Using large prime divisors to construct normal numbers

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$
Dedicated to Professor Karl-Heinz Indlekofer on his seventieth anniversary

Édition du 24 septembre 2012

Abstract

Given an integer $q \geq 2$, a q-normal number is an irrational number ξ such that any preassigned sequence of ℓ digits occurs in the q-ary expansion of ξ at the expected frequency, namely $1 / q^{\ell}$. Let $\eta(x)$ be a slowly increasing function such that $\frac{\log \eta(x)}{\log x} \rightarrow 0$ as $x \rightarrow \infty$. Then, letting $P(n)$ stand for the largest prime factor of n, set $Q(n)$ to be the smallest prime divisor of n which is larger than $\eta(n)$, while setting $Q(n)=1$ if $P(n)>\eta(n)$. Then, we show that the real number $0 . Q(1) Q(2) \ldots$ is a normal number in base 10 . With various similar constructions, we create large families of normal numbers in any given base $q \geq 2$. Finally, we consider exponential sums involving the $Q(n)$ function.

AMS Subject Classification numbers: 11K16, 11N37, 11A41
Key words: normal numbers, largest prime factor, smallest prime factor

1 Introduction

Given an integer $q \geq 2$, a q-normal number, or simply a normal number, is an irrational number whose q-ary expansion is such that any preassigned sequence, of length $\ell \geq 1$, of base q digits from this expansion, occurs at the expected frequency, namely $1 / q^{\ell}$.

Let $A_{q}:=\{0,1, \ldots, q-1\}$. Given an integer $\ell \geq 1$, an expression of the form $i_{1} i_{2} \ldots i_{\ell}$, where each $i_{j} \in A_{q}$ is called a word of length ℓ. We sometimes write $\lambda(\beta)=\ell$ to indicate that β is a word of length ℓ. The symbol Λ will denote the empty word. We let A_{q}^{ℓ} stand for the set of all words of length ℓ and A_{q}^{*} stand for the set of all the words regardless of their length.

Given a positive integer n, we write its q-ary expansion as

$$
\begin{equation*}
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) q+\cdots+\varepsilon_{t}(n) q^{t}, \tag{1.1}
\end{equation*}
$$

where $\varepsilon_{i}(n) \in A_{q}$ for $0 \leq i \leq t$ and $\varepsilon_{t}(n) \neq 0$. To this representation, we associate the word

$$
\begin{equation*}
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n)=\varepsilon_{0} \varepsilon_{1} \ldots \varepsilon_{t} \in A_{q}^{t+1} \tag{1.2}
\end{equation*}
$$

[^0]Let $P(n)$ stand for the largest prime factor of $n \geq 2$, with $P(1)=1$. In a recent paper [5], we showed that if $F \in \mathbb{Z}[x]$ is a polynomial of positive degree with $F(x)>0$ for $x>0$, then the real numbers

$$
0 . \overline{F(P(2))} \overline{F(P(3))} \ldots \overline{F(P(n))} \ldots
$$

and

$$
0 . \overline{F(P(2+1))} \overline{F(P(3+1))} \ldots \overline{F(P(p+1))} \ldots
$$

where p runs through the sequence of primes, are q-normal numbers.
Let $\eta(x)$ be a slowly increasing function, that is an increasing function satisfying $\lim _{x \rightarrow \infty} \frac{\eta(c x)}{\eta(x)}=1$ for any fixed constant $c>0$. Being slowly increasing, it satisfies in particular the condition $\frac{\log \eta(x)}{\log x} \rightarrow 0$ as $x \rightarrow \infty$.

We then let $Q(n)$ be the smallest prime divisor of n which is larger than $\eta(n)$, while setting $Q(n)=1$ if $P(n)>\eta(n)$. Then, we show that the real number $0 . \overline{Q(1)} \overline{Q(2)} \overline{Q(3)} \ldots$ is a q-normal number. With various similar constructions, we create large families of normal numbers in any given base $q \geq 2$.

Finally, we consider exponential sums involving the $Q(n)$ function.

2 Main results

Theorem 1. Given an arbitrary basis $q \geq 2$ and for any integer n, let \bar{n} be as in (1.2). Then the number

$$
\xi_{1}=0 . \overline{Q(1)} \overline{Q(2)} \overline{Q(3)} \ldots
$$

is a q-normal number.
Let \wp stand for the set of all primes. Given an integer $q \geq 2$, let $\mathcal{R}, \wp_{0}, \wp_{1}, \ldots, \wp_{q-1}$ be disjoint sets of prime numbers such that

$$
\wp=\mathcal{R} \cup \wp_{0} \cup \wp_{1} \cup \cdots \cup \wp_{q-1},
$$

and such that, uniformly for $2 \leq v \leq u$ as $u \rightarrow \infty$,

$$
\pi\left([u, u+v] \cap \wp_{j}\right)=\frac{1}{q} \pi([u, u+v])+O\left(\frac{u}{\log ^{5} u}\right) \quad(j=0,1, \ldots, q-1)
$$

so that, in particular,

$$
\pi([u, u+v] \cap \mathcal{R})=O\left(\frac{u}{\log ^{5} u}\right)
$$

Then, consider the function κ defined on \wp as follows:

$$
\kappa(p)= \begin{cases}\ell & \text { if } p \in \wp \ell \\ \Lambda & \text { if } p \in \mathcal{R}\end{cases}
$$

With this notation, we have

Theorem 2. The number

$$
\xi_{2}=0 . \kappa(Q(1)) \kappa(Q(2)) \kappa(Q(3)) \ldots
$$

is a q-normal number.
Remark 1. In an earlier paper [4], we used such classification of prime numbers to create normal numbers, but by simply concatenating the numbers $\kappa(1), \kappa(2), \kappa(3), \ldots$

Let a be a fixed non zero integer. Then we have the following result.
Theorem 3. The number

$$
\xi_{3}=0 . \kappa(Q(2+a)) \kappa(Q(3+a)) \kappa(Q(5+a)) \ldots \kappa(Q(p+a)) \ldots,
$$

where p runs through the set of primes, is a q-normal number.
Define \wp^{*} as the set of all the prime numbers $p \equiv 1(\bmod 4)$. Then, let $\mathcal{R}^{*}, \wp_{0}^{*}, \wp_{1}^{*}, \ldots, \wp_{q-1}^{*}$ be disjoint sets of prime numbers such that

$$
\wp^{*}=\mathcal{R}^{*} \cup \wp_{0}^{*} \cup \wp_{1}^{*} \cup \cdots \cup \wp_{q-1}^{*}
$$

and such that, uniformly for $2 \leq v \leq u$ as $u \rightarrow \infty$,

$$
\pi\left([u, u+v] \cap \wp_{j}^{*}\right)=\frac{1}{q} \pi\left([u, u+v] \cap \wp^{*}\right)+O\left(\frac{u}{\log ^{5} u}\right) \quad(j=0,1, \ldots, q-1)
$$

so that, in particular,

$$
\pi\left([u, u+v] \cap \mathcal{R}^{*}\right)=O\left(\frac{u}{\log ^{5} u}\right) .
$$

Then, consider the following function defined on \wp as follows

$$
\nu(p)= \begin{cases}\ell & \text { if } p \in \wp_{\ell}^{*}, \\ \Lambda & \text { if } p \notin \bigcup_{\ell=0}^{q-1} \wp_{\ell}^{*} .\end{cases}
$$

With this notation, we have the following result.
Theorem 4. The number

$$
\xi_{4}=0 . \nu(Q(1)) \nu((Q(2)) \nu(Q(3)) \ldots
$$

is a q-normal number.
Consider the arithmetic function $f(n)=n^{2}+1$. Then, we have the following result.

Theorem 5. The two numbers

$$
\begin{aligned}
\xi_{5} & =0 . \kappa(Q(f(1))) \kappa(Q(f(2))) \kappa(Q(f(3))) \ldots \\
\xi_{6} & =0 . \kappa(Q(f(2))) \kappa(Q(f(3))) \kappa(Q(f(5))) \ldots \kappa(Q(f(p))) \ldots
\end{aligned}
$$

where p runs through the set of primes, are q-normal numbers.
Remark 2. One can show that this last result remains true if $f(n)$ is replaced by another non constant irreducible polynomial.

We now introduce the product function $F(n)=n(n+1) \cdots(n+q-1)$. Observe that if for some positive integer n, we have $p=Q(F(n))>q$, then $p \mid n+\ell$ only for one $\ell \in\{0,1, \ldots, q-1\}$, implying that ℓ is uniquely determined for all positive integers n such that $Q(F(n))>q$. Thus we may define the function

$$
\tau(n)= \begin{cases}\ell & \text { if } p=Q(F(n))>q \text { and } p \mid n+\ell \\ \Lambda & \text { otherwise }\end{cases}
$$

Using this notation, we have the following result.
Theorem 6. The number

$$
\xi_{7}=0 . \tau(q+1) \tau(q+2) \tau(q+3) \ldots
$$

is a q-normal number.
We now introduce the product function $G(n)=(n+1)(n+2) \cdots(n+q)$ and further define the function

$$
\rho(n)= \begin{cases}\ell & \text { if } p=Q(G(n))>q+1 \text { and } p \mid n+\ell+1 \\ \Lambda & \text { otherwise }\end{cases}
$$

Moreover, let $\left(p_{j}\right)_{j \geq 1}$ be the sequence of all primes larger than q, that is, $q<p_{1}<$ $p_{2}<\cdots$ With this notation, we have the following result.

Theorem 7. The number

$$
\xi_{8}=0 . \rho\left(p_{1}\right) \rho\left(p_{2}\right) \rho\left(p_{3}\right) \ldots
$$

is a q-normal number.
Let α be an arbitrary irrational number. We will be using the standard notation $e(y)=\exp \{2 \pi i y\}$. We then have the following.

Theorem 8. Let

$$
A(x):=\sum_{n \leq x} f(n) e(\alpha Q(n)),
$$

where f is any given multiplicative function satisfying $|f(n)|=1$ for all positive integers n. Then,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A(x)}{x}=0 \tag{2.1}
\end{equation*}
$$

3 Notation and preliminary lemmas

For each integer $n \geq 2$, let $L(n)=\left\lfloor\frac{\log n}{\log q}\right\rfloor$. Let $\beta \in A_{q}^{\ell}$ and n be written as in (1.1). We then let $\nu_{\beta}(\bar{n})$ stand for the number of occurrences of the word β in the q-ary expansion of the positive integer n, that is, the number of times that $\varepsilon_{j}(n) \ldots \varepsilon_{j+\ell-1}(n)=\beta$ as j varies from 0 to $t-(\ell-1)$.

The letters p and π will always denote prime numbers. The letter c with or without subscript always denotes a positive constant but not necessarily the same at each occurrence.

We will be using a key result obtained by Bassily and Kátai [1] and which we state here as two lemmas, a proof of which, in a more general context, can be found in our earlier paper [5].

Lemma 1. Let κ_{u} be a function of u such that $\kappa_{u}>1$ for all u. Given a word $\beta \in A_{q}^{\ell}$ and setting

$$
V_{\beta}(u):=\#\left\{p \in \wp: u \leq p \leq 2 u \text { such that }\left|\nu_{\beta}(\bar{p})-\frac{L(u)}{q^{\ell}}\right|>\kappa_{u} \sqrt{L(u)}\right\}
$$

then, there exists a positive constant c such that

$$
V_{\beta}(u) \leq \frac{c u}{(\log u) \kappa_{u}^{2}}
$$

Lemma 2. Let κ_{u} be as in Lemma 1. Given $\beta_{1}, \beta_{2} \in A_{q}^{\ell}$ with $\beta_{1} \neq \beta_{2}$, set

$$
\Delta_{\beta_{1}, \beta_{2}}(u):=\#\left\{p \in \wp: u \leq p \leq 2 u \text { such that }\left|\nu_{\beta_{1}}(\bar{p})-\nu_{\beta_{2}}(\bar{p})\right|>\kappa_{u} \sqrt{L(u)}\right\} .
$$

Then, for some positive constant c,

$$
\Delta_{\beta_{1}, \beta_{2}}(u) \leq \frac{c u}{(\log u) \kappa_{u}^{2}}
$$

4 Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof of Theorem 1.

Let $I_{x}=[x, 2 x]$ and first observe that

$$
\begin{aligned}
\#\left\{n \in I_{x}: \text { there exists } p \mid n, p \in[\eta(x), \eta(2 x)]\right\} & \leq \sum_{\eta(x) \leq p \leq \eta(2 x)}\left(\left\lfloor\frac{2 x}{p}\right\rfloor-\left\lfloor\frac{x}{p}\right\rfloor\right) \\
& \leq c x \sum_{\eta(x) \leq p \leq \eta(2 x)} \frac{1}{p}
\end{aligned}
$$

$$
=o(1) \quad(x \rightarrow \infty)
$$

This means that with the exception of $o(x)$ integers $n \in I_{x}$, the number $Q(n)$ is the smallest prime divisor of n bigger than $\eta(x)$.

Secondly, observe that we may assume that, given any fixed small $\varepsilon>0$, we may assume that $Q(n) \leq \eta(x)^{1 / \varepsilon}$. Indeed,

$$
\begin{equation*}
\#\left\{n \in I_{x}: Q(n)>\eta(x)^{1 / \varepsilon}\right\} \ll x \prod_{\eta(x)<p \leq \eta(x)^{1 / \varepsilon}}\left(1-\frac{1}{p}\right) \ll \varepsilon x \tag{4.1}
\end{equation*}
$$

Now let $p_{0}, p_{1}, \ldots, p_{k-1}$ be any distinct primes belonging to the interval $\left(\eta(x), \eta(x)^{1 / \varepsilon}\right)$, and let $p_{0}^{*}<p_{1}^{*}<\cdots<p_{k-1}^{*}$ be the unique permutation of the primes $p_{0}, p_{1}, \ldots, p_{k-1}$, namely the one such that has all its members appear in increasing order, so that we have

$$
\eta(x)<p_{0}^{*}<p_{1}^{*}<\cdots<p_{k-1}^{*}<\eta(x)^{1 / \varepsilon} .
$$

Our first goal will be to estimate the size of

$$
N\left(x \mid p_{0}, p_{1}, \ldots, p_{k-1}\right):=\#\left\{n \leq x: Q(n+j)=p_{j}, j=0,1, \ldots, k-1\right\}
$$

We must therefore estimate the number of those integers $n \in I_{x}$ for which $p_{j} \mid n+j$ $(j=0,1, \ldots, k-1)$, while at the same time $\left(\pi_{j}, n+j\right)=1$ if $\eta(x)<\pi_{j}<p_{j}$ $(j=0,1, \ldots, k-1)$. Before moving on, let us set

$$
Q_{k}=p_{0} p_{1} \cdots p_{k-1} \quad \text { and } \quad T_{j}=\prod_{\eta(x)<\pi<p_{j}} \pi \quad(j=0,1, \ldots, k-1)
$$

It is then easy to see that, say by using the Eratosthenian sieve (see for instance Chapter 12 in the book of De Koninck and Luca [2]), we obtain

$$
\begin{equation*}
N\left(x \mid p_{0}, p_{1}, \ldots, p_{k-1}\right)=(1+o(1)) \frac{x}{Q_{k}} \Sigma_{0} \quad(x \rightarrow \infty) \tag{4.2}
\end{equation*}
$$

where

$$
\Sigma_{0}=\sum_{\substack{\left.\delta_{0}, \ldots, \delta_{k-1} \\ \delta_{j} \mid T_{j},(j, 0,1, \ldots, k-1) \\ \delta_{i}, \delta_{j}\right)=1 \text { if } i \neq j}} \frac{\mu\left(\delta_{0}\right) \cdots \mu\left(\delta_{k-1}\right)}{\delta_{0} \cdots \delta_{k-1}}
$$

(here μ stands for the Möbius function.) One can see that

$$
\begin{align*}
\Sigma_{0} & =\prod_{\eta(x)<\pi<p_{0}^{*}}\left(1-\frac{k}{\pi}\right) \cdot \prod_{p_{0}^{*}<\pi<p_{1}^{*}}\left(1-\frac{k-1}{\pi}\right) \cdots \prod_{p_{k-2}^{*}<\pi<p_{k-1}^{*}}\left(1-\frac{1}{\pi}\right) \\
& =(1+o(1))\left(\frac{\log p_{0}^{*}}{\log \eta(x)}\right)^{-k}\left(\frac{\log p_{1}^{*}}{\log p_{0}^{*}}\right)^{-k+1} \cdots\left(\frac{\log p_{k-1}^{*}}{\log p_{k-2}^{*}}\right)^{-1} . \tag{4.3}
\end{align*}
$$

Hence, if we set $\sigma(p):=\frac{\log \eta(x)}{\log p}$, it follows from (4.3) that

$$
\begin{equation*}
\Sigma_{0}=(1+o(1)) \sigma\left(p_{0}\right) \cdots \sigma\left(p_{k-1}\right) \quad(x \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

Substituting (4.4) in (4.2), we obtain

$$
\begin{equation*}
N\left(x \mid p_{0}, p_{1}, \ldots, p_{k-1}\right)=(1+o(1)) x \prod_{j=0}^{k-1} \frac{\sigma\left(p_{j}\right)}{p_{j}} \quad(x \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

an estimate which holds uniformly for $\eta(x) \leq p_{j} \leq \eta(x)^{1 / \varepsilon}(j=0,1, \ldots, k-1)$.
We will now use a technique which we first used in [3] to study the distribution of subsets of primes in the prime factorization of integers. We first introduce the sequence

$$
u_{0}=\eta(x), \quad u_{j+1}=u_{j}+\frac{u_{j}}{\log ^{2} u_{j}} \quad \text { for each } j=0,1,2, \ldots
$$

and then let T be the unique positive integer satisfying $u_{T-1}<\eta(x)^{1 / \varepsilon} \leq u_{T}$. Then, consider the intervals

$$
J_{0}:=\left[u_{0}, u_{1}\right), \quad J_{1}:=\left[u_{1}, u_{2}\right), \ldots, \quad J_{T-1}:=\left[u_{T-1}, u_{T}\right)
$$

Choose k arbitrary integers $j_{0}, \ldots, j_{k-1} \in\{0,1, \ldots, T-1\}$, as well as k arbitrary integers i_{0}, \ldots, i_{k-1} from the set $\{0,1, \ldots, q-1\}$, and consider the quantity

$$
M\left(\begin{array}{l|l}
x & j_{0}, j_{1}, \ldots, j_{k-1} \tag{4.6}\\
i_{0}, i_{1}, \ldots, i_{k-1}
\end{array}\right)=\sum_{p_{\ell} \in J_{\ell} \cap \wp_{i_{\ell}}} N\left(x \mid p_{0}, \ldots, p_{k-1}\right) .
$$

Observe that $\frac{\sigma\left(p_{h}\right)}{p_{h}}=(1+o(1)) \frac{\sigma\left(u_{h}\right)}{u_{h}}$ as $x \rightarrow \infty$ if $p \in J_{h}$. It follows from this observation and using (4.5) and (4.6) that

$$
M\left(\begin{array}{l|l}
x & \begin{array}{l}
j_{0}, j_{1}, \ldots, j_{k-1} \\
i_{0}, i_{1}, \ldots, i_{k-1}
\end{array} \tag{4.7}
\end{array}\right)=(1+o(1)) x \sum_{p_{\ell} \in J_{\ell} \cap \wp_{i_{\ell}}} \prod_{j=0}^{k-1} \frac{\sigma\left(u_{j}\right)}{u_{j}} .
$$

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain that

$$
M\left(\begin{array}{l|l}
x & \begin{array}{l}
j_{0}, j_{1}, \ldots, j_{k-1} \\
i_{0}, i_{1}, \ldots, i_{k-1}
\end{array}
\end{array}\right)=(1+o(1)) M\left(\begin{array}{l|l}
x & \begin{array}{l}
j_{0}, j_{1}, \ldots, j_{k-1} \\
i_{0}^{\prime}, i_{1}^{\prime}, \ldots, i_{k-1}^{\prime}
\end{array} \tag{4.8}
\end{array}\right) \quad(x \rightarrow \infty)
$$

where $\left(i_{0}^{\prime}, i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right)$ is any arbitrary sequence of length k composed of integers from the set $\{0, \ldots, q-1\}$.

Finally, consider the expression

$$
A_{x}:=\kappa(Q(\lfloor x\rfloor)) \ldots \kappa(Q(\lfloor 2 x\rfloor-1)) .
$$

It follows from (4.8) that, for any given word $\beta \in A_{q}^{k}$, the number of occurrences of β as a subword in the word A_{x} is equal to $(1+o(1)) \frac{x}{q^{k}}$ as $x \rightarrow \infty$, thus completing the proof of Theorem 2.

5 Proof of Theorem 1

Let

$$
B_{x}=\overline{Q(\lfloor x\rfloor)} \ldots \overline{Q(\lfloor 2 x\rfloor-1)} .
$$

Also, let $Q^{*}(n)=\min _{\substack{p \mid n \\ p>\eta(x)}} p$ and observe that $Q^{*}(n) \leq Q(n)$, while if $Q^{*}(n) \neq Q(n)$, then $p \mid n$ if $\eta(x)<p<\eta(2 x)$.

Moreover, let

$$
B_{x}^{*}=\overline{Q^{*}(\lfloor x\rfloor)} \ldots \overline{Q^{*}(\lfloor 2 x\rfloor-1)}
$$

Clearly, we have, since $\eta(x)$ was chosen to be a slowly oscillating function,

$$
\begin{equation*}
0 \leq \lambda\left(B_{x}\right)-\lambda\left(B_{x}^{*}\right) \leq c x \sum_{\eta(x)<p<\eta(2 x)} \frac{\log p}{\log q} \leq c_{1} x \log \frac{\eta(2 x)}{\eta(x)}=o(x) \quad(x \rightarrow \infty) \tag{5.1}
\end{equation*}
$$

It follows from (5.1) that we now only need to estimate $\lambda\left(B_{x}^{*}\right)$. To do so, we first let δ_{x} be a function tending to 0 very slowly as $x \rightarrow \infty$, in a manner specified below. If $p<x^{\delta_{x}}$, we have

$$
\begin{align*}
R_{p}(x):=\#\left\{n \in I_{x}: Q^{*}(n)=p\right\} & =(1+o(1)) \frac{x}{p} \prod_{\eta(x)<\pi<p}\left(1-\frac{1}{\pi}\right) \\
& =(1+o(1)) \frac{x}{p} \frac{\log \eta(x)}{\log p} \quad(x \rightarrow \infty) \tag{5.2}
\end{align*}
$$

while on the other hand, if $x^{\delta_{x}} \leq p \leq 2 x$, we have

$$
\begin{equation*}
R_{p}(x)<c \frac{x}{p} \frac{\log \eta(x)}{\log p} \tag{5.3}
\end{equation*}
$$

Now, observe that, as $x \rightarrow \infty$,

$$
\begin{align*}
\lambda\left(B_{x}^{*}\right) & =\sum_{\eta(x)<p \leq 2 x} R_{p}(x) \lambda(p)=\sum_{\eta(x)<p \leq 2 x} R_{p}(x)\left\lfloor\frac{\log p}{\log q}\right\rfloor \\
& =(1+o(1)) \frac{x}{\log q} \sum_{\eta(x)<p \leq 2 x} \frac{\log \eta(x)}{p}+O\left(x \log \eta(x) \sum_{x^{\delta}<p \leq x} \frac{1}{p}\right) \\
& =(1+o(1)) x \frac{\log \eta(x)}{\log q} \log \frac{\log x}{\log \eta(x)}+O\left(x \log \eta(x) \log \frac{1}{\delta_{x}}\right) . \tag{5.4}
\end{align*}
$$

Choosing the function δ_{x} in such a way that

$$
\log \frac{1}{\delta_{x}}=o\left(\log \frac{\log x}{\log \eta(x)}\right)
$$

allows us to replace (5.4) with

$$
\begin{equation*}
\lambda\left(B_{x}^{*}\right)=(1+o(1)) x \frac{\log \eta(x)}{\log q} \log \frac{\log x}{\log \eta(x)} \quad(x \rightarrow \infty) \tag{5.5}
\end{equation*}
$$

Now, let $\beta_{1}, \beta_{2} \in A_{q}^{k}$. We will now make use of Lemmas 1 and 2. For this, we first write

$$
\left[\eta(x), x^{\delta_{x}}\right]=\bigcup_{j=0}^{T} I_{u_{j}}
$$

where

$$
I_{u_{j}}=\left[u_{j}, u_{j+1}\right), \quad \text { with } u_{0}=\eta(x), \quad u_{j}=2^{j} \eta(x) \quad \text { for } j=1,2, \ldots, T+1,
$$

where T is defined as the unique positive integer satisfying $u_{T}<x^{\delta_{x}} \leq u_{T+1}$.
In the spirit of Lemma 1 , we will say that the prime $p \in I_{u}$ is a bad prime if

$$
\max _{\beta \in A_{q}^{\ell}}\left|\nu_{\beta}(\bar{p})-\frac{L(u)}{q^{\ell}}\right|>\kappa_{u} \sqrt{L(u)}
$$

and a good prime if

$$
\left|\nu_{\beta}(\bar{p})-\frac{L(u)}{q^{\ell}}\right| \leq \kappa_{u} \sqrt{L(u)}
$$

We will now separate the sum $\sum R_{p}(x) \lambda(p)$ running over the primes p located in the intervals $\left[u_{j}, u_{j+1}\right)$ into two categories, namely the bad primes and the good primes.

First, using (5.2) and (5.3), we have

$$
\begin{equation*}
\sum_{\substack{p \in\left[u_{j}, u_{j+1}\right) \\ p \operatorname{bad}}} R_{p}(x) \lambda(p) \leq c \kappa\left(u_{j}\right) \sum_{p \in\left[u_{j}, u_{j+1}\right)} \frac{x \log \eta(x)}{p \log p} \ll x \frac{\log \eta(x)}{\log \eta(x)+j \log 2} . \tag{5.6}
\end{equation*}
$$

On the other hand, if p is a good prime, one can easily establish that the number of occurrences of the words β_{1} and β_{2} in the word B_{x}^{*} are close to each other, in the sense that

$$
\begin{equation*}
\nu_{\beta_{1}}\left(B_{x}^{*}\right)-\nu_{\beta_{2}}\left(B_{x}^{*}\right)=o\left(\lambda\left(B_{x}^{*}\right)\right) . \tag{5.7}
\end{equation*}
$$

Hence, proceeding as in [5], it follows, considering the true size of $\lambda\left(B_{x}^{*}\right)$ given by (5.5) and in light of (5.1), (5.6) and (5.7), that the number of words $\beta \in A_{q}^{k}$ appearing in B_{x} is equal to $(1+o(1)) \frac{\lambda\left(B_{x}\right)}{q^{k}}$ as $x \rightarrow \infty$.

We then proceed in a same manner to obtain similar estimates successively for the intervals $I_{x / 2}, I_{x / 2^{2}}, \ldots$ Thus, repeating the argument used in [5], Theorem 1 follows immediately.

The proofs of Theorems 3 through 7 can be obtained along the same lines and will therefore be omitted.

6 Proof of Theorem 8

To prove this theorem, we will consider two cases separately.
Let us first assume that

$$
\begin{equation*}
\sum_{p} \frac{\Re\left(1-f(p) p^{-i \tau}\right)}{p}<\infty \quad \text { for some real number } \tau \tag{6.1}
\end{equation*}
$$

It can be proved (as we did in [6]) that one can assume that $\tau=0$.
For a start, define the additive function u implicitly on prime powers by $f\left(p^{\beta}\right)=$ $e^{i u\left(p^{\beta}\right)}$. Then, for each large number D, define the multiplicative function f_{D} on prime powers by

$$
f_{D}\left(p^{\beta}\right)= \begin{cases}f\left(p^{\beta}\right) & \text { if } p \leq D \\ 1 & \text { if } p>D\end{cases}
$$

In light of (6.1), we have that

$$
\begin{equation*}
\sum_{p} \frac{u^{2}(p)}{p}<\infty \tag{6.2}
\end{equation*}
$$

Further set

$$
a_{D}(x)=\sum_{D<p \leq x} \frac{u(p)}{p-1}, \quad b_{D}^{2}(x)=\sum_{D<p \leq x} \frac{u^{2}(p)}{p}
$$

Since

$$
f(n)=f_{D}(n) \exp \left\{i \sum_{p^{\beta} \| n} u\left(p^{\beta}\right)\right\}=f_{D}(n) \exp \left\{i u_{D}(n)\right\}
$$

say, then, by using the Turán-Kubilius inequality, we obtain that

$$
A(x)-A_{D}(x)=O\left(x b_{D}(x)\right)
$$

where

$$
A_{D}(x)=\eta_{D}(x) \sum_{n \leq x} f_{D}(n) e(\alpha Q(n))
$$

where $\eta_{D}(x)=e^{i a_{D}(x)}$.
Further define the function τ_{D} implicitly by the equation $f_{D}(n)=\sum_{d \mid n} \tau_{D}(d)$. It is clear that $\tau_{D}(d)=0$ if $(d, D)>1$, while $\left|\tau_{D}\left(p^{\beta}\right)\right| \leq 2$ for all prime powers p^{β}.

We clearly have

$$
\begin{equation*}
A_{D}(x)=\eta_{D}(x) \sum_{P(d) \leq D} \tau_{D}(d) \sum_{m d \leq x} e(\alpha Q(m d))=\eta_{D}(x) \sum_{P(d) \leq D} \tau_{D}(d) \Sigma_{d} \tag{6.3}
\end{equation*}
$$

say. On the other hand,

$$
\frac{1}{x} \sum_{P(d) \leq D}\left|\tau_{D}(d)\right|\left|\Sigma_{d}\right| \leq \sum_{P(d) \leq D} \frac{\left|\tau_{D}(d)\right|}{d} \leq \prod_{p \leq D}\left(1+\frac{2}{p-1}\right)
$$

Therefore, for some k_{D}, we have

$$
\frac{1}{x} \sum_{d>k_{D}}\left|\tau_{D}(d)\right|\left|\Sigma_{d}\right| \leq \rho_{D}
$$

where $\rho_{D} \rightarrow 0$ as $D \rightarrow \infty$.
Let us now consider the sum

$$
\begin{equation*}
T_{Y}=\sum_{Y \leq m \leq 2 Y} e(\alpha Q(m)) \tag{6.4}
\end{equation*}
$$

Recall that $Q(m)$ is the smallest prime divisor of m which is larger than $\eta(m)$. Now, consider the somewhat similar function $Q_{1}(m)$, which stands for the smallest prime divisor of m which is larger than $\eta(x)$. Recalling the argument used at the beginning of the proof of Theorem 2, we easily see that

$$
\begin{equation*}
\#\left\{m \in[Y, 2 Y]: Q_{1}(m) \neq Q(m)\right\}=c Y \log \frac{\eta(2 Y)}{\eta(Y)}=o(Y) \quad \text { as } Y \rightarrow \infty \tag{6.5}
\end{equation*}
$$

Therefore, setting

$$
T_{Y}^{(1)}=\sum_{Y \leq m \leq 2 Y} e\left(\alpha Q_{1}(m)\right)
$$

it is clear that

$$
\left|T_{Y}-T_{Y}^{(1)}\right|=o(Y) \quad(Y \rightarrow \infty)
$$

Moreover, as $Y \rightarrow \infty$, we have

$$
\begin{align*}
\#\left\{m \in[Y, 2 Y]: Q_{1}(m)=p\right\} & =(1+o(1)) \frac{Y}{p} \prod_{\eta(Y)<\pi<p}\left(1-\frac{1}{\pi}\right) \\
& =(1+o(1)) \frac{Y}{p} \frac{\log \eta(Y)}{\log p} . \tag{6.6}
\end{align*}
$$

Similarly as we obtained (4.1), we easily prove that

$$
\begin{equation*}
\#\left\{m \in[Y, 2 Y]: Q(m)>\eta(Y)^{1 / \varepsilon}\right\} \ll \varepsilon Y \tag{6.7}
\end{equation*}
$$

On the other hand, using (6.4), (6.6) and (4.1), we have

$$
\begin{equation*}
T_{Y}=Y \sum_{\eta(Y)<p<\eta(Y)^{1 / \varepsilon}} \frac{e(\alpha p) \log \eta(Y)}{p \log p}+O(\varepsilon Y) \tag{6.8}
\end{equation*}
$$

By using the well known I.M. Vinogradov theorem [10] asserting that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} e(\alpha p)=0
$$

we obtain from (6.8) that

$$
\begin{equation*}
\left|\frac{T_{Y}}{Y}\right| \leq \varepsilon+o(1) \quad(Y \rightarrow \infty) \tag{6.9}
\end{equation*}
$$

Using this, we can estimate Σ_{d}. Indeed, we have

$$
\begin{equation*}
\left|\Sigma_{d}\right| \leq\left|\sum_{\frac{x}{2 L_{d}}<m<\frac{x}{d}} e(\alpha Q(d m))\right|+\frac{x}{2^{L} d} \tag{6.10}
\end{equation*}
$$

Let ℓ_{D} be an arbitrary large number and choose L so that

$$
\eta\left(\frac{x}{2^{L} d}\right)>\ell_{D}
$$

Note that for an arbitrary large L, this inequality will hold provided x is large enough. Applying (6.9), it follows from (6.10) that

$$
\begin{equation*}
\left|\Sigma_{d}\right| \leq \frac{x}{2^{L} d}+c \varepsilon \frac{x}{d} . \tag{6.11}
\end{equation*}
$$

Using (6.11) in (6.3), we obtain that

$$
\begin{equation*}
\left|A_{D}(x)\right| \leq x\left(c \varepsilon+\frac{1}{2^{L}}\right) \prod_{p \leq D}\left(1+\frac{2}{p-1}\right)+x \sum_{d>\ell_{D}} \frac{\left|\tau_{D}(d)\right|}{d} . \tag{6.12}
\end{equation*}
$$

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{A_{D}(x)}{x}=0 \tag{6.13}
\end{equation*}
$$

Since

$$
\frac{A(x)}{x}=\frac{A_{D}(x)}{x}+O\left(b_{D}(x)\right)
$$

and recalling the definition of $b_{D}(x)$ and estimate (6.2), it follows from (6.13) that

$$
\limsup _{x \rightarrow \infty} \frac{A(x)}{x} \leq c b_{D}(x)=o(1)
$$

so that if $D \rightarrow \infty$, we immediately obtain (2.1) for the first case, that is when (6.1) holds.

It remains to consider the case

$$
\begin{equation*}
\sum_{p} \frac{\Re\left(1-f(p) p^{-i \tau}\right)}{p}=\infty \quad \text { for all real numbers } \tau \tag{6.14}
\end{equation*}
$$

First, it is clear that, using (6.5), we have

$$
\begin{align*}
E(x) & :=\sum_{x<n \leq 2 x} f(n) e(\alpha Q(n)) \\
& =\sum_{x<n \leq 2 x} f(n) e\left(\alpha Q_{1}(n)\right)+\sum_{\substack{x<n \leq 2 x \\
Q_{1}(n) \neq Q(n)}} f(n) e(\alpha Q(n)) \\
& =\sum_{x<n \leq 2 x} f(n) e\left(\alpha Q_{1}(n)\right)+o(x) \\
& =E_{1}(x)+o(x) \tag{6.15}
\end{align*}
$$

say.
In light of (6.7), we may ignore those $n \in(x, 2 x]$ for which $Q_{1}(n)>\eta(x)^{1 / \varepsilon}$, that is,

$$
\begin{equation*}
\sum_{\substack{x<n \leq 2 x \\ Q_{1}(n)>n(x)^{1 / \varepsilon}}} f(n) e\left(\alpha Q_{1}(n)\right) \ll \varepsilon x . \tag{6.16}
\end{equation*}
$$

Combining (6.15) and (6.16), we can write that

$$
\begin{equation*}
E(x)=\sum_{\eta(x)<p<\eta(x)^{1 / \varepsilon}} f(p) e(\alpha p) \Sigma_{p}+O(\varepsilon x), \tag{6.17}
\end{equation*}
$$

where, setting $\Pi_{p}:=\prod_{\eta(x)<\pi<p} \pi$,

$$
\begin{equation*}
\Sigma_{p}=\sum_{\substack{\frac{x}{p}<m \leq \frac{2 x}{p} \\\left(m, \Pi_{p}\right)=1}} f(m) . \tag{6.18}
\end{equation*}
$$

Now, consider the summation

$$
S(x)=\sum_{n \leq x} f(n)
$$

In light of (6.14), it follows from a classical theorem of Halász (see [9]) that there exists a function $\varepsilon(x)$ which tends to 0 monotonically as $x \rightarrow \infty$ such that

$$
\frac{|S(x)|}{x} \leq \varepsilon(x)
$$

which in turn implies that

$$
\begin{equation*}
\frac{|S(2 x)-S(x)|}{x} \leq \varepsilon(x) \tag{6.19}
\end{equation*}
$$

From (6.18), we get that

$$
\begin{align*}
\Sigma_{p} & =\sum_{\frac{x}{p}<m \leq \frac{2 x}{p}} f(m) \sum_{\delta \mid\left(\Pi_{p}, m\right)} \mu(\delta) \\
& =\sum_{\delta \mid \Pi_{p}} \mu(\delta) \sum_{x<m \delta p \leq 2 x} f(m \delta) \\
& =\sum_{\delta \mid \Pi_{p}} \mu(\delta) f(\delta)\left(S\left(\frac{2 x}{\delta p}\right)-S\left(\frac{x}{\delta p}\right)\right)+E r_{p} \tag{6.20}
\end{align*}
$$

where $E r_{p}$ is the error term coming from those terms for which $(m, \delta)>1$.
Thus, it follows from (6.19) and (6.20) that

$$
\begin{equation*}
\left|\Sigma_{p}\right| \leq \sum_{\delta \mid \Pi_{p}} \mu^{2}(\delta) \varepsilon\left(\frac{x}{\delta p}\right)+\left|E r_{p}\right| \leq \frac{x}{p} \sum_{\delta \mid \Pi_{p}} \frac{\mu^{2}(\delta)}{\delta}+\left|E r_{p}\right| \tag{6.21}
\end{equation*}
$$

where we used the fact that since $\max _{\substack{\eta(x)<p<\eta(x)^{1 / \varepsilon} \\ \delta \mid \Pi_{p}}} \frac{p \delta}{x} \rightarrow 0$ as $x \rightarrow \infty$, then $\varepsilon(x / \delta p)=$ $o(x / \delta p)$ uniformly for $\eta(x)<p<\eta(x)^{1 / \varepsilon}$ and $\delta \mid \Pi_{p}$.

Now, since

$$
\sum_{\delta \mid \Pi_{p}} \frac{\mu^{2}(\delta)}{\delta} \leq \prod_{\eta(x)<\pi<\eta(n)^{1 / \varepsilon}}\left(1+\frac{1}{\pi}\right) \leq c \frac{1}{\varepsilon},
$$

it follows from (6.21) that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\left|\Sigma_{p}\right| \leq \frac{c x}{p \varepsilon} \cdot o(1)+\left|E r_{p}\right| \tag{6.22}
\end{equation*}
$$

Using (6.22) in (6.17), we obtain that, as $x \rightarrow \infty$,

$$
\begin{equation*}
|E(x)| \leq \frac{c x}{\varepsilon}\left(\sum_{\eta(x)<p<\eta(x)^{1 / \varepsilon}} \frac{1}{p}\right) \cdot o(1)+V(x)+O(\varepsilon x) \tag{6.23}
\end{equation*}
$$

where

$$
V(x)=\sum_{\eta(x)<p<\eta(x)^{1 / \varepsilon}}\left|E r_{p}\right| .
$$

We will now show that

$$
\begin{equation*}
V(x)=o(x) \quad(x \rightarrow \infty) \tag{6.24}
\end{equation*}
$$

Setting $J=J(x)=\left(\eta(x), \eta(x)^{1 / \varepsilon}\right)$ and writing those $m \delta p$ such that $(m, \delta)>1$ as $m \delta p=\ell \kappa^{2} \delta_{1} p$, where κ and δ_{1} are squarefree numbers whose prime factors all belong to J, we have that

$$
V(x) \leq \sum_{\kappa \geq \eta(x)} \mu^{2}(\kappa) \sum_{\substack{x<\ell \kappa^{2} \delta_{1 p} \leq 2 x \\ p \in J \\ \pi \mid \delta_{1} \neq \pi \in J}} \mu^{2}\left(\delta_{1}\right)
$$

$$
\begin{align*}
& =\sum_{\kappa \geq \eta(x)} \mu^{2}(\kappa) \sum_{\substack{p \in J \\
\pi \mid \delta_{1} \rightarrow \pi \in J}} \mu^{2}\left(\delta_{1}\right) \sum_{\frac{x}{\kappa^{2} \delta_{1} p}<\ell \leq \frac{2 x}{\kappa^{2} \delta_{1} p}} 1 \\
& \leq c x \sum_{\kappa \geq \eta(x)} \frac{\mu^{2}(\kappa)}{\kappa^{2}} \sum_{\substack{p \in J \\
\pi \mid \delta_{1} \Rightarrow \pi \in J}} \frac{\mu^{2}\left(\delta_{1}\right)}{\delta_{1} p} . \tag{6.25}
\end{align*}
$$

Since it is easily checked that

$$
\begin{aligned}
\sum_{p \in J} \frac{1}{p} & \leq c_{1} \log \frac{1}{\varepsilon} \\
\sum_{\pi \mid \delta_{1} \Rightarrow \pi \in J} \frac{\mu^{2}\left(\delta_{1}\right)}{\delta_{1}} & \leq \prod_{\pi \in J}\left(1+\frac{1}{\pi}\right) \leq \frac{c_{2}}{\varepsilon} \log \eta(x) \\
\sum_{\kappa \geq \eta(x)} \frac{1}{\kappa^{2}} & \leq \frac{c_{3}}{\eta(x)}
\end{aligned}
$$

then using these estimates in (6.25), we obtain that

$$
V(x) \leq c_{4} x \frac{\log \eta(x)}{\eta(x)} \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}=o(x) \quad(x \rightarrow \infty)
$$

thus proving our claim (6.24).
Substituting (6.24) in (6.23), we obtain that

$$
|E(x)| \leq c x \frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \cdot o(1)+o(x)+O(\varepsilon x)=o(x) \quad(x \rightarrow \infty)
$$

from which it follows that given any arbitrarily small number $\xi>0$, there is some $x_{0}=x_{0}(\xi)$ such that

$$
\begin{equation*}
|E(X)| \leq \xi X \quad \text { for all } X>x_{0} \tag{6.26}
\end{equation*}
$$

Therefore, given any fixed large number x and letting L be the smallest integer such that $2^{L}>x / 2$, we have that, using (6.26) repetitively,

$$
|A(x)|=\left|\sum_{a=1}^{L} E\left(\frac{x}{2^{a}}\right)\right| \leq c \xi \sum_{a=1}^{L} \frac{x}{2^{a}}<c \xi x
$$

thus proving (2.1) in the second case, as requested.
This completes the proof of Theorem 8.

References

[1] N.L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some sequences of integers, Journal of Mathematical Sciences 78, no. 1 (1996), 11-17.
[2] J.M. De Koninck and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[3] J.M. De Koninck and I. Kátai, On the distribution of subsets of primes in the prime factorization of integers, Acta Arithmetica 72, no. 2 (1995), 169-200.
[4] J.M. De Koninck and I. Kátai, Construction of normal numbers by classified prime divisors of integers, Functiones et Approximatio 45.2 (2011), 231-253.
[5] J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bulletin of the Austr. Math. Soc. 84 (2011), 337-349.
[6] J.M. De Koninck and I. Kátai, Exponential sums involving the largest prime factor function, Acta Arithmetica 146 (2011), 233-245.
[7] J.M. De Koninck and I. Kátai, Construction of normal numbers using the distribution of the k-th largest prime factor, Bull. Australian Mathematical Society, to appear.
[8] G. Halász, Über die Mittelwerte multiplikativen zahlentheoretischer Funktionen, Acta Math. Acad. Scient. Hungaricae 19 (1968), 365-404.
[9] H.H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
[10] I.M. Vinogradov, The method of trigonometric sums in the theory of numbers, translated, revised and annotated by A. Davenport and K.F.Roth, Interscience, New York, 1954.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 24 septembre 2012; fichier: normal-numbers-smallest-prime-divisor-2012.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by ELTE IK.

