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Abstract

Let P (n) stand for the largest prime factor of n and let f be a real valued
function satisfying certain conditions. We prove that the sequence (f(P (n)))n≥2

is uniformly distributed modulo 1. We also show an analogous result if P (n) is
replaced by Pk(n), the k-th largest prime factor of n.
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1 Introduction

Given a real number x, let {x} denote its fractional part, that is {x} = x − ⌊x⌋. A
sequence of real numbers (xn)n≥1 is said to be uniformly distributed modulo 1 if, given

any real numbers 0 < a < b < 1, then lim
N→∞

1

b− a
#{n ≤ N : a < {xn} < b} = 1.

For instance, given an irrational number α > 0, one can show that the sequence
(αn)n≥1 is uniformly distributed modulo 1. Various other examples of such sequences
are given in the book of Kuipers and Niederreiter [3].

On the other hand, it is known that if 2 = p1 < p2 < · · · stands for the sequence
of primes, then the sequence (log pn)n≥1 is not uniformly distributed modulo 1.

In this paper, we prove that if P (n) stands for the largest prime factor of n
and if f is a real valued function satisfying certain conditions, then the sequence
(f(P (n)))n≥2 is uniformly distributed modulo 1. We also prove that if Pk(n) stands
for the k-largest prime factor of n and if τ stands for an arbitrary non zero real
number, then the sequence (τ logPk(n))n≥4 is uniformly distributed modulo 1.

2 Main results

Theorem 1. Let g : [1,∞) → R be a differentiable function and let f : [0,∞) → R
be defined by f(u) = g(log u). Assume that the function vg′(v) is increasing and tends
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to infinity. For x ≥ 2, let R(x) := π(x)− li(x) be the error term in the Prime Number
Theorem and further assume that, for any given real number d > 0,

(2.1) lim
y→∞

∫ y1+d

y

|R(u)|
u

|f ′(u)| du = 0.

Then the sequence (f(P (n)))n≥1 is uniformly distributed modulo 1.

Remark 1. Observe that it is clear that (2.1) holds for f(u) := τ log u, where τ ̸= 0 is
some fixed constant, thus implying that, as a consequence of Theorem 1, the sequence
(τ logP (n))n≥1 is uniformly distributed modulo 1.

For a positive integer n which is not a prime, we let P2(n) = P (n/P (n)) and more
generally, given an arbitrary integer k ≥ 2 and an integer n with at least k prime
divisors counting their multiplicity, let Pk(n) = Pk−1(n/P (n)).

Theorem 2. Given an arbitrary real number τ ̸= 0 and an arbitrary integer k ≥ 1,
the sequence (τ logPk(n))n≥2 is uniformly distributed modulo 1.

3 Notation

We will use the standard notation e(y) := exp{2πiy}.
For 2 ≤ y ≤ x, let

Ψ(x, y) = #{n ≤ x : P (n) ≤ y}.
Let ρ(u) stand for the Dickman function, that is the unique continuous solution of
the differential equation uρ′(u) + ρ(u − 1) = 0 with initial condition ρ(u) = 1 for
0 ≤ u ≤ 1.

The letter c, with or without subscript, always denotes a positive constant, but
not necessarily the same at each occurrence.

4 Preliminary results

The following two results are well known and their proofs can be found in the book
of Tenenbaum [4].

Lemma 1. For all 2 ≤ y ≤ x, letting u = log x/ log y,

Ψ(x, y) ≪ x exp{−u/2}.

Lemma 2. Given a fixed ε > 0, then uniformly for u = log x/ log y ≤ 1/ε,

Ψ(x, y) = (1 + o(1))ρ(u)x (x→ ∞).

Finally, the following result, a proof of which can be found in the book of De
Koninck and Luca [2], has the advantage of being true for all 2 ≤ y ≤ x.
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Lemma 3. Uniformly for 2 ≤ y ≤ x,

Ψ(x, y) = xρ(u) +O

(
x

log y

)
.

Lemma 4. Let (f(p))p∈℘ be a sequence of real numbers which is such that, for any
given real number d > 0 and integer k ≥ 1,

(4.1) lim
y→∞

∑
y<p<y1+d

e(kf(p))

p
= 0.

Then the sequence (f(P (n)))n≥1 is uniformly distributed mod 1.

Proof. We will be using the well known result of H.Weyl [5] which asserts that a
sequence (xn)n≥1 is uniformly distributed mod 1 if and only if

lim
N→∞

1

N

N∑
n=1

e(kxn) = 0

for each positive integer k.
Let k be an arbitrary positive integer and let ε > 0 be a small number. We then

write

S(N) =
1

N

∑
n≤N

e(kf(P (n)))

=
1

N

∑
n≤N

P (n)≤Nε

e(kf(P (n))) +
1

N

∑
n≤N

Nε<P (n)≤N

e(kf(P (n)))

= S1(N) + S2(N),(4.2)

say. Hence, in light of Weyl’s criterion, it will be sufficient to show that

(4.3) lim sup
N→∞

|S(N)| = 0.

Now, it follows from Lemma 1 that

(4.4) S1(N) ≤ 1

N
Ψ(N,N ε) ≤ exp

{
− 1

2ε

}
.

On the other hand, using Lemma 3, we have

S2(N) =
1

N

∑
Nε<p≤N

e(kf(p))ψ

(
N

p
, p

)
=

∑
Nε<p≤N

(
e(kf(p))

p
ρ

(
logN/p

log p

)
+O

(
1

p log p

))
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=
∑

Nε<p≤N

e(kf(p))

p
ρ

(
logN/p

log p

)
+O

(
1

ε logN

)
= S3(N) +O

(
1

ε logN

)
,(4.5)

say.
It remains to show that

(4.6) |S3(N)| < c ε if N is large enough.

To do so, we proceed as follows. Since ρ(u) is uniformly continuous in the closed
interval [1, 1/ε − 1], there exists a suitable constant ∆ > 0 (depending only on ε)
such that |ρ(u1)− ρ(u2)| ≤ ε for all u1, u2 ∈ [1, 1/ε− 1] satisfying |u1 − u2| ≤ ∆. Let
us now consider the sequence ℓ0, ℓ1, . . . , ℓj0 defined by ℓ0 = 1 and ℓj = 1 + j∆ for
each j = 1, . . . , j0, where j0 is the smallest integer such that j0∆ ≥ ε. Further set
Jj = [ℓj, ℓj+1) and then split the sum S3(N) as follows.

(4.7) S3(N) =
∑

√
N<p≤N

e(kf(p))

p
+

j0−1∑
j=0

Tj,

where

Tj =
∑

logN
log p

∈Jj

e(kf(p))

p
ρ

(
log(N/p)

log p

)
j = 0, 1, . . . , j0 − 1.

Since in each Tj, we have∣∣∣∣ρ( log(N/p)

log p

)
− ρ(ℓj − 1)

∣∣∣∣ ≤ ε,

it follows, recalling that ρ(ℓj − 1) = ρ(j∆),

(4.8) |Tj| ≤ ρ(j∆)

∣∣∣∣∣∣∣
∑

logN
log p

∈Jj

e(kf(p))

p

∣∣∣∣∣∣∣+ ε
∑

logN
log p

∈Jj

1

p
.

Now observe that

logN

log p
∈ Jj ⇐⇒ ℓj ≤

logN

log p
< ℓj+1 ⇐⇒ p ∈ (N1/ℓj+1 , N1/ℓj ].

We then have

|S3(N)| ≤

∣∣∣∣∣∣
∑

√
N<p≤N

e(kf(p))

p

∣∣∣∣∣∣+
j0−1∑
j=0

ρ(j∆)

∣∣∣∣∣∣∣
∑

logN
log p

∈Jj

e(kf(p))

p

∣∣∣∣∣∣∣
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+ε

j0−1∑
j=0

∑
logN
log p

∈Jj

1

p
.(4.9)

Again, observe that since in S3(N), we sum only over those primes p for which
logN
log p

∈ [2, 1/ε], it follows that the number of intervals Jj’s necessary to cover the

interval [2, 1/ε] is finite. This is why we can allow j to vary only from 0 to j0 − 1.
It follows from the condition (4.1) that the first two terms on the right hand side

of (4.9) tend to 0 as N → ∞, implying that

lim sup
N→∞

|S3(N)| ≤ ε lim sup
N→∞

∑
logN
log p

∈[2,1/ε]

1

p

= ε lim sup
N→∞

∑
Nε≤p≤N

1

p

< cε log
1

ε
.(4.10)

Hence, using estimates (4.4), (4.5) and (4.10) in (4.2), relation (4.3) follows immedi-
ately, thus completing the proof of Lemma 4.

Lemma 5. Given a fixed positive number ε < 1,

#{n ≤ N : P (n) > N1−ε} ≤ cεN.

Proof. This follows from the fact∑
n=mp≤N

N1−ε<p≤N

1 ≤ N
∑

N1−ε<p≤N

1

p
≤ cεN.

Lemma 6. For any fixed number λ ̸= 0, consider the function

κ(y, z) :=
∑

y<p<z

e(λ log p)

p
.

Then,

(4.11) sup
z>y

|κ(y, z)| → 0 as y → ∞.

Proof. This result follows essentially from the fact that
∑
p

1

piλ
is convergent for all

λ ̸= 0.
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5 Proof of Theorem 1

With π(u) =

∫ u

2

dt

log t
+R(u), we get that

d π(u) =
du

log u
+ dR(u).

Hence ∑
y<p<y1+d

e(kf(p))

p
=

∫ y1+d

y

e(kf(u))

u
d π(u)

=

∫ y1+d

y

e(kf(u))

u log u
du+

∫ y1+d

y

e(kf(u))

u
dR(u)

= J1(y) + J2(y),(5.1)

say. With the change of variable v = log u, so that f(u) = f(ev) = g(v) = g(log u),
we get

(5.2) J1(y) =

∫ (1+d) log y

log y

e(kg(v))

v
dv.

Since
(e(kg(v)))′ = e(kg(v)) · 2πik · g′(v),

it follows from (5.2) that

J1(y) =

∫ (1+d) log y

log y

(e(kg(v)))′
dv

2πikvg′(v)

= e(kg(v))
1

2πikvg′(v)

∣∣∣∣(1+d) log y

log y

− 1

2πik

∫ (1+d) log y

log y

e(kg(v))

(
1

vg′(v)

)′

dv

= J (1)
1 (y)− J (2)

1 (y),(5.3)

say.
First of all, since by hypothesis, vg′(v) → ∞ as v → ∞, it is clear that

(5.4)
∣∣∣J (1)

1 (y)
∣∣∣→ 0 as y → ∞.

On the other hand, since by hypothesis, vg′(v) → ∞ monotonically as v → ∞, it

follows that

(
1

vg′(v)

)′

is negative for all real v ≥ 1 and therefore that

(5.5)
∣∣∣J (2)

1 (y)
∣∣∣ ≤ 1

2πk

∫ (1+d) log y

log y

(
− 1

vg′(v)

)′

dv =
1

2πk

−1

vg′(v)

∣∣∣∣(1+d) log y

log y

→ 0,
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as y → ∞.
On the other hand,

J2(y) =

∫ y1+d

y

e(kf(u))

u
dR(u)

=
R(u)e(kf(u))

u

∣∣∣∣y1+d

y

−
∫ y1+d

y

R(u)

(
e(kf(u))

u

)′

du

= J (1)
2 (y)− J (2)

2 (y),(5.6)

say.
Now, on the one part, we clearly have

(5.7)
∣∣∣J (1)

2 (y)
∣∣∣→ 0 as y → ∞.

while on the other hand, since

J (2)
2 (y) =

∫ y1+d

y

R(u)
e(kf(u)) · 2πik · uf ′(u)− e(kf(u))

u2
du,

it follows that

(5.8)
∣∣∣J (2)

2 (y)
∣∣∣ ≤ 2πk

∫ y1+d

y

|R(u)|
u

|f ′(u)| du+
∫ y1+d

y

|R(u)|
u2

du→ 0,

as y → ∞, where we used (2.1).
Combining estimates (5.4), (5.5), (5.7) and (5.8), then, in light of (5.3) and (5.6),

it follows from (5.1) that ∑
y<p<y1+d

e(kf(p))

p
→ 0 as y → ∞.

Thus, using Lemma 4, the theorem is proved.

6 Proof of Theorem 2

We will only consider the case k = 2, the general case being similar.
Now, given real numbers 0 < α < β ≤ 1, let us introduce the two expressions

ωα,β(n) = ωα,β,N(n) =
∑
p|n

Nα<p<Nβ

1, Eα,β(N) =
∑

Nα<p<Nβ

1

p
.

Since

Eα,β(N) = log
β

α
+ o(1) as N → ∞,
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it follows from the Turán-Kubilius inequality that

(6.1)
∑
n≤N

(ωα,β(n)− Eα,β(N))2 ≤ cNEα,β(N) < c1N log
β

α
.

Let ε > 0 be an arbitrary small number. Let δ ∈ (0, 1), to be determined later.

Since ωδ,1(n) = 0, 1 or 2 when P3(n) < N δ, we have that
(ωδ,1(n)− Eδ,1(N))2

(Eδ,1(N)− 2)2
≥ 1,

thus implying, using (6.1), that

#{n ≤ N : P3(n) < N δ} ≤ 1

(Eδ,1(N)− 2)2

∑
n≤N

(ωδ,1(n)− Eδ,1(N))2

≤ c1N
1

Eδ,1(N)
provided Eδ,1(N) ≥ 4,

≤ c1
N

log(1/δ)

≤ c2εN,(6.2)

provided we choose δ = exp{−1/ε}.
Let δ1, δ2 be two small positive numbers, to be determined later. We will now

count the number T (N) of positive integers n ≤ N for which there exist two prime
numbers p, q satisfying pq|n and N δ1 < p ≤ q < p1+δ2 . It is clear that

T (N) ≤ N
∑

Nδ1<p≤q<p1+δ2

1

pq
≤ N

∑
Nδ1<p≤N

1

p

∑
p≤q<p1+δ2

1

q

≤ cN · log 1

δ1
· log(1 + δ2)

≤ c1εN,(6.3)

provided we choose δ1 and δ2 so that δ2 log
1

δ1
≤ ε; for instance, the choice δ1 = δ and

δ2 = ε2 is appropriate.
Note that our main goal will be to prove that

A(N) :=
∑
n≤N

e(ℓ logP2(n)) = o(N)

for every non zero real number ℓ. Indeed, choosing ℓ = kτ , with 0 ̸= k ∈ Z, we will
then be guaranteed by Weyl’s criterion that (τ logP2(n))n≥1 is uniformly distributed
modulo 1, as claimed.

So, let us write each number n ≤ N as n = νp2p1, where P (ν) < p2 < p1. Choose
ε, δ1, δ2 as above. We first drop those positive integers n ≤ N for which

p1 > N1−ε or P (ν) < N δ or p2 ≤ p1 < p1+δ2
2 .
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Indeed, we can do this in light of Lemma 5, (6.2) and (6.3).
We have thus established that

A(N) = A1(N) +O(εN),

where A1(N) counts the number of positive integers n ≤ N counted by A(N) but
that were not dropped in the above process.

With the above notation, we may therefore write

(6.4) |A1(N)| ≪

∣∣∣∣∣∣
∑

p1p2≤N1−δ1

e(ℓ log p2)Ψ

(
N

p1p2
, p2

)∣∣∣∣∣∣ = |A2(N)|+ |A3(N)| ,

where in A2(N), the summation runs over those primes p1, p2 such that N
p1p2

< p2,

while in A3(N) it runs over those such that N
p1p2

≥ p2.

Observe that for those p1, p2 running in A2(N), we have

Ψ

(
N

p1p2
, p2

)
=

⌊
N

p1p2

⌋
=

N

p1p2
+O(1),

thus implying that

A2(N) = N
∑

p1p2≤N1−δ1

p1p
2
2>N

e(ℓ log p2)

p1p2
+O

( ∑
p1p2≤N

1

)

= N
∑

p1p2≤N1−δ1

p1p
2
2>N

e(ℓ log p2)

p1p2
+O

(
N log logN

logN

)
.(6.5)

We have

N
∑

p1p22>N

e(ℓ log p2)

p1p2
= N

∑
p1>Nδ1

1

p1

∑
√

N
p1

≤p2<p1

e(ℓ log p2)

p2

= N
∑

Nδ1<p1<N1−δ1

1

p1
κ(
√
N/p1, p1).(6.6)

In light of Lemma 6, we have that |κ(
√
N/p1, p1)| < ε if N is sufficiently large and

therefore that it follows from (6.5) and (6.6) that

(6.7) |A2(N)| ≪ εN
∑

Nδ1<p1<N1−δ1

1

p1
< εN log

1

δ1
.

On the other hand, using Lemma 2, we have, as N → ∞,

A3(N) =
∑

p2<p1, p1p2≤N1−δ1

N
p1p2

≥p2

e(ℓ log p2)Ψ

(
N

p1p2
, p2

)

9



= (1 + o(1))
∑

p2<p1, p1p2≤N1−δ1

N
p1p2

≥p2

e(ℓ log p2)
N

p1p2
ρ

(
log(N/p1p2)

log p2

)

=
∑

p2<p1, p1p2≤N1−δ1

N
p1p2

≥p2

e(ℓ log p2)
N

p1p2
ρ

(
log(N/p1p2)

log p2

)

+o

 ∑
p2<p1, p1p2≤N1−δ1

N
p1p2

≥p2

N

p1p2


= B1(N) + o(B2(N)),(6.8)

say. It is clear that

(6.9) B2(N) < N
∑

Nδ1<p1<N1−δ1

1

p1
·

∑
Nδ1<p2<N1−δ1

1

p2
≪ N

(
log

1

δ1

)2

.

To estimate B1(N), let us denote the interval

[
N δ1 ,min

(√
N

p1
, p1

)]
by I(p1) and

then, using the same approach as that used in Theorem 1, we subdivide each interval
I(p1) into subintervals Jj − 1 = [ℓj − 1, ℓj+1 − 1) depending if

ℓj − 1 ≤ νp1,p2 :=
log(N/p1p2)

log p2
=

log(N/p1)

log p2
− 1 ≤ ℓj+1 − 1.

This is useful because the function ρ(νp1,p2) varies very little in each interval Jj −1 =
[ℓj − 1, ℓj+1 − 1), in the sense that∣∣ρ(νp1,p2)− ρ(νp1,p∗2)

∣∣ < ε1 for all νp1,p2 , νp1,p∗2 ∈ Jj − 1.

Taking into account the fact that the number of such intervals Jj is bounded for
each p1 by a constant c(p1) and moreover that we can conclude to the existence of a
universal constant C > 0 such that supp1 c(p1) ≤ C, it follows from (6.8) and since
|ρ(νp1,p2)− ρ(j∆)| ≤ ε1, that

(6.10) |B1(N)| ≪ ε1 ·N
∑

p1>Nδ1

1

p1

j0−1∑
j=0

ρ(j∆)

∣∣∣∣∣∣
∑

νp1,p2∈Jj−1

e(ℓ log p2)

p2

∣∣∣∣∣∣ .
Hence, it follows from (6.10), (6.9) and (6.8) that

(6.11) |A3(N)| ≪ o

(
N

(
log

1

δ1

)2
)

+ ε1κ0(N)N
∑

Nδ1<p1<N1−δ1

1

p1

∑
j

ρ(j∆),
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where

κ0(N) := sup
j,p1

∣∣∣∣∣∣
∑

νp1,p2∈−1+J j

e(ℓ log p2)

p2

∣∣∣∣∣∣
tends to 0 uniformly in p1 and in j as N → ∞. Hence, (6.11) yields

lim sup
N→∞

|A3(N)|
N

≤ ε1

(
log

1

δ1

)2

.

Since ε1 can be chosen arbitrarily small, we conclude that

(6.12) lim sup
N→∞

|A3(N)|
N

= 0.

Gathering estimates (6.7) and (6.12) in (6.4), the proof of Theorem 2 (in the case
k = 2) is complete.

7 Example

Given a real number α > 0, set f(u) = (log u)α. Setting v = log u, we get g(v) = vα,
so that vg′(v) = αvα → ∞ as v → ∞. It remains to check that condition (2.1) is
satisfied. On the one hand,

(7.1) f ′(u) = α(log u)α−1 1

u
,

while on the other hand, it is known since de la Vallée-Poussin (see [1]) that, for some
constant C > 0,

(7.2) R(u) ≪ u exp{−C
√
log u}.

Using (7.1) and (7.2), we get, by setting v = log u,
(7.3)∫ y1+d

y

|R(u)|
u

|f ′(u)| du ≤ α

∫ y1+d

y

(log u)α−1

u
e−C

√
log u du = α

∫ (1+d) log y

log y

vα−1

eC
√
v
dv.

Since this last quantity clearly tends to 0 as y → ∞, condition (2.1) of Theorem 1 is
satisfied, thereby implying that, if f(m) = (logm)α, then the sequence f(P (n))n≥1 is
uniformly distributed mod 1.
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[5] H.Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math Ann. 77 (1916),
313-352.

Jean-Marie De Koninck Imre Kátai
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