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Abstract

Given an integer ¢ > 2, a g-normal number is an irrational number £ such
that any preassigned sequence of ¢ digits occurs in the g-ary expansion of £ at
the expected frequency, namely 1/ q*. Let n(z) be a slowly increasing function
log ()

ogx
prime factor of n, set Q(n) to be the smallest prime divisor of n which is larger
than n(n), while setting Q(n) = 1 if P(n) > n(n). Then, we show that the real
number 0.Q(1)Q(2)... is a normal number in base 10. With various similar
constructions, we create large families of normal numbers in any given base
g > 2. Finally, we consider exponential sums involving the Q(n) function.

such that — 0 as * — 00. Then, letting P(n) stand for the largest
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1 Introduction

Given an integer ¢ > 2, a ¢-normal number, or simply a normal number, is an irra-
tional number whose g-ary expansion is such that any preassigned sequence, of length
¢ > 1, of base ¢ digits from this expansion, occurs at the expected frequency, namely
1/¢".
Let A, :={0,1,...,¢ — 1}. Given an integer ¢ > 1, an expression of the form
i1ly . .. 1g, where each i; € A, is called a word of length ¢. We sometimes write A(3) = £
to indicate that [ is a word of length ¢. The symbol A will denote the empty word.
We let Af; stand for the set of all words of length ¢ and Aj stand for the set of all the
words regardless of their length.
Given a positive integer n, we write its g-ary expansion as

(1.1) n=ceo(n) +e(n)g+---+en)g,

where ¢;(n) € A, for 0 < i <t and &,(n) # 0. To this representation, we associate
the word

(1.2) = eg(n)er(n)...e(n) = gpey ... e € AL
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Let P(n) stand for the largest prime factor of n > 2, with P(1) = 1. In a recent
paper [5], we showed that if F' € Z[z] is a polynomial of positive degree with F'(x) > 0
for x > 0, then the real numbers

0.F(PR)F(PB))...F(P(n))...

and

0.F(P2+1)F(PB+1))...F(P(p+1))...,

where p runs through the sequence of primes, are g-normal numbers.
Let n(x) be a slowly increasing function, that is an increasing function satisfying

lim n(fx)) =1 for any fixed constant ¢ > 0. Being slowly increasing, it satisfies in
T—00 ’I’] €T
1
particular the condition olg () — 0 as r — o0.
ogx

We then let Q(n) be the smallest prime divisor of n which is larger than n(n),
while setting Q(n) = 1 if P(n) > n(n). Then, we show that the real number
0.Q(1)Q(2)Q(3) ... is a g-normal number. With various similar constructions, we
create large families of normal numbers in any given base ¢ > 2.

Finally, we consider exponential sums involving the ()(n) function.

2 Main results

Theorem 1. Given an arbitrary basis ¢ > 2 and for any integer n, let m be as in
(1.2). Then the number

& =0Q(1)QR2) QM) ...

18 a q-normal number.

Let o stand for the set of all primes. Given an integer ¢ > 2, let R, ©o, 91, .- ., 941
be disjoint sets of prime numbers such that

p=RUpoUp U---Ugpq_1,

and such that, uniformly for 2 < v < wu as u — oo,

m([u,u+v] N ;) = éw([u,u%—v])%—O (lo;u) (1=0,1,...,¢—1),

so that, in particular,

([, u+v]NR) =0 (L)

log® u

Then, consider the function s defined on g as follows:

_J 0 ifpeE gy,
“(p)_{A if peR.

With this notation, we have



Theorem 2. The number

& =0.£(Q(1))k(Q(2))k(Q(3)) ...
18 a q-normal number.

Remark 1. In an earlier paper [4], we used such classification of prime numbers to
create normal numbers, but by simply concatenating the numbers k(1), k(2), k(3), ...

Let a be a fixed non zero integer. Then we have the following result.

Theorem 3. The number

& = 0.6(Q(2 + a))r(QB + a)s(Q( +a)) ... w(Qp +a)) ...,

where p runs through the set of primes, is a g-normal number.

Define p* as the set of all the prime numbers p = 1 (mod 4). Then, let R*, o5, 01, ..., 954
be disjoint sets of prime numbers such that

=R UpyUpU---Ugy y,

and such that, uniformly for 2 < v < u as u — oo,

1
W([u,u—l—v]ﬂp;):—W([u,u—i-v]ﬁp*)—l—()( u5 ) (j=0,1,...,¢-1),
q log” u

so that, in particular,

W([u,u—l—v]ﬂR*):O( ° )

log® u

Then, consider the following function defined on ¢ as follows

B ¢ it pe gy,
”(p)‘{A it p ¢ UL .

With this notation, we have the following result.

Theorem 4. The number

&4 = 0.(Q(1))v((Q(2)v(Q(3)) - .-
18 a g-normal number.

Consider the arithmetic function f(n) = n? + 1. Then, we have the following
result.



Theorem 5. The two numbers

&= 0..(Q(F(1)))R(QUf(2))K(Q(f(3))) - -,

& = 0.R(QUNAQUGNKQFB)) ... QD)) .
where p runs through the set of primes, are g-normal numbers.

Remark 2. One can show that this last result remains true if f(n) is replaced by
another non constant irreducible polynomial.

We now introduce the product function F(n) =n(n+1)---(n+¢—1). Observe
that if for some positive integer n, we have p = Q(F(n)) > ¢, then p|n+ ¢ only for one
¢e€{0,1,...,q — 1}, implying that ¢ is uniquely determined for all positive integers
n such that Q(F(n)) > q. Thus we may define the function

(n) = ¢ ifp=Q(F(n)) > qand p|n+ ¢,
| A otherwise.

Using this notation, we have the following result.

Theorem 6. The number
&=01(g+D1(¢+2)1(g+3) ...
18 a g-normal number.

We now introduce the product function G(n) = (n + 1)(n +2)---(n + ¢) and
further define the function

(n) = ¢ ifp=Q(G(n)) >q¢+1and pn+{+1,
PV =1 A otherwise.

Moreover, let (p;);>1 be the sequence of all primes larger than ¢, that is, ¢ < p; <
po < --- With this notation, we have the following result.

Theorem 7. The number

& = 0.p(p1)p(p2)p(P3) - --
18 a q-normal number.

Let a be an arbitrary irrational number. We will be using the standard notation
e(y) = exp{2miy}. We then have the following.

Theorem 8. Let

Alz) =) f(n)e(aQ(n)),

n<x
where fis any given multiplicative function satisfying |f(n)| = 1 for all positive
integers n. Then,
A
(2.1) lim A& g
=00 I



3 Notation and preliminary lemmas

logn
log g
(1.1). We then let vg(n) stand for the number of occurrences of the word f in
the g-ary expansion of the positive integer n, that is, the number of times that
gj(n)...ej4—1(n) = B as j varies from 0 to t — (£ — 1).

The letters p and 7 will always denote prime numbers. The letter ¢ with or
without subscript always denotes a positive constant but not necessarily the same at
each occurrence.

We will be using a key result obtained by Bassily and Katai [1] and which we
state here as two lemmas, a proof of which, in a more general context, can be found
in our earlier paper [5].

For each integer n > 2, let L(n) = Let § € Al and n be written as in

Lemma 1. Let k, be a function of u such that k, > 1 for all u. Given a word 5 € Ag
and setting

L(u)

Vg (2_9) - qg

Vi(u) ::#{pe ©:u < p<2u such that

> ke L(u)},

then, there exists a positive constant ¢ such that
cu

Volw) < fogujme

Lemma 2. Let k, be as in Lemma 1. Given (1, s € Afl with By # Pa, set

Ag, g, (u) == # {p € p:u<p<2u such that |vs (p) — vs,(P)| > Ku L(u)} )

Then, for some positive constant c,

cu

A < —
517ﬁz(u) = (logu)ﬁ%

4 Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof of Theorem
1.
Let I, = [z, 2z] and first observe that

#{n € I, : there exists p|n, p € [n(x),n(2z)]} < 3 ({_J B FJ)

n(z)<p<n(2z)

o 31

n(z)<p<n(2z)

IN



= o(1) (x — 00).

This means that with the exception of o(z) integers n € I, the number Q(n) is the
smallest prime divisor of n bigger than n(x).

Secondly, observe that we may assume that, given any fixed small ¢ > 0, we may
assume that Q(n) < n(z)"¢. Indeed,

(4.1) #{nel,:Qn)>n)} < H (1 - 1) L ex.

n(z)<p<n(z) P

Now let po, p1, . . ., pr—1 be any distinct primes belonging to the interval (n(x), n(z)"/*),
and let pj < pj < --- < p;_; be the unique permutation of the primes pg, p1, ..., Pk—1,
namely the one such that has all its members appear in increasing order, so that we
have

n(r) < py <pj <+ <pi_y <nlx)e

Our first goal will be to estimate the size of

N(x|p07p177pk—1) = #{TLSZE : Q(n+j) :p]’ ]:O7laak_1}

We must therefore estimate the number of those integers n € I, for which p;|n + j
(7 = 0,1,...,k — 1), while at the same time (m;,n + j) = 1 if n(z) < m; < p;
(=0,1,...,k —1). Before moving on, let us set

Qe=popr---pe and Tr= J[ = (=01 k=1).

n(z)<m<p;

It is then easy to see that, say by using the Eratosthenian sieve (see for instance
Chapter 12 in the book of De Koninck and Luca [2]), we obtain

(4.2) N(|po, pr, .- pp1) = (1 + 0(1))&20 (z — 00),

where

o)+ (6 s
0 3 e

500k _1
(8;,65)=1 if i#j
(here u stands for the Mébius function.) One can see that

v I (5) I (-50) T ()

n(z)<m<pj Po<m<pj Pr_o<m<Pp_,

1 * —k 1 * —k+1 1 * —1
43) = (1+0(1))( ngO) (ng,{) ...<%f—1) .
log n(z) log p§ log p_,




logn()

Hence, if we set o(p) := , it follows from (4.3) that

logp
(4.4) Yo=1+0())o(po)- - o(pr-1) (x — 00).
Substituting (4.4) in (4.2), we obtain
(4.5) N(alpo.pr,.-.pimr) = (L+o(1)z ] "if;j) (z — 00),

an estimate which holds uniformly for n(z) < p; < n(x)V¢ (j =0,1,...,k —1).

We will now use a technique which we first used in [3] to study the distribution
of subsets of primes in the prime factorization of integers. We first introduce the
sequence

ug = n(x), Ujp1 = Uj + uzj for each 7 =0,1,2,...
log” u;

and then let T be the unique positive integer satisfying ur_; < n(x)"/¢ < ugp. Then,
consider the intervals

Jo == [anul), J1 = [U17u2)7 R [UT—huT)-

Choose k arbitrary integers jo, ..., jrx—1 € {0,1,...,7 — 1}, as well as k arbitrary
integers 1, . .., ix_1 from the set {0,1,...,¢ — 1}, and consider the quantity

j07j17"'ajk—1 o
(4.6) M( i >_ > N(zlpo,- .. pear)-

pe€diNpi,

Observe that o (p) =(1+ 0(1))U(uh) as ¢ — oo if p € J,. It follows from this
Dh Up
observation and using (4.5) and (4.6) that

jOa]lw"a?k—l ) 1+0

20,01,y -1

(4.7) M (

WEJNWW Jj=0

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain that

(4.8) M (a: R ) — (1+o0(1)M (g;

20,015y V-1
where (i(, 4], ...,1)) is any arbitrary sequence of length & composed of integers from
the set {0,...,q — 1}.
Finally, consider the expression

— k(Q(l2]))- . K(Q(|2¢) - 1)).

It follows from (4.8) that, for any given word 3 € AF, the number of occurrences of

(r — 00),

Jos J1s -5 Jk—1 )
g -
/1/077/1, e ’/Lk‘fl

f as a subword in the word A, is equal to (1 + 0(1))2}C as £ — 0o, thus completing
q

the proof of Theorem 2.



5 Proof of Theorem 1

Let

B, = Q[a]) ... Q([2a] = 1.
Also, let @*(n) = min p and observe that Q*(n) < Q(n), while if Q*(n) # Q(n),

pln
p>n(x)

then p|n if n(z) < p < n(2x).
Moreover, let

By =Q(lz]) ... @*([2z] —1).

Clearly, we have, since n(z) was chosen to be a slowly oscillating function,

1 2
G2 0<AB)-AB)Y<e Y B< clxlog% —o(z) (x> o00).
n(z)<p<n(2z) 84 n

It follows from (5.1) that we now only need to estimate A(BZ). To do so, we first let
0, be a function tending to 0 very slowly as z — oo, in a manner specified below. If
p < 2%, we have

. x 1
Ry(z) =#{nel,:Q"(n)=p} = (1+o0(1))— H (1 — —)
D T
n(z)<m<p
z log ()
5.2 = (1+o(1)————= T — 00),
(52) (140 TELD (o5 o)
while on the other hand, if 2% < p < 2z, we have
z log ()
5.3 R - :
( ) p(x) < Cp logp
Now, observe that, as x — oo,
. log p
NE) = X RN = Y R[22
n(z)<p<L2z n(z)<p<2z
x log n(x) 1
= (I+o(1)— Yo =240 [ alogn(z) Y =
B4 aypaa P w9e <pa b
(5.4) = (1+0(1))$10g77(37) lo log @ + O | zlogn(z)lo 1
' B logg  °logn(x) BI85 )

Choosing the function d, in such a way that

lo l—0 lo log @
&5 % log ()




allows us to replace (5.4) with

logn(z) log log
log ¢ log n(z)

(5.5) ANB;) = (1+0(1))x (x — 00).

Now, let 1, B2 € A’;. We will now make use of Lemmas 1 and 2. For this, we first

write
T

[n(x)’lﬁz] = U [uj7

j=0

where
Ly, = [uj,uq1), with uy = n(z), u; = 27n(x) for j=1,2,...,T+1,

where T is defined as the unique positive integer satisfying up < 2% < up.
In the spirit of Lemma 1, we will say that the prime p € I, is a bad prime if

v L(w
max vs(p) — |7 L(u)
and a good prime if
- L(u
i) — 22| < /B

We will now separate the sum ) R,(z)A(p) running over the primes p located
in the intervals [u;, u;j41) into two categories, namely the bad primes and the good
primes.

First, using (5.2) and (5.3), we have

xlogn(x) log n(z)
5.6 R Ap) < ; _— .
6O 3 BENp sety) 3. T SOt o
p Zjl;zéﬂ) PE[uj,u511)

On the other hand, if p is a good prime, one can easily establish that the number
of occurrences of the words 41 and [, in the word B} are close to each other, in the
sense that

(5.7) v, (B;) — vs,(B;) = o(A(B;)).

xT

Hence, proceeding as in [5], it follows, considering the true size of A\(B) given by
(5.5) and in light of (5.1), (5.6) and (5.7), that the number of words § € A} appearing

A B,
in B, is equal to (1 + o(1)) ( - ) as r — 00.
q
We then proceed in a same manner to obtain similar estimates successively for the
intervals I /s, I, 02, ... Thus, repeating the argument used in [5], Theorem 1 follows

immediately.

The proofs of Theorems 3 through 7 can be obtained along the same lines and
will therefore be omitted.



6 Proof of Theorem 8

To prove this theorem, we will consider two cases separately.
Let us first assume that
3 R - flp)p™)

p

< oo for some real number 7.

(6.1)

p

It can be proved (as we did in [6]) that one can assume that 7 = 0.

For a start, define the additive function u implicitly on prime powers by f(p?) =
etu®?) Then, for each large number D, define the multiplicative function fp on prime
powers by

B .
fD(p)_{1 if p> D.

In light of (6.1), we have that

(6.2) 3 D) o

Further set

Since
fn) = fpom)exp{ iy u(p?) p = fo(n)exp {iup(n)},
pAln

say, then, by using the Turan-Kubilius inequality, we obtain that
A(z) — Ap(z) = O (zbp(x)),

where

Ap(x) = np(x) Y fo(n)e(aQ(n)),

n<x

where np(z) = e,

Further define the function 7p implicitly by the equation fp(n) =3, 7o(d). It
is clear that 7p(d) = 0 if (d, D) > 1, while |7p(p?)| < 2 for all prime powers p°.

We clearly have

(6.3) Ap(z) =np(x) Y 7o(d) Y e(aQ(md)) =np(x) Y 70(d)%a,
P(d)<D md<z P(d)<D
say. On the other hand,

1 Told -
LY @iz < Y PO <D(HF>'

P(d)<D P(d)<D p




Therefore, for some kp, we have

1
- > I (d)|IZdl < pp.

d>kp

where pp — 0 as D — o0.
Let us now consider the sum

(6.4) Ty = Y e(aQ(m)).

Y <m<2Y

Recall that Q(m) is the smallest prime divisor of m which is larger than n(m).
Now, consider the somewhat similar function @;(m), which stands for the smallest
prime divisor of m which is larger than n(z). Recalling the argument used at the
beginning of the proof of Theorem 2, we easily see that

n(2Y)
n(Y)

(6.5) #{m € [Y,2Y]: Q:1(m) # Q(m)} = ¢Y log =o(Y) asY — oc.

Therefore, setting

7= > e(aQi(m)),

Y <m<2Y

it is clear that
‘Ty - TS)‘ — oY) (Y = o).

Moreover, as Y — 0o, we have

#Hme vl am =p} = 1+~ [] <1_1)

P T
n(Y)<n<p
Y logn(Y)
6.6 = (1+o0(1)—————.
(6.6 1+ o(1)) 2T
Similarly as we obtained (4.1), we easily prove that
(6.7) #{m € [Y,2Y]: Q(m) > n(Y)V} < €Y.

On the other hand, using (6.4), (6.6) and (4.1), we have

log (Y
(6.8) =Y Y e(o‘p)log”( ) 4 0(ey).
n(Y)<p<n(Y)/ plosp

By using the well known I.M. Vinogradov theorem [10] asserting that

1
lim — Z e(ap) =0,

T—00 7'('(37) v<z

11



we obtain from (6.8) that

Ty

(6.9) -

<cto(l) (Y = o0).

Using this, we can estimate ¥4. Indeed, we have

(6.10) S < | Y e(aQ(dm))| +

x x

x
2Ld
Let {p be an arbitrary large number and choose L so that

1 <2fd> > tp.

Note that for an arbitrary large L, this inequality will hold provided z is large enough.
Applying (6.9), it follows from (6.10) that

T
A1 X — —

Using (6.11) in (6.3), we obtain that
1 |T
(6.12) |Ap(z)| <z (ce+ 2L> H (1 + ) Z D
p<D d>lp

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

AD<CC)

(6.13) $h_}n£)1@ = 0.
Since
A;x) = ADI("”) +0 (bp(x))

and recalling the definition of bp(z) and estimate (6.2), it follows from (6.13) that

lim sup z) < cbp(z) = o(1),

T—00

so that if D — oo, we immediately obtain (2.1) for the first case, that is when (6.1)
holds.

It remains to consider the case

1— —iT
(6.14) Z G A =00 for all real numbers 7.

> p

12



First, it is clear that, using (6.5), we have

B@) = Y fne(aQn)

r<n<2x
= Y fme@@qm)+ Y f(n)e(aQ(n))
rens2e Q1 (20
= Y fme(aQi(n)) +o(x)
r<n<2x
(6.15) = Ei(z)+o(v),
say.
In light of (6.7), we may ignore those n € (, 2z] for which Q(n) > n(z)/¢, that
is,
(6.16) Z f(n)e(a@Qq(n)) < ex.

z<n<2x
Q1(n)>n(x)l/e

Combining (6.15) and (6.16), we can write that

(6.17) E@)= Y, f®e(ap)s,+O(ew),

n(z)<p<n(z)l/e

where, setting 11, := H ,

n <W<p
(6.18) =Y f(m).
T om< 2L
%’m,HI:)jl
Now, consider the summation
S(x) =) [f(n)
n<x

In light of (6.14), it follows from a classical theorem of Haldsz (see [9]) that there
exists a function e(x) which tends to 0 monotonically as © — oo such that

S (2)]
<
< ea),
which in turn implies that
(6.19) 15 (2‘”); SO (.

13



From (6.18), we get that

S, = ) flm) Y u()

(6.20) _ 5; () £(6) (s (z—;) _5 <5£p)) +EBr,

where Er, is the error term coming from those terms for which (m,d) > 1.
Thus, it follows from (6.19) and (6.20) that

T A O ) R = U )

8TL, 8|TL,

where we used the fact that since max 22 5 0asa — 0o, then e(x/dp) =
n(w)<§|;n(1)1/€ x
P

o(z/dp) uniformly for n(z) < p < n(x)/¢ and J|1L,,.

Now, since
2
1*(0) 1 1
E < | | 1+—) <ec-
o = < 71') - Cé"

S[1Lp n(x)<m<n(n)/

it follows from (6.21) that, as x — oo,
(6.22) Byl < o 01) + | Bry .

Using (6.22) in (6.17),we obtain that, as x — oo,

(6.23) @< Y L) o)+ V@) + Ofea).

where
Viz)= > |En.
n(z)<p<n(z)l/e

We will now show that
(6.24) V(z) = o(x) (x — 00).

Setting J = J(z) = (n(x),n(z)"/*) and writing those mdp such that (m,d) > 1 as
mdp = (k?6,p, where k and J; are squarefree numbers whose prime factors all belong
to J, we have that

AR DO RS DTG

k>n(z) :c<em221Jp§2x
P
7|61 =>med

14



= > pk) D wm) >, 1

nZn(x) w\éfi{rEJ m2§1p <£§ m225zlp
2 2
p (k) 1(01)
6.25 < .
529 <oy B 5 6
w2>n(z) peJ
|6y =>mES

Since it is easily checked that

1 1
Z_ S Cllog_>
P £

peJ
2
12 (01) 1 C2
Z 5 < H(l"i‘; S;logn(x),
wlo1=>meS e
Y o os
k>n () " ()

then using these estimates in (6.25), we obtain that

log () 1 log1 = o(x) (x — 00),

V(z) < cyx o) .

thus proving our claim (6.24).
Substituting (6.24) in (6.23), we obtain that

|E(z)| < ca:é logé -0o(1) + o(x) + O(ex) = o(x) (x — 00),

from which it follows that given any arbitrarily small number £ > 0, there is some
xo = xo(§) such that

(6.26) E(X)| <X forall X > .

Therefore, given any fixed large number z and letting L be the smallest integer such
that 2L > /2, we have that, using (6.26) repetitively,

|A(z)] =

thus proving (2.1) in the second case, as requested.
This completes the proof of Theorem 8.
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