The uniform distribution mod 1 of sequences involving the largest prime factor function

Jean-Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$

Dedicated to Professor Antanas Laurincikas on his 65-th anniversary

Abstract

Let $P(n)$ stand for the largest prime factor of n and let f be a real valued function satisfying certain conditions. We prove that the sequence $(f(P(n)))_{n \geq 2}$ is uniformly distributed modulo 1 . We also show an analogous result if $P(n)$ is replaced by $P_{k}(n)$, the k-th largest prime factor of n.

AMS Subject Classification numbers: 11K16, 11N37, 11N41
Key words: normal numbers, largest prime factor

1 Introduction

Given a real number x, let $\{x\}$ denote its fractional part, that is $\{x\}=x-\lfloor x\rfloor$. A sequence of real numbers $\left(x_{n}\right)_{n \geq 1}$ is said to be uniformly distributed modulo 1 if, given any real numbers $0<a<b<1$, then $\lim _{N \rightarrow \infty} \frac{1}{b-a} \#\left\{n \leq N: a<\left\{x_{n}\right\}<b\right\}=1$.

For instance, given an irrational number $\alpha>0$, one can show that the sequence $(\alpha n)_{n \geq 1}$ is uniformly distributed modulo 1 . Various other examples of such sequences are given in the book of Kuipers and Niederreiter [3].

On the other hand, it is known that if $2=p_{1}<p_{2}<\cdots$ stands for the sequence of primes, then the sequence $\left(\log p_{n}\right)_{n \geq 1}$ is not uniformly distributed modulo 1 .

In this paper, we prove that if $P(n)$ stands for the largest prime factor of n and if f is a real valued function satisfying certain conditions, then the sequence $(f(P(n)))_{n \geq 2}$ is uniformly distributed modulo 1 . We also prove that if $P_{k}(n)$ stands for the k-largest prime factor of n and if τ stands for an arbitrary non zero real number, then the sequence $\left(\tau \log P_{k}(n)\right)_{n \geq 4}$ is uniformly distributed modulo 1 .

2 Main results

Theorem 1. Let $g:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function and let $f:[0, \infty) \rightarrow \mathbb{R}$ be defined by $f(u)=g(\log u)$. Assume that the function $v g^{\prime}(v)$ is increasing and tends

[^0]to infinity. For $x \geq 2$, let $R(x):=\pi(x)-l i(x)$ be the error term in the Prime Number Theorem and further assume that, for any given real number $d>0$,
\[

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{y}^{y^{1+d}} \frac{|R(u)|}{u}\left|f^{\prime}(u)\right| d u=0 \tag{2.1}
\end{equation*}
$$

\]

Then the sequence $(f(P(n)))_{n \geq 1}$ is uniformly distributed modulo 1 .
Remark 1. Observe that it is clear that (2.1) holds for $f(u):=\tau \log u$, where $\tau \neq 0$ is some fixed constant, thus implying that, as a consequence of Theorem 1, the sequence $(\tau \log P(n))_{n \geq 1}$ is uniformly distributed modulo 1.

For a positive integer n which is not a prime, we let $P_{2}(n)=P(n / P(n))$ and more generally, given an arbitrary integer $k \geq 2$ and an integer n with at least k prime divisors counting their multiplicity, let $P_{k}(n)=P_{k-1}(n / P(n))$.

Theorem 2. Given an arbitrary real number $\tau \neq 0$ and an arbitrary integer $k \geq 1$, the sequence $\left(\tau \log P_{k}(n)\right)_{n \geq 2}$ is uniformly distributed modulo 1.

3 Notation

We will use the standard notation $e(y):=\exp \{2 \pi i y\}$.
For $2 \leq y \leq x$, let

$$
\Psi(x, y)=\#\{n \leq x: P(n) \leq y\}
$$

Let $\rho(u)$ stand for the Dickman function, that is the unique continuous solution of the differential equation $u \rho^{\prime}(u)+\rho(u-1)=0$ with initial condition $\rho(u)=1$ for $0 \leq u \leq 1$.

The letter c, with or without subscript, always denotes a positive constant, but not necessarily the same at each occurrence.

4 Preliminary results

The following two results are well known and their proofs can be found in the book of Tenenbaum [4].

Lemma 1. For all $2 \leq y \leq x$, letting $u=\log x / \log y$,

$$
\Psi(x, y) \ll x \exp \{-u / 2\}
$$

Lemma 2. Given a fixed $\varepsilon>0$, then uniformly for $u=\log x / \log y \leq 1 / \varepsilon$,

$$
\Psi(x, y)=(1+o(1)) \rho(u) x \quad(x \rightarrow \infty)
$$

Finally, the following result, a proof of which can be found in the book of De Koninck and Luca [2], has the advantage of being true for all $2 \leq y \leq x$.

Lemma 3. Uniformly for $2 \leq y \leq x$,

$$
\Psi(x, y)=x \rho(u)+O\left(\frac{x}{\log y}\right) .
$$

Lemma 4. Let $(f(p))_{p \xi_{\wp}}$ be a sequence of real numbers which is such that, for any given real number $d>0$ and integer $k \geq 1$,

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \sum_{y<p<y^{1+d}} \frac{e(k f(p))}{p}=0 \tag{4.1}
\end{equation*}
$$

Then the sequence $(f(P(n)))_{n \geq 1}$ is uniformly distributed mod 1 .
Proof. We will be using the well known result of H. Weyl [5] which asserts that a sequence $\left(x_{n}\right)_{n \geq 1}$ is uniformly distributed $\bmod 1$ if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(k x_{n}\right)=0
$$

for each positive integer k.
Let k be an arbitrary positive integer and let $\varepsilon>0$ be a small number. We then write

$$
\begin{align*}
S(N) & =\frac{1}{N} \sum_{n \leq N} e(k f(P(n))) \\
& =\frac{1}{N} \sum_{\substack{n \leq N \\
P(n) \leq N^{\varepsilon}}} e(k f(P(n)))+\frac{1}{N} \sum_{\substack{n \leq N \\
N^{\varepsilon}<P(n) \leq N}} e(k f(P(n))) \\
& =S_{1}(N)+S_{2}(N), \tag{4.2}
\end{align*}
$$

say. Hence, in light of Weyl's criterion, it will be sufficient to show that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}|S(N)|=0 \tag{4.3}
\end{equation*}
$$

Now, it follows from Lemma 1 that

$$
\begin{equation*}
S_{1}(N) \leq \frac{1}{N} \Psi\left(N, N^{\varepsilon}\right) \leq \exp \left\{-\frac{1}{2 \varepsilon}\right\} \tag{4.4}
\end{equation*}
$$

On the other hand, using Lemma 3, we have

$$
\begin{aligned}
S_{2}(N) & =\frac{1}{N} \sum_{N^{\varepsilon}<p \leq N} e(k f(p)) \psi\left(\frac{N}{p}, p\right) \\
& =\sum_{N^{\varepsilon}<p \leq N}\left(\frac{e(k f(p))}{p} \rho\left(\frac{\log N / p}{\log p}\right)+O\left(\frac{1}{p \log p}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{N^{\varepsilon}<p \leq N} \frac{e(k f(p))}{p} \rho\left(\frac{\log N / p}{\log p}\right)+O\left(\frac{1}{\varepsilon \log N}\right) \\
& =S_{3}(N)+O\left(\frac{1}{\varepsilon \log N}\right)
\end{aligned}
$$

say.
It remains to show that

$$
\begin{equation*}
\left|S_{3}(N)\right|<c \varepsilon \quad \text { if } N \text { is large enough. } \tag{4.6}
\end{equation*}
$$

To do so, we proceed as follows. Since $\rho(u)$ is uniformly continuous in the closed interval $[1,1 / \varepsilon-1]$, there exists a suitable constant $\Delta>0$ (depending only on ε) such that $\left|\rho\left(u_{1}\right)-\rho\left(u_{2}\right)\right| \leq \varepsilon$ for all $u_{1}, u_{2} \in[1,1 / \varepsilon-1]$ satisfying $\left|u_{1}-u_{2}\right| \leq \Delta$. Let us now consider the sequence $\ell_{0}, \ell_{1}, \ldots, \ell_{j_{0}}$ defined by $\ell_{0}=1$ and $\ell_{j}=1+j \Delta$ for each $j=1, \ldots, j_{0}$, where j_{0} is the smallest integer such that $j_{0} \Delta \geq \varepsilon$. Further set $\mathcal{J}_{j}=\left[\ell_{j}, \ell_{j+1}\right)$ and then split the sum $S_{3}(N)$ as follows.

$$
\begin{equation*}
S_{3}(N)=\sum_{\sqrt{N}<p \leq N} \frac{e(k f(p))}{p}+\sum_{j=0}^{j_{0}-1} T_{j} \tag{4.7}
\end{equation*}
$$

where

$$
T_{j}=\sum_{\frac{\log N}{\log p} \in \mathcal{J}_{j}} \frac{e(k f(p))}{p} \rho\left(\frac{\log (N / p)}{\log p}\right) \quad j=0,1, \ldots, j_{0}-1 .
$$

Since in each T_{j}, we have

$$
\left|\rho\left(\frac{\log (N / p)}{\log p}\right)-\rho\left(\ell_{j}-1\right)\right| \leq \varepsilon
$$

it follows, recalling that $\rho\left(\ell_{j}-1\right)=\rho(j \Delta)$,

$$
\begin{equation*}
\left|T_{j}\right| \leq \rho(j \Delta)\left|\sum_{\frac{\log N}{\log p} \in \mathcal{J}_{j}} \frac{e(k f(p))}{p}\right|+\varepsilon \sum_{\frac{\log N}{\log p} \in \mathcal{J}_{j}} \frac{1}{p} . \tag{4.8}
\end{equation*}
$$

Now observe that

$$
\frac{\log N}{\log p} \in \mathcal{J}_{j} \Longleftrightarrow \ell_{j} \leq \frac{\log N}{\log p}<\ell_{j+1} \Longleftrightarrow p \in\left(N^{1 / \ell_{j+1}}, N^{1 / \ell_{j}}\right] .
$$

We then have

$$
\left|S_{3}(N)\right| \leq\left|\sum_{\sqrt{N}<p \leq N} \frac{e(k f(p))}{p}\right|+\sum_{j=0}^{j_{0}-1} \rho(j \Delta)\left|\sum_{\frac{\log N}{\log p} \in \mathcal{J}_{j}} \frac{e(k f(p))}{p}\right|
$$

$$
\begin{equation*}
+\varepsilon \sum_{j=0}^{j_{0}-1} \sum_{\frac{\log N}{\log p} \in \mathcal{J}_{j}} \frac{1}{p} . \tag{4.9}
\end{equation*}
$$

Again, observe that since in $S_{3}(N)$, we sum only over those primes p for which $\frac{\log N}{\log p} \in[2,1 / \varepsilon]$, it follows that the number of intervals \mathcal{J}_{j} 's necessary to cover the interval $[2,1 / \varepsilon]$ is finite. This is why we can allow j to vary only from 0 to $j_{0}-1$.

It follows from the condition (4.1) that the first two terms on the right hand side of (4.9) tend to 0 as $N \rightarrow \infty$, implying that

$$
\begin{align*}
\limsup _{N \rightarrow \infty}\left|S_{3}(N)\right| & \leq \varepsilon \limsup _{N \rightarrow \infty} \sum_{\frac{\log N}{\log p} \in[2,1 / \varepsilon]} \frac{1}{p} \\
& =\varepsilon \limsup _{N \rightarrow \infty} \sum_{N^{\varepsilon} \leq p \leq N} \frac{1}{p} \\
& <c \varepsilon \log \frac{1}{\varepsilon} \tag{4.10}
\end{align*}
$$

Hence, using estimates (4.4), (4.5) and (4.10) in (4.2), relation (4.3) follows immediately, thus completing the proof of Lemma 4.

Lemma 5. Given a fixed positive number $\varepsilon<1$,

$$
\#\left\{n \leq N: P(n)>N^{1-\varepsilon}\right\} \leq c \varepsilon N
$$

Proof. This follows from the fact

$$
\sum_{\substack{n=m p \leq N \\ N^{1-\varepsilon}<p \leq N}} 1 \leq N \sum_{N^{1-\varepsilon}<p \leq N} \frac{1}{p} \leq c \varepsilon N .
$$

Lemma 6. For any fixed number $\lambda \neq 0$, consider the function

$$
\kappa(y, z):=\sum_{y<p<z} \frac{e(\lambda \log p)}{p} .
$$

Then,

$$
\begin{equation*}
\sup _{z>y}|\kappa(y, z)| \rightarrow 0 \quad \text { as } y \rightarrow \infty \tag{4.11}
\end{equation*}
$$

Proof. This result follows essentially from the fact that $\sum_{p} \frac{1}{p^{i \lambda}}$ is convergent for all $\lambda \neq 0$.

5 Proof of Theorem 1

With $\pi(u)=\int_{2}^{u} \frac{d t}{\log t}+R(u)$, we get that

$$
d \pi(u)=\frac{d u}{\log u}+d R(u)
$$

Hence

$$
\begin{align*}
\sum_{y<p<y^{1+d}} \frac{e(k f(p))}{p} & =\int_{y}^{y^{1+d}} \frac{e(k f(u))}{u} d \pi(u) \\
& =\int_{y}^{y^{1+d}} \frac{e(k f(u))}{u \log u} d u+\int_{y}^{y^{1+d}} \frac{e(k f(u))}{u} d R(u) \\
& =\mathcal{J}_{1}(y)+\mathcal{J}_{2}(y) \tag{5.1}
\end{align*}
$$

say. With the change of variable $v=\log u$, so that $f(u)=f\left(e^{v}\right)=g(v)=g(\log u)$, we get

$$
\begin{equation*}
\mathcal{J}_{1}(y)=\int_{\log y}^{(1+d) \log y} \frac{e(k g(v))}{v} d v \tag{5.2}
\end{equation*}
$$

Since

$$
(e(k g(v)))^{\prime}=e(k g(v)) \cdot 2 \pi i k \cdot g^{\prime}(v)
$$

it follows from (5.2) that

$$
\begin{align*}
\mathcal{J}_{1}(y) & =\int_{\log y}^{(1+d) \log y}(e(k g(v)))^{\prime} \frac{d v}{2 \pi i k v g^{\prime}(v)} \\
& =\left.e(k g(v)) \frac{1}{2 \pi i k v g^{\prime}(v)}\right|_{\log y} ^{(1+d) \log y}-\frac{1}{2 \pi i k} \int_{\log y}^{(1+d) \log y} e(k g(v))\left(\frac{1}{v g^{\prime}(v)}\right)^{\prime} d v \\
5.3) & =\mathcal{J}_{1}^{(1)}(y)-\mathcal{J}_{1}^{(2)}(y), \tag{5.3}
\end{align*}
$$

say.
First of all, since by hypothesis, $v g^{\prime}(v) \rightarrow \infty$ as $v \rightarrow \infty$, it is clear that

$$
\begin{equation*}
\left|\mathcal{J}_{1}^{(1)}(y)\right| \rightarrow 0 \quad \text { as } y \rightarrow \infty \tag{5.4}
\end{equation*}
$$

On the other hand, since by hypothesis, $v g^{\prime}(v) \rightarrow \infty$ monotonically as $v \rightarrow \infty$, it follows that $\left(\frac{1}{v g^{\prime}(v)}\right)^{\prime}$ is negative for all real $v \geq 1$ and therefore that

$$
\begin{equation*}
\left|\mathcal{J}_{1}^{(2)}(y)\right| \leq \frac{1}{2 \pi k} \int_{\log y}^{(1+d) \log y}\left(-\frac{1}{v g^{\prime}(v)}\right)^{\prime} d v=\left.\frac{1}{2 \pi k} \frac{-1}{v g^{\prime}(v)}\right|_{\log y} ^{(1+d) \log y} \rightarrow 0 \tag{5.5}
\end{equation*}
$$

as $y \rightarrow \infty$.
On the other hand,

$$
\begin{align*}
\mathcal{J}_{2}(y) & =\int_{y}^{y^{1+d}} \frac{e(k f(u))}{u} d R(u) \\
& =\left.\frac{R(u) e(k f(u))}{u}\right|_{y} ^{y^{1+d}}-\int_{y}^{y^{1+d}} R(u)\left(\frac{e(k f(u))}{u}\right)^{\prime} d u \\
& =\mathcal{J}_{2}^{(1)}(y)-\mathcal{J}_{2}^{(2)}(y) \tag{5.6}
\end{align*}
$$

say.
Now, on the one part, we clearly have

$$
\begin{equation*}
\left|\mathcal{J}_{2}^{(1)}(y)\right| \rightarrow 0 \quad \text { as } y \rightarrow \infty . \tag{5.7}
\end{equation*}
$$

while on the other hand, since

$$
\mathcal{J}_{2}^{(2)}(y)=\int_{y}^{y^{1+d}} R(u) \frac{e(k f(u)) \cdot 2 \pi i k \cdot u f^{\prime}(u)-e(k f(u))}{u^{2}} d u
$$

it follows that

$$
\begin{equation*}
\left|\mathcal{J}_{2}^{(2)}(y)\right| \leq 2 \pi k \int_{y}^{y^{1+d}} \frac{|R(u)|}{u}\left|f^{\prime}(u)\right| d u+\int_{y}^{y^{1+d}} \frac{|R(u)|}{u^{2}} d u \rightarrow 0 \tag{5.8}
\end{equation*}
$$

as $y \rightarrow \infty$, where we used (2.1).
Combining estimates (5.4), (5.5), (5.7) and (5.8), then, in light of (5.3) and (5.6), it follows from (5.1) that

$$
\sum_{y<p<y^{1+d}} \frac{e(k f(p))}{p} \rightarrow 0 \quad \text { as } y \rightarrow \infty
$$

Thus, using Lemma 4, the theorem is proved.

6 Proof of Theorem 2

We will only consider the case $k=2$, the general case being similar.
Now, given real numbers $0<\alpha<\beta \leq 1$, let us introduce the two expressions

$$
\omega_{\alpha, \beta}(n)=\omega_{\alpha, \beta, N}(n)=\sum_{\substack{p \mid n \\ N^{\alpha}<p<N^{\beta}}} 1, \quad E_{\alpha, \beta}(N)=\sum_{N^{\alpha}<p<N^{\beta}} \frac{1}{p} .
$$

Since

$$
E_{\alpha, \beta}(N)=\log \frac{\beta}{\alpha}+o(1) \quad \text { as } N \rightarrow \infty
$$

it follows from the Turán-Kubilius inequality that

$$
\begin{equation*}
\sum_{n \leq N}\left(\omega_{\alpha, \beta}(n)-E_{\alpha, \beta}(N)\right)^{2} \leq c N E_{\alpha, \beta}(N)<c_{1} N \log \frac{\beta}{\alpha} \tag{6.1}
\end{equation*}
$$

Let $\varepsilon>0$ be an arbitrary small number. Let $\delta \in(0,1)$, to be determined later. Since $\omega_{\delta, 1}(n)=0,1$ or 2 when $P_{3}(n)<N^{\delta}$, we have that $\frac{\left(\omega_{\delta, 1}(n)-E_{\delta, 1}(N)\right)^{2}}{\left(E_{\delta, 1}(N)-2\right)^{2}} \geq 1$, thus implying, using (6.1), that

$$
\begin{align*}
\#\left\{n \leq N: P_{3}(n)<N^{\delta}\right\} & \leq \frac{1}{\left(E_{\delta, 1}(N)-2\right)^{2}} \sum_{n \leq N}\left(\omega_{\delta, 1}(n)-E_{\delta, 1}(N)\right)^{2} \\
& \leq c_{1} N \frac{1}{E_{\delta, 1}(N)} \quad \text { provided } E_{\delta, 1}(N) \geq 4 \\
& \leq c_{1} \frac{N}{\log (1 / \delta)} \\
& \leq c_{2} \varepsilon N \tag{6.2}
\end{align*}
$$

provided we choose $\delta=\exp \{-1 / \varepsilon\}$.
Let δ_{1}, δ_{2} be two small positive numbers, to be determined later. We will now count the number $T(N)$ of positive integers $n \leq N$ for which there exist two prime numbers p, q satisfying $p q \mid n$ and $N^{\delta_{1}}<p \leq q<p^{1+\delta_{2}}$. It is clear that

$$
\begin{align*}
T(N) & \leq N \sum_{N^{\delta_{1}<p \leq q<p^{1+\delta_{2}}}} \frac{1}{p q} \leq N \sum_{N^{\delta_{1}<p \leq N}} \frac{1}{p} \sum_{p \leq q<p^{1+\delta_{2}}} \frac{1}{q} \\
& \leq c N \cdot \log \frac{1}{\delta_{1}} \cdot \log \left(1+\delta_{2}\right) \\
& \leq c_{1} \varepsilon N \tag{6.3}
\end{align*}
$$

provided we choose δ_{1} and δ_{2} so that $\delta_{2} \log \frac{1}{\delta_{1}} \leq \varepsilon$; for instance, the choice $\delta_{1}=\delta$ and $\delta_{2}=\varepsilon^{2}$ is appropriate.

Note that our main goal will be to prove that

$$
A(N):=\sum_{n \leq N} e\left(\ell \log P_{2}(n)\right)=o(N)
$$

for every non zero real number ℓ. Indeed, choosing $\ell=k \tau$, with $0 \neq k \in \mathbb{Z}$, we will then be guaranteed by Weyl's criterion that $\left(\tau \log P_{2}(n)\right)_{n \geq 1}$ is uniformly distributed modulo 1, as claimed.

So, let us write each number $n \leq N$ as $n=\nu p_{2} p_{1}$, where $P(\nu)<p_{2}<p_{1}$. Choose $\varepsilon, \delta_{1}, \delta_{2}$ as above. We first drop those positive integers $n \leq N$ for which

$$
p_{1}>N^{1-\varepsilon} \quad \text { or } \quad P(\nu)<N^{\delta} \quad \text { or } \quad p_{2} \leq p_{1}<p_{2}^{1+\delta_{2}}
$$

Indeed, we can do this in light of Lemma 5, (6.2) and (6.3).
We have thus established that

$$
A(N)=A_{1}(N)+O(\varepsilon N)
$$

where $A_{1}(N)$ counts the number of positive integers $n \leq N$ counted by $A(N)$ but that were not dropped in the above process.

With the above notation, we may therefore write

$$
\begin{equation*}
\left|A_{1}(N)\right| \ll\left|\sum_{p_{1} p_{2} \leq N^{1-\delta_{1}}} e\left(\ell \log p_{2}\right) \Psi\left(\frac{N}{p_{1} p_{2}}, p_{2}\right)\right|=\left|A_{2}(N)\right|+\left|A_{3}(N)\right| \tag{6.4}
\end{equation*}
$$

where in $A_{2}(N)$, the summation runs over those primes p_{1}, p_{2} such that $\frac{N}{p_{1} p_{2}}<p_{2}$, while in $A_{3}(N)$ it runs over those such that $\frac{N}{p_{1} p_{2}} \geq p_{2}$.

Observe that for those p_{1}, p_{2} running in $A_{2}(N)$, we have

$$
\Psi\left(\frac{N}{p_{1} p_{2}}, p_{2}\right)=\left\lfloor\frac{N}{p_{1} p_{2}}\right\rfloor=\frac{N}{p_{1} p_{2}}+O(1)
$$

thus implying that

$$
\begin{align*}
A_{2}(N) & =N \sum_{\substack{p_{1} p_{2} \leq N^{1-\delta_{1}} \\
p_{1} p_{2}^{2}>N}} \frac{e\left(\ell \log p_{2}\right)}{p_{1} p_{2}}+O\left(\sum_{p_{1} p_{2} \leq N} 1\right) \\
& =N \sum_{\substack{p_{1} p_{2} \leq N^{1-\delta_{1}} \\
p_{1} p_{2}^{2}>N}} \frac{e\left(\ell \log p_{2}\right)}{p_{1} p_{2}}+O\left(\frac{N \log \log N}{\log N}\right) . \tag{6.5}
\end{align*}
$$

We have

$$
\begin{align*}
N \sum_{p_{1} p_{2}^{2}>N} \frac{e\left(\ell \log p_{2}\right)}{p_{1} p_{2}} & =N \sum_{p_{1}>N^{\delta_{1}}} \frac{1}{p_{1}} \sum_{\sqrt{N_{1}} \leq p_{2}<p_{1}} \frac{e\left(\ell \log p_{2}\right)}{p_{2}} \\
& =N \sum_{N^{\delta_{1}<p_{1}<N^{1-\delta_{1}}}} \frac{1}{p_{1}} \kappa\left(\sqrt{N / p_{1}}, p_{1}\right) . \tag{6.6}
\end{align*}
$$

In light of Lemma 6 , we have that $\left|\kappa\left(\sqrt{N / p_{1}}, p_{1}\right)\right|<\varepsilon$ if N is sufficiently large and therefore that it follows from (6.5) and (6.6) that

$$
\begin{equation*}
\left|A_{2}(N)\right| \ll \varepsilon N \sum_{N^{\delta_{1}}<p_{1}<N^{1-\delta_{1}}} \frac{1}{p_{1}}<\varepsilon N \log \frac{1}{\delta_{1}} \tag{6.7}
\end{equation*}
$$

On the other hand, using Lemma 2, we have, as $N \rightarrow \infty$,

$$
A_{3}(N)=\sum_{\substack{p_{2}<p_{1}, p_{1} p_{2} \leq N^{1-\delta_{1}} \\ p_{1} p_{2} \geq p_{2}}} e\left(\ell \log p_{2}\right) \Psi\left(\frac{N}{p_{1} p_{2}}, p_{2}\right)
$$

$$
\left.\begin{array}{l}
=(1+o(1)) \sum_{\substack{p_{2}<p_{1}, p_{1} p_{2} \leq N^{1-\delta_{1}} \\
\frac{N}{p_{1} p_{2} \geq p_{2}}}} e\left(\ell \log p_{2}\right) \frac{N}{p_{1} p_{2}} \rho\left(\frac{\log \left(N / p_{1} p_{2}\right)}{\log p_{2}}\right) \\
=\sum_{\substack{p_{2}<p_{1}, p_{1} p_{2} \leq N^{1-\delta_{1}} \\
p_{1} p_{2} \geq p_{2}}} e\left(\ell \log p_{2}\right) \frac{N}{p_{1} p_{2}} \rho\left(\frac{\log \left(N / p_{1} p_{2}\right)}{\log p_{2}}\right) \\
\\
=B_{1}(N)+o\left(B_{2}(N)\right),
\end{array} \sum_{\substack{p_{2}<p_{1}, p_{1} p_{2} \leq N^{1-\delta_{1}} \tag{6.8}\\
p_{1} p_{2} \geq p_{2}}} \frac{N}{p_{1} p_{2}}\right)
$$

say. It is clear that

$$
\begin{equation*}
B_{2}(N)<N \sum_{N^{\delta_{1}}<p_{1}<N^{1-\delta_{1}}} \frac{1}{p_{1}} \cdot \sum_{N^{\delta_{1}<p_{2}<N^{1-\delta_{1}}}} \frac{1}{p_{2}} \ll N\left(\log \frac{1}{\delta_{1}}\right)^{2} . \tag{6.9}
\end{equation*}
$$

To estimate $B_{1}(N)$, let us denote the interval $\left[N^{\delta_{1}}, \min \left(\sqrt{\frac{N}{p_{1}}}, p_{1}\right)\right]$ by $I\left(p_{1}\right)$ and then, using the same approach as that used in Theorem 1, we subdivide each interval $I\left(p_{1}\right)$ into subintervals $\mathcal{J}_{j}-1=\left[\ell_{j}-1, \ell_{j+1}-1\right)$ depending if

$$
\ell_{j}-1 \leq \nu_{p_{1}, p_{2}}:=\frac{\log \left(N / p_{1} p_{2}\right)}{\log p_{2}}=\frac{\log \left(N / p_{1}\right)}{\log p_{2}}-1 \leq \ell_{j+1}-1 .
$$

This is useful because the function $\rho\left(\nu_{p_{1}, p_{2}}\right)$ varies very little in each interval $\mathcal{J}_{j}-1=$ $\left[\ell_{j}-1, \ell_{j+1}-1\right)$, in the sense that

$$
\left|\rho\left(\nu_{p_{1}, p_{2}}\right)-\rho\left(\nu_{p_{1}, p_{2}^{*}}\right)\right|<\varepsilon_{1} \text { for all } \nu_{p_{1}, p_{2}}, \nu_{p_{1}, p_{2}^{*}} \in \mathcal{J}_{j}-1 .
$$

Taking into account the fact that the number of such intervals \mathcal{J}_{j} is bounded for each p_{1} by a constant $c\left(p_{1}\right)$ and moreover that we can conclude to the existence of a universal constant $C>0$ such that $\sup _{p_{1}} c\left(p_{1}\right) \leq C$, it follows from (6.8) and since $\left|\rho\left(\nu_{p_{1}, p_{2}}\right)-\rho(j \Delta)\right| \leq \varepsilon_{1}$, that

$$
\begin{equation*}
\left|B_{1}(N)\right| \ll \varepsilon_{1} \cdot N \sum_{p_{1}>N^{\delta_{1}}} \frac{1}{p_{1}} \sum_{j=0}^{j_{0}-1} \rho(j \Delta)\left|\sum_{\nu_{p_{1}, p_{2} \in \mathcal{J}_{j}-1}} \frac{e\left(\ell \log p_{2}\right)}{p_{2}}\right| . \tag{6.10}
\end{equation*}
$$

Hence, it follows from (6.10), (6.9) and (6.8) that

$$
\begin{equation*}
\left|A_{3}(N)\right| \ll o\left(N\left(\log \frac{1}{\delta_{1}}\right)^{2}\right)+\varepsilon_{1} \kappa_{0}(N) N \sum_{N^{\delta_{1}<p_{1}<N^{1-\delta_{1}}}} \frac{1}{p_{1}} \sum_{j} \rho(j \Delta), \tag{6.11}
\end{equation*}
$$

where

$$
\kappa_{0}(N):=\sup _{j, p_{1}}\left|\sum_{\nu_{p_{1}, p_{2}} \in-1+\mathcal{J}_{j}} \frac{e\left(\ell \log p_{2}\right)}{p_{2}}\right|
$$

tends to 0 uniformly in p_{1} and in j as $N \rightarrow \infty$. Hence, (6.11) yields

$$
\limsup _{N \rightarrow \infty} \frac{\left|A_{3}(N)\right|}{N} \leq \varepsilon_{1}\left(\log \frac{1}{\delta_{1}}\right)^{2}
$$

Since ε_{1} can be chosen arbitrarily small, we conclude that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{\left|A_{3}(N)\right|}{N}=0 \tag{6.12}
\end{equation*}
$$

Gathering estimates (6.7) and (6.12) in (6.4), the proof of Theorem 2 (in the case $k=2$) is complete.

7 Example

Given a real number $\alpha>0$, set $f(u)=(\log u)^{\alpha}$. Setting $v=\log u$, we get $g(v)=v^{\alpha}$, so that $v g^{\prime}(v)=\alpha v^{\alpha} \rightarrow \infty$ as $v \rightarrow \infty$. It remains to check that condition (2.1) is satisfied. On the one hand,

$$
\begin{equation*}
f^{\prime}(u)=\alpha(\log u)^{\alpha-1} \frac{1}{u} \tag{7.1}
\end{equation*}
$$

while on the other hand, it is known since de la Vallée-Poussin (see [1]) that, for some constant $C>0$,

$$
\begin{equation*}
R(u) \ll u \exp \{-C \sqrt{\log u}\} \tag{7.2}
\end{equation*}
$$

Using (7.1) and (7.2), we get, by setting $v=\log u$,

$$
\begin{equation*}
\int_{y}^{y^{1+d}} \frac{|R(u)|}{u}\left|f^{\prime}(u)\right| d u \leq \alpha \int_{y}^{y^{1+d}} \frac{(\log u)^{\alpha-1}}{u} e^{-C \sqrt{\log u}} d u=\alpha \int_{\log y}^{(1+d) \log y} \frac{v^{\alpha-1}}{e^{C \sqrt{v}}} d v \tag{7.3}
\end{equation*}
$$

Since this last quantity clearly tends to 0 as $y \rightarrow \infty$, condition (2.1) of Theorem 1 is satisfied, thereby implying that, if $f(m)=(\log m)^{\alpha}$, then the sequence $f(P(n))_{n \geq 1}$ is uniformly distributed mod 1 .

References

[1] Charles-Jean de la Vallée-Poussin, Sur la fonction $\zeta(s)$ de Riemann et le nombre de nombres premiers inférieurs à une limite donnée, Mém. couronnées et autres mém. publ. l'Acad. roy. Sci. Lettres Beaux-Arts Belgique 59 (1899-1900), No.1, 74 pp .
[2] J.M. De Koninck and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974.
[4] G. Tenenbaum, Introduction à la théorie analytique des nombres, Collection Échelles, Belin, 2008.
[5] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math Ann. 77 (1916), 313-352.

Jean-Marie De Koninck
Dép. de mathématiques et de statistique Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@compalg.inf.elte.hu

JMDK, le 25 mars 2013; fichier: log-largest-prime-factor-March-2013.tex

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC.
 ${ }^{2}$ Research supported by TÉT project.

