weil inequality (1.4) and the above relations (3.1)
and (3.2), we obtain that

‘560 s 56271 (qup<ﬁ) - (p - f))‘

p—~L
Y M) S (s W_1<n>>\
(ug,e--s “Z—l)eAg n=1

(ug,--yup_1)#(0,...,0)

(]

Ao, .. uet)| - (€= 1)/B +0)

(ug,--yup_1)#(0,...,0)

thus completing the proof of Theorem 2.
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