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Abstract

Given an integer q ≥ 2, a q-normal number is an irrational number � such
that any preassigned sequence of ℓ digits occurs in the q-ary expansion of � at
the expected frequency, namely 1/qℓ. Let �(x) be a slowly increasing function

such that
log �(x)

log x
→ 0 as x → ∞. Then, letting P (n) stand for the largest

prime factor of n, set Q(n) to be the smallest prime divisor of n which is larger
than �(n), while setting Q(n) = 1 if P (n) > �(n). Then, we show that the real
number 0.Q(1)Q(2) . . . is a normal number in base 10. With various similar
constructions, we create large families of normal numbers in any given base
q ≥ 2. Finally, we consider exponential sums involving the Q(n) function.

AMS Subject Classification numbers: 11K16, 11N37, 11A41
Key words: normal numbers, largest prime factor, smallest prime factor

1 Introduction

Given an integer q ≥ 2, a q-normal number, or simply a normal number, is an irra-
tional number whose q-ary expansion is such that any preassigned sequence, of length
ℓ ≥ 1, of base q digits from this expansion, occurs at the expected frequency, namely
1/qℓ.

Let Aq := {0, 1, . . . , q − 1}. Given an integer ℓ ≥ 1, an expression of the form
i1i2 . . . iℓ, where each ij ∈ Aq is called a word of length ℓ. We sometimes write �(�) = ℓ
to indicate that � is a word of length ℓ. The symbol Λ will denote the empty word.
We let Aℓq stand for the set of all words of length ℓ and A∗q stand for the set of all the
words regardless of their length.

Given a positive integer n, we write its q-ary expansion as

(1.1) n = "0(n) + "1(n)q + ⋅ ⋅ ⋅+ "t(n)qt,

where "i(n) ∈ Aq for 0 ≤ i ≤ t and "t(n) ∕= 0. To this representation, we associate
the word

(1.2) n = "0(n)"1(n) . . . "t(n) = "0"1 . . . "t ∈ At+1
q .

1Research supported in part by a grant from NSERC.
2Research supported by ELTE IK.
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Let P (n) stand for the largest prime factor of n ≥ 2, with P (1) = 1. In a recent
paper [5], we showed that if F ∈ ℤ[x] is a polynomial of positive degree with F (x) > 0
for x > 0, then the real numbers

0.F (P (2))F (P (3)) . . . F (P (n)) . . .

and
0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . . ,

where p runs through the sequence of primes, are q-normal numbers.
Let �(x) be a slowly increasing function, that is an increasing function satisfying

lim
x→∞

�(cx)

�(x)
= 1 for any fixed constant c > 0. Being slowly increasing, it satisfies in

particular the condition
log �(x)

log x
→ 0 as x→∞.

We then let Q(n) be the smallest prime divisor of n which is larger than �(n),
while setting Q(n) = 1 if P (n) > �(n). Then, we show that the real number
0.Q(1)Q(2)Q(3) . . . is a q-normal number. With various similar constructions, we
create large families of normal numbers in any given base q ≥ 2.

Finally, we consider exponential sums involving the Q(n) function.

2 Main results

Theorem 1. Given an arbitrary basis q ≥ 2 and for any integer n, let n be as in
(1.2). Then the number

�1 = 0.Q(1)Q(2)Q(3) . . .

is a q-normal number.

Let ℘ stand for the set of all primes. Given an integer q ≥ 2, letℛ, ℘0, ℘1, . . . , ℘q−1

be disjoint sets of prime numbers such that

℘ = ℛ∪ ℘0 ∪ ℘1 ∪ ⋅ ⋅ ⋅ ∪ ℘q−1,

and such that, uniformly for 2 ≤ v ≤ u as u→∞,

�([u, u+ v] ∩ ℘j) =
1

q
�([u, u+ v]) +O

(
u

log5 u

)
(j = 0, 1, . . . , q − 1),

so that, in particular,

�([u, u+ v] ∩ℛ) = O

(
u

log5 u

)
.

Then, consider the function � defined on ℘ as follows:

�(p) =

{
ℓ if p ∈ ℘ℓ,
Λ if p ∈ ℛ.

With this notation, we have

2



Theorem 2. The number

�2 = 0.�(Q(1))�(Q(2))�(Q(3)) . . .

is a q-normal number.

Remark 1. In an earlier paper [4], we used such classification of prime numbers to
create normal numbers, but by simply concatenating the numbers �(1), �(2), �(3), . . .

Let a be a fixed non zero integer. Then we have the following result.

Theorem 3. The number

�3 = 0.�(Q(2 + a))�(Q(3 + a))�(Q(5 + a)) . . . �(Q(p+ a)) . . . ,

where p runs through the set of primes, is a q-normal number.

Define ℘∗ as the set of all the prime numbers p ≡ 1 (mod 4). Then, letℛ∗, ℘∗0, ℘∗1, . . . , ℘∗q−1

be disjoint sets of prime numbers such that

℘∗ = ℛ∗ ∪ ℘∗0 ∪ ℘∗1 ∪ ⋅ ⋅ ⋅ ∪ ℘∗q−1,

and such that, uniformly for 2 ≤ v ≤ u as u→∞,

�([u, u+ v] ∩ ℘∗j) =
1

q
�([u, u+ v] ∩ ℘∗) +O

(
u

log5 u

)
(j = 0, 1, . . . , q − 1),

so that, in particular,

�([u, u+ v] ∩ℛ∗) = O

(
u

log5 u

)
.

Then, consider the following function defined on ℘ as follows

�(p) =

{
ℓ if p ∈ ℘∗ℓ ,
Λ if p ∕∈

∪q−1
ℓ=0 ℘

∗
ℓ .

With this notation, we have the following result.

Theorem 4. The number

�4 = 0.�(Q(1))�((Q(2))�(Q(3)) . . .

is a q-normal number.

Consider the arithmetic function f(n) = n2 + 1. Then, we have the following
result.
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Theorem 5. The two numbers

�5 = 0.�(Q(f(1)))�(Q(f(2)))�(Q(f(3))) . . . ,

�6 = 0.�(Q(f(2)))�(Q(f(3)))�(Q(f(5))) . . . �(Q(f(p))) . . . ,

where p runs through the set of primes, are q-normal numbers.

Remark 2. One can show that this last result remains true if f(n) is replaced by
another non constant irreducible polynomial.

We now introduce the product function F (n) = n(n+ 1) ⋅ ⋅ ⋅ (n+ q − 1). Observe
that if for some positive integer n, we have p = Q(F (n)) > q, then p∣n+ℓ only for one
ℓ ∈ {0, 1, . . . , q − 1}, implying that ℓ is uniquely determined for all positive integers
n such that Q(F (n)) > q. Thus we may define the function

�(n) =

{
ℓ if p = Q(F (n)) > q and p∣n+ ℓ,
Λ otherwise.

Using this notation, we have the following result.

Theorem 6. The number

�7 = 0.�(q + 1)�(q + 2)�(q + 3) . . .

is a q-normal number.

We now introduce the product function G(n) = (n + 1)(n + 2) ⋅ ⋅ ⋅ (n + q) and
further define the function

�(n) =

{
ℓ if p = Q(G(n)) > q + 1 and p∣n+ ℓ+ 1,
Λ otherwise.

Moreover, let (pj)j≥1 be the sequence of all primes larger than q, that is, q < p1 <
p2 < ⋅ ⋅ ⋅ With this notation, we have the following result.

Theorem 7. The number

�8 = 0.�(p1)�(p2)�(p3) . . .

is a q-normal number.

Let � be an arbitrary irrational number. We will be using the standard notation
e(y) = exp{2�iy}. We then have the following.

Theorem 8. Let
A(x) :=

∑
n≤x

f(n)e(�Q(n)),

where f is any given multiplicative function satisfying ∣f(n)∣ = 1 for all positive
integers n. Then,

(2.1) lim
x→∞

A(x)

x
= 0.

4



3 Notation and preliminary lemmas

For each integer n ≥ 2, let L(n) =

⌊
log n

log q

⌋
. Let � ∈ Aℓq and n be written as in

(1.1). We then let ��(n) stand for the number of occurrences of the word � in
the q-ary expansion of the positive integer n, that is, the number of times that
"j(n) . . . "j+ℓ−1(n) = � as j varies from 0 to t− (ℓ− 1).

The letters p and � will always denote prime numbers. The letter c with or
without subscript always denotes a positive constant but not necessarily the same at
each occurrence.

We will be using a key result obtained by Bassily and Kátai [1] and which we
state here as two lemmas, a proof of which, in a more general context, can be found
in our earlier paper [5].

Lemma 1. Let �u be a function of u such that �u > 1 for all u. Given a word � ∈ Aℓq
and setting

V�(u) := #

{
p ∈ ℘ : u ≤ p ≤ 2u such that

∣∣∣∣��(p)− L(u)

qℓ

∣∣∣∣ > �u
√
L(u)

}
,

then, there exists a positive constant c such that

V�(u) ≤ cu

(log u)�2
u

.

Lemma 2. Let �u be as in Lemma 1. Given �1, �2 ∈ Aℓq with �1 ∕= �2, set

Δ�1,�2(u) := #
{
p ∈ ℘ : u ≤ p ≤ 2u such that ∣��1(p)− ��2(p)∣ > �u

√
L(u)

}
.

Then, for some positive constant c,

Δ�1,�2(u) ≤ cu

(log u)�2
u

.

4 Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof of Theorem
1.

Let Ix = [x, 2x] and first observe that

#{n ∈ Ix : there exists p∣n, p ∈ [�(x), �(2x)]} ≤
∑

�(x)≤p≤�(2x)

(⌊
2x

p

⌋
−
⌊
x

p

⌋)
≤ c x

∑
�(x)≤p≤�(2x)

1

p
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= o(1) (x→∞).

This means that with the exception of o(x) integers n ∈ Ix, the number Q(n) is the
smallest prime divisor of n bigger than �(x).

Secondly, observe that we may assume that, given any fixed small " > 0, we may
assume that Q(n) ≤ �(x)1/". Indeed,

(4.1) #{n ∈ Ix : Q(n) > �(x)1/"} ≪ x
∏

�(x)<p≤�(x)1/"

(
1− 1

p

)
≪ "x.

Now let p0, p1, . . . , pk−1 be any distinct primes belonging to the interval (�(x), �(x)1/"),
and let p∗0 < p∗1 < ⋅ ⋅ ⋅ < p∗k−1 be the unique permutation of the primes p0, p1, . . . , pk−1,
namely the one such that has all its members appear in increasing order, so that we
have

�(x) < p∗0 < p∗1 < ⋅ ⋅ ⋅ < p∗k−1 < �(x)1/".

Our first goal will be to estimate the size of

N(x∣p0, p1, . . . , pk−1) := #{n ≤ x : Q(n+ j) = pj, j = 0, 1, . . . , k − 1}.

We must therefore estimate the number of those integers n ∈ Ix for which pj∣n + j
(j = 0, 1, . . . , k − 1), while at the same time (�j, n + j) = 1 if �(x) < �j < pj
(j = 0, 1, . . . , k − 1). Before moving on, let us set

Qk = p0p1 ⋅ ⋅ ⋅ pk−1 and Tj =
∏

�(x)<�<pj

� (j = 0, 1, . . . , k − 1).

It is then easy to see that, say by using the Eratosthenian sieve (see for instance
Chapter 12 in the book of De Koninck and Luca [2]), we obtain

(4.2) N(x∣p0, p1, . . . , pk−1) = (1 + o(1))
x

Qk

Σ0 (x→∞),

where

Σ0 =
∑

�0,...,�k−1
�j ∣Tj (j=0,1,...,k−1)

(�i,�j)=1 if i ∕=j

�(�0) ⋅ ⋅ ⋅�(�k−1)

�0 ⋅ ⋅ ⋅ �k−1

(here � stands for the Möbius function.) One can see that

Σ0 =
∏

�(x)<�<p∗0

(
1− k

�

)
⋅
∏

p∗0<�<p
∗
1

(
1− k − 1

�

)
⋅ ⋅ ⋅

∏
p∗k−2<�<p

∗
k−1

(
1− 1

�

)

= (1 + o(1))

(
log p∗0

log �(x)

)−k (
log p∗1
log p∗0

)−k+1

⋅ ⋅ ⋅
(

log p∗k−1

log p∗k−2

)−1

.(4.3)
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Hence, if we set �(p) :=
log �(x)

log p
, it follows from (4.3) that

(4.4) Σ0 = (1 + o(1))�(p0) ⋅ ⋅ ⋅�(pk−1) (x→∞).

Substituting (4.4) in (4.2), we obtain

(4.5) N(x∣p0, p1, . . . , pk−1) = (1 + o(1))x
k−1∏
j=0

�(pj)

pj
(x→∞),

an estimate which holds uniformly for �(x) ≤ pj ≤ �(x)1/" (j = 0, 1, . . . , k − 1).

We will now use a technique which we first used in [3] to study the distribution
of subsets of primes in the prime factorization of integers. We first introduce the
sequence

u0 = �(x), uj+1 = uj +
uj

log2 uj
for each j = 0, 1, 2, . . .

and then let T be the unique positive integer satisfying uT−1 < �(x)1/" ≤ uT . Then,
consider the intervals

J0 := [u0, u1), J1 := [u1, u2), . . . , JT−1 := [uT−1, uT ).

Choose k arbitrary integers j0, . . . , jk−1 ∈ {0, 1, . . . , T − 1}, as well as k arbitrary
integers i0, . . . , ik−1 from the set {0, 1, . . . , q − 1}, and consider the quantity

(4.6) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
=

∑
pℓ∈Jℓ∩℘iℓ

N(x∣p0, . . . , pk−1).

Observe that
�(pℎ)

pℎ
= (1 + o(1))

�(uℎ)

uℎ
as x → ∞ if p ∈ Jℎ. It follows from this

observation and using (4.5) and (4.6) that

(4.7) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
= (1 + o(1))x

∑
pℓ∈Jℓ∩℘iℓ

k−1∏
j=0

�(uj)

uj
.

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain that

(4.8) M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i0, i1, . . . , ik−1

)
= (1 + o(1))M

(
x

∣∣∣∣ j0, j1, . . . , jk−1

i′0, i
′
1, . . . , i

′
k−1

)
(x→∞),

where (i′0, i
′
1, . . . , i

′
k) is any arbitrary sequence of length k composed of integers from

the set {0, . . . , q − 1}.
Finally, consider the expression

Ax := �(Q(⌊x⌋)) . . . �(Q(⌊2x⌋ − 1)).

It follows from (4.8) that, for any given word � ∈ Akq , the number of occurrences of

� as a subword in the word Ax is equal to (1 + o(1))
x

qk
as x → ∞, thus completing

the proof of Theorem 2.
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5 Proof of Theorem 1

Let
Bx = Q(⌊x⌋) . . . Q(⌊2x⌋ − 1).

Also, let Q∗(n) = min
p∣n

p>�(x)

p and observe that Q∗(n) ≤ Q(n), while if Q∗(n) ∕= Q(n),

then p∣n if �(x) < p < �(2x).
Moreover, let

B∗x = Q∗(⌊x⌋) . . . Q∗(⌊2x⌋ − 1).

Clearly, we have, since �(x) was chosen to be a slowly oscillating function,

(5.1) 0 ≤ �(Bx)−�(B∗x) ≤ cx
∑

�(x)<p<�(2x)

log p

log q
≤ c1x log

�(2x)

�(x)
= o(x) (x→∞).

It follows from (5.1) that we now only need to estimate �(B∗x). To do so, we first let
�x be a function tending to 0 very slowly as x→∞, in a manner specified below. If
p < x�x , we have

Rp(x) := #{n ∈ Ix : Q∗(n) = p} = (1 + o(1))
x

p

∏
�(x)<�<p

(
1− 1

�

)
= (1 + o(1))

x

p

log �(x)

log p
(x→∞),(5.2)

while on the other hand, if x�x ≤ p ≤ 2x, we have

(5.3) Rp(x) < c
x

p

log �(x)

log p
.

Now, observe that, as x→∞,

�(B∗x) =
∑

�(x)<p≤2x

Rp(x)�(p) =
∑

�(x)<p≤2x

Rp(x)

⌊
log p

log q

⌋

= (1 + o(1))
x

log q

∑
�(x)<p≤2x

log �(x)

p
+O

⎛⎝x log �(x)
∑

x�x<p≤x

1

p

⎞⎠
= (1 + o(1))x

log �(x)

log q
log

log x

log �(x)
+O

(
x log �(x) log

1

�x

)
.(5.4)

Choosing the function �x in such a way that

log
1

�x
= o

(
log

log x

log �(x)

)
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allows us to replace (5.4) with

(5.5) �(B∗x) = (1 + o(1))x
log �(x)

log q
log

log x

log �(x)
(x→∞).

Now, let �1, �2 ∈ Akq . We will now make use of Lemmas 1 and 2. For this, we first
write

[�(x), x�x ] =
T∪
j=0

Iuj ,

where

Iuj = [uj, uj+1), with u0 = �(x), uj = 2j�(x) for j = 1, 2, . . . , T + 1,

where T is defined as the unique positive integer satisfying uT < x�x ≤ uT+1.
In the spirit of Lemma 1, we will say that the prime p ∈ Iu is a bad prime if

max
�∈Aℓq

∣∣∣∣��(p)− L(u)

qℓ

∣∣∣∣ > �u
√
L(u)

and a good prime if ∣∣∣∣��(p)− L(u)

qℓ

∣∣∣∣ ≤ �u
√
L(u).

We will now separate the sum
∑
Rp(x)�(p) running over the primes p located

in the intervals [uj, uj+1) into two categories, namely the bad primes and the good
primes.

First, using (5.2) and (5.3), we have

(5.6)
∑

p∈[uj,uj+1)

p bad

Rp(x)�(p) ≤ c�(uj)
∑

p∈[uj ,uj+1)

x log �(x)

p log p
≪ x

log �(x)

log �(x) + j log 2
.

On the other hand, if p is a good prime, one can easily establish that the number
of occurrences of the words �1 and �2 in the word B∗x are close to each other, in the
sense that

(5.7) ��1(B∗x)− ��2(B∗x) = o(�(B∗x)).

Hence, proceeding as in [5], it follows, considering the true size of �(B∗x) given by
(5.5) and in light of (5.1), (5.6) and (5.7), that the number of words � ∈ Akq appearing

in Bx is equal to (1 + o(1))
�(Bx)

qk
as x→∞.

We then proceed in a same manner to obtain similar estimates successively for the
intervals Ix/2, Ix/22 , . . . Thus, repeating the argument used in [5], Theorem 1 follows
immediately.

The proofs of Theorems 3 through 7 can be obtained along the same lines and
will therefore be omitted.

9



6 Proof of Theorem 8

To prove this theorem, we will consider two cases separately.
Let us first assume that

(6.1)
∑
p

ℜ(1− f(p)p−i� )

p
<∞ for some real number �.

It can be proved (as we did in [6]) that one can assume that � = 0.
For a start, define the additive function u implicitly on prime powers by f(p�) =

eiu(p�). Then, for each large number D, define the multiplicative function fD on prime
powers by

fD(p�) =

{
f(p�) if p ≤ D,
1 if p > D.

In light of (6.1), we have that

(6.2)
∑
p

u2(p)

p
<∞.

Further set

aD(x) =
∑

D<p≤x

u(p)

p− 1
, b2

D(x) =
∑

D<p≤x

u2(p)

p
.

Since

f(n) = fD(n) exp

⎧⎨⎩i∑
p�∥n

u(p�)

⎫⎬⎭ = fD(n) exp {iuD(n)} ,

say, then, by using the Turán-Kubilius inequality, we obtain that

A(x)− AD(x) = O (xbD(x)) ,

where
AD(x) = �D(x)

∑
n≤x

fD(n)e(�Q(n)),

where �D(x) = eiaD(x).
Further define the function �D implicitly by the equation fD(n) =

∑
d∣n �D(d). It

is clear that �D(d) = 0 if (d,D) > 1, while ∣�D(p�)∣ ≤ 2 for all prime powers p�.
We clearly have

(6.3) AD(x) = �D(x)
∑

P (d)≤D

�D(d)
∑
md≤x

e(�Q(md)) = �D(x)
∑

P (d)≤D

�D(d)Σd,

say. On the other hand,

1

x

∑
P (d)≤D

∣�D(d)∣ ∣Σd∣ ≤
∑

P (d)≤D

∣�D(d)∣
d

≤
∏
p≤D

(
1 +

2

p− 1

)
.
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Therefore, for some kD, we have

1

x

∑
d>kD

∣�D(d)∣∣Σd∣ ≤ �D,

where �D → 0 as D →∞.
Let us now consider the sum

(6.4) TY =
∑

Y≤m≤2Y

e(�Q(m)).

Recall that Q(m) is the smallest prime divisor of m which is larger than �(m).
Now, consider the somewhat similar function Q1(m), which stands for the smallest
prime divisor of m which is larger than �(x). Recalling the argument used at the
beginning of the proof of Theorem 2, we easily see that

(6.5) #{m ∈ [Y, 2Y ] : Q1(m) ∕= Q(m)} = cY log
�(2Y )

�(Y )
= o(Y ) as Y →∞.

Therefore, setting

T
(1)
Y =

∑
Y≤m≤2Y

e(�Q1(m)),

it is clear that ∣∣∣TY − T (1)
Y

∣∣∣ = o(Y ) (Y →∞).

Moreover, as Y →∞, we have

#{m ∈ [Y, 2Y ] : Q1(m) = p} = (1 + o(1))
Y

p

∏
�(Y )<�<p

(
1− 1

�

)
= (1 + o(1))

Y

p

log �(Y )

log p
.(6.6)

Similarly as we obtained (4.1), we easily prove that

(6.7) #{m ∈ [Y, 2Y ] : Q(m) > �(Y )1/"} ≪ "Y.

On the other hand, using (6.4), (6.6) and (4.1), we have

(6.8) TY = Y
∑

�(Y )<p<�(Y )1/"

e(�p) log �(Y )

p log p
+O("Y ).

By using the well known I.M. Vinogradov theorem [10] asserting that

lim
x→∞

1

�(x)

∑
p≤x

e(�p) = 0,

11



we obtain from (6.8) that

(6.9)

∣∣∣∣TYY
∣∣∣∣ ≤ "+ o(1) (Y →∞).

Using this, we can estimate Σd. Indeed, we have

(6.10) ∣Σd∣ ≤

∣∣∣∣∣∣
∑

x

2Ld
<m<x

d

e(�Q(dm))

∣∣∣∣∣∣+
x

2Ld
.

Let ℓD be an arbitrary large number and choose L so that

�
( x

2Ld

)
> ℓD.

Note that for an arbitrary large L, this inequality will hold provided x is large enough.
Applying (6.9), it follows from (6.10) that

(6.11) ∣Σd∣ ≤
x

2Ld
+ c"

x

d
.

Using (6.11) in (6.3), we obtain that

(6.12) ∣AD(x)∣ ≤ x

(
c"+

1

2L

)∏
p≤D

(
1 +

2

p− 1

)
+ x

∑
d>ℓD

∣�D(d)∣
d

.

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

(6.13) lim
x→∞

AD(x)

x
= 0.

Since
A(x)

x
=
AD(x)

x
+O (bD(x))

and recalling the definition of bD(x) and estimate (6.2), it follows from (6.13) that

lim sup
x→∞

A(x)

x
≤ cbD(x) = o(1),

so that if D → ∞, we immediately obtain (2.1) for the first case, that is when (6.1)
holds.

It remains to consider the case

(6.14)
∑
p

ℜ(1− f(p)p−i� )

p
=∞ for all real numbers �.

12



First, it is clear that, using (6.5), we have

E(x) :=
∑

x<n≤2x

f(n)e(�Q(n))

=
∑

x<n≤2x

f(n)e(�Q1(n)) +
∑

x<n≤2x
Q1(n)∕=Q(n)

f(n)e(�Q(n))

=
∑

x<n≤2x

f(n)e(�Q1(n)) + o(x)

= E1(x) + o(x),(6.15)

say.
In light of (6.7), we may ignore those n ∈ (x, 2x] for which Q1(n) > �(x)1/", that

is,

(6.16)
∑

x<n≤2x

Q1(n)>�(x)1/"

f(n)e(�Q1(n))≪ "x.

Combining (6.15) and (6.16), we can write that

(6.17) E(x) =
∑

�(x)<p<�(x)1/"

f(p)e(�p)Σp +O("x),

where, setting Πp :=
∏

�(x)<�<p

�,

(6.18) Σp =
∑

x
p<m≤

2x
p

(m,Πp)=1

f(m).

Now, consider the summation

S(x) =
∑
n≤x

f(n).

In light of (6.14), it follows from a classical theorem of Halász (see [9]) that there
exists a function "(x) which tends to 0 monotonically as x→∞ such that

∣S(x)∣
x
≤ "(x),

which in turn implies that

(6.19)
∣S(2x)− S(x)∣

x
≤ "(x).

13



From (6.18), we get that

Σp =
∑

x
p
<m≤ 2x

p

f(m)
∑

�∣(Πp,m)

�(�)

=
∑
�∣Πp

�(�)
∑

x<m�p≤2x

f(m�)

=
∑
�∣Πp

�(�)f(�)

(
S

(
2x

�p

)
− S

(
x

�p

))
+ Erp,(6.20)

where Erp is the error term coming from those terms for which (m, �) > 1.
Thus, it follows from (6.19) and (6.20) that

(6.21) ∣Σp∣ ≤
∑
�∣Πp

�2(�)"

(
x

�p

)
+ ∣Erp∣ ≤

x

p

∑
�∣Πp

�2(�)

�
+ ∣Erp∣ ,

where we used the fact that since max
�(x)<p<�(x)1/"

�∣Πp

p�

x
→ 0 as x → ∞, then "(x/�p) =

o(x/�p) uniformly for �(x) < p < �(x)1/" and �∣Πp.
Now, since ∑

�∣Πp

�2(�)

�
≤

∏
�(x)<�<�(n)1/"

(
1 +

1

�

)
≤ c

1

"
,

it follows from (6.21) that, as x→∞,

(6.22) ∣Σp∣ ≤
cx

p"
⋅ o(1) + ∣Erp∣ .

Using (6.22) in (6.17),we obtain that, as x→∞,

(6.23) ∣E(x)∣ ≤ cx

"

⎛⎝ ∑
�(x)<p<�(x)1/"

1

p

⎞⎠ ⋅ o(1) + V (x) +O("x).

where
V (x) =

∑
�(x)<p<�(x)1/"

∣Erp∣ .

We will now show that

(6.24) V (x) = o(x) (x→∞).

Setting J = J(x) = (�(x), �(x)1/") and writing those m�p such that (m, �) > 1 as
m�p = ℓ�2�1p, where � and �1 are squarefree numbers whose prime factors all belong
to J , we have that

V (x) ≤
∑
�≥�(x)

�2(�)
∑

x<ℓ�2�1p≤2x
p∈J

�∣�1⇒�∈J

�2(�1)
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=
∑
�≥�(x)

�2(�)
∑
p∈J

�∣�1⇒�∈J

�2(�1)
∑

x
�2�1p

<ℓ≤ 2x
�2�1p

1

≤ cx
∑
�≥�(x)

�2(�)

�2

∑
p∈J

�∣�1⇒�∈J

�2(�1)

�1p
.(6.25)

Since it is easily checked that∑
p∈J

1

p
≤ c1 log

1

"
,

∑
�∣�1⇒�∈J

�2(�1)

�1

≤
∏
�∈J

(
1 +

1

�

)
≤ c2

"
log �(x),

∑
�≥�(x)

1

�2
≤ c3

�(x)
,

then using these estimates in (6.25), we obtain that

V (x) ≤ c4x
log �(x)

�(x)

1

"
log

1

"
= o(x) (x→∞),

thus proving our claim (6.24).
Substituting (6.24) in (6.23), we obtain that

∣E(x)∣ ≤ cx
1

"
log

1

"
⋅ o(1) + o(x) +O("x) = o(x) (x→∞),

from which it follows that given any arbitrarily small number � > 0, there is some
x0 = x0(�) such that

(6.26) ∣E(X)∣ ≤ � X for all X > x0.

Therefore, given any fixed large number x and letting L be the smallest integer such
that 2L > x/2, we have that, using (6.26) repetitively,

∣A(x)∣ =

∣∣∣∣∣
L∑
a=1

E
( x

2a

)∣∣∣∣∣ ≤ c�

L∑
a=1

x

2a
< c�x,

thus proving (2.1) in the second case, as requested.
This completes the proof of Theorem 8.
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