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Abstract

Let P(n) stand for the largest prime factor of n and let f be a real valued
function satisfying certain conditions. We prove that the sequence (f(P(n)))n>2
is uniformly distributed modulo 1. We also show an analogous result if P(n) is
replaced by Py(n), the k-th largest prime factor of n.
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1 Introduction

Given a real number z, let {z} denote its fractional part, that is {z} = x — |z]. A
sequence of real numbers (x,,),>1 is said to be uniformly distributed modulo 1 if, given
any real numbers 0 < a < b < 1, then A}im #{n<N:a<{z,} <b}=1

—oc0 00— a

For instance, given an irrational number a > 0, one can show that the sequence
(an)p>1 is uniformly distributed modulo 1. Various other examples of such sequences
are given in the book of Kuipers and Niederreiter [3].

On the other hand, it is known that if 2 = p; < ps < --- stands for the sequence
of primes, then the sequence (logp,)n>1 is not uniformly distributed modulo 1.

In this paper, we prove that if P(n) stands for the largest prime factor of n
and if f is a real valued function satisfying certain conditions, then the sequence
(f(P(n)))n>2 is uniformly distributed modulo 1. We also prove that if Py(n) stands
for the k-largest prime factor of n and if 7 stands for an arbitrary non zero real
number, then the sequence (71og Py(n)),>4 is uniformly distributed modulo 1.

2 Main results

Theorem 1. Let g : [1,00) — R be a differentiable function and let f : [0,00) — R
be defined by f(u) = g(logu). Assume that the function vg'(v) is increasing and tends
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to infinity. For x > 2, let R(x) := w(x) —li(x) be the error term in the Prime Number
Theorem and further assume that, for any given real number d > 0,

" R(w)|
u

Y

(2.1) lim

Y—00

|f ()] du = 0.

Then the sequence (f(P(n)))n>1 is uniformly distributed modulo 1.

Remark 1. Observe that it is clear that (2.1) holds for f(u) := Tlogu, where T # 0 is
some fixed constant, thus implying that, as a consequence of Theorem 1, the sequence
(1log P(n))n>1 is uniformly distributed modulo 1.

For a positive integer n which is not a prime, we let Py(n) = P(n/P(n)) and more
generally, given an arbitrary integer kK > 2 and an integer n with at least k£ prime
divisors counting their multiplicity, let Py(n) = Py_1(n/P(n)).

Theorem 2. Given an arbitrary real number 7 # 0 and an arbitrary integer k > 1,
the sequence (1 log Pi(n))n>2 is uniformly distributed modulo 1.

3 Notation

We will use the standard notation e(y) := exp{2miy}.

For 2 <y <, let

U(z,y) =#{n <z: P(n) <y}

Let p(u) stand for the Dickman function, that is the unique continuous solution of
the differential equation up’(u) + p(u — 1) = 0 with initial condition p(u) = 1 for
0<u<l.

The letter ¢, with or without subscript, always denotes a positive constant, but
not necessarily the same at each occurrence.

4 Preliminary results

The following two results are well known and their proofs can be found in the book
of Tenenbaum [4].

Lemma 1. For all 2 <y < z, letting u = logz/logy,
U(x,y) < xexp{—u/2}.
Lemma 2. Given a fizred € > 0, then uniformly for u =logz/logy < 1/e,
U(z,y) = (1+o1))pwz  (z— o).

Finally, the following result, a proof of which can be found in the book of De
Koninck and Luca [2], has the advantage of being true for all 2 < y < z.
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Lemma 3. Uniformly for 2 <y < x,

U(z,y) :xp(u)+0( ’ )

logy

Lemma 4. Let (f(p))pep be a sequence of real numbers which is such that, for any
gien real number d > 0 and integer k > 1,

(4.1) Tim, > e(kj;&:o.

Then the sequence (f(P(n)))n>1 is uniformly distributed mod 1.

Proof. We will be using the well known result of H. Weyl [5] which asserts that a
sequence (z,),>1 is uniformly distributed mod 1 if and only if

1 N
i,y 2 elhen) =0

n=1

for each positive integer k.
Let k£ be an arbitrary positive integer and let € > 0 be a small number. We then
write

SIN) = - 3 elhf(P())

1 = 1
= ¥ ; e(kf(P(n) + + ; e(kf(P(n)))
P(n)<NE NE<P(n)<N
(4.2) = Si(N) + Sy(N),

say. Hence, in light of Weyl’s criterion, it will be sufficient to show that

(4.3) limsup |S(N)| = 0.

N—oo

Now, it follows from Lemma 1 that
(4.4) SI(N) < ~w(N, N*) < L
. 1 =N 5 S exp 9 .

On the other hand, using Lemma 3, we have

S = 5 X hfone (o)

Ne<p<N

- 2 (5 ) o )




- ¥ (k1) , (loi;\f;p) Lo (dolgN)

Ne<p<N p

(4.5) _ &mm+o(déN),

say.
It remains to show that

(4.6) |S3(N)| < ce if N is large enough.

To do so, we proceed as follows. Since p(u) is uniformly continuous in the closed
interval [1,1/e — 1], there exists a suitable constant A > 0 (depending only on ¢)
such that [p(uy) — p(uz)| < € for all uy,us € [1,1/e — 1] satisfying |u; — uz| < A. Let
us now consider the sequence £y, ¢y, ...,¢;, defined by ¢y, = 1 and ¢; = 1 + jA for
each j = 1,..., 9, where jy is the smallest integer such that joA > . Further set
J; = [{j,¢;+1) and then split the sum S3(NV) as follows.

(47) s =y, ) !

VN<p<N

e(k log(N
3 (f(p))p( g(N/p)

) j=0,1,...,jo— 1.
P log p

log N .
log p €J;

Since in each T}, we have
log(N/p)
————= ) —p; —1)| <
‘p< log p ol =) =<
it follows, recalling that p(¢; — 1) = p(jA),

(4.8) T < p(GA) | D fﬁé@ﬁ +e >

log N . log N .
log p EJJ logp 6J7

SEE

Now observe that
log N
log p

We then have

log N
€Jj = (; < % < ljy, = p e (NYa+ NV4),

|S5(N)]
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Jo—1

(4.9) +e Z

=0 log N .
J Tosp €Jj

SEE

Again, observe that since in S3(N), we sum only over those primes p for which
b - JZ € [2,1/¢], it follows that the number of intervals J,’s necessary to cover the
interval [2,1/¢] is finite. This is why we can allow j to vary only from 0 to jo — 1.

It follows from the condition (4.1) that the first two terms on the right hand side

of (4.9) tend to 0 as N — oo, implying that

1
limsup [S3(N)| < elimsup Z -

N—o00 N—o0
- T e Nepp1/e)
1
= climsup E —
N—o0 NESPSAfp
1
(4.10) < celog—.
€

Hence, using estimates (4.4), (4.5) and (4.10) in (4.2), relation (4.3) follows immedi-
ately, thus completing the proof of Lemma 4. O]

Lemma 5. Given a fized positive number ¢ < 1,
#{n < N:P(n) > N"°} <ceN.

Proof. This follows from the fact

1
E 1<N E — < ceN.
n=mp<N N175<pSN p
Nl—e<p<N

Lemma 6. For any fized number A # 0, consider the function

e(Alogp
wyz) = 3 ALED)
y<p<z p
Then,
(4.11) sup |k(y,z)] = 0 asy — oo.
z>y

1
Proof. This result follows essentially from the fact that E — 1s convergent for all
p’L
p

A 0. O



5 Proof of Theorem 1

With 7(u / —— + R(u), we get that
logt
dm(u) = du + d R(u).
e log u
Hence

_ / e(kf(u) 4 / (kS (@) 4 pewy

ulogu

(5.1) = Ji(y) + F(v),

say. With the change of variable v = logu, so that f(u) = f(e') = g(v) = g(logu),
we get

(1+d)logy v
(5.2) Tily) = / (k) 4,

ogy v

Since
(e(kg(v))) = e(kg(v)) - 2mik - ¢'(v),

it follows from (5.2) that

(1+d)logy v
Ti(y) = / (e(kg(v))) =2

gy 2mikvg' (v)
1 (1+d)logy 1 (1+d) logy 1 /
= elkg(v)) g - k d
6( g(”))Qﬂ_Zk,vg/(v) logy 27.[_Zk, /];)gy 6( g(U)) (Ug/(v)) v
(53) = 7 ) -T2,

say.
First of all, since by hypothesis, vg’(v) — 0o as v — o0, it is clear that

(5.4) ‘jl(l)(y)’ —0 as y — oo.

On the other hand, since by hypothesis, vg'(v) — oo monotonically as v — oo, it
/

follows that (

1

; ) is negative for all real v > 1 and therefore that
vg'(v)

1 (1+d)logy

65) |7 w)| < 5 (_

277_]{ logy

1 / 1 _1 (1+d) logy
p ) dv=— — — 0,
/Ug (U) g (/U) logy

)
3
eSS
S
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as y — 0o.
On the other hand,

aw) = [ D anw

(5.6) = 5 — K ),

say.

(5.7) ‘.72(1)(34)’ —0 as y — oQ.

while on the other hand, since

7 = / gy SRS () 2k uf ) = elkf (@)

u?

it follows that

14+d

G| <o [0 E e [0 Gy

y u u

(5.8)

as y — 0o, where we used (2.1).
Combining estimates (5.4), (5.5), (5.7) and (5.8), then, in light of (5.3) and (5.6),
it follows from (5.1) that

Z —e(k:f(p)) —0 asy— oo.

y<p<y'td p

Thus, using Lemma 4, the theorem is proved.

6 Proof of Theorem 2

We will only consider the case k = 2, the general case being similar.
Now, given real numbers 0 < a < § < 1, let us introduce the two expressions

wap(n) =wapn(n)= > 1, Eup(N)= > 1

pln Ne<p<NB p
Ne<p<NB

Since
E,3(N) = logé +o(1) as N — oo,
a
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it follows from the Turdan-Kubilius inequality that

(6.1) Z (Wa3(n) — Eq3(N))? < ¢NE,3(N) < clNlogg.

n<N

Let € > 0 be an arbitrary small number. Let § € (0,1), to be determined later.
(ws1(n) = Es1(N))*
(Esa(N) =22 =

Since ws1(n) = 0, 1 or 2 when P3(n) < N°, we have that

thus implying, using (6.1), that

1
n < N:Pyn) <N’} < ws1(n) — Es1(N))?
#{ = 3( ) } — (E(s,l(N) _2)2 7;\7( 5,1( ) 5,1( ))
1
< _ i >
< CINEM(N) provided Ejs,(N) > 4,
< o N
= og(1/9)
(62) S CQ&N,

provided we choose § = exp{—1/¢}.

Let d1,d2 be two small positive numbers, to be determined later. We will now
count the number T'(N) of positive integers n < N for which there exist two prime
numbers p, ¢ satisfying pgln and N° < p < ¢ < p**%. It is clear that

T(N) < N ) iSNZ%Zé

No1<p<g<pitoe NO1<p<N * p<g<pl T2

IN

1

cN -log 5 log(1 + d2)
1

(6.3) < ceN,

1

provided we choose d; and d5 so that d; log 5 < ¢g; for instance, the choice d; = ¢ and
1

dy = €2 is appropriate.

Note that our main goal will be to prove that

A(N) = Z e(llog Py(n)) = o(N)

n<N

for every non zero real number ¢. Indeed, choosing ¢ = k7, with 0 # k € Z, we will
then be guaranteed by Weyl’s criterion that (7log P2(n)),>1 is uniformly distributed
modulo 1, as claimed.

So, let us write each number n < N as n = vpsp;, where P(v) < py < p;. Choose
€,01,09 as above. We first drop those positive integers n < N for which

pr > N7 or P(V)<N5 or p2§p1<p5+52.
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Indeed, we can do this in light of Lemma 5, (6.2) and (6.3).
We have thus established that

A(N) = A, (N) + O(eN),

where A;(N) counts the number of positive integers n < N counted by A(N) but
that were not dropped in the above process.
With the above notation, we may therefore write

64 AN <| ewlogpg)w(ip,pz) — | Ao(N)]| + [As(V)]

p1p2 <N~ P1P2

where in Ay(N), the summation runs over those primes py, ps such that % < pa,
while in A3(N) it runs over those such that Z%m > po.

Observe that for those py, p running in Ay(N), we have

N N N
P1p2 P1p2 P1p2
thus implying that

ANy = N Y MH)(Z 1)

P1p2

p1P2§N1761 p1p2<N
p1P§>N
e(llog ps) (N log log N)
6.5 = N -+ O —).
(6.5) Z P1D2 log N

p1pa<N1T91
p1p§>N

We have
e(f log pg) 1 e(ﬁ log p2)
N E — 2% = N E —1 E _

D1p2 b2
2
p1p3 >N p1>N°1 %§P2<P1

(6.6) - N Y kN )

No1<p<N1=01

In light of Lemma 6, we have that |x(y/N/p1,p1)| < € if N is sufficiently large and
therefore that it follows from (6.5) and (6.6) that

1 1
(6.7) A (N)|<eN > =< eNloga

1
No1<p;<N'—1 p

On the other hand, using Lemma 2, we have, as N — oo,

A3(N) = > e(l1og py) W (%, pg)

pa<p1, p1pa<N1701
P1P3 >p2



= (1+o(1)) Z e(l logPQ)pi\;Qp (10g§(])\;/§21p2))

pa<p1, p1pa<N'1791

pLZPQ
1P2
N (log(N/pips
DS e
s P1p2 log pa
p2<p1, P1P2<N 1
LZPQ
pP1P2

N
+o ) =
P12
po<p1, p1pe<N1 01

N
p1p2 =P2

(6.8) = Bi(N)+ o(By(N)),
say. It is clear that
1 1 1\’
(6.9) By(Ny<N > —- >  —<N(lg=] .
5 -5 P10 s 1-s, P2 01
N°1<pi<N'~°1 N1 <po<N+7°1

N
To estimate Bi(N), let us denote the interval [N51, min (1 / —,pl)] by I(p;) and
b1

then, using the same approach as that used in Theorem 1, we subdivide each interval
I(p1) into subintervals J; — 1= [¢; — 1,{;4; — 1) depending if

log(V, log(V,
b —1<up = BWV/p1p) = osV/p) — 1< -1

log po log po

This is useful because the function p(v, ,,) varies very little in each interval J; — 1 =
[¢; — 1,041 — 1), in the sense that

}P(Vphm) - p(”php;) < g, for all Vp1,p2> Vp1,ps € Ji— L

Taking into account the fact that the number of such intervals J; is bounded for
each p; by a constant ¢(p;) and moreover that we can conclude to the existence of a
universal constant C' > 0 such that sup,, c(p1) < C, it follows from (6.8) and since

|p<VP1,P2) - :0<jA>| S €1, that

jo—1

6100 IBMI<aN Y LY ppa)| Y dEn)

p1>NO1 Vp1.pp €51 P2
Hence, it follows from (6.10), (6.9) and (6.8) that
61 1) <o (N (1og L) )+ como(ay S Ly ua)
. 3 g51 1Ko PUIS),

b1

No1<p<N1-91 J
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where

e({logps)

Ko(N) 1= sup p
2

J:p1 Upy,pe €—14+T ;
tends to 0 uniformly in p; and in j as N — co. Hence, (6.11) yields
- |[As(N))] 1)’
1 — < log— | .
s =y <o (e
Since €1 can be chosen arbitrarily small, we conclude that
As(N
(6.12) lim sup A5 (V)]
N—o0 N

Gathering estimates (6.7) and (6.12) in (6.4), the proof of Theorem 2 (in the case
k = 2) is complete.

=0.

7 Example

Given a real number a > 0, set f(u) = (logu)®. Setting v = log u, we get g(v) = v,
so that vg'(v) = awv® — 00 as v — oo. It remains to check that condition (2.1) is
satisfied. On the one hand,

(7.1) (u) = aflogu)* '

while on the other hand, it is known since de la Vallée-Poussin (see [1]) that, for some
constant C' > 0,

(7.2) R(u) < uexp{—C+/logu}.
Using (7.1) and (7.2), we get, by setting v = log u,

(7.3)

y R vt a-1 (1+d)logy ,,a—1

/ | 7)) |f (u)| du < a/ —( og u) e~ CViogu gy, — a/ Y
Yy u y u logy eCvy

Since this last quantity clearly tends to 0 as y — oo, condition (2.1) of Theorem 1 is
satisfied, thereby implying that, if f(m) = (logm)®, then the sequence f(P(n)),>1 is
uniformly distributed mod 1.

1+d
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